
Departamento de Computación

Compressed Self-Indexed

XML Representation

with Efficient XPath Evaluation

Tesis Doctoral

Doctoranda: Ana Belén Cerdeira Pena

Directores: Nieves Rodríguez Brisaboa, Gonzalo Navarro Badino

A Coruña, Enero de 2013

PhD thesis supervised by

Tesis doctoral dirigida por

Nieves Rodríguez Brisaboa

Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1243
Fax: +34 981 167160
brisaboa@udc.es

Gonzalo Navarro Badino

Departamento de Ciencias de la Computación
Universidad de Chile
Blanco Encalada 2120 Santiago (Chile)
Tel: +56 2 6892736
Fax: +56 2 6895531
gnavarro@dcc.uchile.cl

iv

A mis padres y hermana

vi

Acknowledgments

My �rst gratitude words are addressed to my thesis advisors, Nieves and Gonzalo.
You both trusted in me from the beginning, and showed me that with your complete
dedication whenever I needed, and your constant support throughout this work. You
helped me to follow the right way with your knowledge and experience. Today this
thesis is the result of all what you have taught me along this process. Thank you
for your faith and unconditional help.

I also want to give thanks to all members of the Database Laboratory, working
mates, but also friends, who make me enjoy every day the hours of work. With
special a�ection, I express my gratitude to Antonio Fariña and Luisa Carpente, for
their invaluable help, and constant encouragement. It would had not been the same
without your support.

I can not forget all people I met during my research stays far from home, because
of their hospitality, and friendship, when one most needs it. In particular, I would
like to acknowledge to Diego Arroyuelo, Francisco Claude, Rodrigo Paredes, Rodrigo
Cánovas, Daniel Valenzuela, Mauricio Marín, Miguel A. Martínez, Gabriella Pasi,
and Emanuele Panzeri. I also want to give special thanks to Felipe Sologuren and
Kim Nguyen, for their unsel�sh help in research topics.

Thanks as well to you, Miguel, for your enormous patience, and for all those
years we have shared together. They have been wonderful, and I know they will
remain so.

Finally, and undoubtedly, my biggest gratitude is for my family. My parents
and sister. You have always been by my side, sharing with me the joys, but also
su�ering in the bad moments. Whenever I felt down, you gave me the strength to
continue, because you taught me that dreams can not be achieved without e�ort,
without �ghting for them. I've followed your example, and today one of my dreams
has come true. You were right, it has not been easy, but the fact is that what has
been di�cult, would have been impossible without you.

vii

viii

Agradecimientos

Mis primeras palabras de agradecimiento van dirigidas a mis directores de tesis,
Nieves y Gonzalo. Creísteis en mí desde el primer momento, y así me lo
demostrasteis con vuestra completa dedicación, siempre que necesité de vuestros
consejos, y vuestro apoyo constante a lo largo de todo este trabajo. Me habéis
ayudado a seguir el camino correcto con vuestros conocimientos y experiencia. Hoy,
esta tesis es el resultado de todo aquello que me habéis enseñado a lo largo de este
proceso. Gracias por vuestra con�anza y ayuda incondicional.

También quiero dar las gracias a todos los miembros del Laboratorio de Bases
de Datos, compañeros de trabajo, pero también amigos, que hacen que cada día
disfrute de las horas de trabajo. Con especial cariño, doy las gracias a Antonio
Fariña y Luisa Carpente por su ayuda inestimable y ánimos constantes. No habría
sido lo mismo sin vuestro apoyo.

No puedo olvidarme tampoco de todas aquellas personas que he ido conociendo
durante mis largas estancias fuera de casa, por su hospitalidad y amistad, cuando
uno más lo necesita. En particular, me gustaría mencionar a Diego Arroyuelo,
Francisco Claude, Rodrigo Paredes, Rodrigo Cánovas, Daniel Valenzuela, Mauricio
Marín, Miguel A. Martínez, Gabriella Pasi y Emanuele Panzeri. También agradezco
especialmente a Felipe Sologuren y Kim Nguyen su ayuda desinteresada en temas
de investigación.

Gracias además a ti, Miguel, por tu inmensa paciencia y haber compartido
conmigo todos estos años. Han sido maravillosos, y sé que lo seguirán siendo.

Finalmente, y como no podía ser de otra forma, mi mayor agradecimiento es
para mi familia. A mis padres y hermana. Sois quienes habéis estado a mi lado en
todo momento, compartiendo alegrías, pero también sufriendo conmigo en los malos
momentos. Si me caía, ahí estabais vosotros para ayudarme a levantar, porque me
habéis enseñado que los sueños sólo se consiguen con esfuerzo, luchando por ellos.
He seguido vuestro ejemplo, y hoy he cumplido uno de ellos. Teníais razón, no ha
sido fácil, pero lo cierto es que sin vosotros lo difícil hubiese sido imposible.

ix

x

Abstract

The popularity of the eXtensible Markup Language (XML) has been continuously
growing since its �rst introduction, being today acknowledged as the de facto
standard for semi-structured data representation and data exchange on the World
Wide Web. In this scenario, several query languages were proposed to exploit the
expressiveness of XML data, as well as systems to provide an e�cient support.
At the same time, as research in compression became more and more relevant,
works also focused their e�orts on studying new approaches to provide e�cient
solutions, using the minimum amount of space. Today, however, there is a lack of
practical available tools that join both e�cient query support, and minimum space
requirements.

In this thesis we address this problem, and propose a new approach for storing,
processing and querying XML documents in time and space e�cient way, by
specially focusing on XPath queries. We have developed a new compressed self-
indexed representation of XML documents that obtains compression ratios about
30%-40%, over which a query module providing e�cient XPath query evaluation has
also been developed. As a whole, both parts make up a complete system, we called
XXS, for the e�cient evaluation of XPath queries over compressed self-indexed
XML documents. Experimental results show the outstanding performance of our
proposal, which can successfully compete with some of the best-known solutions,
and that largely outperforms them in terms of space.

xi

xii

Resumen

La popularidad del eXtensible Markup Language (XML) no ha hecho sino más que ir
en aumento desde su introducción inicial, siendo hoy día reconocido como el estándar
de facto para la representación de datos semi-estructurados, y el intercambio de
datos en Internet. Bajo este escenario, son varios los lenguajes de consulta que se
han venido proponiendo para explotar la expresividad de los datos en formato XML,
así como sistemas que proporcionasen un soporte e�ciente a ellos. Al mismo tiempo,
y conforme la investigación en compresión se ha hecho cada vez más relevante, los
esfuerzos se han dirigido también a estudiar nuevas aproximaciones que ofreciesen
soluciones e�cientes, pero usando además la menor cantidad de espacio posible.
Actualmente, sin embargo, existe una clara ausencia de herramientas prácticas
disponibles que aúnen ambas características: un soporte a la realización de consultas
e�ciente, con requisitos de espacio mínimos.

En esta tesis abordamos ese problema, y proponemos una nueva solución para
el almacenamiento, procesamiento y consulta de documentos XML, e�ciente en
tiempo y en espacio, centrándonos, en particular, en el lenguaje de consulta XPath.
Así, hemos desarrollado una nueva representación comprimida y auto-indexada de
documentos XML, que obtiene ratios de compresión del 30%-40%, y sobre la cual se
ha creado un módulo de consulta para la e�ciente evaluación de consultas XPath.
En conjunto, ambas contribuciones conforman un sistema completo, que hemos dado
en llamar XXS, para la evaluación e�ciente de consultas XPath sobre documentos
XML comprimidos y auto-indexados. Los resultados experimentales evidencian
el destacado comportamiento de nuestra herramienta, que es capaz de competir
exitosamente con algunas de las soluciones más conocidas, a las que además supera
claramente en términos de espacio.

xiii

xiv

Resumo

A popularidade do eXtensible Markup Language (XML) non �xo máis que medrar
dende a súa introdución inicial, sendo recoñecido hoxe en día como o estándar
de facto para a representación de datos semi-estruturados e o intercambio de
datos na Rede. Baixo este escenario, son varias as linguaxes de consulta que se
propuxeron para explotar a expresividade dos datos en formato XML, así como
sistemas que proporcionasen un soporte e�ciente a eles. Ó mesmo tempo, e conforme
a investigación en compresión se �xo cada vez máis relevante, os esforzos tamén foron
dirixidos a estudiar novas aproximacións que ofrecesen solucións e�cientes, pero
usando ademáis a menor cantidade de espacio posible. Actualmente, sen embargo,
existe unha clara ausencia de ferramentas prácticas dispoñibles que agrupen ambas
características: un soporte á realización de consultas e�ciente, xunto con requisitos
de espacio mínimos.

Nesta tese abordamos ese problema, e propoñemos unha nova solución para
o almacenamento, procesamento e consulta de documentos XML, e�ciente tanto
en tempo como en espacio, centrándonos, en particular, na linguaxe de consulta
XPath. Así, desenvolvimos unha nova representación comprimida e auto-indexada
de documentos XML, que obtén ratios de compresión en torno ó 30%-40%, e
sobre a cal se creou tamén un módulo de consulta para a e�ciente evaluación
de consultas XPath. En conxunto, ambas contribucións conforman un sistema
completo, que chamamos XXS, para a evaluación e�ciente de consultas XPath sobre
documentos XML comprimidos e auto-indexados. Os resultados experimentais
amosan o destacado comportamento da nosa ferramenta, que é capaz de competir
exitosamente con algunhas das solucións máis coñecidas, ás que ademáis supera
claramente en termos de espacio.

xv

xvi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Structure of the Thesis . 5

I Basic Concepts and State of the Art Revision 7

2 XML and XPath Query Language 9

2.1 XML Overview . 9

2.1.1 Well-formedness and Validation 12

2.2 XPath Query Language . 16

2.2.1 XPath Data Model . 16

2.2.2 XPath Expressions . 17

2.2.3 XPath Extensions . 23

3 Text Compression and Succinct Data Structures 25

3.1 Text Compression . 26

3.1.1 Concepts of Compression . 26

3.1.2 Entropy and Redundancy . 27

3.1.2.1 Entropy in Context-dependent Messages 28

3.1.3 Classi�cation of Text Compression Techniques 29

3.1.4 Statistical Compressors . 32

3.1.4.1 Classic Hu�man Code 32

3.1.4.2 Plain Hu�man and Tagged Hu�man Codes 35

3.1.4.3 End-Tagged Dense Code and (s,c)-Dense Code . . . 36

3.1.4.4 Arithmetic Coding 38

xvii

xviii Contents

3.1.4.5 Prediction by Partial Matching 39

3.1.5 Dictionary-based Compressors 41

3.1.5.1 Ziv-Lempel Family 41

3.1.5.2 Re-Pair . 43

3.1.6 Other Compressors . 44

3.1.6.1 Burrows-Wheeler Transform (BWT) 44

3.1.7 Measuring the E�ciency of Compression Techniques 46

3.1.8 One Step beyond Text Compression 46

3.2 Succinct Data Structures . 48

3.2.1 Rank and Select Data Structures 48

3.2.1.1 Rank and Select over Bitmaps 48

3.2.1.2 Rank and Select over Arbitrary Sequences 50

3.2.2 Succinct Tree Representations 54

3.2.2.1 Fully-functional Succinct Tree 56

4 XML Storage and Querying - State of the Art Revision 59

4.1 XPath Query Systems . 59

4.1.1 Sequential Solutions . 60

4.1.2 Indexed Solutions . 65

4.1.2.1 In-memory Engines 65

4.1.2.2 Database Systems 66

4.2 XML Compression . 70

4.2.1 Classi�cation of XML Compressors 71

4.2.2 Non-Queriable XML Compressors 72

4.2.2.1 Schema Dependent Compressors 73

4.2.2.2 Schema Independent Compressors 75

4.2.3 Queriable XML Compressors 84

4.2.3.1 Homomorphic Compressors 85

4.2.3.2 Non-homomorphic Compressors 88

II Our proposal: XXS 97

5 The XML Wavelet Tree 99

5.1 XWT Construction . 100

5.1.1 Phase I: Parsing the XML Document and Assigning Codewords100

5.1.1.1 Document Parsing 100

Contents xix

5.1.1.2 Codewords Assignment 102

5.1.2 Phase II: Compressing and Creating the XWT Structure . . 105

5.2 XWT Basic Procedures . 107

5.2.1 Decompression . 107

5.2.1.1 Random Word Decompression 107

5.2.1.2 Full Text Extraction 109

5.2.1.3 Partial Decompression 110

5.2.2 Searching . 110

5.2.2.1 Word Patterns . 110

5.2.2.2 Phrase Patterns . 113

5.3 XWT Connection with a Balanced Parentheses Representation . . . 113

5.4 Segments in an XML Document . 116

6 Query Plan Construction 119

6.1 XPath Query Support . 120

6.2 Initial Query Plan: the Query Parse Tree 120

6.3 Query Plan Optimization: Query Parse Tree Transformations 122

6.4 Final Query Plan: the Query Execution Tree 131

7 Query Evaluation 137

7.1 Conceptual Description . 138

7.1.1 Evaluation Strategies . 141

7.2 General Implementations . 143

7.2.1 Leaf Nodes . 143

7.2.1.1 Further Discussions 144

7.2.2 Internal Nodes . 145

7.2.2.1 Further Discussions 147

8 Implementations Description 149

8.1 Practical Segment Representation . 149

8.2 Implementations . 150

8.2.1 Leaf Nodes . 150

8.2.1.1 Elements . 151

8.2.1.2 Attributes and Words 154

8.2.1.3 Phrases . 155

8.2.1.4 Optimized Leaf Nodes 158

8.2.1.5 Further Discussions 160

xx Contents

8.2.2 Internal Nodes . 160

8.2.2.1 Ancestor (or-self) 162

8.2.2.2 Descendant (or-self) 163

8.2.2.3 Parent . 164

8.2.2.4 Child . 167

8.2.2.5 Parameterized Operators: the distance parameter . 169

8.2.2.6 Following . 173

8.2.2.7 Preceding . 175

8.2.2.8 Following-sibling . 178

8.2.2.9 Preceding-sibling . 178

8.2.2.10 Basic Operators over Attributes 180

8.2.2.11 Parameterized Operators over Attributes: the dis-
tance parameter . 186

8.2.2.12 And . 187

8.2.2.13 Or . 189

8.2.2.14 Text Functions: contains and equal 190

8.2.2.15 Other Functions: count 194

8.2.2.16 Further Discussions 194

9 Experimental Evaluation 195

9.1 Experimental Framework . 195

9.1.1 Test Machine . 195

9.1.2 Document Corpus . 196

9.1.3 Query Test Bed . 198

9.2 Compression Properties . 201

9.2.1 Results Evaluation . 203

9.2.1.1 Compression Ratios 204

9.2.1.2 Time Measures . 207

9.3 Query Evaluation Performance . 211

9.3.1 Documents Tested . 212

9.3.2 Query Results . 212

9.3.2.1 Structural based Queries 213

9.3.2.2 Text oriented Queries 214

10 Conclusions and Future Work 221

10.1 Summary of Contributions . 221

10.2 Future Work . 223

Contents xxi

A Publications and Other Research Results 225

B Algorithms 227

C Descripción del Trabajo Realizado 239

C.1 Introducción . 239
C.2 Metodología . 241
C.3 Conclusiones y Contribuciones . 242
C.4 Trabajo Futuro . 245

Bibliography 247

xxii Contents

List of Figures

1.1 XXS architecture overview. 3

2.1 Tree view of a sample XML document. 13

2.2 Example of XML document. 18

2.3 Examples of XPath axes. 20

3.1 Building a classic Hu�man tree. 33

3.2 Example of canonical Hu�man tree. 34

3.3 Example of false matchings in Plain Hufmman, but not in Tagged
Hu�man. Notice that special �bytes� of two bits are used for simplicity. 35

3.4 Codewords assignment in (s, c)-Dense Code. 37

3.5 Example of arithmetic compression for the text aabdb. 39

3.6 Di�erent k-order models. 40

3.7 Compression of the text abbabcabbbbc using LZ77. 42

3.8 Compression of the text abbabcabbbbc using LZ78. 43

3.9 Direct Burrows-Wheeler Transform. 44

3.10 Example of WTBC structure. 47

3.11 Example of rank and select operations. 49

3.12 The wavelet tree of the sequence aadcbdbacd. 52

3.13 Example of byte-oriented rank operation by using a two level-
directory structure of partial counters. 54

3.14 Succinct representations of trees. 55

3.15 An example of the range min-max tree. 58

4.1 BPDT template for /tag1[./tag2]. 61

4.2 An XQuery expression (a) and its corresponding projection tree (b). 62

4.3 Query rewritten with signO� statements. 62

xxiii

xxiv List of Figures

4.4 GCX global architecture. 63

4.5 Example of active garbage collection in GCX query evaluation. . . . 64

4.6 Storage architecture of eXist. 67

4.7 XPath axes correspondence in the pre/post plane for the context node
f . 69

4.8 a): context nodes c and f are pruned, since they are inside the
ancestor region of e and i. b): the overlapping ancestor regions
covered by e and i are partitioned along the pre axis at p1 and p2.
c): after hitting f , descendant staircase join infers that no results
can occur until h, thus a large part of the pre/post plane is skipped. 70

4.9 Classi�cation of some examples of XML compression tools. 73

4.10 Example of text compression with XMill. 75

4.11 Example of Multiplexed Hierarchical Modeling in XMLPPM. 77

4.12 Dictionaries created from a sample XML document. 78

4.13 Operational scheme of XWRT. 79

4.14 Markups codi�cation used by XComp. 80

4.15 Tag/attributes identi�ers (b) assigned by XComp to compress a
sample XML document (a). 81

4.16 An XML document (a) and its corresponding ordered labeled tree (b). 82

4.17 The set S after the pre-order traversal of T (left) and after its stable
sort regarding the component Sπ (right), together with the �nal
output of the XBW transform (bottom). 83

4.18 Abstract view of XGrind compression. 86

4.19 Abstract view of XPRESS compression. 87

4.20 SIT structure (b) of an XML document fragment (a). 90

4.21 DOM tree division in XMLZip. 91

4.22 Example of SXSI data model. 95

4.23 Tree and text data representation in SXSI. 95

5.1 XML representation of XXS: the XML Wavelet Tree (XWT). 99

5.2 Example of XWT structure built from an XML document. 103

5.3 Example of correspondence between the XDTree node and a balanced
parentheses representation (BP) of the XML document structure. . . 115

5.4 Segments relationships. 117

6.1 Query parser submodule of the XXS system. 119

6.2 Example of query parse tree from a query without predicates. 121

6.3 Example of query parse trees from queries with predicates. 122

List of Figures xxv

6.4 Examples of use of childatt and parentatt. 123

6.5 Example of Attributes equality simpli�cation. 124

6.6 Example of Redundancy suppression. 125

6.7 Another example of Redundancy suppression. 125

6.8 Transformations of the Redundancy suppression category. 126

6.9 Equivalences of the Synonyms translation modi�cation. 127

6.10 Example of Steps uni�cation. 128

6.11 Typical scenarios of Steps uni�cation. 129

6.12 Example of or optimization. 130

6.13 Example of and optimization. 130

6.14 Scenarios of Root node deletion. 131

6.15 Application of Attributes equality simpli�cation transformation over the

initial query parse tree. 132

6.16 Application of Redundancy suppression transformations over the query

parse tree obtained from Figure 6.15. 133

6.17 Application of Synonyms translation modi�cation over the query parse tree

resulted from Figure 6.16. 133

6.18 Steps uni�cation transformations applied over the query parse tree ob-

tained from Figure 6.17. 134

6.19 Or/and optimizations applied over the query parse tree resulted from

Figure 6.18. 134

6.20 Final query execution tree of the query example described in Figure 6.15. 135

7.1 Query evaluator submodule of the XXS system. 137

7.2 Target relations that compared segments must keep to satisfy the
semantics of an internal node representing di�erent XPath axes. . . 139

7.3 General query evaluation scheme. 140

7.4 Main strategies that characterize XXS query evaluation. 141

7.5 Skipping of segments. 142

7.6 Example of self -nested elements. 144

8.1 Di�erent segment representations for elements. 150

8.2 First bytes validation with skipping, used to match a phrase pattern. 157

8.3 Examples to which optimized next procedures can be applied. 158

8.4 Segment advance for left<right (a) and left⊆right (b) in full-
nested scenario of ancestor axis. 162

8.5 Example for full-nested variant of parent axis. 165

8.6 Example for the full-nested variant of child axis. 167

xxvi List of Figures

8.7 Example for the full-nested variant of childdist axis. 170
8.8 Special cases of use of childdist and descendantdist. 171
8.9 Example for following axis. 174
8.10 Example for preceding axis. 175
8.11 Example for following-sibling axis. 178

9.1 First group of queries (A). 200
9.2 Second group of queries (B). 200
9.3 Third (C) and fourth (D) group of queries. 201
9.4 Compression ratios achieved by our proposal (in blue), general text

compressors (in black), XML conscious non-queriable compressors (in
pink), and queriable tools (in green) over di�erent XML documents. 205

9.5 Compression times. Comparison with general text compressors (top),
and with XML conscious non-queriable compression tools (bottom). 208

9.6 Decompression times. Comparison with general text compressors
(top), and XML conscious non-queriable compressors (bottom). . . . 209

9.7 Construction times of queriable solutions. 211

List of Tables

4.1 Size contributions maintaining i) only one dictionary, ii) separated

vocabularies for each tag, and iii) after merging title and keyword

vocabularies. 78

9.1 Document properties. 197
9.2 Systems construction performance. 212
9.3 Running times (in milliseconds) for the group of queries A over XMark2

document. 215
9.4 Running times (in milliseconds) for the group of queries A over XMark4

document. 215
9.5 Running times (in milliseconds) for the group of queries B over XMark2

document. 216
9.6 Running times (in milliseconds) for the group of queries B over XMark4

document. 216
9.7 Running times (in milliseconds) for the group of queries C over XMark2

document. 217
9.8 Running times (in milliseconds) for the group of queries C over XMark4

document. 217
9.9 Running times (in milliseconds) for the group of queries D over XMark2

document. 218
9.10 Running times (in milliseconds) for the group of queries D over XMark4

document. 219

xxvii

xxviii List of Tables

List of Algorithms

5.1 Construction of XWT . 106

5.2 Display text position x . 108

5.3 Full text extraction . 109

5.4 Locate jth occurrence of word w operation 111

5.5 Count operation for a word w . 112

5.6 Count operation for a word w until a position p 112

5.7 Count operation for a phrase pattern ph 114

7.1 General scheme for the next procedure of an internal node 145

8.1 Next procedure of a non self-nested element 151

8.2 Next procedure of a self-nested element 152

8.3 Next procedure of attributes and words 155

8.4 Next procedure of a continued phrase . 156

8.5 Next procedure of an interleaved phrase 156

8.6 Optimized next procedure of speci�c elements (regardless they are or not

self-nested) . 159

8.7 Optimized next procedure of any element 159

8.8 Optimized next procedure of attributes and words 159

8.9 Next procedure of ancestor operator (non-nested variant) 161

8.10 Next procedure of ancestor operator (full-nested variant) 162

8.11 Next procedure of descendant operator (non-nested variant) 163

8.12 Next procedure of descendant operator (full-nested variant) 164

8.13 Next procedure of parent operator (non-nested variant) 165

8.14 Next procedure of parent operator (full-nested variant) 166

8.15 Next procedure of child operator (non-nested variant) 167

8.16 Next procedure of child operator (full-nested variant) 168

xxix

xxx List of Algorithms

8.17 Modi�cation to be applied over full-nested variant of child operator to

meet childdist semantics . 170

8.18 Next procedure of any element of depth d 172

8.19 Next procedure of any element of depth ≥ d 172

8.20 find_descendants procedure . 173

8.21 Next procedure of following operator (non-nested variant) 173

8.22 Next procedure of following operator (full-nested variant) 174

8.23 Next procedure of preceding operator (non-nested variant) 175

8.24 Next procedure of preceding operator (full-nested variant) 176

8.25 Special next procedure of preceding operator (non-nested variant) 177

8.26 Special next procedure of preceding operator (full-nested variant) 177

8.27 Next procedure of following-sibling operator (full-nested variant) 179

8.28 Next procedure of preceding-sibling operator (full-nested variant) 180

8.29 Next procedure of ancestoratt operator (non-nested variant) 182

8.30 Next procedure of ancestoratt operator (full-nested variant) 182

8.31 Next procedure of descendantatt operator (applicable for non-nested and

full-nested variants) . 183

8.32 Next procedure of parentatt operator (non-nested variant) 184

8.33 Next procedure of parentatt operator (full-nested variant) 184

8.34 Next procedure of childatt operator (non-nested variant) 185

8.35 Next procedure of childatt operator (full-nested variant) 186

8.36 Next procedure of and (self) operator (non-nested variant) 187

8.37 Next procedure of and (self) operator (full-nested variant) 188

8.38 Next procedure of andatt operator . 188

8.39 Next procedure of or operator (full-nested variant) 189

8.40 Next procedure of contains text function for single words (full-nested variant)190

8.41 Next procedure of contains text function for a phrase (full-nested variant) 191

8.42 Next procedure of containsatt text function 192

8.43 Next procedure of equalatt text function 193

B.1 Next procedure of any element (i.e. `*' applied to elements) 227

B.2 Next procedure of or operator (non-nested variant) 229

B.3 Next procedure of oratt operator . 230

B.4 Next procedure of orphrase operator . 231

B.5 Next procedure of contains text function for single words (non-nested variant)232

B.6 Next procedure of contains text function for a phrase (non-nested variant) 233

B.7 Next procedure of equal text functions for single words (non-nested variant) 234

List of Algorithms xxxi

B.8 Next procedure of equal text function for single words (full-nested variant) 235
B.9 Next procedure of equal text function for a phrase (non-nested variant) . . 236
B.10 Next procedure of equal text function for a phrase (full-nested variant) . . 237

xxxii List of Algorithms

Chapter 1

Introduction

1.1 Motivation

Since its �rst introduction in 1998, the importance of the eXtensible Markup
Language (XML) [XMLa], has been constantly increasing, mainly due to its
suitability for data exchange on the World Wide Web. Nowadays, it is widely
employed and it has been acknowledged as the de facto standard for semi-structured
data representation, being used to store large volumes of information from di�erent
domains, such as e-commerce and business, digital libraries, catalogs, chemical and
biological areas, metadata speci�cations, and so on.

To exploit the expressive power of XML, query languages like XPath [XPaa] and
XQuery [XQu] have been de�ned, allowing constraint formulation on both document
content and structure. Their growing interest, and also the challenge of solving those
query languages, have triggered much research aimed to provide e�cient solutions,
either as theoretical proposals or in the form of real systems. These systems are
usually divided into two di�erent categories: those that follow a streaming approach
(such as GCX [SSK07], SPEX [SPE], etc.), hence having to sequentially read the
document to answer each query; and the indexed ones (such as Saxon [Kay08],
Galax [FSC+03], MonetDB/XQuery [BGvK+06], Qizx/DB [Qiz], etc.), requiring
a �rst preprocessing of the document to build additional data structures over it,
which are then used to solve the queries without sequentially traversing the whole
document.

Indexed systems are very interesting solutions for many scenarios, such as those
where the documents are so large that a sequential scan is prohibitively costly or
when many queries must be performed over the same document. However, while

1

2 Chapter 1. Introduction

streaming approaches are supposed to be slower than indexed ones, this may not
always be the case. Note that indexed solutions improve querying capabilities at the
expense of increasing the space requirements, due to the index structures. Thus, in
case that the space needed for the index made it necessary to manipulate it on disk,
e�ciency could be a�ected by I/O transfer times. Hence many e�orts have been
devoted to address the problem of creating an in-memory index, and also to cope
with the usual high space requirements of the indexed alternatives. These e�orts
involve the use of compression techniques to minimize that extra space.

Related to the space challenge, another quite active line of research has been
the development of XML compression methods. One of the main features of the
XML data model is its great �exibility. However, it also constitutes one of its
main drawbacks, since the verbosity of XML documents may result into huge size
documents, which have to be transmitted, stored and, as just seen, also queried. In
this way, the use of compression tools not only saves storage space, but also time.
Time is the critical factor in e�ciency, and working with a compressed version of a
document saves time when it is transmitted through a network, when we need to
access to disk looking for a document, or more importantly, when it is processed.
Therefore, compression is clearly more convenient.

Several works have been devoted in the last years to the XML compression task,
both in the form of general text compressors, known as XML-blind compressors
(e.g. Ziv-Lempel techniques [ZL77, ZL78, Wel84], Hu�man compression [Huf52,
dMNZBY00], PPM based methods [CW84], Dense Codes compressors [BFNP07],
etc.), or compressors speci�cally designed to exploit XML document structure.
Indeed, most of these XML conscious compressors have gone one step beyond,
and have faced both problems, compression and query support, leading to several
queriable compression tools (e.g. XGrind [TH02], XPRESS [MPC03], XCQ
[LNWL03, NLWL06], XQzip [CN04], XQueC[ABMP07], etc.). Some of them allow
one to perform queries directly over the compressed representation of the text (either
sequentially or using indexes), while others need to decompress the data (either
fully or partially) before operating over them. However, despite the large amount
of research developed along the years on this compression area, today there is an
stated lack of available practical solutions [Sak09].

A more novel approach has been to combine compression and indexing, creating
self-indexed representations of the text [NM07], in such a way that the compressed
data represents at the same time the structured text and an index built over it.
In recent works [FLMM05, FLMM06] a self-index for XML data was presented
(XBzipIndex). This solution provides some query support, yet it is restricted to a
very limited class of queries. In [ACM+10], authors proposed another up-to-date
proposal for compressed indexing of XML data. This tool, called SXSI, was tailored
to work in main memory and it has been proved to be able to cope with an important
subset of queries. This time, the main inconvenience is that its space requirements
are still high compared to the size obtained by a plain compressor.

1.2. Contributions 3

Hence, we can observe that e�cient, scalable and stable implementations that
take little space and provide, at the same time, full XML query support, are highly
desirable, yet not satisfactorily achieved.

XXS

Q
u

e
ry

 P
a

rs
e

r

Query Module

XML

Representation

XML

Document

XML

Wavelet

Tree

Q
u

e
ry

 E
v
a

lu
a
to

r

Figure 1.1: XXS architecture overview.

1.2 Contributions

This thesis addresses the open problem pointed out at the end of the previous
section, and proposes a complete and competitive solution that e�ciently supports
XPath queries over a compressed and self-indexed representation of XML docu-
ments. We have developed a system, called XXS (XPath evaluation on XML
documents using a Self-index), that implements this solution. Figure 1.1 shows
the architecture of our proposal. As it can be seen, it is mainly composed by two
parts, which constitute the two main contributions of this work:

• XML Representation: The �rst contribution is a new data structure, we call
XML Wavelet Tree (XWT), that provides compact representation of XML
documents, with implicit self-indexing capabilities. Its construction is made
in two phases. First, an initial pass on the input document1 is performed to
obtain the di�erent words and frequencies, but keeping separated vocabularies
depending on the category of the words, according to the di�erent components
of the XML data model. Then words are assigned a codeword using a

1Notice that a collection of documents can be regarded as a single document that integrates all
of them.

4 Chapter 1. Introduction

variant of a word-based byte-oriented compressor, called the (s,c)-Dense Code
[BFNP07], particularly tailored to make XWT suitable for querying purposes.
The second pass replaces each word of the document by its corresponding
codeword, yielding a compressed representation. Yet, the bytes of each
codeword are not consecutively stored. Instead, they are placed along di�erent
nodes of a tree, following a WTBC codeword bytes reorganization [BFLN12].

XWT represents XML documents using only about 30%-40% of the original
document size, which is a negligible overhead compared with the compression
ratios achieved by the underlying compression method, as experiments prove.
What is more striking is that XWT self-indexing properties and construction
features lend this representation the ability to e�ciently support XPath
queries.

This new representation was published in preliminary form in the 13th

European Conference on Digital Libraries (ECDL 2009) [BCPN09].

• Query Module: As stated, XWT is a new approach to represent and process
XML documents, in a time and space e�cient way. But we have also addressed
the query needs, by designing and implementing a query module for the
e�cient evaluation of XPath queries over the XWT representation. The
Query module has two main components: the Query parser and the Query
evaluator (see Figure 1.1). The Query parser submodule starts by obtaining
a preliminary representation of the query, the query parse tree, that directly
results from the own query syntax parsing. Then, several transformations
are applied over this representation to produce another equivalent, but
optimized one, that exploits XWT features, the query execution tree. This
�nal representation constitutes the execution plan of the query.

Once the query execution tree is obtained, the Query evaluator submodule
directly translated it into operators that perform the global execution process
over the XWT representation of the document. Three main strategies
characterize the general evaluation procedure: a bottom-up approach, together
with a lazy evaluation scheme, and the use of an skipping strategy. We
describe in detail the whole process, and also the implementation of every
operator.

The overall performance of XXS has been tested and compared with some well
known state of the art solutions supporting XPath. Results show that it provides
outstanding XPath evaluation capabilities, using little extra space (about 4%-8%
of additional space) on top of the XWT representation.

A general description of the XXS system has been presented in the 7th Workshop
on Compression, Text, and Algorithms of the 19th International Symposium on
String Processing and Information Retrieval (SPIRE 2012).

1.3. Structure of the Thesis 5

1.3 Structure of the Thesis

After this introductory chapter, the rest of the thesis is organized in two main parts,
as follows:

• Part I - Basic Concepts and State of the Art Revision: this part
introduces some previous concepts for a better understanding of the rest of
the thesis.

� Chapter 2 introduces the basic concepts about XML documents. It
presents a general overview of the eXtensible Markup Language, together
with a brief description of the most important languages to process XML
documents, from which the XPath query language is given an special
focus.

� Chapter 3 addresses the relevance and bene�ts of text compression
nowadays to cope with space limitations, improving e�ciency. Given
the space challenge that may result from XML verbosity, compression
becomes crucial. We present a revision of some basic notions about
general text compression, and describe some classical and up-to-date
proposals in this �eld.This chapter also explains some background
information related to succinct data structures, and describes the most
important ones regarding the scope of our work, namely, those used to
solve basic operations (in particular, rank and select operations) over bit
and byte sequences, as well as di�erent succinct tree representations.

� Chapter 4 aims to revise some of the most relevant proposals in the state
of the art devoted to XML storage and querying. First a classi�cation of
some well-known streaming and indexed systems developed to speci�cally
provide an e�cient support for XML query languages is presented. Then
the chapter also focuses on space aspects, and describe several works
that have addressed the problem of minimizing space requirements, in
the form of XML queriable and non-queriable compression techniques.

• Part II - The XXS proposal: this part is devoted to explain the
contributions of this thesis that together constitute the core of the XXS
system, and to experimentally evaluate its performance.

� Remember that our proposal aims at providing compact representation
of XML documents, with an e�cient query support. As shown in
Figure 1.1, two main parts compose it: the XML representation and
the Query module. Chapter 5 focuses on the �rst one, and presents
the XML Wavelet Tree (XWT), the compressed data structure we
developed to represent XML documents with self-indexing capabilities.
It describes in detail the XWT construction process, and the basic

6 Chapter 1. Introduction

procedures to compress, decompress, and search words and phrases over
that representation. This chapter also points out some of the XWT main
properties that are key to further provide e�cient query evaluation.

� The Query module of XXS is initially addressed in Chapter 6. In
particular, this chapter deals with the Query parser component. The
practical subset of XPath targeted in this work is �rst introduced, and
then the process from query parsing to the production of the �nal query
execution plan is described.

� Chapter 7 focuses on query evaluation, and closes our proposal with
the description of the Query evaluator, the XXS submodule in charge of
the e�cient evaluation of XPath queries over an XWT representation.
The chapter conceptually describes how the general evaluation procedure
operates, combining a bottom-up, and lazy evaluation approach with a
skipping strategy to avoid the processing of those parts of the document
that are not relevant for a given query.

� Once known the description of the global execution process, Chapter
8 describes in detail every operator implementation, and their most
relevant features.

� Chapter 9 benchmarks XXS, and analyzes both its compression proper-
ties, that stem from the underlying XWT representation, and its querying
capabilities, by comparing it with some of the best current alternatives
in the state of the art.

After that, this work ends with a �nal summary chapter and di�erent ap-
pendixes, we next detail:

• Chapter 10 summarizes the main contributions of our work, and future
directions of research.

• Appendix A lists the publications and other research activities related to this
thesis.

• Appendix B describes the pseudocode of some of the operators presented in
Chapter 7.

• Following the rules for PhD dissertation in a foreign language at the University
of A Coruña, Appendix C contains a description, in Spanish, of this thesis
work.

Part I

Basic Concepts and State of

the Art Revision

7

Chapter 2

XML and XPath Query

Language

This chapter presents the basic concepts related to XML documents. We �rst
provide a complete overview of the eXtensible Markup Language in Section 2.1,
by describing the main features of this speci�cation. Then, Section 2.2 starts by
introducing a brief description of some of the most important languages used to
process XML documents, to next focus on the XPath query language. For this
query language, its base data model (Section 2.2.1), as well as the syntax used to
create XPath expressions are shown (Section 2.2.2). Finally, recent and further
extensions to XPath are also presented in Section 2.2.3.

2.1 XML Overview

The eXtensible Markup Language (XML) is a World Wide Web Consortium (W3C)
standard markup language that was originally de�ned as a simpli�ed subset of the
Standard Generalized Markup Language (SGML) for use on the World Wide Web.
Since its �rst introduction in 1998 [XMLa, GP98], the language and its data model
have soon proved their suitability to be the basis for the data interchange on the
Internet. Today, XML is widely employed as a basic data model for representing
general semi-structured information in di�erent domains, ranging from business and
e-commerce applications, to biology and chemistry areas.

The XML speci�cation de�nes a set of rules for designing documents that
can be processed by computer programs, while keeping human-readability. XML
documents are basically built from strings of text and markups. The basic markup
unit, which describes the structure of a document, is called an element (or tag). It
is de�ned by a pair of matching marks, namely the start-tag and the end-tag, that

9

10 Chapter 2. XML and XPath Query Language

enclose the element content. Start-tags begin with `<', and end-tags with `</'.
Both are then followed by the name which identi�es the element itself, and are
closed by `>'. The name of the elements is generally related to the nature of the
content they surround. For instance, we show below an example:

<section>XML Overview</section>

Some elements may be empty, that is, they have no content. In this case, we call
them empty elements, and they are represented by combining the start-tag and the
end-tag into a single empty-element tag beginning with `<', but ending with `/>'.
There is also an special element, the so-called root element. It is the �rst element
in the document and contains all the other elements of the document.

Elements can have attributes. They consist of name-value pairs, that appear
within the start-tag, just after the name of the element. Names are separated from
values, which are enclosed in single or double quotation marks, by `='. For example:

<section number=�1�>

<title>XML Overview</title>

<image file=�document.png� caption=�XML document sample�/>

</section>

Notice that image is an empty element, thus without content, but with
two attributes, file and caption, whose values are �document.png� and �XML
document sample�, respectively.

The elements and attributes names of some XML documents may be taken
from multiple XML applications. Thus, they may share a common name, but
standing for di�erent meanings. In those cases, the use of XML namespaces allow
one to disambiguate elements and attributes with the same name from each other by
assigning them to URIs. Namespaces are implemented by attaching a pre�x to each
element and attribute name, which is mapped to a URI by using a xmlns:prefix

attribute either in the elements in which they are used or in the XML root element.
In the following example, the xmlns:bk attribute associates bk pre�x to the URI
�http://www.vocexample.org/bkvoc�, and hence all element and attribute names
pre�xed by bk are in the same namespace:

<bk:catalog xmlns:bk=�http://www.vocexample.org/bkvoc�>

<bk:journal>

<bk:title>Information Retrieval</bk:title>

<bk:year>2011</bk:year>

<bk:citations>7024</bk:citations>

</bk:journal>

</bk:catalog>

2.1. XML Overview 11

Some other important markups that can be found in an XML document are
comments and processing instructions. Comments begin with `<!−−' and end
with `−−>'. They may appear anywhere in a document outside of other markup.
They are not part at all of the textual content of a document, since comments aim
to make the raw XML more legible to human readers. XML processors may or may
not retrieve the information included into the comments. Here is an example:

<library>

<!−−This content has been manually generated−−>
<book>

<title>Three ways to capsize a boat</title>

</book>

...

</library>

On the other hand, processing instructions (referred as PIs), that appear
enclosed by `<?' and `?>', provide information to particular applications that
may process the document. The application for which a processing instruction
is intended, is identi�ed immediately after the initial `<?', with a name called
the PI target. The rest of the processing instruction contains the data with
the instructions to be passed to the corresponding application. Like comments,
processing instructions may appear anywhere in an XML document, outside of
other markup. A common example of processing instruction is xml-stylesheet,
which allows one to attach stylesheets to documents. For instance, in the following
sample, the xml-stylesheet processing instruction indicates that browsers should
apply the CSS stylesheet book.css to the document before showing it to the user:

<?xml-stylesheet href=�book.css� type=�text/css�?>

<library>

<!−−This content has been manually generated−−>
<book>

<title>Three ways to capsize a boat</title>

</book>

...

</library>

It is forbidden to start a processing instruction with the PI target xml (not either
with XML, XmL, xMl, etc.), since this name is reserved to specify the XML declaration
of an XML document. It constitutes the prolog1 that any XML document should
have2, and provides information about the document itself:

1The prolog is everything in the XML document before the root element start-tag.
2An XML document does not have to have an XML declaration. Notwithstanding, if an XML

document has it, then the declaration must be the �rst thing in the document.

12 Chapter 2. XML and XPath Query Language

<?xml version=�1.0� encoding=�UTF-8� standalone=�yes�?>

<?xml-stylesheet href=�book.css� type=�text/css�?>

<library>

...

</library>

When working with characters that are interpreted in a speci�c way, like the
character `<', that is always recognized as the beginning of a start/end-tag, it is
necessary to provide escape facilities to include them out of their actual scope. To
this aim, XML de�nes the entity references, that allow escaping markup characters
appearing within the text content or within attribute values. XML has �ve
prede�ned entity references: i) <, to replace `<', ii) &, used instead of
`&', iii) >, representing `>', iv) ", for �, and v) ', to substitute `.
Only < and & must be used instead of the literal characters inside elements
content. The others are optional. In turn, " and ' are useful inside
attribute values in order to avoid misconstruing the ending of the value.

An alternative to the use of entity references inside large blocks of text containing
many occurrences of special characters are CDATA sections. A CDATA section
begins with <![CDATA[and ends with]]>, and makes data to be processed simply
as character data, but not as markups. That is, markups are ignored. For instance,
let us consider an XML document including some samples of source code. They
may contain characters that an XML processor would recognize as markups (e.g. &
and `<'). We can use a CDATA section to enclose the samples, and to prevent the
usual performance:

<![CDATA[

a = i << 3;

*b = &a;

]]>

2.1.1 Well-formedness and Validation

As stated, XML speci�es a set of rules that make up the grammar of an XML
document. Besides the possible components, it determines for instance, where
elements may be placed, which names are allowed, how attributes are included,
and so on. Documents that ful�ll the grammar are said to be well-formed. There
are many rules, but some of the most important ones that a well-formed XML
document must satisfy are the following: i) it has an unique root element, ii) every
start-tag has its matching end-tag, iii) elements can not overlap (i.e. an element
can not be closed until all the elements it contains have been closed), iv) attribute
values must be quoted, v) an element may not have two attributes with the same
name, vi) markup characters `<' and `&' may not occur in the character data

2.1. XML Overview 13

of elements and attributes. Notice that the three �rst rules induce a proper tree
structure on an XML document. Figure 2.1 illustrates an example. Furthermore,
the grammar sets the basis needed to create XML parsers, able to read any XML
document.

 <book>

 <title>Three ways to capsize a boat</title>

 <year>2010</year>

 <author>

 <name>Chris Stewart</name>

 <country>UK</country>

 </author>

 <price>11.25</price>

 </book>

XML Document
book

title year author price

Three ways to

capsize a boat
2010 name country

Chris Stewart UK

11.25

Figure 2.1: Tree view of a sample XML document.

There are, basically, two main APIs for XML. The Simple API for XML
(SAX) [SAXa] is an event-based API. It sequentially scans an XML document and
throws events that are further handled by the parser. Examples of events are, for
instance, an occurrence of a start-tag or an end-tag, content characters, a processing
instruction, a comment, etc. In contrast, the Document Object Model (DOM)
[DOM], is another API that builds a tree representation of the entire document in
memory, thus using much more memory than the former approach, but permitting
to randomly access and manipulate the document.

In addition to being well-formed, an XML document may also be valid.
Particular XML applications may need to ensure that a given XML document
adheres to some guidelines (rules) imposed by the application itself. In that case, the
allowed markups, as well as their composition are speci�ed in a schema. Whenever
an XML document matches the schema it is said to be valid. If not, we say that
the XML document is invalid. Hence, the validity of a document depends on which
schema is used to compare it with. Documents do not always need to be valid, for
many applications it is enough that the document is well-formed. There are several
XML schema languages, each one having di�erent levels of expressiveness. The
most widely supported XML schema language3 is the Document Type De�nition
(DTD). A DTD de�nes the list of markups (e.g. elements, attributes, entities, etc.)
that can be used in a document, and how they can be combined, together with
basic content speci�cations. For example:

<!ELEMENT library (book+)>

<!ELEMENT book (title, summary, chapter*)>

3It is also the only one de�ned by the XML speci�cation [XMLa].

14 Chapter 2. XML and XPath Query Language

<!ELEMENT title (#PCDATA)>

<!ELEMENT summary (#PCDATA | keyword)*>

<!ELEMENT chapter (#PCDATA)>

<!ATTLIST book ref CDATA #REQUIRED

href CDATA #IMPLIED>

The �rst element declaration of the DTD sample above states that each library

element must contain one or more book child elements4. In turn, the second line
indicates that each book element must have exactly one title child element followed
also by exactly one summary element, and zero or more chapter elements5. That
is, every book must contain a title and a summary, and may or may not have a
chapter or multiple chapter elements. Nevertheless, the title must come before
the summary, and this one must appear before all chapters.

Regarding title and chapter elements, lines 3 and 5 say that each occurrence
of any of these elements may only contain parsed character data (referred with
#PCDATA), that is, raw text, but not any child element. In case mixed content is
allowed, then we use an element declaration similar to that shown in line 4. This
states that a summary element may contain parsed character data as well as keyword
children. It does not specify in which order they appear, nor how many instances
of each occur. This declaration allows a summary to have 0 keyword children, 1
keyword children, or 26 keyword children.

In addition, the use of ATTLIST declarations are used to declare element
attributes. For instance, if we consider lines 6 and 7 of the sample DTD we have
been analyzing, they indicate that any book element must have a ref attribute
(#REQUIRED). However, the href attribute is optional (#IMPLIED), and may be
omitted from particular book elements. Both attributes are asserted to contain
character data (i.e. any string of text) 6.

Therefore, according to the DTD sample just seen, the following XML document
would be valid:

<library>

<book ref="CHS001">

<title>Three ways to capsize a boat</title>

<summary>A charming and lyrical read, awash with the joy

of discovery</summary>

<chapter>The proposal</chapter>

<chapter>When dreams come true</chapter>

<chapter>Sailing to Greek Islands</chapter>

4The `+' after book stands for �one or more�.
5This time `*' after chapter denotes �zero or more�.
6CDATA is the most generic attribute type. Other attribute types are: NMTOKEN, NMTOKENS,

Enumeration, ENTITY, ID, IDREF, etc.

2.1. XML Overview 15

...

</book>

</library>

However, it would not be the case of the next document, since the summary

element comes before the title one, and also the book element does not have the
mandatory attribute ref:

<library>

<book>

<summary>A charming and lyrical read, awash with the joy

of discovery</summary>

<title>Three ways to capsize a boat</title>

<chapter>The proposal</chapter>

<chapter>When dreams come true</chapter>

<chapter>Sailing to Greek Islands</chapter>

...

</book>

</library>

Usually schemas are supplied in separated �les from the documents they
describe. Yet, DTDs are the only ones that can also be included inside the
XML document. In both cases, the XML markup corresponding to the document
type declaration is used. It is included in the prolog of the XML document,
just after the XML declaration and before the root element, and it allows
one to specify either a reference to an external DTD to which the document
should be compared or even the DTD itself (between square brackets). For
instance, let us assume that the previously discussed sample DTD is available at
http://dtdsamples.com/library.dtd. Then, the document type declaration of
an XML document conforming to this DTD looks like:

<?xml version=�1.0� encoding=�UTF-8� standalone=�yes�?>

<?xml-stylesheet href=�book.css� type=�text/css�?>

<!DOCTYPE library SYSTEM �http://dtdsamples.com/library.dtd�>

<library>

...

</library>

This document type declaration tells that the root element of the document is
library and that the DTD for the document can be found at http://dtdsamples
.com/library.dtd.

Nevertheless, DTDs may not always be enough, since they provide limited
support for type de�nition of the contained data. That is, a DTD does not allow

16 Chapter 2. XML and XPath Query Language

one to specify, for instance, that an element contains a real number or a date range.
Some other well-known and more powerful schema languages that permit these kind
of constraints are the W3C XML Schema Language [XSD], RELAX NG [CM01] or
Schematron [Sch].

2.2 XPath Query Language

There are several languages for processing XML documents: the XML Path
Language (XPath) [XPaa], the XML Query Language (XQuery) [XQu], the XSL
Transformation (XSLT) [XSL], the XML Linking Language (XLink) [XLi], the XML
Pointer Language (XPointer) [XPo], etc. The reference query languages are both
XPath and XQuery7, while XSLT is used to transform an XML document into
another XML document, by means of template rules. In turn, XLink allows one to
attach simple, bidirectional or even multidirectional links to XML documents, with
can be further speci�ed by using XPointer, that permits to address individual parts
of an XML document. As it can be seen, each one deals with di�erent aspects of
XML processing, yet the relevance of XPath stems from the fact that it constitutes
the base for most of the rest ones. Since this thesis is focused on this language, we
will next describe it in detail8.

2.2.1 XPath Data Model

XPath aims to select parts of XML documents. The XPath data model considers
XML documents as trees made up of nodes of di�erent types. There are basically
seven node types: i) the root node, ii) element nodes, iii) text nodes, iv) attribute
nodes, v) comment nodes, vi), processing instructions nodes, and vi) namespace
nodes. There is always a root node which is the root of the hierarchy. It has no
name and no parent, and its unique child is the element node representing the
root element of the document. It may also contain any comment or processing
instruction occurring before the root element start-tag or after the root element
end-tag.

Element nodes represent the elements of an XML document. Each of them has
a parent, which in case of the root element is the root node, and for the rest of
the element nodes, is the node containing it. An element node may have children

7The main expression of XQuery is the FLWOR expression: FOR, LET, WHERE, ORDER,
RETURN. This expression supports iteration and binding of variables to intermediate results.
It is commonly assumed that the FLWOR expression serves approximately the same purpose in
XQuery than the SELECT expression serves in the SQL language for relational databases.

8According to XPath 1.0 [XPaa].

2.2. XPath Query Language 17

that can be nodes representing another elements, text, comments, and processing
instructions directly contained by the element.

Each attribute makes up the corresponding attribute node. The parent of an
attribute node is the element node it belongs to, still an attribute is not considered
its child. Attribute nodes have no children. The textual content of an element is
represented by text nodes. Each text node contains the maximum contiguous run
of character data not interrupted by any tag. Like the attribute nodes, text nodes
do not have child nodes. Finally, each of the comment nodes, processing instruction
nodes and namespace nodes, are related to occurrences of the respective components
their names refer. Yet, these are rarely handled.

2.2.2 XPath Expressions

The basic concept in XPath is the expression. XPath syntax mainly consists of
expressions whose result is usually a set of nodes9, but it can also be a boolean,
numeric or string value. That is, expressions allow one to specify a set of nodes and
optionally a function on the result. Hence, it is possible to search, for instance, for
all the book nodes in an XML document and just deliver the set, or add a counting
operation and deliver instead the number of such nodes.

The most important XPath expression is the so-called path expression, also
known as location path. A location path identi�es a set of nodes in a document
and is composed by a sequence of one or more minor units, namely the location
steps. Location paths may start by a slash, `/', in which case they are absolute
location paths, that are evaluated from the document root node, or may be relative
location paths, which are evaluated from a context node.

Before formally describing path expressions, let us consider the following
example of location path related to the XML document of the Figure 2.2 to show
how they work:

/store/city/books[./@category=�fantasy�]/book/title

Since the expression begins with a slash, its evaluation will start from the root
node. In particular, we are interested in store element nodes that are children
of the root node. In that case, the element store (line 1) of the sample XML
document satis�es this constraint, so we select it. Then, the following step selects
all its children of type city (lines 2 and 23) and, for each selected node, the next step
obtains those elements nodes that are books child nodes. However, the expression

9According to XPath 1.0 [XPaa] results are node sets, hence with no order; while in XPath 2.0
[XPab], results are sequences of nodes in a particular order, the `document order' (which applied
over the XML document structure corresponds to a preorder traversal). However, arguably all
the systems supporting XPath 1.0 assume as well this `document order' for results delivering. In
this work we also assume that, even as a way to allow the compatibility of our system with future
extensions.

18 Chapter 2. XML and XPath Query Language

XML Document

 1. <store>

 2. <city name=”Coruña” province=”Coruña”>

 3. <books category=”fantasy”>

 4. <book year=”1997">

 5. <title>Harry Potter and the Philosopher’s Stone</title>

 6. <author>J.K. Rowling</author>

 7. <price>10.95</price>

 8. </book>

 9. <book year=”2000">

 10. <title>Harry Potter and the Goblet of Fire</title>

 11. <author>J.K. Rowling</author>

 12. <price>13.50</price>

 13. </book>

 14. </books>

 15. <books category=”literature”>

 16. <book year=”1999">

 17. <title>Driving over Lemons: An Optimist in Andalucia</title>

 18. <author>Chris Stewart</author>

 19. <price>10.25</price>

 20. </book>

 21. </books>

 22. </city>

 23. <city name=”Vigo” province=”Pontevedra”>

 24. <books category=”fantasy”>

 25. <book year=”1954">

 26. <title>The Two Towers</title>

 27. <author>J.R.R. Tolkien</author>

 28. <price>20.15</price>

 29. </book>

 30. <book year=”1955">

 31. <title>The Return of the King</title>

 32. <author>J.R.R. Tolkien</author>

 33. <price>23.75</price>

 34. </book>

 35. </books>

 36. </city>

 37. <city name=”Santiago” province=”Coruña”>

 38. </city>

 39. </store>

Figure 2.2: Example of XML document.

surrounded by the square brackets restricts that selection to only those books

element nodes that have an attribute category with value fantasy (lines 3 and
24). Once those elements are retained, we continue by selecting their book children
(lines 4, 9, 25 and 30). At last, the �nal step returns the title child nodes of each
of them (lines 5, 10, 26 and 31).

2.2. XPath Query Language 19

Now we will discuss in detail the main features of the path expressions. As seen,
successive location steps are separated by slashes, and are evaluated from left to
right. Each step in the path is relative to the one that preceded it. That is, the
result of each location step makes up the context for the next. The general pattern
of a location step is given by /axis::node_test [predicate]. That is, it is composed of
three main parts:

• An axis, that speci�es how to move from the context node to look for new
nodes. There are 13 di�erent axes, from which the 8 most common are
illustrated in Figure 2.3:

1. child: identi�es every child node of the context node10.

2. descendant: selects every child node of the context node, their children,
and so on. That is, this axis identi�es every descendant node of the
context node10.

3. parent: the parent node of the context node.

4. ancestor: identi�es the parent node of the context node, but also the
parent of the parent node, and so forth until reaching the root node.

5. following: selects every node10 that appears, in document order, after
the context node, excluding all its descendant nodes.

6. preceding: identi�es every node10 that appears, in document order,
before the context node, excluding all its ancestor nodes.

7. following-sibling: every node10 sibling of the context node that
appears after the context node, in document order.

8. preceding-sibling: identi�es all nodes10 siblings of the context node
appearing before the context node, in document order.

9. attribute: selects every attribute node of the context node. This axis
can only be applied to element nodes.

10. self: identi�es the context node itself.

11. descendant-or-self: identi�es the context node and all its descen-
dants.

12. ancestor-or-self: selects the context node and all its ancestors.

13. namespace: identi�es all the namespace nodes belonging to the context
node. The context nodes can only be element nodes.

Usually axes are classi�ed into forward axes and reverse axes, depending on
whether they take nodes that, in document order, are after or before the con-
text node, respectively. Thus the child, descendant, descendant-or-self,

10Other than attributes and namespace nodes.

20 Chapter 2. XML and XPath Query Language

descendant

ancestor

context node

following-sibling

preceding-sibling

preceding

following

context node

child

parent

context node

Figure 2.3: Examples of XPath axes.

following, following-sibling, attribute and namespace axes, are all
forward axes. In turn, parent, ancestor, ancestor-or-self, preceding,
and preceding-sibling, are all considered as reverse axes. Note that the
self axis can be either classi�ed into the forward axes category or into the
reverse axes group.

2.2. XPath Query Language 21

Some of the axes admit an abbreviated form. For instance, whenever the
axis is omitted after `/', as happened in the example previously shown (e.g.
/store/city/books[./@category=�fantasy�]/book/title), a child axis
is assumed (since it is by far the most commonly used). Attribute axis,
can also be expressed by the symbol @. Likewise, self and parent axes are
represented with a shorter notation by using a single period (`.'), and a
double period (`..'), respectively.

• A node test, that indicates the name or the type of the nodes that should be
selected along the axis.

Every axis has a principal node type. If an axis can contain elements, then
the principal node type is element; otherwise, it is the type of the nodes that
the axis can contain. That is, for the attribute axis the principal node type
is attribute, for the namespace axis, it is namespace, and for the rest of the
axes, the principal node type is element. Commonly, node tests specify the
name that the selected nodes must have. In this scenario, the name test is
ful�lled if the type of the node corresponds to the principal node type of the
axis speci�ed in the location step and if its name matches that of the test. For
example, let us assume the location step marked in blue face in the following
path expression: /store/descendant::book. Then, according to it, only
book element nodes descending from a store element node are selected.

It is also possible to use the wildcard symbol `*', instead of a speci�c name.
In such a case, the name test is true for any node of the principal node type,
no matter its name. For instance, if we consider the example of Figure 2.2,
the last location step of the path expression /store/city/books/book/* will
select title, author and price element nodes11 children of any book node
ful�lling the conditions imposed by the rest of the previous location steps.
Likewise, /store/city/@*, will select any attribute node, regardless its name,
from a city element node child of store. Assuming again the example of
Figure 2.2, both name and province attributes of the corresponding cities
will be delivered by this path expression.

In addition, node type tests allow selecting nodes of a speci�c type. Di�erent
functions are used to represent the node types we are interested in. For
example, node() stands for nodes of any type, and text() selects only text
nodes, while comment() and processing-instruction() are used to select
comment nodes and processing-instruction nodes, respectively.

As stated in previous examples, when axes are speci�ed through their
shorthand notations, the axis and the node test are combined in the location
step. For instance, that is the case of /store/city/@name. However, if

11Note that these three di�erent element nodes correspond to all the types of element nodes
child from a book element in the document sample.

22 Chapter 2. XML and XPath Query Language

the unabbreviated form is used, two colons `::' separate the axis from
the node test. If we consider the same example, and use the unabbreviated
syntax, we will rewrite it as /child::store/child::city/attribute::name.
Another typical abbreviation is the double slash, `//', which stands for
`/descendant-or-self::node() /child::'.

• Zero or more predicates (also called �lters) used to further re�ne the node
selection. Predicates are enclosed in square brackets, and may contain any
XPath expression, from whose result a boolean value is determined12. The
predicate is tested for each node of the current node set, selected at the step
to which the predicate is applied. If the predicate is evaluated to true, then
the node is kept in the current set. Otherwise, it is discarded. For example,
//book[./@year=�2000�], will deliver only those books whose publication
year is equal to 2000 (line 9). Another example could be //book[./price],
which returns only those books for which a price child node exists (in
this XML document sample, all books have a price, hence they are all
delivered). We have just seen the use of the equal sign inside a predicate,
`='. Yet, XPath supports other relational operators such as `<', `>', `!=',
etc. In addition, predicates can be logically combined by using `and'/`or'
operators. Let us consider the path expression //city[./@name=�Coruña�

or ./@name=�Santiago�]//book/title. It will select the titles of books
that can be bought in the company stores placed in Coruña and Santiago
(since there are still no books in Santiago store, this query only delivers the
titles of those books we can �nd in Coruña, that is, lines 5, 10 and 17).

Moreover, XPath provides a number of built-in functions that can be used
as part of an step expression. The most common functions are those that
operate on node sets, such as count() or position(), and those representing
basic string operations, like contains() and starts-with(). Still, boolean and
number functions are also supplied. An example of use of these functions is
shown by the following path expression: count(/store/city[./@name=�Coruña�]
/books/book[contains(./title, �Potter�)]), that delivers the number of books
that can be acquired in stores of Coruña and whose title contains the word
`Potter'. Thus, applied to the XML document sample shown in Figure 2.2, the
answer will be 2.

12If the type of the expression result is other than boolean, di�erent situations arise. For instance,
if it is a number, then the predicate is true if and only if the value of the number matches the
context position. If the type of the expression result is a string, then the predicate is evaluated to
true if and only if the length of the string is greater than zero. Finally, if the type of the expression
result is a node set, then the predicate is true if and only if the node set contains at least one
node.

2.2. XPath Query Language 23

2.2.3 XPath Extensions

Recently, XPath has been enriched with full-text search capabilities [Ful], that allow
one to perform text-based searches considering some special operators. Although
they are not addressed in this thesis, we brie�y discuss the four di�erent categories
in which these operators are roughly divided:

• Word expansions: to search for a particular word/term, but also for other
terms related to the query term. That is the case of applying a stem operation
or of searching for close terms in a thesaurus.

• Matching options: to de�ne the �factors� that stand for a speci�c kind of
match. For instance, to include a case option, that indicates how uppercase
and lowercase characters are considered, or to introduce wildcards.

• Positional operations: to search for occurrences of query terms that are �near�.
This proximity can be speci�ed by providing a scope (e.g. within the same
sentence or the same paragraph), the exact distance between terms, a distance
range, and even the order of the terms to match.

• Combining operations: to support logical combinations, namely and, or, not,
and not in, of full-text selections.

24 Chapter 2. XML and XPath Query Language

Chapter 3

Text Compression and Succinct

Data Structures

Data compression constitutes a key factor for the e�cient handling of increasing
amounts of available information. Not only does it allow saving storage space, but
also time. This fact is even stressed in case of XML documents, which due to their
verbosity may result into huge size documents, that have to be transmitted, stored,
and also queried. Most of the XML compression works are based on general text
compression techniques. Hence, the �rst part of this chapter starts by providing a
complete overview of basic text compression notions that are needed for a better
understanding of forthcoming concepts and proposals described in the rest of this
thesis. A brief description of several concepts related to Information Theory are �rst
shown in Section 3.1.1 and Section 3.1.2. Then, Section 3.1.3 presents a taxonomy
of the text compression techniques, of which the main ones are discussed in depth
in Sections 3.1.4, 3.1.5, and 3.1.6. Finally, some measure units that can be used to
compare compression techniques are also introduced in Section 3.1.7.

The second part of this chapter (Section 3.2) is devoted to the description of
succinct data structures that aim to reduce space requirements, while keeping an
e�cient processing of the data. Section 3.2.1 describes some succinct data structures
to solve basic operations (namely, rank and select) over bit and byte sequences,
which are commonly used to improve the e�ciency of other high-level structures,
such as, for instance, the structures used to represent trees. These succinct tree
representations are precisely further discussed in Section 3.2.2, given their relevance
within XML contexts.

25

26 Chapter 3. Text Compression and Succinct Data Structures

3.1 Text Compression

This section introduces some basic concepts about general text compression needed
to better understand further explanations.

3.1.1 Concepts of Compression

The objective of text compression is to transform a source text into a representation
containing the same information but whose length is as small as possible. To this
aim, the source text is seen as a sequence of small fragments, called source symbols
(e.g. characters, words, q-grams etc.), which are the basic units to compress. The
amount of all di�erent source symbols that appear in the text is known as the source
alphabet, β.

A compression technique replaces each source symbol of the text by a codeword.
Then the compressed text is the sequence of codewords assigned to its source
symbols. The mapping between source symbols and codewords is given by an
encoding scheme or code, that de�nes how each source symbol is encoded. Each
codeword is composed by one or more target symbols from a target alphabet, Γ,
of size D. Depending on D, the number of bits, b, needed to represent a target
symbol, is di�erent. For instance, codewords which are sequences of bits, that is,
bit-oriented codewords, use b = 1 bits to represent each of the D = 21 symbols of
Γ. Instead, byte-oriented codewords, which are sequences of bytes, need b = 8 bits,
thus permitting to represent D = 28 distinct target symbols.

The process of restoring the source symbol corresponding to a given codeword is
called decoding. When dealing with text, it is mandatory for the decoding algorithm
to obtain an exact replica of the original source after decompression. In such
a case, we refer to those methods as lossless compression techniques. However,
there are some situations where the use of lossy compression techniques is allowed.
For instance, image and sound compression are common examples of this kind of
scenarios, since human visual/auditive sensibility cannot detect small di�erences
between both the original and the decompressed data.

A code is said to be a distinct code if each codeword is distinguishable from every
other, that is, the mapping from source symbols to codewords is one-to-one. A code
is uniquely decodable if every codeword is identi�able from a sequence of codewords.
For instance, let us assume a source alphabet, β = {a, b, c, d}, and the following
encoding scheme: a ↔ 0, b ↔ 1, c ↔ 10, d ↔ 11. It is a distinct code, however it
is not uniquely decodable, since the sequence 110 could be decoded either as 1, 1, 0
(bba), 1, 10 (bc) or 11, 0 (da). In turn, if we consider the same source alphabet, but a
di�erent code: a↔ 00, b↔ 10, c↔ 01, d↔ 011, we will note that this new encoding
scheme ful�lls the uniqueness condition. However, it is still required to perform a
lookahead during decoding to observe that, for instance, the sequence 01100001
corresponds to cbac, since we can not determine that the �rst codeword is 01 (c),

3.1. Text Compression 27

and not 011 (d), up to analyzing some of the binary symbols beyond the codeword
itself1. A uniquely decodable code is called a pre�x code (or pre�x-free code) if
there is no codeword being a proper pre�x of any other codeword. Assuming again
the source alphabet β = {a, b, c, d}, the mapping a↔ 00, b↔ 10, c↔ 110, d↔ 111,
is an example of pre�x code. An important property of pre�x codes is that they
are instantaneously decodable. That is, an encoded message can be parsed into
codewords without the need for lookahead, thus permitting decoding a codeword
right after it is read, which improves decoding speed. For example, a binary string
like 00101101000 is univocally and instantaneously decoded to abcba, using the
aforesaid pre�x code, with no inspection of the following code symbols to decode a
codeword.

A pre�x code is a minimal pre�x code if, being x a proper pre�x of some
codeword, then xτ is either a codeword or a proper pre�x of a codeword, for each
target symbol τ in the target alphabet Γ. For instance, we have seen that the
mapping a ↔ 00, b ↔ 10, c ↔ 110, d ↔ 111, is a pre�x code. However, it is not
minimal. Notice that since 0 is a proper pre�x of 00, it will require 01 be either
a codeword or a proper pre�x of a codeword, but it is neither. If the codeword
00 is replaced by 0, then the code becomes a minimal pre�x code. The minimality
property prevents the use of codewords that are longer than necessary.

In association with pre�x codes, Kraft inequality [Kra49] establishes whether
it is feasible or not to �nd a pre�x code with some codeword lengths. Let us
denote lci the length of a codeword ci, then a binary pre�x code with codewords
c1, c2, . . . , cn, and with corresponding codeword lengths lc1 , lc2 , . . . , lcn exists if and
only if

∑n
i=1 2

−lci ≤ 1. The codeword lengths of a pre�x code satisfy Kraft's
inequality. Conversely, given codeword lengths lc1 , lc2 , . . . , lcn that ful�ll Kraft's
inequality, then a pre�x code with those codeword lengths exists. Yet, any code
satisfying Kraft's inequality does not have to be a pre�x code. Let us consider the
uniquely decodable encoding scheme a ↔ 00, b ↔ 10, c ↔ 01, d ↔ 011, previously
characterized. The associated codeword lengths are 2, 2, 2, 3, and hence they satisfy
Kraft's inequality, since 2−2 + 2−2 + 2−2 + 2−3 = 7

8 ≤ 1. However it is not a pre�x
code. Notice as well that in case

∑n
i=1 2

−lci = 1, the codeword lengths are minimal,
thus yielding to the existence of a minimal pre�x code. For instance, if we consider
the above shown minimal pre�x code, a ↔ 0, b ↔ 10, c ↔ 110, d ↔ 111, we can
check that 2−1 + 2−2 + 2−3 + 2−3 = 1.

3.1.2 Entropy and Redundancy

As previously stated, compression techniques aim at representing the data by using
less space [BCW90]. For that purpose, they try to exploit redundancies in the
source text, while keeping the source information. The information included in a

1Notice that if the binary string of zeros after the third position had been of odd length, then
the �rst codeword would have been 011 (d), and hence the unique valid input sequence daac.

28 Chapter 3. Text Compression and Succinct Data Structures

source message is equivalent to the amount of surprise in the message. Shannon's
work [SW49] established the basis of information measurement and transmission.
Given a source symbol si, the amount of information associated is de�ned by I(si) =
− logD p(si), where p(si), denotes the probability of occurrence of the symbol si,
and D is the number of symbols of the target alphabet. The intuition is that the less
likely the occurrence of si, the more surprised we are to observe it. For instance, if
p(si) = 1, no information is obtained from that observation, since it is the expected
outcome. Instead, if p(si) tends to 0, we will be surprised by the occurrence of si,
since it is a symbol which does not usually appear. Consequently, its observation
has high information content.

If we are interested in quantifying the expected amount of surprise of a source
alphabet, we can obtain it by computing its entropy, H. It is de�ned as H =
−
∑n

i=1 p(si) logD p(si), and provides the average information content of the source.
That is, entropy indicates a lower bound on the number of target symbols per source
symbol needed to encode a message2. Closely related to entropy, is the redundancy.
Let us consider l(ci), the length of the codeword ci assigned to the source symbol
si, then redundancy is described as:

R =

n∑
i=1

p(si)l(ci)−H =

n∑
i=1

p(si)l(ci)−
n∑

i=1

−p(si) logD p(si)

In other words, redundancy is a measure of the di�erence between the average
codeword length and the actual average information content (i.e. the entropy).
Remember that compression techniques try to reduce the redundancy of the source
messages. Since the entropy is determined by the distribution of probabilities of the
source alphabet, the smaller the average codeword length of a code, the better the
code is. A code having the minimum average codeword length is called a minimum
redundancy code.

3.1.2.1 Entropy in Context-dependent Messages

In Section 3.1.2 we assumed that the source symbol probabilities p(si) did not
depend on the previously appeared symbols. That is, we assumed independence of
source symbols and their occurrences. Yet it is possible to model the probability
of a source symbol si in a more precise way, by considering the source symbols
appeared before it. We call context of a source symbol si to a �xed-length sequence
of source symbols preceding si. Depending on the length m of the considered
context, di�erent m-order models are de�ned, yielding also di�erent kth-order (Hk)
entropy expressions:

2Usually D = 2, hence the entropy gives us the minimum number of bits per symbol that will
be required to encode a source text.

3.1. Text Compression 29

• Base-order models consider that all source symbols are independent and
equally like to occur. Hence, the entropy for this scenario, denoted as H−1,
results H−1 = log2 n.

• Zero-order models assume that source symbols are still independent, but with
frequencies given by their number of occurrences. In this case, the zero-order
entropy is de�ned as H0 = −

∑n
i=1 p(si) logD p(si).

• First-order models compute the probability of occurrence of a source symbol sj
conditioned by the previous occurrence of the symbol si (that is, Psj |si). Then
the arising entropy is obtained as H1 = −

∑n
i=1 p(si)

∑n
j=1 Psj |si logD(Psj |si).

• Second-order models obtain the probability of occurrence of a source symbol
sk conditioned by the previous occurrence of the sequence sisj (that is,
Psk|sjsi). Hence, for these models, the entropy is computed as H2 =
−
∑n

i=1 p(si)
∑n

j=1 Psj |si
∑n

k=1 logD(Psk|sj ,si).

• Higher-order models work in a similar way.

Some techniques combine distinct m-order models to estimate the probability
of the next source symbol. Prediction by Partial Machine (PPM) [CW84, BCW90,
Mof90], is an example of that kind of compressor which combines several �nite-
context models of order 0 to m.

3.1.3 Classi�cation of Text Compression Techniques

Prior to establish a classi�cation of the text compression techniques, it is important
to separate the two main phases that compose the global compression process itself.

• Modeling : the source text is partitioned into symbols and their probability
distribution is estimated, in order to try to discover something about the
structure of the input. The more accurate the estimations of the probabilities
are (e.g. by considering the context of symbols, as discussed in Section
3.1.2.1), the better the compression is. In the �eld of natural language
text compression, the partition of the input into symbols can be done
by considering either characters or words3 as the basic units. Although
a character oriented approach had been traditionally applied, obtaining
poor compression ratios (around 65%), the bene�t of using word-based
models4, to improve the compression achieved (around 25%-35%), was later
shown [Mof89, TM97, dMNZBY00]. Two empirical laws characterize this
performance:

3Also q-grams may be considered.
4One of the most popular is the spaceless word model [MNZBY98], that creates the vocabulary

by considering the following premise: if a word is followed by a space we just encode the word,
otherwise both the word and the separator are encoded.

30 Chapter 3. Text Compression and Succinct Data Structures

� Heap's law [Hea78] provides an approximation of how a vocabulary grows
as the size of the text collection increases. In particular, it settles that the
relationship between the number of words in a natural language text (N)
and the number of di�eren words (V) in that text (that is, words in the
vocabulary), is de�ned as V = kNβ , where k and β are free parameters
empirically determined. For example, in English text corpora, it usually
holds that 10 ≤ k ≤ 100 and 0.4 ≤ β ≤ 0.6. Therefore, Heaps' law
suggests that the price of having a larger set of source symbols (as it
happens when using words instead of characters), is not signi�cant on
large text collections, as the vocabulary grows sublinearly.

� Zipf's law [Zip49] gives an estimation of the word frequency distribution
for a natural language text. The frequency of the i − th most frequent
word in the vocabulary is given by the expression f = t

iθ
, being t =

1∑
i>0

1

iθ
= 1

ζ(θ) a normalization factor5, and θ a constant that depends on

the analyzed text (1 < θ < 2). Then, following Zipf's law the distribution
of words in natural language text is more skewed than that of characters
[BYRN99].

Indeed, since IR systems are built taking the words as the basic elements,
word-based compression techniques meet their requirements, and hence can
be perfectly integrated with them.

• Coding : the encoding scheme assigns a codeword to each source symbol
according to the probability biases obtained in the modeling phase.

According to this, text compression techniques can be categorized depending on
the model used, but also on how the encoding process take place. Regarding the
�rst criterion, compression techniques are classi�ed as using:

• Static or non-adaptive models : source symbols are assigned �xed frequencies,
taken from previously computed probability tables. These probabilities are
usually drawn from experience, and do not �t the actual distribution of the
source symbols in the input message, thus the encoding process yields, in
general, poor compression ratios. Yet those models can be used in speci�c
scenarios. The Morse code is a well-known example of this approach.

• Semi-static models : these models are commonly associated with two-pass
techniques. The �rst pass over the text is performed to gather the di�erent
source symbols that compose the source alphabet or vocabulary, and to
compute their frequency distribution. These probabilities are then used by
the encoding scheme to create and assign a codewords to each source symbol.

5ζ(x) =
∑

i>0
1
ix

is known as the Zeta function.

3.1. Text Compression 31

After that, a second pass takes place. The whole text is processed again,
and source symbols are replaced by the corresponding codewords, leading
to the compressed text, which is stored together with a header containing
the mapping between symbols and codewords, needed for decompression. As
it can be noticed, semi-static techniques are not able to compress streams
of text, since the encoding can not start before the whole �rst pass has
been completed. Some representative semi-static compression techniques are
the classical Hu�man-based codes [Huf52], and those based on Dense Codes
[BFNP07].

• Dynamic or adaptive models : usually known as one-pass techniques, these
methods do not perform an initial pass over the text to obtain source symbols
and their frequencies. Instead, they start with an initial empty vocabulary,
and read one symbol at a time. Whenever a symbol is read, it is encoded
by using its current frequency distribution and its number of occurrences is
increased. If a new symbol is encountered, it is added to the vocabulary.
Therefore, a same symbol can be assigned di�erent codewords during the
process. The codeword of each symbol is adapted to its frequency as the
compression progresses, but the decompressor also does the same. That is,
the decompressor adapts the correspondence between symbols and codewords
in the same way as the compressor does. Hence, one-pass techniques do
not need to include the mapping between symbols and codewords along
with the compressed text. This property gives to one-pass methods the
ability to compress text streams, unlike semi-static techniques. In fact,
dynamic models usually refer the encoder and decoder as sender and receiver,
respectively. Ziv-Lempel family [ZL77, ZL78, Wel84], as well as PPM [CW84]
and arithmetic encoding [Abr63, WNC87, MNW98] are common examples of
adaptive methods.

On the other hand, a second classi�cation can be done according to the coding
process. Here we distinguish two main families:

• Statistical techniques : these methods assign a codeword to each source
symbol whose length depends on its probability. Compression is achieved by
assigning shorter codewords to more frequent symbols. Well-known statistical
compressors are based on Hufmman codes, Dense Codes, and arithmetic codes.

• Dictionary techniques : these techniques use a dictionary of substrings that
is built during compression. Sequences of source symbols are then replaced
(encoded) by small �xed length pointers to an entry in the dictionary.
Therefore, compression is obtained as long as large sequences are substituted
by pointers with less space requirements. The Ziv-Lempel family holds the
best known dictionary-based compression methods. Indeed, also grammar-
based compressors are commonly included under this category. They are

32 Chapter 3. Text Compression and Succinct Data Structures

considered as a specialized form of dictionary techniques, since they operate
in a similar manner to dictionary-based approaches, but generating a context-
free grammar from which then derive the contents of the original source
text. Unlike traditional dictionary-based methods, grammar-based techniques
are able to faster recognize complex patterns. This makes grammar-based
algorithms perform better on highly structured inputs. Re-Pair technique
[LM00] is one of the best known grammar-based compressors.

Following this last classi�cation, sections from Section 3.1.4 through Section
3.1.6 present a brief description of some of the most interesting natural language
text compression methods used nowadays.

3.1.4 Statistical Compressors

3.1.4.1 Classic Hu�man Code

The classic Hu�man technique [Huf52] is one of the most famous statistical semi-
static text compressors. In fact, it was the �rst method able to generate optimal
(i.e. with minimum average length) pre�x free codes. The codeword generation is
based on the use of a full tree, built on the �rst pass over the text from the di�erent
source symbols and their frequencies. As a full tree, every node of the Hu�man tree
has zero or D children. In case of the classical Hu�man tree, D = 2, thus yielding
to a binary tree. Each leaf node of the tree corresponds to a source symbol, and
is assigned a weight given by the probability of its symbol. The position (level) of
the source symbols in the tree depends on their probability. The deeper the level
of the tree it is placed, the lower its probability. The Hu�man tree is built in the
following way. A set of nodes is �rst created, each one associated to a di�erent
source symbol, hence storing its corresponding frequency. Then, in a second step,
the two least frequent nodes are removed from the set, leading to a new internal
node, set as their parent. This new node is inserted into the set with an associated
frequency computed as the sum of the frequencies of those removed nodes. Next, the
same procedure is applied to the two least frequent nodes, and the whole process is
repeated until just one node remains in the set. This last node constitutes the root
of the Hu�man tree, whose frequency is the sum of the frequencies of all the source
symbols. Once the complete Hu�man tree is created, codewords are assigned to
source symbols (leaf nodes). By setting to 0 and to 1 the left and right branches of
the internal nodes, respectively, each source symbol is mapped to a binary codeword
given by the complete path from the root of the tree until that leaf node.

In Figure 3.1 an example of Hu�man tree construction is depicted for the source
alphabet β = {a, b, c, d, e}. Notice that in the �rst step we could choose either c or
d as the second least frequent node (since both have the same frequency), together
with e (which is the node with the lowest frequency). In this example we decide to
choose d, and join d and e to create a new internal node, its frequency being 0.20.

3.1. Text Compression 33

Step 1

Step 2

Step 3

Step 4

Step 5

a b c

d e

0.35 0.30 0.15

0.15 0.05

0.20

a b c d e

0.35 0.30 0.15 0.15 0.05

a b

c

0.35 0.30

0.15

d e

0.15 0.05

0.20

0.35

Labelling branches

a

b

c

0.35

0.30

0.15

d e

0.15 0.05

0.20

0.35

0.65

Input symbol Codeword

a

b

c

d

e

0

11

100

1010

1011

Codewords assignment

Building the Huffman tree

a

b

c

0.35

0.30

0.15

d e

0.15 0.05

0.20

0.35

0.65

1.00

0 1

0 1

0 1

0 1

a

b

c

0.35

0.30

0.15

d e

0.15 0.05

0.20

0.35

0.65

1.00

Figure 3.1: Building a classic Hu�man tree.

The same occurs in step three, regarding node a and the node formed after joining
the two least frequent nodes in the second step, which is �nally chosen along with
b, to create a new node. Finally, it is in step four that only two nodes remain, and
the complete Hu�man tree is created by joining them. However, observe that if we
have taken a di�erent decision regarding the joined nodes in the �rst and third step,
a distinct Hu�man tree could be obtained, thus leading also to a di�erent encoding.
That is, usually several Hu�man trees can be built over the same sequence of source
symbols and probabilities, generating di�erent codes. This makes necessary for the
decompressor to know the shape of the Hu�man tree used during compression,
which is included in a header together with the compressed text. The decompresor
reads a bit at a time and traverses the Hu�man tree (choosing either the right or the
left branch of an internal node depending on the bit value) until a leaf is reached.
At this moment, the associated source symbol is output. Then, the decompression
algorithm goes back again to the root of the tree and continues the process.

34 Chapter 3. Text Compression and Succinct Data Structures

a

b

c

0.35

0.30

0.15

d e

0.15 0.05

0.20

0.35

0.65

1.00

0 1

0

0

0

1

1

1

Figure 3.2: Example of canonical Hu�man tree.

Canonical Hu�man Tree

The main drawback of the classical Hu�man code, given by the necessity of storing
the tree shape used for encoding, was beaten as the concept of canonical Hu�man
code was introduced [SK64]. There, authors realized that Hu�man algorithm is only
needed to compute the length of the codewords. Once they are known, codewords
assignment can be performed in several ways. Hence, the relevant information is
just provided by the codewords length. The canonical Hu�man code exploits that
feature. It builds a pre�x code tree from left to right in increasing order of depth.
At each level, leaves are placed in the �rst position available (from left to right).
Then, the following properties arise:

• Codewords are assigned to symbols in increasing length order, the lengths
being given by Hu�man algorithm.

• Codewords of a given length are consecutive binary numbers.

• The �rst codeword cl of length l is related to the last assigned codeword, of
length l − i, by the expression cl = 2i(cl−i + 1).

Therefore, the canonical Hu�man tree can be compactly represented by only
using the lengths of the codewords, which reduces the space requirements of the
header of the compressed �le. Figure 3.2 shows the canonical Hu�man tree of the
example of Figure 3.1. The codewords obtained for each source symbol are now
a↔ 0, b↔ 10, c↔ 110, d↔ 1110, e↔ 1111.

3.1. Text Compression 35

3.1.4.2 Plain Hu�man and Tagged Hu�man Codes

Hu�man approaches are mostly used as character-based and bit-oriented codes.
However, as stated in Section 3.1.3 using words as source symbols instead of
characters greatly reduces compression ratios [Mof89]. Moreover, the use of bytes as
target symbols was also explored [dMNZBY00], as a way to speed up the processing
of the compressed text.

Plain Huffman Tagged Huffman

word codeword

to

love

and

be

loved

 00

 01

 10

 11 00

 11 01

word codeword

to

love

and

be

loved

10

11 00

11 01 00

11 01 01 00

11 01 01 01

Example: to love and to be loved

Searching for “to”

00 01 10 00 11 00 1101

 to love and to be loved

False matching

10 1100 110100 10 11010100 11010101

 to love and to be loved

False matchings not possible

Figure 3.3: Example of false matchings in Plain Hufmman, but not in
Tagged Hu�man. Notice that special �bytes� of two bits are used for
simplicity.

The basic word-based byte-oriented variants of the Hu�man code are called
Plain Hu�man and Tagged Hu�man [dMNZBY00]. Although compression ratios
are slightly degraded with respect to a bit-oriented approach [TM97] (from 25% to
30%, in natural language text), the use of bytes provides faster decompression and
searching, because no bit manipulations are necessary. The main di�erence between
both methods is that Plain Hu�man Codes do not allow searching for a pattern
over the compressed text by coding it and then applying a classical string matching
algorithm [BM77, NR02]. Spourious matches may occur (see Figure 3.3), thus a
sequential search over the compressed text has to be performed, reading one byte at
a time. Instead, Tagged Hu�man Codes avoid that problem by introducing a simple
modi�cation in the encoding scheme: the �rst bit of each byte is reserved to �ag the
�rst byte of a codeword. Then, the remaining 7 bits are used for the Hu�man code
(since the �ag is not useful by itself to make the code a pre�x code). That is, full
bytes are used, but only 7 bits are devoted to coding. Due to this, Tagged Hu�man
achieves worst compression ratios than Plain Hu�man. In exchange, searches are

36 Chapter 3. Text Compression and Succinct Data Structures

performed much faster in the former, and it also permits random decompression.

3.1.4.3 End-Tagged Dense Code and (s,c)-Dense Code

The End-Tagged Dense Code (ETDC) [BINP03, BFNP07] is also a semi-static
statistical word-based byte-oriented pre�x-free encoder, that achieves the same
search performance and capabilities of Tagged Hu�man (i.e. use of string matching
algorithms over the compressed text and direct access), while keeping similar
compression ratios to those obtained by Plain Hu�man. Hence, it combines the
best properties of each of the previous alternatives. Besides, encoding and decoding
with this compression technique are simpler and faster than with Tagged Hu�man
and Plain Hu�man.

The basic idea of ETDC consists of marking the end of a codeword instead of
the beginning, as Tagged Hu�man does. That is, the �rst bit of each byte is reserved
to �ag whether the byte is the last one of its codeword: the highest bit of codeword
bytes is 1 for the last byte (not the �rst) and 0 for the others. This simple change
is enough to ensure that the code is a pre�x code regardless the content of the
7 remaining bits. Therefore, unlike Tagged Hu�man, ETDC does not need to use
Hu�man coding over the other 7 bits of each byte. Rather, all possible combinations
of 7 bits are feasible, thus producing a dense encoding. This feature is the key to
improve the compression ratio achieved by Tagged Hu�man.

In general, we can say that for target symbols of b bits (b = 8 in the byte-
oriented version), and given source symbols sorted by decreasing frequencies,
the corresponding codewords using ETDC are formed by a sequence of symbols
representing digits from 0 to 2b−1−1, except the last one which has a value between
2b−1 and 2b − 1. This codewords assignment is performed in a sequential way, thus
making the computation of codes extremely simple and faster than using Hu�man.
Furthermore, note that a source symbol will be assigned a codeword depending on its
rank in the sorted vocabulary, not on its actual frequency. As a result, no additional
information is needed apart from the sorted vocabulary for the decompressor to
rebuild the model6.

If we focus on byte-wise codewords (b = 8), we can observe that ETDC uses 128
di�erent values (from 0 to 127) for the symbols that do not end a codeword, called
continuers (c), and the same amount of values, but ranging from 128 to 255, for
the last symbol of the codewords, known as stoppers (s). However, this proportion
between the number of continuers and stoppers (s = c = 2b−1) could not be optimal
for a given word frequency distribution of a text. Hence, (s,c)-Dense Code ((s,c)-
DC) [BFNP03, BFNP07] is a generalization of ETDC where any s+ c = 2b can be
used, such that digits between 0 and s− 1 are used as stoppers and digits between

6Remember that Hu�man codes need to store some information about the shape of the Hu�man
tree, even for the canonical tree.

3.1. Text Compression 37

 Word rank Codeword assigned # bytes # words

0

1

2

…

s-1

 [0]

 [1]

 [2]

 …

 [s-1]

1

1

1

…

1

s

s

s + 1

s + 2

...

s + s - 1

s + s

s + s + 1

…

s + sc - 1

2

2

2

…

2

2

2

…

2

sc

s + sc

s + sc + 1

…

s + sc + sc - 1

s + sc + sc

…

s + sc + sc2 - 1

 [s][s][0]

 [s][s][1]

 …

 [s][s+c-1][s-1]

 [s+1][s][0]

 …

 [s+c-1][s+c-1][s-1]

3

3

…

3

3

…

3

sc2

...

 [s][0]

 [s][1]

 [s][2]

 …

 [s][s-1]

 [s+1][0]

 [s+1][1]

 …

 [s+c-1][s-1]

Figure 3.4: Codewords assignment in (s, c)-Dense Code.

s and s + c − 1 = 2b − 1 are used as continuers7. Optimal values for s and c are
computed for a speci�c word frequency distribution to minimize compression ratios
[BFNP07]. In this way, and considering a byte-oriented scenario, the corresponding
(s,c)-DC encoding process of a sorted vocabulary, summarized in Figure 3.4, can
be described as follows:

• One-byte codewords, from 0 to s − 1, are given to the �rst s words in the
vocabulary.

• Words ranked from s to s+sc−1 are sequentially assigned two-byte codewords.
The �rst byte of each codeword has a value in the range [s, s+ c− 1], that is,
a continuer. The second byte, the stopper, has a value in range [0, s− 1].

• Words from s+ sc to s+ sc+ sc2 − 1 are assigned three byte codewords, and
so on.

For example, the codes assigned to symbols i ∈ 0 . . . 18 by a (2,6)-DC8 are as

7Notice that ETDC is actually a (2b−1, 2b−1)-Dense Code.
8Note that, for simplicity, we assume bytes of 3 bits. Thus 23 = 8 = 2 + 6.

38 Chapter 3. Text Compression and Succinct Data Structures

follows: ⟨0⟩, ⟨1⟩, ⟨2,0⟩, ⟨2,1⟩, ⟨3,0⟩, ⟨3,1⟩, ⟨4,0⟩, ⟨4,1⟩, ⟨5,0⟩, ⟨5,1⟩, ⟨6,0⟩, ⟨6,1⟩, ⟨7,0⟩,
⟨7,1⟩, ⟨2,2,0⟩, ⟨2,2,1⟩, ⟨2,3,0⟩, ⟨2,3,1⟩, and ⟨2,4,0⟩.

In addition, there are on-the-�y procedures to encode and decode a word given
its ranked position. Let i be the position of the word and x = i− sck−1−s

c−1 , the �rst
k − 1 digits of the codeword are �lled with the representation of number ⌊x/s⌋ in
base c, adding then s to each digit, and the last digit is x mod s.

3.1.4.4 Arithmetic Coding

Arithmetic coding [Abr63] is another example of statistical compression method,
yet unlike the previous compressors, it is commonly used in an adaptive way. The
main idea of this technique is to code a sequence of source symbols by using an
unique real number in the range [0, 1). That is, the algorithm starts with the initial
interval [0, 1), then a source symbol is read at a time, and its probability is used
to narrow the interval. The obtained reduced range at each step represents the
input sequence of source symbols already processed. Specifying a narrow interval
requires more bits, so the number constructed by the algorithm grows continuously.
To achieve compression, the interval is reduced less when a high-probability symbol
is read, than when a low-probability one is processed, in such a way that most
frequent symbols contribute fewer bits to the output.

To show how this compressor works, we next explain an example of arithmetic
compression using a semi-static model9. Figure 3.5 illustrates the complete process.
Let us consider a vocabulary of four source symbols β = {a, b, c, d}, with associated
probabilities p = {0.4, 0.3, 0.15, 0.15}, and the following input message, aabdb. The
algorithm initially divides the interval [0, 1) in four subintervals according to the
source symbol probabilities. Hence, the subinterval [0, 0.4) represents symbol a,
while any number in the subintervals [0.4, 0.7), [0.7, 0.85) and [0.85, 1), represents
symbols b, c, and d, respectively. The algorithm starts by reading the �rst input
symbol a, thus reducing the current interval to [0, 0.4). Then, this new interval
is also partitioned into subintervals of di�erent size according to the probability
of the source symbols. In this case, the next possible subintervals are [0, 0.16),
[0.16, 0.28), [0.28, 0.34) and [0.34, 0.4), each one representing the sequences aa, ab,
ac, and ad. Since the second symbol is a again, the current interval is narrowed to
[0, 0.16). Next, b is read, and the interval [0, 0.16) is reduced from its 40% point
to its 70% point (in accordance with the probability of b). The resulting interval is
[0.064, 0.112). This is later narrowed by d symbol, leading to the working-interval
[0.1048, 0.112). Finally, the last symbol, b, reduces once more the interval to the
range [0.11092, 0.112). Any number of this �nal range could be used to represent
aabdb message. Therefore, the encoder generates the number that could be encoded
with less bits inside that interval.

9The dynamic version could be performed by just adapting the frequency of the source symbols
each time one of them is processed.

3.1. Text Compression 39

0 0.4 0.7 0.85 1
a b c d

0.16 0.28 0.34 0.4
a b c d

0

0.064 0.112 0.136 0.16
a b c d

0

a

Input

a

b

d

0.0832 0.0976 0.1048 0.112
a b c d

0.064

0.10768 0.10984 0.11092 0.112
a b c d

0.1048

Figure 3.5: Example of arithmetic compression for the text aabdb.

To decompress a message coded with arithmetic coding, it is only necessary
for the decompressor to know the vocabulary used and the probabilities of source
symbols. From the compressed data, it is able to derive the ranges used, and hence
to recover the input symbols.

Several modi�cations have been proposed to the basic arithmetic coding along
the years, such as an integer-based arithmetic encoder [WNC87], or the use
of shift/add operations instead of multiplications and divisions to improve its
performance [MNW98].

3.1.4.5 Prediction by Partial Matching

Prediction by Partial Matching (PPM) is a statistical adaptive compressor [CW84],
based on the use of m + 1 �nite-context models of order from 0 to m (m is the
maximum context length) to predict the probability of the next source symbol. For
each �nite-context model of order k (see Figure 3.6), PPM stores the di�erent
k -length sequences of characters previously encountered, and for every distinct

40 Chapter 3. Text Compression and Succinct Data Structures

character following those sequences, it also keeps the number of times they have
appeared. These values are then used to estimate the probability of the incoming
characters in that model.

a p p l e

Order 1

Order 2

Order 3

Order 4

Figure 3.6: Di�erent k-order models.

Given a source symbol s, PPM �rst tries to encode it by using the sequence of
the m previous symbols in the input stream. That is, it starts by trying to use the
probability predicted by the highest-order model (the m-order model). However, if
there is no m-length sequences of characters preceding the input symbol, it means
that the new character could not be encoded by the given m-order model, and the
(m − 1)-order model is then tried. In such a case, an escape symbol is sent to
warn the decoder that a change of model will be performed. The process continues
in a same way until reaching either a model for which the input character is not
novel or the bottom-level model, which corresponds to a (−1)-order model where
all symbols of the source alphabet are equally probable. In both situations, an
arithmetic coding is applied to encode the incoming symbol using the predicted
probability of the attained model.

Di�erent methods to determine how probabilities are assigned to the escape
symbols rise also distinct variants of PPM. They are usually denoted as PPMu,
where u, indicates the method used. For instance, methodsA, B [CW84], C [Mof90],
D [How93], and X [WB91], have been proposed, and further compared [MT02].

In general, and given their nature, PPM algorithms achieve good compression
ratios, at the expense of worsening compression and decompression speed. For
instance, PPM obtains compression ratios around 20%-25% when working with
natural language texts, while in character-based Hu�man codes this value grows up
to 65%. However, unlike Hu�man codes, where the use of words could signi�cantly
improve compression performance, word-based PPM models are unfeasible in
practice. Since word-based vocabularies are larger than character-based ones, to
keep context models of order greater than 2 becomes impracticable.

3.1. Text Compression 41

3.1.5 Dictionary-based Compressors

3.1.5.1 Ziv-Lempel Family

Among the dictionary-based compressors, Ziv-Lempel family includes the most
representative dictionary and adaptive techniques. Some well-known variants of
this family are LZ77 [ZL77] and LZ78 [ZL78] algorithms, which are the basis of
commonly used compressors such as gzip10, compress and p7zip11.

Unlike other adaptive approaches, such as Arithmetic Coding or even PPM,
which have proven to be competitive techniques regarding compression ratio, Ziv-
Lempel compressors do not achieve as good compression values (around 35%-40%).
In exchange, their main advantage is compression and, specially, decompression
speed.

LZ77. LZ77 is the �rst proposed compression method of the Ziv-Lempel family.
The main component of this technique is a �xed length sliding window holding the
n last characters already processed. Therefore, the basic idea of LZ77 is to perform
a dictionary strategy, based on the use of the sliding window, to code next input
symbols. The process starts with an empty window. In each step, the algorithm
reads the largest substring, t, already appeared in the window. Let us assume that
t = t0, t1, . . . , tl−1, and that c is the next incoming character after t. Then, LZ77
encodes that sequence as a triplet ⟨p, l, c⟩, where the p value denotes the backward
o�set with respect to the end of the window where t starts, and l represents the
length of the t substring. Next, the generated triplet is output and the window is
slid by l+1 positions. In case no substring is found in the window, the transmitted
triplet is ⟨0, 0, c⟩ and the window is slid only one position. Figure 3.7 shows an
example of compression using LZ77 technique, for the text abbabcabbbbc. Shaded
characters represent the current sliding window at each step.

Notice that by using this scheme, decompression can be performed very fast.
During decompression, the window holds the last decoded characters. Hence, given
a triplet ⟨p, l, c⟩, the decoder only needs to output l characters, starting at position
p before the end of the window, next followed by c.

LZ77 performance mainly depends on the size of the sliding window. The greater
the size of the window, the greater the probability to encode larger substrings.
However, the range of values needed to represent p o�set also growths as the size
of the window increases. Usually, 12 bits are used to represent p (thus yielding a
sliding window of 4096 bytes), and 4 bits, for l. That is, both p and l are represented
by using 2 bytes. Furthermore, a minimum size of the window is also considered in
order to avoid the replacement of small pre�xes, that would not pay o� the triplet.

10http://www.gzip.org
11http://www.7-zip.org

42 Chapter 3. Text Compression and Succinct Data Structures

a b b a b c a b b b b c

a b b a b c a b b b b c

a b b a b c a b b b b c

a b b a b c a b b b b c

a b b a b c a b b b b c

a b b a b c a b b b b c

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Output

<0, 0, a>

<0, 0, b>

<1, 1, a>

<2, 1, c>

<3, 2, b>

<2, 2, c>

a b b a b c a b b b b c

current positionoffset

t0 t1

t

| t | = 2

next charactersliding window

Step 5 in detail

Figure 3.7: Compression of the text abbabcabbbbc using LZ77.

The LZ77 technique constitutes the base of gzip compressor12. A well-known
variant of LZ77 is LZMA (Lempel-Ziv-Markov chain algorithm). This variant
commonly uses a dictionary size of 1GB, although this value can growth up
to 4GB, if required. p7zip is a compression tool based on LZMA algorithm.
In general, it achieves better compression ratios than gzip (around 22%-30%),
but compression/decompression process su�ers from large memory and time
requirements.

LZ78. The second proposal of the Ziv-Lempel family is the LZ78 compressor. This
technique substitutes the use of the sliding window by a dictionary that holds all
the appeared substrings in the source text. This dictionary is e�ciently searched
via a trie data structure. Each node ni of the trie is a pointer to a dictionary
entry, entryi, representing the substring obtained by the concatenation of letters
labeling the trie edges in the path from the root of the trie to node ni. In this
way, a character is read at a time, traversing the trie downwards until the longest
matching entry (entryk) is found (that is, until there is no edge that permits the
transition to the next incoming character of the text). The read sequence is then
encoded by a pair ⟨k, c⟩, where k is the pointer to the found dictionary entry, entryk,
and c is the character of that follows entryk in the text. This pair is sent to the
output and the substring entryk + c is appended to the dictionary as a new entry.
The LZ78 decompressor works in a similar way than the encoder, but traversing the
trie upwards. We illustrate an example of text compression with LZ78 technique
in Figure 3.8. We use the same input as that used to exemplify LZ77 compressor:
abbabcabbbbc.

12It is based on the compression algorithm known as de�ate which uses a combination of LZ77
and Hu�man coding.

3.1. Text Compression 43

1 2

5 3 4 6

Step Input

1

2

3

4

5

a

b

ba

bc

ab

Output Dictionary

(0, a)

(0, b)

(2, a)

(2, c)

(1, b)

 entry1 = “a”

 entry2 = “b”

 entry3 = “ba”

 entry4 = “bc”

 entry5 = “ab”

6

7

bb

bc

(2, b)

(4,)

 entry6 = “bb”

a

Trie structure

b

ab bc

Figure 3.8: Compression of the text abbabcabbbbc using LZ78.

Usually, LZ78 compression is faster than LZ77. However, LZ78 decompression
speed is not as good as that obtained by LZ77. Yet, a variant of LZ78, called LZW
[Wel84], is widely used. For instance, it is the base of the Unix compress program,
and also of GIF image format. The main di�erence of LZW with respect to LZ78
is that LZW only outputs pointers to found dictionary entries, but not characters,
as LZ78 does. To this aim, LZW initializes the dictionary with the symbols that
compose the source alphabet, and takes the last character of the just previously
found substring as the �rst character of the next one.

3.1.5.2 Re-Pair

Re-Pair [LM00] is an example of grammar-based compressor. It consists of
repeatedly �nding the most frequent pair of symbols in a sequence of integers,
and replacing it with a new one, until no more substitutions are useful. Basically,
given a sequence T , this technique �rst identi�es the most frequent pair ab in T .
Then, a rule r → ab is generated and appended to a dictionary D, r being a new
symbol not appearing in T . In such a way, every pair ab in T is next replaced
by r. This whole process is repeated until there is no pair of adjacent symbols
that occurs twice. Therefore, if we denote as C the sequence obtained after T is
compressed, any symbol in C is either an original symbol of T (called a terminal) or
an introduced symbol (called a non-terminal). Each of them represents a substring
of T of length 1 or longer than 1, respectively. In case of a non-terminal symbol, the
original substring can be recovered by recursively expanding that symbol. That is,
any symbol r can be expanded using rule r → r1r2 in D, and the process continues
in a same way with r1 and r2, until the original symbols of T are obtained. Any
substring is expanded in optimal time (i.e. proportional to its length).

Despite its quadratic appearance, Re-Pair can be implemented in linear time
[LM00], but at the expense of using several data structures needed to trace the pairs
that must be replaced. That may become problematic in case of large sequences

44 Chapter 3. Text Compression and Succinct Data Structures

[Wan03, GN07, CN07], since the space consumption of the linear time algorithm is
about 5|T | words.

3.1.6 Other Compressors

3.1.6.1 Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform (BWT) [BW94] is not an actual compressor, but
an algorithm that permits to transform a string, W , into another string, TW , that
is more compressible. Basically, TW contains the same data of W , but in di�erent
order. This algorithm is also reversible. That is, the original source can be recovered
from TW (and little extra information).

m i s s i s s i p p i

i s s i s s i p p i m

s s i s s i p p i m i

s i s s i p p i m i s

i s s i p p i m i s s

s s i p p i m i s s i

s i p p i m i s s i s

i p p i m i s s i s s

p p i m i s s i s s i

p i m i s s i s s i p

i m i s s i s s i p p

M

M is

built

S

“mississippi”

0

1

2

3

4

5

6

7

8

9

10

Row

sorting

m i

i m

s i

s s

i s

s i

s s

i s

p i

p p

i p

M

0

1

2

3

4

5

6

7

8

9

10

F L

BWT

 L = “pssmipissii”

 I = 4

rank (B,13) = 6

Figure 3.9: Direct Burrows-Wheeler Transform.

Direct BWT. Given a string W of length n, BWT �rst builds a matrix Mnxn,
obtained from the circular rotation of the input string. That is, the �rst row contains
W , the second one, W >> 1 (i.e. W circularly shifted one position to the right),
and so on. Next, Mnxn is lexicographically ordered by row. Note that one of the
rows of the sorted matrix stores the original string W . Let us refer to that row as
I. We also denote as F and L the �rst and last column, respectively, of the matrix
obtained after sorting. The following properties hold:

• F contains all characters in W , but alphabetically ordered.

• The jth character in L precedes (in W) the string stored at row j.

The result of applying BWT toW , is a string formed by all characters in the column
L of M , plus the value I: BWT (W) → (L, I). Figure 3.9 shows how BWT works
given the input string mississippi.

3.1. Text Compression 45

Inverse BWT. The inverse BWT uses the result obtained by BWT algorithm
(i.e. (L, I)), and recovers the original string. The �rst step consists of rebuilding the
column F of matrix M , by simply sorting alphabetically the string L. Both strings
are used in a second step to construct a new string T that stores the correspondence
between the characters of the two previous strings. That is, if L[j] stores the kth

occurrence of the character `c' in L, then T [j] = i, given that F [i] is the kth

occurrence of `c' in F . According to the de�nition of T , it also rises F [T [j]] = L[j].
Hence, the last step recovers the input string W using the I value, and the vectors
L and T . The recovering procedure starts by doing:

p ← I

i ← 0

Then, each of the n characters of W are recovered by applying n times the
following procedure:

Sn−i−1 ← L[p]

p ← T [p]

i ← i+ 1

BWT in Text Compression. To understand why BWT obtains a more
compressible representation, let us consider a text W where the word `better '
appears many times. After the rows of M are sorted, all those rows starting with
`etter ' are placed together. Moreover, most of them are likely to end (i.e. be
preceded by) in `b'. That is, a region of L will hold a large number of occurrences
of character `b', in addition to some other characters that could precede `etter '. For
instance, the characters `l ' or `f ', for words `letter ' and `fetter ', respectively. The
same property can be extended to any other substring of W , in such a way that
speci�c regions of L will contain a large number of a few distinct characters.

This result leads to the fact that a given symbol will appear with high probability
in some regions of L, while in some other its probability will fall down. This feature
can be e�ciently pro�ted by move-to-front (MTF) compressor [BSTW86], that will
encode the occurrences of `b' as the number of distinct characters found since the last
previous occurrence of `b'. Hence, all contiguous occurrences of any character will
become sequences of consecutive zeros. What is more, the obtained representation
after applying the MTF encoder, can be still further compressed using either a
Hu�man-based or an arithmetic encoder. However, since we could �nd many long
runs of zeros in the output of MTF, another good alternative is to use Run Length
Encoding (RLE). The bzip2 compressor is based on BWT compression.

46 Chapter 3. Text Compression and Succinct Data Structures

3.1.7 Measuring the E�ciency of Compression Techniques

To measure the e�ciency of di�erent compression methods, we must consider two
main features. On the one hand, the performance of the algorithms involved,
and on the other hand, the compression achieved. Although compression and
decompression algorithms can be analyzed by their theoretical complexity, thus
providing an idea of how a technique will behave, it is also relevant to compare their
performance against other methods in real scenarios, based on empirical results.
Compression and decompression times (measured in seconds or milliseconds) are
the most usual measures used to give us this kind of information. In turn, and
regarding the compression obtained by the technique, a measure commonly used
is the compression ratio. Let us consider that z is the size of the source text in
bytes, and that the compressed text occupies m bytes, then the compression ratio
is de�ned as m

z x 100. That is, it represents the percentage that the compressed
text occupies with respect to the original text size.

3.1.8 One Step beyond Text Compression

Word-based byte-oriented compression techniques have been acknowledged as
quite relevant solutions for natural language text databases, since they achieve
competitive compression ratios, fast random access, and direct sequential searching.
In case of semi-static statistical methods, compression has gone one step beyond.
Recently, a novel reorganization proposal of the codeword bytes of any natural
language text compressed with an encoding scheme of this category has been
presented [BFLN08, BFLN12]. This codeword rearrangement, called Wavelet Trees
on Bytecodes (WTBC), for its similarity with the original wavelet trees [GGV03],
consists basically of placing the di�erent bytes of each codeword at di�erent nodes
of a tree, instead of sequentially concatenating them, as in a typical compressed
text. However, this minor change leads to a new implicitly indexed representation
of the compressed text, where search times are drastically improved, by using a
negligible amount of additional space. In fact, in [BFLN12], experimental data
shown that WTBC not only performs much more e�ciently than sequential searches
over compressed text, but also than explicit inverted indexes when little extra
space is used. WTBC specially succeeds when searching for single words and short
phrases. This structure has provided the inspiring starting point of this thesis work.
We next conceptually describe it in detail.

The essence of this codewords rearrangement is the following: the root of the
WTBC is represented by all the �rst bytes of the codewords, following the same
order as the words they encode in the original text. That is, let us assume we have
the text words ⟨w1, w2 . . . wn⟩, whose codewords are cw1, cw2 . . . cwn, respectively,
and let us denote the bytes of a codeword cwi as ⟨cw1

i ...cw
m
i ⟩ where m is the size

of the codeword cwi in bytes. Then the root is formed by the sequence of bytes

3.1. Text Compression 47

⟨cw1
1, cw

1
2, cw

1
3...cw

1
n⟩. At position i, we place the �rst byte of the codeword that

encodes the ith word in the source text, so notice that the root node has as many
bytes as words has the text.

We consider the root of the tree as the �rst level. Therefore, second bytes of
the codewords longer than one byte are placed in nodes of a second level. The
root has as many children as di�erent bytes can be the �rst byte of a codeword of
two or more bytes. For instance, in a (190, 66)-DC encoding scheme, the root will
have always 66 children, because there are 66 bytes that are continuers. Each node
X in this second level contains all the second bytes of the codewords whose �rst
byte is x, following again the same order of the source. That is, the second byte
corresponding to the jth occurrence of byte x in the root, is placed at position j in
node X. Formally, let us suppose there are f words coded by codewords cwi1 ...cwif

(longer than one byte) whose �rst byte is x. Then, the second bytes of those
codewords, ⟨cw2

i1
, cw2

i2
, cw2

i3
...cw2

if
⟩, form the node x in the second level. The same

idea is used to create the lower levels of the tree. Looking into the example, and
supposing that there are d words whose �rst byte codewords is x and whose second
one is y, then node XY is a node of the third level, child of node X, and it stores the
byte sequence ⟨cw3

j1
, cw3

j2
, cw3

j3
...cw3

jd
⟩ given by all the third bytes of that codewords.

Those bytes are again in the original text order. Therefore, the resulting tree has
as many levels as bytes have the longest codewords.

TEXT: “ MAKE EVERYTHING AS SIMPLE

AS POSSIBLE BUT NOT SIMPLER”

b0

b1b3

b2b1

b2b3

b3b0

b3b1

b1b2b3

b2b0b1

SYMBOL FREQUENCY CODE

AS

POSSIBLE

SIMPLE

EVERYTHING

NOT

MAKE

BUT

SIMPLER

2

1

1

1

1

1

1

1

B1 B3

B1B2 B2B0

B2

 1

SIMPLER

 b1 b3

 MAKE NOT

 1 2

 b1 b0

 1 2 3

 b3 b1 b0

EVERYTHING SIMPLE SIMPLER POSSIBLE BUT

 1 2

 b3 b2

 Position: 1 2 3 4 5 6 7 8 9

 Word: MAKE EVERYTHING AS SIMPLE AS POSSIBLE BUT NOT SIMPLER

 b3 b2 b0 b2 b0 b1 b1 b3 b3

 1

 BUT

Figure 3.10: Example of WTBC structure.

To better understand this reorganization of codewords Figure 3.10 shows an
example where a WTBC is built from the text MAKE EVERYTHING AS SIMPLE

AS POSSIBLE BUT NOT SIMPLER, and the alphabet Σ = {AS, BUT, EVERYTHING, MAKE,
NOT, POSSIBLE, SIMPLE, SIMPLER}. Once codewords are assigned to all the di�erent
words in the text, by using any word-based, byte-oriented semi-static statistical
compressor, their bytes are spread in a tree following the reorganization of bytes
explained. That is, all the �rst bytes of the words are placed in the root following the

48 Chapter 3. Text Compression and Succinct Data Structures

text order, while the remaining bytes are in the corresponding nodes of consecutive
levels. For example, b3 is the 9th byte of the root because it is the �rst byte of
the codeword assigned to 'SIMPLER', which is the 9th word in the text. In turn,
its second byte, b1, is placed in the third position of the child node B3 because
'SIMPLER' is the third word in the root having b3 as �rst byte. Likewise, its third
byte, b2, is placed at the third level in the child nodeB3B1, since the �rst and second
byte of the codeword are b3 and b1, respectively. Observe that only the shaded byte
sequences are stored, the rest of the text is only shown for comprehensibility.

Notice that the amount of space needed for all the nodes of a WTBC
representation, matches the size of the text compressed with the compression
method used to create the WTBC structure. That is, just a reorganization of the
codewords bytes is performed in WTBC. Yet, this simple codewords rearrangement,
provides important implicit indexing properties, which have a de�nite impact over
the searching capabilities of this structure [BFLN12].

3.2 Succinct Data Structures

Succinct data structures aim to represent data (e.g. trees [Jac89, MR97, FM11],
texts [GGV03, FM05], strings [GGV03, GMR06, HM10], graphs [Jac89, MR97,
FM08a], etc.) by reducing space requirements as much as possible (close to the
information theoretic lower bound), while still being able to e�ciently solve the
required operations over the data. Their growing interest lies in the increasing
performance gap between successive levels in the memory hierarchy, since the
reduction of space obtained by these structures allows them to operate on faster
levels. This section discusses some of the most relevant succinct data structures,
used to improve the e�ciency of other high-level structures.

3.2.1 Rank and Select Data Structures

One of the �rst presented succinct data structures consisted of bit-vectors support-
ing rank and select operations [Jac89]. These basic operations constitute the basis
of other important succinct data structures. We discuss them more in detail in
Section 3.2.1.1. Section 3.2.1.2 also describes some solutions to support these rank
and select operations over arbitrary sequences.

3.2.1.1 Rank and Select over Bitmaps

Let be B[1, n] a binary sequence of size n. Then rank and select are de�ned as (see
Figure 3.11):

• rankb(B, p) = i if the number of occurrences of the bit b from the beginning
of B up to position p is i.

3.2. Succinct Data Structures 49

• selectb(B, i) = p if the ith occurrence of the bit b in the sequence B is at
position p.

Given the importance of these two operations in the performance of other
succinct data structures, specially in full-text indexes [NM07], many strategies have
been developed to e�ciently implement rank and select [MN07].

0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B =

rank1 (B,13) = 6

select0 (B,5) = 9

19

Figure 3.11: Example of rank and select operations.

As previously stated, rank and select operations were �rst introduced by
Jacobson [Jac89]. He proposed an implementation for rank and select, able to
compute rank in constant time. It is based on a two level directory structure. The
�rst level directory stores rankb(B, p) for every p multiple of s = ⌊log n⌋ ⌊log n/2⌋.
The second level directory holds the same information but for every p multiple of
b = ⌊log n/2⌋, within each block of size s. Hence, we can compute rank1(B, p) by
taking from the �rst level directory, the number of times the bit 1 appears until the
beginning of the block of size s that contains the position p, and then adding to
this value, that kept in the second level. Yet the �nal result is obtained by using
further table lookups. That is, it remains to count the number of occurrences of bit
1 from the beginning of the block of size b, where position p is contained, until the
position p itself. To this aim, this bit subsequence is used as the index for a table
that indicates the number of occurrences of bit 1 (likewise for bit 0) in it. As a
result, rank can be computed in constant time. Notwithstanding, binary searches
are needed to calculate select, thus it is computed in O(log log n). The overall
space required by the auxiliary dictionary structures is o(n).

Later works by Clark [Cla96] and Munro [Mun96] obtained constant time
complexity also for select operation, using additional o(n) space. For instance,
Clark proposed a new three-level directory structure, where the �rst level records
the positions of every ⌈log n⌉ ⌈log n log n⌉'th 1 bit, and the second and third level,
store the positions of bits set to 1 in the subranges corresponding to the �rst and
second level, respectively. An analogous structure should be built to answer select0.

50 Chapter 3. Text Compression and Succinct Data Structures

None of the previous implementations take into account the content of the binary
sequence nor its statistical properties (e.g. number of 1 bits ande their positions
in the sequence) to e�ciently compute rank and select. [Pag99, RRR02, OS07]
are some examples of works devoted to also solve rank and select, but using
representations that store a compressed form of B. Pagh proposal [Pag99] splits
the binary sequence into compressed blocks of the same size, each of which is
represented by the number of 1 bits it stores, and the number corresponding to
that particular subsequence. The main drawback of this basic approximation lies
in the almost linearly growth of the number of compressed blocks, hence an interval
compression scheme is also proposed to reduce the number of compressed units by
clustering suitable adjacent blocks together into intervals of varying length. Raman
et al. [RRR02] presented a numbering scheme to represent the compressed binary
sequence, in such a way that each of the blocks of size u = log n

2 , in which the
sequence is divided, is designated by a pair (ci, oi), where ci indicates the number
of 1 bits it contains (the class of the block), and oi, represents the o�set of that
block inside a list of all the possible blocks with ci 1 bits. In this way, blocks
with few (or many) 1s require shorter identi�ers and zero-order compression is
achieved. This approach is currently the best complete representation of binary
sequences [MN07] (since it supports rank and select in constant time for both 0 and
1 bits), yet it is not anymore simple to implement. Further works such as those
introduced by Okanohara and Sadakane [OS07], were devoted to propose several
practical alternatives achieving very close results based on di�erent rank/select
directories: esp, recrank, vcode, sdarray, and darray. Each variant has di�erent
advantages and drawbacks (regarding its size and time-complexity) since di�erent
ideas are behind each one. Most of them are very good for select operations, but
rank queries are commonly slower.

Another alternative study, called gap encoding, aims to compress the binary
sequences when the number of 1 bits is small. It is based on encoding the distances
between consecutive 1 bits. Several developments following this approach have been
presented [Sad03, GGV04, BB04, GHSV06, MN07].

3.2.1.2 Rank and Select over Arbitrary Sequences

Although rank and select operations were initially de�ned over binary sequences,
they have also been proved to be necessary operations over sequences of symbols of
an arbitrary alphabet, Γ. In such a case, given a sequence of symbols S = s1s2 . . . sn,
and a symbol s ∈ Γ, rank and select can be described as:

• ranks(S, p) = i if s appears i times in the sequence up to position p.

• selects(S, i) = p if p is the position of the sequence containing the ith

occurrence of the symbol s.

3.2. Succinct Data Structures 51

In this general scenario, the strategies proposed for binary sequences cannot
be directly applied. Therefore, the computation of rank and select over arbitrary
sequences is usually tackled by reducing the problem to the use of bit-oriented rank
and select operations.

Bitmaps. The simplest approach to answer rank and select operations over an
arbitrary sequence of symbols consists of using a bitmap for each symbol s ∈ Γ, in
such a way that the positions of a symbol bitmap corresponding to the positions of
the original sequence where the speci�c symbol appears are set to 1. Since rank and
select operations over binary sequences can be answered in constant time, it will
be also the same for arbitrary sequences, if we follow this approach. Still, the main
drawback of this solution is the space required for the bitmaps, plus that needed for
the auxiliary structures to compute rank and select in constant time in each one of
them.

Wavelet Trees. A wavelet tree [GGV03] is a structure that allows e�ciently
computing rank and select over arbitrary sequences of symbols. It consists of a
balanced binary tree storing a bitmap in each node. The root of the tree contains a
bitmap of size n (being n the length of the sequence), where the positions holding
an occurrence of a symbol belonging to the �rst half of the alphabet Γ, are set
to 0, and 1, in the other case. Then, those symbols given a 0 in that bitmap are
processed in the left child node, while the rest are processed in the right child.
The same procedure is applied in both children, and recursively repeated until the
alphabet cannot be divided, thus reaching the leaves of the tree. In this way each
node indexes half the symbols (from Γ) indexed by its parent node. In Figure 3.12
an example of how the wavelet tree is built from a sequence of symbols over the
alphabet Γ = a, b, c, d is depicted13.

By using this structure there is no need to store the original sequence separately.
It can be recovered from the bitmaps. Furthermore, it is extremely simple to
compute rank and select, through top-down and bottom-up traversals of the wavelet
tree, respectively. For instance, let us assume that we want to compute ranka(S, 6)
in the example of Figure 3.12. As symbol a belongs to the �rst half of the alphabet,
we know that it is associated with 0 bit occurrences in the bitmap of the root node
and that it will be further processed in the left child. Hence, we �rst compute
a binary rank, rank0(B1, 6) = 2, over the root bitmap and then we move to the
left child. The obtained result, 2, is used again to perform a new binary rank in
the second level. Note that, in this level, a is also represented with a 0 bit, so we
calculate rank0(B2, 2) = 2. Given that we are in the last level of the tree, this
value also indicates the �nal answer to ranka(S, 6), that is 2. To compute select,
a similar procedure is performed, but starting from the leaf nodes and moving up

13Notice that each node only stores the bitmap, the rest of the text is only shown for clarity.

52 Chapter 3. Text Compression and Succinct Data Structures

a a c bd d ab c d

0 0 1 1 0 1 0 0 1 1

0 0 1 1 0

a a b ab

a a a b b

cd d c d

1 0 1 0 1

c c d d d

 = {a, b, c, d}

 = {a, b} = {c, d}

 = {a} = {b} = {c} = {d}

Original sequence: “a a d c b d b a c d”

B1

B2 B3

Figure 3.12: The wavelet tree of the sequence aadcbdbacd.

to the root of the tree. For example, let us suppose we want to know the position
where the 2nd occurrence of c is placed in the sequence S. Each symbol s ∈ Γ is
associated with an unique leaf node in the tree14, thus the select procedure will
start, in this case, at node B3. Since c is represented with 0 bits in that node, there
we compute select0(B3, 2) = 4. Moreover, node B3 is the right child of its parent
node, B1, (that is, all symbols represented in node B3 come from 1 bits in node
B1), so with the obtained result we know that the second occurrence of c is the
fourth 1 bit in B1. In this way, we next compute select1(B1, 4) = 9, and then we
can �nally answer that selectc(S, 2) is 9.

Practical variants of the wavelet tree achieve zero-th order entropy by giving to
the tree the shape of the Hu�man tree of the sequence, or use Raman et al. data
structures for rank/select operations [GGV03, NM07].

Golynski et al. Solution. These authors [GMR06] proposed a data structure
able to answer rank operations in time O(log log σ), σ being the size of the alphabet
Γ, and select, in O(1). The main idea is to reduce the problem over one sequence
of length n, and alphabet σ, to n/σ sequences of length σ. Given a sequence S, a
table T of size σxn is built to represent the sequence, where those rows are indexed
by 1, . . . , σ, and columns, by positions in the sequence (i.e. from 1 to n). Each
entry T [s, i], takes value 1 if symbol s ∈ Γ occurs in position i in the sequence, and
0 otherwise. Let A be a bitmap of length σ · n obtained by writing T in row major
order. Then A is split into blocks of size σ, in such a way that rank and select
are answered over these blocks by de�ning and implementing restricted versions of
those operations. Since the space required by A is too high, it is not actually stored.

14This leaf node is determined by the position of the symbol in the alphabet.

3.2. Succinct Data Structures 53

Instead, a new bitmap B is created containing the cardinalities (i.e. number of 1s)
of every block of A, in unary. Assuming that ki is the cardinality of block i, then
B = 1k101k20 . . . 1kn0. Yet, with B we can answer rank only for positions that are
multiples of σ, and we can only determine in which block is the i− th occurrence,
for select (by means of restricted rank and select operations). Therefore, we still
need to examine the blocks. Each of them is represented by using two sequences.
On the one hand, a bitmap called X, stores the cardinality of every symbol s in the
block, using the same encoding as for B. On the other hand, a sequence π, indicates
the positions of all the occurrences for each symbol s in the block, in alphabetical
order. That is, π, stores the permutation obtained by stably sorting the sequence
represented by the block. With these additional data structures, rank and select
operations can be answered also inside the blocks.

This thesis specially focuses on the problem of computing rank and select over
sequences of bytes, as it will be further discussed in Section 5.2. For this particular
case, it has been shown [Lad11], the good performance of an implementation
obtained by adapting the Jacobson proposal [Jac89].

Byte-oriented Rank and Select Solution. This approach [Lad11] is based on
a two-level directory structure of partial counters to avoid counting the number of
occurrences of a searched byte from the beginning of the sequence. Given a sequence
of bytes B = b1, b2 . . . bn, it is divided into chunks of size sb and bl, called superblocks
and blocks, respectively. For each byte b, the �rst level contains the number of times
it appears from the beginning of the sequence up to the start of each superblock. In
turn, the second level stores the number of occurrences of each byte until the start
of each block, but from the beginning of the superblock it belongs to. With this
additional structure, rankb(B, p) can be computed by taking the values recorded
for byte b into the corresponding superblock and block where p takes place, and
then adding the number of occurrences of byte b from the beginning of the speci�c
block to position p itself. Hence, �nally, rank can be answered in time O(bl). For
instance, Figure 3.13 shows an example of how to compute rank13(B, 317), through
this scheme. Note that the position p = 317 is hold into the superblock 2 (sb2)
and, more precisely, into block 7 (bl7). Therefore, we just need to add the values
stored for byte b = 13, in the corresponding counters (that is, sb2[13] = 15 and
bl7[13] = 3, respectively), plus the appearances of byte 13 from position 301 (i.e.
the beginning of block 7) until position 337 (we can see in Figure 3.13 that byte
13 appears 2 times inside that range). In this way, we obtain the �nal answer,
rank13(B, 317) = 15 + 3+ 2 = 20. With respect to selectb(B, p), a binary search is
�rst performed inside the values stored in the superblocks, followed by an additional
search in the blocks of the found superblock. The �nal step consists of a sequential
scan in the obtained block. This procedure rises a time O(bl + log n).

There is a tradeo� between space and time. The more partial counters (i.e. the

54 Chapter 3. Text Compression and Succinct Data Structures

rank13 (B, 337) = sb2[13] + bl7[13] + = 15 + 3 + 2 = 20

200

B =

400 500

50 100 150
200 250 300 350 400 450 500

sb1 sb2 sb3

bl1 bl2 bl3 bl4 bl5 bl6 bl7 bl8 bl9 bl10

0

4 7 8

15

0

255

13

...

...

0

255

13

...

...

0

255

13

...

...

0

255

13

...

...

0

255

13

...

...

2 3 7

27

0

255

13

...

...

0

255

13

...

...

0

255

13

...

...

0

255

13

...

...

1 7

0

255

13

...

...

0

255

13

...

...

4 times 3 times 1 times 7 times 2 times 1 times 4 times 5 times 1 times 6 times

… 13 … 13

… 13 … 13

b
lo

c
k
s

c
o

u
n

te
rs

s
u

p
e
rb

lo
c
k
s

c
o

u
n

te
rs

p = 337

Figure 3.13: Example of byte-oriented rank operation by using a two level-
directory structure of partial counters.

shorter bl), the more the space needed, but the more e�cient the rank and select
operations (i.e. the faster the sequential counting of occurrences of byte b).

3.2.2 Succinct Tree Representations

Trees are one of the most important data structures. Given a general tree of n
nodes, a classical representation uses O(n) pointers (or words), each one requiring
w ≥ log n bits, thus leading to O(nw) bits of space. The associated constant is
at least 2, which permits to support basic operations such as moving to the �rst
child and to the next sibling, or to the ith child. Some other simple operations (e.g.
moving to the parent, obtaining the depth, etc.) and sophisticated ones (e.g. moving
to a speci�c level-ancestor or to the lowest common ancestor of two nodes), are
also supported, but by further increasing this constant. Therefore, along the years
several works have been devoted to the problem of reducing the space needed to
represent trees [Jac89, MR01, MRR01, MR04, GRR04, GRRR04, CLL05, BDM+05,
FLMM05, GRRR06, DRR06, BHMR07, HMR07, GGG+07, Sad07, JSS07, LY08,
FM08b, SN10], achieving 2n+ o(n) bits of space and constant time for most of the
operations. The main di�erences among the distinct proposals are mainly given by
their di�erent functionality (e.g. some works only support basic operations [Jac89,
DRR06], while some others are able to answer a full range of operations [BDM+05,
JSS07, FM08b, SN10]), and the nature of the o(n) space overhead (ranging from
O(n/(log log n)2) [LY08] to O(n/polylog(n)) [SN10]).

Tree representations can be roughly divided into three categories. Figure 3.14
shows an example of each type of representation for a given tree:

3.2. Succinct Data Structures 55

2

1

3

4 6 7 85

BP : ((() ()) (() () ()))

DFUDS:

LOUDS:

4 5 6 7 8

1

2 3

 ((() (())) ((())))

4 5 6 7 8

1

2 3

 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0

1

2 3 4 5 6 87

Figure 3.14: Succinct representations of trees.

• BP: the balanced parentheses representation is built from a depth-�rst
preorder traversal of the tree, writing a `(' when arriving to a node, and
a `)' when we leave it (that is, after its subtree). In this way, each node is
represented by a pair of matching opening and closing parenthesis, leading to a
sequence of 2n balanced parentheses. This representation was �rst advocated
in [Jac89], achieving later constant times [MR01] for some core operations
(e.g. �ndclose, �ndopen and enclose) used to solve basic tree operations (e.g.
parent, subtreesize, nextsibling, etc.). Recently, a new proposal [SN10], has
demonstrated to be able to solve in constant time many other sophisticated
operations that are not usually handled by other BP representations, such as
child, lowest common ancestor or even level ancestor.

• DFUDS: the depth-�rst unary degree sequence [BDM+05, JSS07] is built by
following the same depth-�rst preorder traversal as BP, but in this case, each
time we arrive to a node, we write as many `(' as the number of children
it has, and only one `)'. By appending an initial opening parenthesis, the
resulting sequence turns out to be a balanced sequence of 2n parentheses. The
above mentioned core operations on parentheses (i.e. �ndclose, �ndopen and
enclose) are also used by DFUDS to support the basic functionality of classical
BP representations [MR01], but in a di�erent way. Some sophisticated
operations, such as child, are supported as well by DFUDS, in constant time,

56 Chapter 3. Text Compression and Succinct Data Structures

requiring extra structures.

• LOUDS: the level-ordered unary degree sequence [Jac89, DRR06] is obtained
by traversing the tree in level order and writing the degree of each node in
unary. For instance, a node with 3 children will be represented as 1110. The
obtained sequence has n 0's and n−1 1's. Unlike the previous representations,
rank and select operations over symbols `(' and `)' are just needed by LOUDS
to answer a few, but key operations, such as parent and child in constant
time. Yet it does not e�ciently support most of the others operations.

In this thesis, we use the recent proposal called fully-functional succinct tree (FF)
[SN10], based on a BP representation. It has been proved to be an outstanding
solution that combines wide functionality, with little space usage and good time
performance. We will now describe it in more detail.

3.2.2.1 Fully-functional Succinct Tree

The main component of this representation is a novel data structure, called range
min-max tree. Just with this data structure, it is possible to answer in constant time
not only the core operations, but also the complex ones. This approach di�ers from
previous works, in which each operation needs distinct auxiliary data structures to
be solved [MRR01, MR04, CLL05, Sad07, LY08].

The fully-functional succinct tree proposal reduces the large number of relevant
tree operations considered in the literature to a few primitives that are e�ciently
carried out by the range min-max tree. Let P = [0 . . . n − 1] be a balanced
parentheses sequence representing a tree, and excess(i) = rank((i) − rank)(i), a
function that gives us the di�erence between the numbers of opening and closing
parenthesis in P [0 . . . i]. Note that when P [i] is an opening parenthesis excess(i) is
the depth of the corresponding node, while in case of a closing parenthesis, it is the
depth minus 1. Then, the main core parentheses operations can be de�ned as:

• findclose(i) returns the position j of the closing parenthesis matching the
opening parenthesis at P [i]: minj>i {j | excess(j) = excess(i)− 1}.

• findopen(i) returns the position j of the opening parenthesis matching the
closing parenthesis at P [i]: maxj<i {j | excess(j) = excess(i) + 1}.

• enclose(i) returns the position j of the opening parenthesis enclosing the
opening parenthesis at P [i]15: maxj<i {j | excess(j) = excess(i)− 1}.

15That is, this operation gives the position of the opening parenthesis corresponding to the
parent of a node.

3.2. Succinct Data Structures 57

Now, let us consider excess(i, j) = excess(j) − excess(i − 1)16. Two primitive
operations constitute the kernel of the FF approach:

• fwd_search(i, d) returns the smallest j > i such that excess(i, j) =
excess(j)− excess(i− 1) = d.

• bwd_search(i, d) returns the greatest j < i such that excess(j, i) =
excess(i)− excess(j − 1) = d.

These operations can be used to express the aforementioned core parenthesis
operations (base of the basic tree operations like, for instance, parent, subtreesize,
nextsibling, or prevsibling [MR01]), together with other sophisticated tree opera-
tions:

findclose(i) ≡ fwd_search(i, 0)

findopen(i) ≡ bwd_search(i, 0)

enclose(i) ≡ bwd_search(i, 2)

level_ancestor(i, d) ≡ bwd_search(i, d+ 1)

level_next(i) ≡ fwd_search(findclose(i), 0)

level_prev(i) ≡ findopen(bwd_search(i, 0))

Hence, the e�ciency of FF stems from its ability to compute fwd_search
and bwd_search in constant time thanks to the range min-max tree. This data
structure is built over the (virtual) array of excess(i) values as follows. The
sequence P is split into blocks of size s = w

2
17. Then, for each block, the minimum

and maximum excess values within the block are stored. After that, blocks are
recursively assembled into groups of size k = O(w/log w), in such a way that each
new formed superblock stores the minimum and maximum excess within the blocks
it holds. That results into a k-ary balanced search tree, the so-called range min-max
tree. The total amount of space used is O(n log(s)/s) = o(n) bits. In Figure 3.15
we show an example of range min-max tree, where s = k = 3.

To compute fwd_search(i, d) by using the range min-max tree, we �rst check
if the answer is in the block i belongs to. Let us consider that this block, q = ⌊i/s⌋
corresponds to range [lq, rq] of P . The block scanning is done in constant time,
with table lookups over a simple precomputed table18. If unsuccessful, the range
[rq + 1, n − 1] of P , represented by range min-max tree nodes, is then examined.

16Notice that |excess(i)−excess(i−1)| = 1 for all i. In case P [i] is an opening parenthesis, then
excess(i) − excess(i − 1) = 1. If P [i] is a closing parenthesis, then the same subtraction results
into −1.
17Remember that w is the machine word length and that w ≥ log n.
18This table stores for all the di�erent s-bit streams that constitute the di�erent blocks of size

s in P, the position where a target excess occurs.

58 Chapter 3. Text Compression and Succinct Data Structures

1/2 2/4 3/4 2/3 1/3 2/3 1/2 0/0

1 2 1 2 3 4 3 4 3 2 3 2 1 2 3 2 3 2 1 2 1 0

min/max

excess

(() ((() ()) ()) (() ()) ())P

1/4 1/3 0/2

0/4
a

b

c d e

f

g h i

j

k l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.15: An example of the range min-max tree.

For each node, we verify if its minimum/maximum excess range, translated into
absolute, contains excess(i − 1) + d. Once the proper range min-max tree node is
found, we know that the answer to fwd_search(i, d) lies within it. If it corresponds
to an internal node, we iteratively go down �nding the leftmost child that contains
the desired excess19, until reaching a leaf block, which will be �nally scanned to
�nd the exact value by table lookups, as before. An analogous procedure will be
performed to compute bwd_search(i, d).

For instance, let us compute findclose(3) = fwd_search(3, 0) in the example of
Figure 3.15. Notice that it is equivalent to �nd the �rst j > 3 such that excess(j) =
excess(3−1)+0 = excess(2) = 1. Therefore, we start by examining the node ⌊3/s⌋,
that is, the node d in Figure 3.15. Since the target value 1 is not in that block,
we continue the process by checking the minimum/maximum values of the nodes
that cover the range [5 . . . 21], which turn out to be that corresponding to nodes e
([6 . . . 8]), f ([9 . . . 17]), and j ([18 . . . 21]). In this way, we next scan node e. Again
e does not contain the answer either, so we examine node f . Because 1 ≤ 1 ≤ 3,
that is, the minimum and maximum values of f enclose the target value, the answer
must exist in its subtree. Therefore we explore the children of f from left to right,
and �nd the leftmost one that contains the target value. In this case, it is node h.
Given that it is already a leaf, we just scan its content using a precomputed table,
and obtain that the answer to findclose(3) is 12.

19Again, it is done in constant time, by using a precomputed table that provides for all the
patterns of k/c (c being a constant) minimum/maximum values stored in the children of a node of
the range min-max tree, the �rst child of the node whose minimum and maximum values enclose
the target value.

Chapter 4

XML Storage and Querying -

State of the Art Revision

Since their introduction, the growing interest and challenge of XML query languages
has triggered much research to provide e�cient solutions either as theoretical
proposals or in the form of real systems. Likewise, in line with the development of
systems focused on query aspects, several works have addressed the space challenge
that the verbosity of XML documents entails, in the form of XML compression
techniques. Many of these methods also tried to keep some kind of query support,
leading to the so-called queriable compression tools.

In this chapter, we make a complete revision and look through some of the
most relevant solutions from both areas. Section 4.1 �rst presents some well-known
systems speci�cally designed to provide XML query support, either as streaming
approaches (Section 4.1.1) or based on indexed proposals (Section 4.1.2). In turn,
Section 4.2 focuses on XML compression, and starts by introducing a classi�cation
of XML compressors in Section 4.2.1. Then, Sections 4.2.2 and 4.2.3 close the
chapter by providing a detailed description of the most important queriable and
non-queriable XML compression tools.

4.1 XPath Query Systems

Regarding the XPath query language, typical query systems are usually divided
into two di�erent categories: those that follow a streaming approach (such as XSQ
[PC05], SPEX [Olt07] and GCX [SSK07]), hence having to sequentially read the
document to answer each query; and the indexed ones (such as Galax [FSC+03],
Saxon [Kay08], Qizx/DB [Qiz], MonetDB/XQuery [BGvK+06], etc.), requiring a
�rst preprocessing of the document to build additional data structures over it,

59

60 Chapter 4. XML Storage and Querying - State of the Art Revision

that are then used to solve the queries without sequentially traversing the whole
document. Indexed approaches can be further categorized into in-memory engines
and database systems. Next, we describe some of the most representative examples
from each category.

4.1.1 Sequential Solutions

Sequential solutions aim to be as close as possible to just performing one pass
over the data, while keeping little main memory consumption to hold intermediate
results and data structures. Within the sequential proposals, the three following
engines constitute some well-known state of the art solutions, each of which provides
di�erent levels of query support:

XSQ. This engine [PC05, XSQ] addresses the problem of evaluating XPath queries
over streaming XML. It supports queries limited to child and descendant axes, and
predicates with at most one step. The idea behind this query engine is to use a
hierarchical arrangement of pushdown transducers (HPDT) augmented with queues
for bu�ering.

Automaton-based methods are commonly used for processing streaming data.
Simple and linear XPath queries without predicates can be transformed into �nite
state automata that immediately output the relevant parts of the data, as soon
as they are encountered [GMOS02]. However, when predicates, closures and
aggregations are present in the query, its evaluation may become challenging, since
when the automaton encounters a potential result, the data required to determine
whether it must be or not in the �nal result may still have not been processed. For
instance, if we consider the query /journal[./year=2000]/title, it may occur
that the year child of a journal element appears after its title child. Hence, only
when the �rst one is encountered, we can decide if the processed title element
should be sent to the output or not. XSQ faces those challenges, by using pushdown
transducers together with queues to bu�er potential result items. A pushdown
transducer (PDT) [Gur89] is a pushdown automaton (PDA), a variation of a �nite
state automaton that makes use of a stack [HU79], with an additional output tape.
At each step, given the current state, a new symbol from the input tape and the
symbol of the stack, the PDT changes to a new state and manipulates the stack
according to the transition function. Moreover, an output can be generated during
transition if the corresponding output operation is de�ned in the transition function.

PDTs used by XSQ, called Basic PDT (BPDT), di�er from the originals,
in that they are augmented with a bu�er organized as a queue. In this way,
output operations in BPDTs can also be bu�ering operations such as enqueue(v)
(to introduce a speci�c item, v, into the queue), clear() (to remove all items
from the queue), �ush() (to send all items in the queue to the output), and
upload() (to move all the items in the queue to the end of the queue of its

4.1. XPath Query Systems 61

$1

$2$3$4

Start state

NA stateTrue state

</tag2>

<tag2>

{queue.upload()}

<
ta
g
1
>

<
/t
a
g
1
>

{q
u
e
u
e
.c
le
a
r(
)}

</tag1>

Figure 4.1: BPDT template for /tag1[./tag2].

BPDT parent). XSQ de�nes a BPDT template for each di�erent category in
which the location steps, of the XPath queries that it considers, can be classi�ed
based on the items upon which predicates are evaluated (e.g. /journal[ref],
/journal[ref=�AF43�], /journal[./title], /journal[./title=�ACM TODS�],
/journal[./title/id=�TF25�], etc.). In Figure 4.1 an example of BPDT template
for a location step matching /tag1[./tag2] is shown. Notice that every BPDT
always has a true state, to indicate that the predicate has been evaluated to true,
and a NA state, that indicates that the predicate has not yet been evaluated.
Returned transitions from the NA state to the start state, means that the predicate
has not been ful�lled. The logic of the predicate is encoded in the BPDT. Therefore,
given a complex query, each of its location steps is represented by a BPDT, which are
further combined into a hierarchical pushdown transducer (HPDT), in the form of
a binary tree, encoding the complete query. Depending on their position inside the
HPDT arrangement, BPDTs can determine whether a predicate has been already
evaluated or not and hence bu�er operations are also settled accordingly. For
instance, when creating a HPDT, upload() operations of generic BPDT templates
may be replaced by �ush() ones, if a BPDT is related with its BPDT parent through
the true state. If not, potential results, must be enqueued in the parent until it
validates the predicate.

SPEX. SPEX [Olt07, SPE] is another example of query processor that evaluates
XPath queries over XML data streams. Like XSQ, SPEX uses pushdown
transducers (PDT) to perform query evaluation, however it does not need additional
bu�ers. The query language supported by SPEX is the forward core of XPath
[GKP05], extended with path union and path di�erence. Prior to evaluating a query,
SPEX rewrites the query into an equivalent one, without reverse axes [OMFB02].

62 Chapter 4. XML Storage and Querying - State of the Art Revision

Then, a network of simpli�ed pushdown transducers is created by materializing each
di�erent query component into a single-state deterministic pushdown transducer.
The transducers use their stacks to model partial matchings, and their tapes, to
communicate with other transducers. That is, the output tape of a transducer
Ti becomes the input of the transducer Ti+i. These inputs and outputs are
basically annotations used to mark selected nodes during evaluation and to also
record predicates satisfaction. SPEX also uses specialized transducers, called �lter
transducers, to minimize the stream fragment processed by transducers in a network,
in such a way that only relevant input fragments for the correct evaluation of the
query are sent from an arbitrary transducer to its successors.

GCX. Unlike the previous streaming processors, GCX [SSK07] is an engine that
supports XQuery evaluation (besides XPath). However, its most relevant feature
is that, to keep main memory consumption low, GCX uses a bu�er management
scheme that combines static and dynamic analysis to e�ectively purge main memory
bu�ers based on the progress in query evaluation.

 <result> {
 for $s in /store return
 ((for $p in /store/* return
 if (not(exists $p/price)) then $p else ()),
 for $x in /store/product return $x/name)
 } </result>

n1: /

n2: /store

n3: /* n6: /product

n4: /price[1] n5: /desc-or-
self::node()

n7: /name/desc-
or-self::node()

Query:
b)a)

Figure 4.2: An XQuery expression (a) and its corresponding projection tree
(b).

 <result> {
 for $s in /store return
 ((for $p in /store/* return
 (if (not(exists $p/price)) then $p else (),

signOff($p, r3), signOff($p/price[1], r4),
signOff($p/desc-or-self::node(), r5))),

 (for $x in /store/product return
 ($x/name,

signOff($x, r6),
signOff($x/name/desc-or-self::node(), r7))),

signOff($p, r2))
 } </result>

Figure 4.3: Query rewritten with signO� statements.

4.1. XPath Query Systems 63

GCX extends the static document projection technique [BCCN06, MS03]. Given
a query, the static analysis of GCX derives its projection tree, that is, the parts of
the input document that should be bu�ered. Each projection tree node, ni, de�nes a
role ri. For example, given the XQuery query of Figure 4.2 a), its derived projection
tree is shown in Figure 4.2 b). Notice that it only seeks relevant fragments for
query evaluation. Hence, while parsing the input XML stream, a projected version
will be computed, bu�ering only data that is relevant to query evaluation, and
discarding the rest. Those bu�ered tokens will be assigned the corresponding role
on-the-�y. In addition, the query evaluation moments in which bu�ered nodes
lose their roles are determined at compile-time. To this aim, a query rewritten
is performed, by inserting signO� statements that indicates which nodes become
irrelevant at that point for the remaining query evaluation. Then, at run-time,
the bu�er manager is noti�ed to update the roles of bu�ered nodes, when these
statements are encountered. Once a node loses all its roles, it can be safely deleted
if none of its descendants is assigned any role, thus cleaning bu�ers dynamically.
In Figure 4.3, we show an example of query rewritten, corresponding to the query
of Figure 4.2 a). This global bu�er management scheme is called active garbage
collection.

Stream

preprojector

Buffer

Manager
Evaluator

Buffer

Input

stream

Output

stream

nodes/

roles

nodes/eos

nextNode()

node lookup,

garbage

collection getNext()

node/NULL

OK

signOff()

XQuery

Figure 4.4: GCX global architecture.

The GCX architecture composed of a stream preprojector, a bu�er manager
and the query evaluator (see Figure 4.4), performs a query evaluation according
to the aforementioned scheme in a pull-based manner. After having extracted the
query projection and rewritten the query, the query evaluator starts by evaluating
the query until it has to block either because a new node is required or a signO�
statement is reached. In both cases, the bu�er manager is invoked, and query
evaluator remains blocked until obtaining an answer. In case new data that is
not bu�ered is requested, the bu�er manager calls the stream preprojector to
consume data from the input stream by matching tokens against the projection tree,
until it encounters relevant data. Matched tokens are then copied into the bu�er,
together with the corresponding roles, and later handled by the bu�er manager in

64 Chapter 4. XML Storage and Querying - State of the Art Revision

its communication with the query evaluator. In turn, if bu�er manager receives
a signO� statement, it triggers the active garbage collector, to make nodes lose
speci�c roles and even to delete some of them that may become irrelevant at that
stage of the query evaluation.

Step
Input

stream
Buffer contents Output stream

1 <result>

2 <store>

3 <product>

store {r2}

store {r2}

product {r3, r5, r6}

4 <name/>

store {r2}

product {r3, r5, r6}

name {r5, r7}

5 <model/>

store {r2}

product {r3, r5, r6}

name

 {r5, r7}

model

 {r5}

6 </product>

store {r2}

product {r3, r5, r6}

name

 {r5, r7}

model

 {r5}

 <product>

 <name/>

 <model/>

 </product>

7

store {r2}

product {r6}

name {r7}

Figure 4.5: Example of active garbage collection in GCX query evaluation.

Figure 4.5 illustrates some steps of the evaluation of the query of Figure 4.3,
with respect to a sample input stream <store><product> <name/> <model/>

</product>.... At each step, the input stream, as well as the bu�er contents
and the generated output, are shown. In step 1, the start-tag <result> is output.
Next, the query evaluator enters the �rst for clause. Given that no data are still
available in the bu�er, the evaluator remains blocked. At step 2 <store> is read. It
matches n2 projection, thus it is inserted into the bu�er together with the role r2.

4.1. XPath Query Systems 65

Then, the query evaluator binds $s with the just copied <store> node. After that,
it tries to execute the second for clause, but again, there is no relevant data in the
bu�er. Therefore, in step 3 a new token from the input stream is read, <product>,
that matches several roles, namely r3, r5 and r6, and it is associated with variable
$p. Yet it is not possible to evaluate the subsequent if condition, hence the input
stream is processed once more. In step 4, <name/> is copied into the bu�er with
the roles r5 and r7. However it is still not possible to perform the if condition
evaluation, so <model/> is also processed from the stream and bu�ered with role r5
in step 5. At this point, the if expression keeps blocked, thus step 6 reads a new
token, </product>. Having encountered the end of the node bound to $x, the if
clause is evaluated, leading to the output of the bound node. Next the evaluator
�nds a sequence of signO� statements. These are then sent to the bu�er manager,
which updates the roles of the bu�ered nodes accordingly, and also deletes those
that are not relevant for the query evaluation any more (see removed model node
in step 7). Query evaluator would continue evaluation of the following for clause in
a similar way.

4.1.2 Indexed Solutions

Unlike sequential solutions, indexed ones prioritize the e�ciency in query evaluation
through the use of indexes that avoid to sequentially scan the XML input document
at each run. However, their main drawback arises from the fact that indexes may
incur into high space requirements. In general, indexed approaches can be classi�ed
as in-memory processors or database systems, depending on a persistent storage of
the data is or not provided.

4.1.2.1 In-memory Engines

These solutions do not provide a persistent storage. They usually use machine
pointers to represent XML data into main memory, which tends to blow up memory
consumption. Two well established processors are:

Galax. Galax [FSC+03, Gal] is a main-memory processor supporting XPath,
XQuery, and some extensions for XML updates and scripting1. Its architecture
comprises three main modules, each one related to XML documents, XML Schema,
and XQuery processing, respectively. The input XML document is parsed by the
�rst module in a streamed fashion using SAX, and loaded into memory as an
XML data model instance [DOM, XDM]. This data model provides the necessary
information for further query processing, keeping for each node (i.e. document,
element, attribute, and text), accessors that return its name, base URI, type, typed

1There is an implementation of Galax supporting the full text extension of XQuery [Ful] called
GalaTex [CAYBF05].

66 Chapter 4. XML Storage and Querying - State of the Art Revision

value, unique node identi�er, or global document order, as well as pointers to parent
nodes, children, etc. On the other hand, the XQuery module is in charge of the
query parsing and evaluation plan production. Given a query, this module �rst
creates the abstract syntax tree representation (AST) of the query, and after some
normalization and optimization operations, transforms it into an evaluation plan in
Galax algebra [RSF06]. This plan is then applied over the data model representation
of the input document. The XML Schema module, in turn, is used by the two
previous modules to validate the input XML document, and to perform query static
typing, respectively, whenever documents have associated XML Schemas.

Saxon-HE. This is the open source version of the well-know Saxon processor
[Kay08, Saxb], that provides implementations of XPath, XQuery and XSLT at the
basic level of conformance. Like Galax, being a main-memory query engine, Saxon
creates for the input XML document an in-memory tree representation. However
in that case, it o�ers two di�erent implementations proprietary to Saxon, a typical
linked tree, where an object is created for each node (e.g. DOM model), and another
one inspired by the DTM model of Xalan [Xal], that makes use of integer arrays
and pools of strings to represent the structure and content of the XML document.

4.1.2.2 Database Systems

Database systems provide a persistent storage. Indexes are initially loaded into
main memory the �rst time data is processed. Yet, an important shortcoming is
that, in case indexes require much space, they may be manipulated on disk. This
feature implies usually high I/O transfer times that may seriously a�ect the overall
e�ciency in query processing.

Within this category, we can �nd native XML databases, but also relational
ones. Three of the most representative systems are next presented:

eXist. It is an open source native XML database system [Mei02, EXI]. eXist
provides schema-less storage of XML documents in hierarchical collections and
index-based query processing of XPath and XQuery, also including their full text
extensions, as well as XSLT and XUpdate [XUp] support.

Four di�erent index �les constitute the core of the storage back-end of eXist (see
Figure 4.6). All of them are based on B+ trees:

• collections.dbx : this index �le manages the collection hierarchy and maps
collection names to collection objects. An unique identi�er is assigned to each
collection and document during indexing.

• dom.dbx : it is the backbone of eXist, and consists of a single paged �le
in which all document nodes are stored according to the DOM model. To

4.1. XPath Query Systems 67

uniquely identify each node, eXist uses a pair ⟨docId, nodeId⟩, being the
�rst component the identi�er of the document it belongs to, and the second
one, a numbering scheme that allows to directly determine node relationships,
thus avoiding to keep track of links between nodes. This numbering scheme
corresponds to the Dynamic Level Numbering (DLN) [BR04], inspired by
Dewey's decimal classi�cation [TVB+02]. Conceptually, the identi�er of a
node is composed of a sequence of numeric values separated by a dot. The
root node is assigned a single numeric value. Each child node identi�er starts
with the node identi�er of its parent appended by a dot and a numeric value
called the level value. That is, sample identi�ers could be 1, 1.1, 1.1.1, 1.2,
etc. These identi�ers are further encoded using for each level value a variable-
length encoding of �xed size units of 4 bits.

Collection Indexer

docID, nodeID

 1, 1

 1, 1.1

 1, 1.1.1

 1, 1.2

 2, 1

 2, 2

 2, 2.1

 2, 2.2

dom.dbx

Data page 1

 Page header, node1,

 node2, node3, node4,

 node5

Data page 2

 Page header, node6,

 node7, node8

collID, nameID

 1, 1

 1, 23

 1, 11

 1, 7

 2, 12

 2, 4

 2, 3

 2, 6

elements.dbx

collections.dbx

B+ - tree

 /db

 /db/coll1

 /db/coll1/collA

 /db/coll1/collB

 /db/coll2

docID nodeID nodeID

docIDdocID

...
......

docID nodeID nodeID

docIDdocID

...
......

docID nodeID nodeID

docIDdocID

...
......

...

collID, keyword

 1, name

 1, John

 1, sky

 1, love

 2,

 2,

 2,

 2,

words.dbx

docID nodeID nodeID

docIDdocID

...
......

docID nodeID nodeID

docIDdocID

...
......

docID nodeID nodeID

docIDdocID

...
......

...

ancestor(c, e, f, i)

Figure 4.6: Storage architecture of eXist.

• elements.dbx : for each element and attribute, eXist creates an entry in this
�le. Hence, given a pair ⟨collId, nameId⟩, eXist stores an ordered list of
documents and node identi�ers, where the quali�ed name, nameId, appears.
Since the sequence of document and node identi�ers consists of integer values,
a combination of delta and variable byte codings are used to save storage
space.

68 Chapter 4. XML Storage and Querying - State of the Art Revision

• words.dbx : similarly to the previous index, this �le maps extracted keywords
from text nodes and attribute values, to their corresponding documents and
node identi�ers.

Since the access to the persistent DOM representation is always expensive, eXist
tries to process queries avoiding to load and traversing the actual DOM nodes, based
on its indexing scheme. For instance, most of the structural-based queries are solved
using path join algorithms.

Qizx/DB. Qizx/DB is also a native XML database system [Qiz] fully supporting
XQuery, and its full text extension. It also provides support for XUpdate and XSLT,
nevertheless it has been optimized for high querying speed, rather than for intensive
updating of XML data. Qizx/DB creates and exploits the following indexes:

• Elements index : provides direct access to elements by name. It also contains
information about structural relationships like child or descendant.

• Attributes index : Qizx/DB distinguishes three di�erent attribute indexes
according to the type of the attribute value: text, numeric or date.

• Simple elements content : given an element and a value, this index returns
all elements that enclose a simple content (that is, a sequence of characters
without whitespaces) corresponding to the value. As done with respect to the
attribute index, simple contents are also indexed depending on their type.

• Full text index : a word-based index for elements data content.

Documents and indexes are compressed, to reduce disk space use and I/O
transfer time.

MonetDB/XQuery. Unlike eXist and Qizx/DB, MonetDB/XQuery [BGvK+06]
is a relational database management system providing full support of XQuery
and XUpdate. It also supports some full-text capabilities through the use of the
PF/Tijah text index [LMR+05].

MonetDB/XQuery basically consists of the Path�nder XQuery compiler [GST04],
on top of the MonetDB RDBMS [Bon02]. Path�nder assumes XML documents
transformed into a relational encoding that maps each node v in the document
tree onto a two-dimensional plane, given by its preorder and postorder rank. In
particular, this information is encoded by representing each node with a 3-tuple
⟨pre(v), size(v), level(v)⟩, recording the preorder rank of v, the number of nodes
in the subtree below v, and the distance of v from the root2. Further tables are
also maintained by the system to store additional node properties (e.g. kind of

2Note that the postorder rank of v can be computer as post(v) = prev(v) + size(v)− level(v).

4.1. XPath Query Systems 69

(0,0)

post

a

b

c
d

e

f

g

h

i

j

following

ancestor

descendant

preceding

pre

Figure 4.7: XPath axes correspondence in the pre/post plane for the context
node f .

node, quali�ed name, textual content, etc.). However, the relevant feature is that
this encoding scheme e�ciently characterize XPath axes as regions in the pre/post
plane (see Figure 4.7), thus turning their evaluation into a relational range selection
in that plane, powered by index structures (e.g. B-trees) [GvKT04].

Under this scheme, every incoming XQuery expression is compiled by Path�nder
into a purely relational query plan, that operates on the aforementioned tree
encoding. Yet to improve XPath processing, tree-awareness is also introduced
into the relational query evaluator, by means of the staircase join [GvKT03], that
extends the relational join operator. Taking into account that a step is generally
evaluated on a sequence of context nodes, the staircase join introduces three main
tree-aware optimizations into the join operator: i) pruning, ii) partitioning, and
iii) skipping. The two former avoid duplicating results generation. Pruning stands
for omitting those context nodes that are included into the quadrant covered by
another context node. An example of this technique is shown in Figure 4.8 a). In
turn, partitioning tries to cope with partial overlaps, by partitioning the regions
along the pre axis. In Figure 4.8 b), this technique is applied to the sequence
of context nodes obtained after applying the pruning optimization of Figure 4.8
a). Finally, the skipping strategy, aims to avoid unnecessary nodes processing, as
depicted in Figure 4.8 c). The same strategies are also adapted to work with XQuery
expressions, leading to the so-called loop-lifted staircase join.

70 Chapter 4. XML Storage and Querying - State of the Art Revision

(0,0)

post

pre

a

b

d
e

f

g

h

i

j

ancestor(c, e, f, i)

(0,0)

post

pre

a

b

d
e

f

g

h

i

j

descendant(c, h)

c

scan scan

skip

Ø

(0,0)

post

pre

a

b

d
e

f

g

h

i

j

ancestor(e, i)

p1 p2

c

a) b) c)

c

Figure 4.8: a): context nodes c and f are pruned, since they are inside the
ancestor region of e and i. b): the overlapping ancestor regions covered by
e and i are partitioned along the pre axis at p1 and p2. c): after hitting
f , descendant staircase join infers that no results can occur until h, thus a
large part of the pre/post plane is skipped.

4.2 XML Compression

As stated in previous sections, space may result into a key factor. Indeed,
another quite active line of research in the last years has been XML compression.
Compression has been acknowledged to save space, which may be decisive to avoid
using secondary storage, to use fewer machines, or even to achieve a feasible solution
when the memory is limited (as in mobile devices). However, it also saves time.
Time is the critical factor in e�ciency, and processing a compressed version of a
document saves time when it is transmitted through a network, when we need to
access to disk for a document, or more importantly, when it is processed. Therefore,
compression is clearly more convenient.

With regards to the XML context, where query languages are so relevant, many
of the proposals developed have also considered query aspects rather than just
focusing on space savings. These works, known as XML queriable compression
tools, try to keep little space requirements, while providing some kind of query
support. Some of them allow performing queries directly over the compressed
representation of the text (either sequentially or using indexes), while some other
have to fully/partially decompress the data before querying them. Although these
tools constitute the most interesting approaches within the scope of this thesis,
today there is a stated lack of available practical solutions [Sak09].

Following sections include a complete review of the XML compression methods
that have been recently proposed regardless their query abilities, as some of the
non-queriable proposals will be later referred in Chapter 9 for an in-deep evaluation

4.2. XML Compression 71

regarding their compression properties. An initial classi�cation of XML compressors
is presented in Section 4.2.1. Then, Section 4.2.2 and Section 4.2.3 are devoted to
describe some well-known tools of each category.

4.2.1 Classi�cation of XML Compressors

XML compression can be seen as a particular �eld of text compression, which deals
with semi-structured documents. Indeed, most times XML documents are treated
as text �les, and hence general purpose text compressors are used to compress
them. This feature leads to a �rst classi�cation of XML compressors, depending on
their awareness of the XML documents structure. Thus, according to this, XML
compression techniques are separated into two main categories:

• General text compressors : also called as XML-blind compressors, these
compressors treat XML documents as plain text �les and do not care about
their structure. Traditional text compressors such as those mentioned in
Section 3.1.3 fall into this group.

• XML conscious compressors : these compression techniques are aware
of XML documents structure and exploit this knowledge to achieve better
compression ratios than the compressors of the previous group. XML
conscious compressors can be further divided into:

� Schema dependent compressors: the compression method requires the
associated schema information of an XML document to be accessed.

� Schema independent compressors: compression can be performed with-
out the XML document schema being accessed.

Although the �rst ones are intended to obtain higher compression ratios,
the necessity of working with the XML documents schema information,
which is commonly not available, rather restricts their use in practice.
Examples of compressors of the �rst category are Millau [GS00, SM02],
SCA [LW02], XAUST [SS05], and RNGzip [LE07], while XMill [LS00],
XMLPPM [Che01], SCM [ANF07], and Exalt [Tom03], as well as, XGrind
[TH02], XPRESS [MPC03], XCQ [LNWL03, NLWL06], XQzip [CN04], and
XBzipIndex [FLMM05, FLMM09] are other typical methods of the second
class.

Moreover, it is possible to devise a second classi�cation of XML compressors
with respect to their query support.

• Non-queriable compressors : these XML compression techniques do not
allow any kind of query evaluation. Instead, they aim to achieve the highest

72 Chapter 4. XML Storage and Querying - State of the Art Revision

compression ratio. All general text compressors belong to this category.
However, we also can �nd non-queriable XML conscious compressors, such as
Millau [GS00, SM02], XAUST [SS05], XMill [LS00], SCM [ANF07], XComp
[Li03], Exalt [Tom03], AXECHOP [LDM05], etc.

• Queriable compressors : both compression and querying are important
aspects for these techniques, that usually compromise compression ratio for
sake of query processing. Their main focus is to allow query evaluation without
full text decompression, just requiring either a partial decompression (e.g.
QXT [SGS08], XCQ [LNWL03, NLWL06], XQzip [CN04], XMLZip [XMLb],
etc.) or, ideally, being able to process queries directly over the compressed
XML document (e.g. XGrind [TH02], XPRESS [MPC03], XQueC [ABMP07],
XSeq [LZLY05], XCPaqs [WLLH04], ISX [WLS07], TREECHOP [LMD05],
LZCS [ANF07], XBzipIndex [FLMM05, FLMM09], etc.). By default, all
queriable XML compressors are XML conscious compressors as well.

Queriable XML compressors can be further classi�ed into homomorphic and
non-homomorphic compressors. We know as homomorphic compressors those
techniques, such as XGrind [TH02], XPRESS [MPC03] and QXT [SGS08],
that preserve XML document conformation. That is, they do not separate
structural and data parts when compressing an XML document, unlike non-
homomorphic compressors do (e.g. XCQ [LNWL03, NLWL06], XQzip [CN04],
XMLZip [XMLb], XQueC [ABMP07], XSeq [LZLY05], XCPaqs [WLLH04],
ISX [WLS07], TREECHOP [LMD05], LZCS [ANF07], XBzipIndex [FLMM05,
FLMM09], SXSI [ACM+10], etc.). Therefore, homomorphic compressors
allow one to access/index the compressed version in a similar manner as when
working with the original XML document, since the former can be seen as the
result of a simple mapping/replacemnt.

Since general purpose text compressors have been previously discussed in
Sections 3.1.4, 3.1.5, and 3.1.6, we next focus on XML conscious compression
techniques, and present some well-known examples of non-queriable and queriable
compressors, according to the classi�cations mentioned above. Figure 4.9 shows an
scheme summarizing the tools that will be further described.

4.2.2 Non-Queriable XML Compressors

As non-queriable XML compressors aim to get outstanding compression ratios,
careless of providing any kind of query support, they may use XML documents
schema information to improve compression. Hence, these methods are usually
presented by considering a division regarding this feature.

4.2. XML Compression 73

XML Conscious Compressors

Non-Queriable Queriable

Schema-

dependent

Schema-

independent
Homomorphic

Non-

homomorphic

XMill

XMLPPM

SCM XWRT

XComp XBZip

Exalt

AXECHOP

Millau

SCA

XAUST

RNGZip

XGrind

XPress

QXT

XCQ

XQZip

XQueC XSeq

XCPaqs ISX

TREECHOP

LZCS

XMLZip

XBZipIndex

SXSI

Figure 4.9: Classi�cation of some examples of XML compression tools.

4.2.2.1 Schema Dependent Compressors

Those compressors make use of an XML document DTD to perform compres-
sion/decompression. Among this kind of compressors, Millau, SCA, XAUST and
RNGzip are four of the most important tools.

Millau. The WBXML (Wireless Application Protocol Binary XML) Content
Format Speci�cation de�nes a compact binary representation of XML, to reduce
transmission size of XML documents without loss of functionality or semantic
information. Yet this encoding format only considers tags and attribute names,
it does not compress at all character data content nor attribute values. Millau
[GS00, SM02] follows the essence of WBXML, but it extends it with separation
of structure and content, improving the compression algorithm itself. While
compressing, Millau generates separated streams. The structural stream is encoded
by using the WBXML encoding. In turn, the content stream is compressed
by using general text compression techniques like de�ate [Deu96]. In addition
to structure and text division for compression, Millau can also take advantage
of the Document Type De�nition (DTD) of an XML document, and optimize
structural compression. In that case, the applied technique, called Di�erential
DTD Tree Compression (DDT), only encodes the di�erences between the schema
and the document. That is, minimal structure information is stored, since only the
occurrences of DTD operators such as ? (optional operator), | (decision operator),
and + and ∗ (repetition operators), need to be encoded, yielding to an e�cient
storage. Moreover, Millau may perform content grouping to improve data part
compression.

74 Chapter 4. XML Storage and Querying - State of the Art Revision

SCA. Similarly to Millau, SCA [LW02] also uses DTD information to enhance
the compression of the document structure by only encoding the information that
can not be inferred from the given DTD, and extracts content part to a separate
container to be then compressed by a generic compressor such as gzip. However, the
main di�erence with respect to Millau lies on the followed approach to process both
inputs, the DTD and the XML document. Whereas Millau simultaneously parses
the DTD tree and the DOM tree of the XML document, generating structural and
content streams, SCA �rst creates a special tree by combining the DTD information
and the XML document. This tree is then processed by a pruning phase leading to
a reduced version of it. The tree �rst created is essentially a DOM representation
of the XML document, but with added DTD operator nodes such as ∗, |, ?, etc.
The pruning step is in charge of reducing this tree by only keeping those nodes that
are necessary to infer the correct structure (i.e. those that can not be derived from
DTD any other way), drawing as well data values to a separated content stream to
be further compressed. In a �nal step the reduced tree is traversed and encoded
following a breath-�rst (BFS) order.

XAUST. XAUST [SS05] is an on-line compression scheme that tries to exploit the
knowledge encapsulated in a DTD speci�cation by means of a set of deterministic
�nite automata (DFA), one for each element, directly generated from the DTD
of the document. Using this information, XAUST is able to track the document
structure, and to make accurate predictions of the expected symbols. Transitions
of each automaton are labeled by element names, while states can have a single
output transition, or more than one. In the �rst case, no symbol encoding
needs to be performed. Only when multiple outgoing transitions are possible,
the element labeling the transition is encoded using an arithmetic encoder for
the state. Whenever a transition is taken, scheme transits to the start state of
the DFA corresponding to the element in the label. Regarding to character data
and attributes, every element that may enclose some of these items, will have an
associated container which is incrementally compressed using a single model for an
arithmetic order-4 compressor [WNC87].

RNGzip. RNGzip [LE07] also applies the idea of not transmitting information that
is already known, but in this case, from the RELAX NG schema [CM01] instead
from the document DTD. RNGzip builds a deterministic tree automaton from a
speci�ed schema, and given an XML document it only needs to produce symbols
whenever a choice point or a text transition is encountered. In the former situation,
RNGzip transmits the transition taken, while in the latter, it sends the textual
data. In both cases, the generated streams are then encoded by using distinct
eligible compression schemes, namely gzip, LZMA, bzip and PPM.

4.2. XML Compression 75

4.2.2.2 Schema Independent Compressors

Unlike schema dependent compressors, those independent ones do not need the DTD
additional information to compress/decompress an XML document. Consequently,
they have experienced a widespread use along the years. Starting with XMill, which
constitutes the �rst example of an XML conscious compressor, we will next review
some of the most relevant proposals of this group (such as XMLPPM, SCM, XWRT,
XComp, XBzip, Exalt and AXECHOP), each one based on di�erent underlying
schemes.

XML document:

 <book>

 <title URL=”http://projects.org”>

 Bussiness Management

 </title>

 <year>1998</year>

 <author>Prince</author>

 <author>King</author>

 </book>

 S0

 S1 S2 C0

 C1

 /

 S3 C2 /

 S4 C3 /

 S4 C3 /

 /

Structure container:

 http://projects.org

Data containers:

 Bussiness

 Management

 1998

 Prince

 King

C0

C1

C2

C3

Figure 4.10: Example of text compression with XMill.

XMill. XMill constitutes the �rst approach to XML conscious compression. As
its own authors state in [LS00], it is not by itself an actual compressor, but rather
an extensible tool to specify and to apply di�erent existing compression methods
to compress XML data items. The main novel ideas behind XMill are to separate
the structure, given by tags and attribute names, from the data, that is, element
contents and attribute values; and to group data items into homogenous containers.
Both structural part and data containers are then compressed separately. Regarding
the structural items, XMill applies a dictionary based encoding scheme generating
a compact representation where tag and attribute names are replaced by dictionary
indexes, while data values are replaced with their container identi�er. Figure 4.10
depicts an example of this structure representation for a sample XML document,
where Si represents dictionary codes given to start-tags and attribute names, /, is
the token representation for end-tags, and Ci, encodes the container where each
data value is stored. This �nal representation is then passed to a back-end general
text compression scheme (usually gzip). On the other hand, data values are assigned
to di�erent data containers according not only to their data path, but also to data
types. The aim is to group together items that are semantically related, by creating
homogenous containers. For instance, in the example of Figure 4.10, years will be
grouped in one container, while author names will be assigned a di�erent one, and so
on. The main reason behind this division is that some data items are text, others
are dates, numbers, and even DNA sequences. Therefore, XMill applies speci�c

76 Chapter 4. XML Storage and Querying - State of the Art Revision

and specialized compressors3 (called semantic compressors) to each container, to
get the best compression performance. Moreover, XMill allows the user to control
the content of the data containers and the selection of semantic compressors as
well, by means of containers expressions that are provided in the XMill command
line. This may achieve further compression improvements than that obtained when
using a default mode. However it claims for user expertise and e�ort to get the best
compression. Finally, as happened with the structural part, all data containers are
also compressed using a general compressor, commonly gzip, and concatenated in
the output �le.

The intended applications of XMill are data exchange and data archiving,
to minimize network bandwidth consumption and to reduce space requirements,
respectively. It has not been designed to support queries over the compressed text,
so full decompression is needed before query evaluation.

XMLPPM. It is a streaming XML compressor [Che01] based on the Multiplexed
Hierarchical Modeling (MHM) technique, that combines SAX encoding and the
Prediction by Partial Matching compression scheme (PPM) [CW84]. The input
XML document is parsed by a SAX parser generating a sequence of SAX events
that are �rst encoded in binary format using a bytecode representation, called
ESAX(Encoded SAX), and then processed by one of four PPM models depending
on its syntactic context, namely elements and attributes names (Syms), elements
structure (Els), attributes values (Att) and strings (Chars). That is, XMLPPM
multiplexes di�erent PPM models, to which encoded SAX events are sent according
to their syntactic context, for running predictions and encodings. This provides
bene�ts similar to those of XMill containers. Figure 4.11 shows an example of
XMLPPM processing over an XML fragment. Notice that when an XML element
is processed for the �rst time, its name string value is sent to the Syms model to be
assigned a bytecode, since that element name has not been encoded before (e.g. 01
for library, 02 for book, and 03 for title). Then the given byte symbol is sent to
the Elts model. Next times the same element is processed again, just the already
assigned bytecode is passed to the Elts model. This same procedure is applied to
attribute names (see year in Figure 4.11), but using Atts model instead of Elts.
In turn, attribute and data values, are directly sent to Atts and Chars models,
respectively, to be encoded. In the last case, also a special bytecode, FE, is sent
to Elts. That is because ESAX encoding not only uses bytecodes to encode start-
tags and end-tags, together with attribute names, but it also reserves particular
bytecodes to indicate events like the beginning and end of character data, or even
of comments. Observe that, for instance, all end-tags are replaced by FF .

Furthermore, to avoid breaking up dependencies of correlated symbols that hold
into di�erent syntactic classes and thus di�erent PPM models, XMLPPM also

3XMill provides several built-in encoders that can be used, but it also allows one to link any
other existing compresor. That is why XMill is de�ned as an extensible tool.

4.2. XML Compression 77

Input (1)

Elts:

Atts:

Chars:

Syms:

<library>

01

library 00

<book

<01> 02

book 00

year =

<02> 0A

year 00

“2009”

2009 00

>

<02> FF

<title>

<02> 03

title 00

The Universe

FE

<03> The Universe 00

</title>

FF

</book>

FF

Input (2)

Elts:

Atts:

Chars:

Syms:

<book

<01> 02

year =

<02> 0A

“2009”

2010 00

>

<02> FF

<title>

<02> 03

Amélie

FE

<03> Amélie 00

</title>

FF

</book>

FF

</library>

FF

Figure 4.11: Example of Multiplexed Hierarchical Modeling in XMLPPM.

injects previous symbols, regardless the model it belongs to, into the multiplexed
models to be used as a context for a current symbol. The dependency between
an element and its enclosed data is a common case of strong correlation, hence
the enclosing element symbol is injected into the corresponding model before an
element, an attribute or a data value is encoded (see bytecodes inside ⟨ and ⟩ in the
example of Figure 4.11). Those injected symbols indicate to the model that they
have been seen but they are not explicitly encoded nor decoded, they only aim to
retain dependencies. In [Che05], another variant of XMLPPM, named DTDPPM,
that performs DTD-speci�c optimizations to compress XML documents regarding
their DTD information was also presented. XMLPPM achieves, in general, better
compression ratios than XMill, in its default mode. Yet its main drawback are
compression times, since PPM compression family is known to be relatively slow.

SCM. In [ANF07], authors present the Structure Context Modeling (SCM)
technique, whose main idea is to use di�erent compression models to compress
the text under each di�erent XML tag (instead of considering complete paths from
the root, like done by some of the previous compressors), and apply it into two
variants, SCMHu� and SCMPPM, that use a Hu�man coding and PPM modeling,
respectively.

As a semistatic approach SCMHu� makes two passes over the text. In the �rst
one, text is modeled by creating separated dictionaries (the set of vocabulary words
together with the assigned codes) for each tag. Then, in a second pass, data under a
speci�c tag are encoded according to the Hu�man model obtained for that tag in the
�rst step. Moreover, in that case, authors also consider the possibility of merging
some of the models. To maintain separated dictionaries for each di�erent tag may

78 Chapter 4. XML Storage and Querying - State of the Art Revision

XML

Document

 <author> : Anna(4), Sweet(4), John(1), Gates(1), Ashton(2), Rogers(2),

 Kim(1), Soul(1)

 <year> : 2008(1), 2009(1), 2010(2)

 <title> : Compression(3), Algorithms(3), Index(3), Information(1),

 Retrieval(1)

 <keyword> : XML(3), Performance(2), Algorithms(1), Compression(1),

 Databases(1)

Figure 4.12: Dictionaries created from a sample XML document.

Table 4.1: Size contributions maintaining i) only one dictionary, ii) separated
vocabularies for each tag, and iii) after merging title and keyword vocabularies.

One dictionary Dictionary per tag Dicttitle ∪Dictkeyword

Dictionary V †
d nd Hd Td V †

d nd Hd Td V †
d nd Hd Td

author

144 39 3.965 299

64 16 2.750 108 64 16 2.750 108

year 24 4 1.500 30 24 4 1.500 108

title 40 11 2.163 64
64 19 2.800 118

keyword 40 8 2.156 58
† Values computed assuming that we need 8 bits per di�erent

dictionary word, thus V †
d = 8 ∗ Vd.

not pay o� due to storage overhead. Therefore, if two dictionaries share most
of the terms and have similar probability distributions, they are merged under a
single one. To determine whether two dictionaries should be combined, without the
need of running again Hu�man algorithm over its union, authors propose a costless
method based on the fact that Hu�man compression is very close to the zero-order
entropy of the text, and estimate the size of the resulting Hu�man compressed text
under a merge. To this aim, the estimated size contribution of a dictionary d, Td,
is computed by the following heuristic: Td = Vd + nd ∗ Hd, where Vd is the size
of the vocabulary that composes the dictionary, nd is the total number of words,
and Hd represents the estimated zero-order entropy of the dictionary, obtained
by calculating terms vocabulary probabilities restricted to the speci�c dictionary
scope. In this way, two dictionaries are merged if Ti + Tj > Ti∪j , leading to a
compression saving, Ai,j , given by Ai,j = Ti + Tj − Ti∪j . For instance, let us
consider the vocabularies associated to speci�c tags, namely <author>, <year>,
<title>, and <keyword>, of an XML document sample depicted in Figure 4.12.
Table 4.1 shows the bene�ts of using SCMHu� and dictionary merging advantages
over that example.

The second variant of SCM is SCMPPM, that uses di�erent PPM models for
the text that lies under each di�erent tag, hence it is considered as an extreme

4.2. XML Compression 79

variant of XMLPPM. Since PPM is adaptive, there is no need to store models in
the compressed �le, and thus merge is not necessary either. SCMPPM achieves
better compression ratios than SCMHu�, still unlike this one, SCMPPM does not
provide random access nor direct search over the compressed document. The main
�aw of SCMPPM are memory requirements to maintain multiple PPM models.

Input XML

document
XML parser

Dictionary

Structure and

data containers

Containers for

numbers

Containers for

dates and times

Back-end compressor

Back-end compressor

Back-end compressor

Back-end compressor

Compressed

document

Figure 4.13: Operational scheme of XWRT.

XWRT. XML Word Replacing Transform [SGS08] follows a similar idea to that
proposed by XMill, since it also considers the separation between structure and data
content, and data division into several containers, but grouping them regarding the
element names, not the whole path from the document root. Notwithstanding, the
most important di�erence that in fact constitutes the backbone of XWRT, is the
use of a dictionary, obtained in a preliminary pass over the document, to replace the
most frequent words with index references. Dictionary entries are encoded using
a byte-oriented pre�x code, optimized for further compressions (e.g. gzip, LZMA,
etc.). Yet XWRT also applies speci�c encodings for di�erent numerical data (e.g.
sequence of digits, dates, bibliographic information, fractional numbers, etc.). In
this case, the numerical value is replaced with a �ag in the main output stream,
while the actual value is encoded and sent to the corresponding container. Finally,
all encoded results are passed to general compressor schemes, namely gzip, LZMA
or PPM, yielding to the compressed XML �le. In Figure 4.13, XWRT general
operational scheme is depicted.

XComp. XComp [Li03] consumes XML data and produces the output in a
streaming fashion. It constitutes another example of an XML compressor that
applies the principle, �rst introduced by XMill, of structure and data separation,
but with slight modi�cations, that are following presented.

The structure refers to the di�erent markups of the XML document, while data
refers to data associated to these markups. Authors consider as basic markups
tags and attribute names, but they also take into account special markups as
processing instructions, comments, CDATA sections, etc. whose data are string

80 Chapter 4. XML Storage and Querying - State of the Art Revision

Code Meaning

0

1

2

3

4

5

6

7

8

9

End-tag

Data item position

‘=’ position (only used when preserve whitespace)

‘>’ position (only used when preserve whitespace)

Whitespace position (only used when preserve whitespace)

The position of any characters before XML Declaration

PI

DTD

Comment

CDATA section

Figure 4.14: Markups codi�cation used by XComp.

values between their limiters. While parsing the XML document, structure is
separated from data. To represent the structure, the di�erent markups are encoded
by using an integer codi�cation. Regarding the corresponding data, this structure
representation only records data items positions, that will be then grouped and
separately stored in other containers. Each di�erent tag and attribute name is
assigned a di�erent numerical identi�er starting from 10. The integers ranging
from 0 to 9, are reserved to indicate special markups and notations, whose
meaning are shown in Figure 4.14. For instance, value 1 is used to indicate the
positions of data items. Hence, the encoded structure of the XML document
fragment of Figure 4.15 a), using the code assignment of Figure 4.15 b) will
result 10, 11, 11, 12, 1, 0, 13, 11, 12, 1, 0, 0, 14, 11, 12, 1, 0, 0, 0. In addition, XComp
also stores data items lengths in a separated array. Therefore, and assuming the
same example, the lengths kept for data items D0824, 2011, The Descendants,
A0173, George Clooney, A0128, and Shailene Woodley are 5, 4, 15, 5, 14, 5, and 16,
respectively. This structure representation follows a model where white spaces are
not preserved. However, XComp also provides a model where they are considered.

Note that this structure representation is similar to that used by XMill, with
the exception that in case of attributes, XComp saves specifying an identi�er for
the data item corresponding to an attribute name4, since it realizes that in every
well-formed XML document it will always be present, and hence attribute value
identi�ers are implied by those of attribute names.

On the other hand, and with respect to data content, XComp follows a semantic-
like approach, where data is grouped not only based on their tag/attribute names,
but also based on their level (depth) in the document tree and their type. That is,
data items are sent to a same container if they share the same tag/attribute name,
the same level, and the same node type (i.e. a tag or an attribute). For instance,
in the example of Figure 4.15 a), ID will result into two containers, as well as name,

4Observe that there is no 1 directly after any integer identifying an attribute name.

4.2. XML Compression 81

 movie

 name

 actor

 actress

 ID

 <movie ID=”D0824" year=”2011">

 <name>The descendants</name>

 <actor ID=”A0173">

 <name>George Clooney</name>

 </actor>

 <actress ID=”A0128">

 <name>Shailene Woodley</name>

 </actress>

 </movie>

XML Document Code assignment

 10

 11

 12

 13

 14

b)a)

Figure 4.15: Tag/attributes identi�ers (b) assigned by XComp to compress
a sample XML document (a).

while the rest of the tags and attributes will lead each one to one di�erent container.
This is done based on the idea that, data with the same name, but at di�erent levels
or of di�erent types, may have di�erent domains or formats and hence also have
di�erent semantics and distributions. XComp also has special containers to store
data items from processing instructions, comments, and so on. In any case, all data
items are stored as strings in the containers.

In a �nal compression step XComp applies one of two optional compression
schemes, namely, gzip or Hu�man, to integers from structure and data length
containers, and dictionary structure container, and also to the strings of each
individual data item container. This step can be performed when the document
parsing has �nished, but also when a memory window size is exceeded, since
to obtain an e�cient memory usage, XComp sets a maximum space size for the
containers (that can vary their sizes along the process). When this limit is reached,
data of the di�erent containers are sent to the compression engine, and the result
is streamed to the output. In case of Hu�man coding, statistical information is
gathered when parsing the document for each individual container, and a Hu�man
tree is also written to the output by the compression engine.

XBzip. This compressor is an adaptation of the XBW transform [FLMM05,
FLMM09], inspired by the Burrows-Wheeler transform (BWT) for strings [BW94],
to represent succinct labeled trees. XBzip [FLMM06, FLMM09] constitutes the
tool to obtain a simple compressed and non-searchable representation of an XML
document, based on the XBW. Yet the same authors also created XBzipIndex
[FLMM06, FLMM09], the compressed searching and navigable version, further
detailed in Section 4.2.3.

One of the main characteristics of XBW transform is that its own construction
leads to an automatic grouping of the contexts (i.e. paths), in contrast with other
XML conscious compressors, that explicitly separate them in order to compress

82 Chapter 4. XML Storage and Querying - State of the Art Revision

 <clients>

 <person id=”1">

 <name>Anna Snow</name>

 <email>anna_snow@gmail.com</email>

 </person>

 <person id=”2">

 <name>Edward Salvatore</name>

 <email>edsalvat@gmail.com</email>

 </person>

 </clients>

XML Document

<clients

<person <person

@id <name <email @id <name <email

= = = = = =

Ø1

ØAnna Snow

Øanna_snow@

gmail.com Ø1

ØEdward Salvatore

Øedsalvat@

gmail.com

Figure 4.16: An XML document (a) and its corresponding ordered labeled
tree (b).

together similar ones. To obtain the XBW transform of an XML document, this is
�rst modeled as an ordered labeled tree T , where each occurrence of a start-tag, ⟨t⟩,
or an attribute name, att, originates a node labeled by ⟨t and @att, respectively,
and where both attribute values and text content, say δ, are replaced by two nodes,
one labeled with =, and the other one, with Øδ, being Ø a symbol not occurring
elsewhere in the XML document. We assume for forthcoming explanations, that this
T representation has t nodes, from which n are internal nodes, and l are leaves, thus
t = n+ l. Figure 4.16 shows the ordered labeled tree of a sample XML document.

In a second step, a sorted multiset S of triplets ⟨Slast, Sα, Sπ⟩ is built (one for
each tree node), by traversing T in pre-order and by generating for each visited
node, i, the corresponding triplet S[i] = ⟨Slast[i], Sα[i], Sπ[i]⟩. The �rst component
of that triplet is a binary �ag set to 1 if and only if i is the rightmost child of
its parent, the second component is given by the label of i, and the third one, is
the upwards labeled path from i parent to the root of T . Once all the triplets are
obtained, they are sorted with respect to the third component, and �nally the XBW
transform is composed by three arrays5 ⟨Ŝlast, Ŝα, Ŝpcdata⟩, where Ŝlast = Slast[1, n],
Ŝα = Sα[1, n], and Ŝpcdata = Sα[n+1, t]. In Figure 4.17 we show the XBW transform
construction from the T representation of Figure 4.16. Notice that as BWT groups
together characters pre�xed by the same substring, XBW does the same regarding
the data enclosed in the same upwards path.

The �nal step of XBzip, consists of storing the arrays ⟨Ŝlast, Ŝα, Ŝpcdata⟩, in a
compact way. For this purpose, Ŝlast and Ŝα are merged in an unique array Ŝα′ , and
then both Ŝα′ and Ŝpcdata, are separately compressed by using the PPMdi [Shk02]
compressor scheme.

5This XBW transform di�ers from the original one, de�ned in [FLMM05] as the pair ⟨Ŝlast, Ŝα⟩,
to better exploit XML documents features.

4.2. XML Compression 83

Slast S S!

1

0

1

1

1

1

1

0

0

1

0

0

1

1

1

1

1

1

1

1

1

<clients

<person

<person

=

=

=

=

@id

<name

<email

@id

<name

<email

=

=

Øanna_snow@gmail.com

Øedsalvat@gmail.com

ØAnna Snow

ØEdward Salvatore

Ø1

Ø2

empty string

<clients

<clients

<email<person<clients

<email<person<clients

<name<person<clients

<name<person<clients

<person<clients

<person<clients

<person<clients

<person<clients

<person<clients

<person<clients

@id<person<clients

@id<person<clients

=<email<person<clients

=<email<person<clients

=<name<person<clients

=<name<person<clients

=@id<person<clients

=@id<person<clients

Slast S S!

1

0

0

1

1

0

1

1

1

1

1

1

0

1

1

0

1

1

1

1

1

<clients

<person

@id

=

Ø1

<name

=

ØAnna Snow

<email

=

Øanna_snow@gmail.com

<person

@id

=

Ø2

<name

=

ØEdward Salvatore

<email

=

Øedsalvat@gmail.com

empty string

<clients

<person<clients

@id<person<clients

=@id<person<clients

<person<clients

<name<person<clients

=<name<person<clients

<person<clients

<email<person<clients

=<email<person<clients

<clients

<person<clients

@id<person<clients

=@id<person<clients

<person<clients

<name<person<clients

=<name<person<clients

<person<clients

<email<person<clients

=<email<person<clients

Sˆlast

Sˆ

Sˆpcdata

= 101111100100111111111

= <clients<person<person====@id<name<email@id<name<email==

= Øanna_snow@gmail.comØedsalvat@gmail.comØAnna SnowØEdward SalvatoreØ1Ø2

XBW

Transform

Stable sort

Figure 4.17: The set S after the pre-order traversal of T (left) and after
its stable sort regarding the component Sπ (right), together with the �nal
output of the XBW transform (bottom).

Exalt. Based on the fact that an XML document can be de�ned by a context-free
grammar, Exalt [Tom03] consists of a syntactical compression scheme that uses
the grammar-based codes encoding technique [KY00] to incrementally generate the
grammar, which is then encoded by an adaptive arithmetic coding [WNC87]. But
prior to this, Exalt tries to exploit the redundancy of the XML document structure,
and to derive predictions that may substantially improve compression e�ciency.
That is called the structure modeling of the document.

The goal of the structure modeling is to reduce the amount of data to be next
appended to the underlying compression scheme. To this aim, numeric tokens are
used to represent the structure (as done, for instance, by XMill or XComp), in
such a way that both character data content and numeric tokens are passed to
the grammar-based coder to be compressed together (unlike other solutions where
data compression follows a container-based approach). Numeric tokens capture the
redundant information, like repeated appearances of tags and attributes, but also of
special events such as end-tags, the beginning of a comment, an entity declaration,

84 Chapter 4. XML Storage and Querying - State of the Art Revision

a processing instruction, etc.

Moreover, while processing the document, Exalt also aims to learn as much as
possible about its structure. Most times elements present quite a regular structure,
hence the main idea is to retain it and to use this knowledge to predict their
future structural behavior. In case the prediction is successful no symbols need
to be generated, thus reducing the amount of data to be compressed. Therefore,
each XML element will be assigned a �nite state automaton, called model of the
element, which describes its structure. The automaton states can be either element
or character states, representing nested elements and contained character data,
respectively. Transitions between states describe the composition of nested elements
and character data within the element, and keep frequency counters that are then
used to compute the most probably transition, based on their probability. Element
models are adaptive. Initially, they consists of an initial state with no transitions,
which are incrementally added together with new states and also updated, as the
data is processed. In this way, element models are used to make predictions of the
structure. Each time an element is processed, prediction succeeds if the expected
state of its model (that is, the state ending the most probable transition) really
happens. In that situation, we only need to update the counter of the predicted
transition and then enter the referenced model, but without sending any data to be
encoded. Yet the models may give wrong predictions, if elements have an irregular
structure. In those situations, an escape event is produced in conjunction with the
information needed to correct the prediction.

AXECHOP. AXECHOP [LDM05] is an XML-conscious compression scheme that
combines a grammar-based compression of document structure with a Burrows-
Wheeler Transform [BW94] compression of the data portions of a document. Hence
structural and data parts are divided, following the idea introduced by XMill. The
structure of the XML document is �rst transformed by applying a byte tokenization
scheme, that preserves the original structure of the document, and then a context-
free grammar is produced by using the MPM compression algorithm [KYNC00].
This grammar is �nally compressed with an adaptive arithmetic coder [WNC87].
Regarding the data content, di�erent containers are created according to the speci�c
tag/attribute enclosing the data, and then the Burrows-Wheeler Transform is
applied to each separated container.

4.2.3 Queriable XML Compressors

Queriable XML compressors are usually schema-oblivious tools, since they equally
consider both to obtain reasonable compression ratios, and to provide some kind of
query support. Therefore, a most interesting division considers their homomorphic
or non-homomorphic nature, rather than schema awareness.

4.2. XML Compression 85

4.2.3.1 Homomorphic Compressors

As it has been previously seen, homomorphic compressors retain the original
con�guration of an XML document. They are not as common as non-homomorphic
ones. Yet, compressors like XGrind and XPRESS have become some of the most
representative tools within the queriable XML compressors category.

XGrind. It constitutes the �rst XML-conscious compressor able to support
queries over the compressed form, that is, without the need of a full decompression
of the compressed XML document. XGrind [TH02] makes it possible thanks to its
homomorphic nature, that does not serrate structure from data content, leading
to a compressed document that preserves the syntactic structure and semantics
information of the original document. In fact, the compressed XML document can
be viewed as the original one, but replacing tags, attributes and their respective
values by the corresponding encodings. Hence available techniques or even indexes
[MWA+98] for processing regular XML documents, can be similarly built on the
XGrind compressed output.

To compress a given XML document, XGrind uses di�erent encoding techniques
depending on the kind of token:

• Structural tokens: whenever a start-tag is encountered, it is replaced by a 'T'
followed by an uniquely identi�er associated to the tag name. All end-tags are
encoded by '/', while each occurrence of an attribute name applies a similarly
encoding scheme than that used to code start-tags, but using the character
'A' instead of 'T'. The identi�ers of the tag/attribute names are dictionary
encoded, hence they represents indices to speci�c entries of a dictionary.

• Enumerated-type attribute value tokens: enumerated-type attribute values
may be usual in XML documents. This kind of information is provided by the
DTD of the XML document. Hence, if it is available, XGrind identi�es which
attribute instances hold this characteristic, and encodes their values by using
a log2K encoding scheme to represent the di�erent K values that conform the
enumerated domain.

• Element/Attribute values: since XGrind aims to an e�cient query evaluation
over the compressed document, it requires a context-free compression scheme
to allow direct searches over the compressed document. Therefore, XGrind
uses the classical Hu�man coding [Huf52], but computing separated character-
frequency distributions for each element and non-enumerated attribute,
instead of using a single one for the entire document. Given that ele-
ment/attribute values are usually semantically related, they are expected to
have similar distributions.

86 Chapter 4. XML Storage and Querying - State of the Art Revision

 rac rac (rowing)

 <competition category=”rowing”>

 <team>

 <nickname>The Rockets</nickname>

 <competitors>

 <competitor number=”1927">

 <name>Leo Life</name>

 <year>1991</year>

 <school>Univ. of Berkeley</school>

 </competitor>

 <competitor number=”1943">

 <name>Josh Sky</name>

 <year>1990</year>

 <school>Univ. of Berkeley</school>

 </competitor>

 </competitors>

 </team>

 </competition>

XML Document

 T0 A0 enum(rowing)

 T1

 T2 huff(The Rockets) /

 T3

 T4 A1 huff(1927)

 T5 huff(Leo Life) /

 T6 huff(1991) /

 T7 huff(Univ. of Berkeley) /

 /

 T4 A1 huff(1943) /

 T5 huff(Josh Sky) /

 T6 huff(1990) /

 T7 huff(Univ. of Berkeley) /

 /

 /

 /

 /

Figure 4.18: Abstract view of XGrind compression.

As a result, XGrind makes two passes over the input XML document to compress
it. In the �rst one, di�erent element and attribute names are gathered to be
dictionary encoded, and also statistics for the element content and attribute values
are collected to create the coding models of the di�erent Hu�man coders associated
with elements and non-enumerated attributes. Regarding the enumerated-type
attributes, and if the DTD is provided, corresponding code values are generated, as
well, following the encoding scheme explained above. If not, they are coded applying
the Hu�man technique. Finally, in the second pass, document is compressed by
encoding each token with the corresponding code, obtained in the �rst pass. Figure
4.18 shows an example of an XML fragment and its compressed version using
XGrind. Note that hu�(s) represents the output of the Hu�man compressor for an
input s, while enum(v) denotes the output of applying the corresponding encoding
scheme for an enumerated attribute value v.

With the scheme applied by XGrind, exact-match and pre�x-match queries can
be performed over the compressed document without decompressing it. This is
done by �rst compressing the query string and then searching for its corresponding
encoded sequence in the compressed text. Nevertheless, partial decompression is
still necessary for queries involving range or partial matches. Moreover, many other
operations, like joins or nested queries, are not directly supported.

XPRESS. Like XGrind, XPRESS [MPC03] is another example of homomorphic
compressor, hence preserving syntactic and semantic information of the original
XML document, and supporting direct querying over the compressed version of the
document. Again, di�erent encoding schemes are used to compress the di�erent

4.2. XML Compression 87

token types appearing in an XML document. For instance, each element and
attribute name is encoded by using a technique called Reverse Arithmetic Encoding.
Inspired by arithmetic encoding [Abr63], this technique is designed for coding each
of the aforementioned tokens regarding their whole tree path from the root of the
document, by using real number intervals in the range [0, 1). That is, each number
interval represents the encoded element/attribute path. This feature leads to an
important property: let us suppose two labeled paths, P = pi . . . pn, and Q =
pj . . . pn, if i >= j, that is P is a su�x of Q, then this encoding scheme guarantees
that the interval representing P , say IP , contains the interval that represents
Q, namely IQ. With respect to content values, they are separately compressed
using di�erent context-free compression methods depending on their data type.
For example, numerical values are compressed by applying di�erential encoding to
their binary representation. In turn, enumerated-type values are encoded using
a dictionary encoding, while the rest of the data values are compressed by using
a Hu�man encoder [Huf52]. As happened in XGrind, the XPRESS compression
procedure consists of two passes over the text. The �rst one is devoted to compute
statistics, and the last actually compresses the document. Figure 4.19 represents a
conceptual view of the resulting compressed document after using XPRESS, over
the XML fragment shown in Figure 4.18. Observe that raci denotes the output of
coding an element/attribute tree path with Reverse Arithmetic Coding. Likewise,
enum(v), hu�(s), and num(m) stands for encoded elements and attribute values
regarding the di�erent coders used according to their data type.

 rac0 rac1 enum(rowing)

 rac2

 rac3 huff(The Rockets) /

 rac4

 rac5 rac6 num(1927)

 rac7 huff(Leo Life) /

 rac8 num(1991) /

 rac9 huff(Univ. of Berkeley) /

 /

 rac5 rac6 num(1943) /

 rac7 huff(Josh Sky) /

 rac8 num(1990) /

 rac9 huff(Univ. of Berkeley) /

 /

 /

 /

 /

Figure 4.19: Abstract view of XPRESS compression.

Although it applies similar ideas to XGrind, XPRESS improves XGrind twofold.
On the one hand, it encodes complete tree paths instead of just individual
element/attribute names. Moreover it uses an encoding scheme that satis�es su�x

88 Chapter 4. XML Storage and Querying - State of the Art Revision

containment. By this way, path-based queries are evaluated straightforward by
simply checking the interval containment between the path of the posed query and
those of the compressed document, without need of decompression. For instance, if
the path of a query is //team/name, then the query processor will select elements
/competititon/team/competitors/name, since the interval of //team/name will
contain the interval of /competition/team/competitors/name. On the other
hand, and given that numerical data values are encoded by using a compression
technique that preserves order, range queries concerning numerical data can also
be performed over the compressed document, unlike XGrind. However, partial
matches and range queries not involving numerical values, still su�er from partial
decompression.

QXT. QXT is an enhanced version of XWRT [SGS08], able to support query
evaluation with partial decompression. Hence the main features present in XWRT
are also kept in QXT. For instance, structure and data content are separated, the
latter being additionally divided into several containers. Frequent words (including
elements, attributes, and general data values) are replaced with index references
to the entries of a dictionary, created in a �rst pass over the input document.
Dictionary entries are encoded by using a byte-oriented pre�x code. Regarding
numerical data values and special data such as dates, times, and fractional numbers,
they are coded with speci�c encoders and sent to the corresponding containers. All
containers are then further compressed with general back-end compressors (e.g.
de�ate, LZMA, etc.). Nevertheless two main di�erences stand out from QXT.
The �rst one is related to data containers division. Against XWRT, containers
are created depending on the whole path from the document root, instead of only
considering element names. The second feature is that containers are compressed
in blocks of 32KB, thus allowing partial decompression of small data units. Query
execution in QXT �rst tries to solve which containers might contain data matching
the query. Then it decompresses the required containers, and �nally the obtained
transformed representation is searched also using the transformed pattern. As
happened in XGrind and XPRESS, the set of di�erent queries supported by QXT
is still limited. QXT does not maintain any indices to document content since its
primary purpose is e�ective compression.

4.2.3.2 Non-homomorphic Compressors

Together with schema independent non-queriable XML compressors, non-homo-
morphic queriable compressors are the categories from which more tools have been
developed during the last years. Some representative methods of the second group
are the 11 following tools:

XCQ. XCQ [LNWL03, NLWL06] is an XML schema-aware compressor based on
a technique called DTD Tree and Sax Event Stream Parsing (DSP), that tries to

4.2. XML Compression 89

takes advantage of the information provided by the XML document Document
Type De�nition (DTD) to generate concisely compressed data, but also useful
to perform query evaluation. The DSP technique separates document structure
and data content from the input SAX event stream produced while parsing the
XML document. Similarly to those XML compressors that use the knowledge of a
schema speci�cation (like Millau, SCA, XAUST, etc.), it only encodes the structural
information that can not be inferred from the DTD, that is, occurrences of ∗, +,
? and | operators. On the other hand, data part is arranged applying a path-based
partition grouping. Each time data values are encountered, they are sent to the
data stream associated with the full tree path connecting the data to the root
node. In addition, these data streams are then divided into indexed blocks. Both,
structure stream and blocks of data streams are �nally individually compressed
using a general text compressor, usually gzip.

Data block division slightly worsens compression ratio due to data commonalities
that are limited to the contents of the current block. However, since blocks can be
compressed and decompressed as individual units and given that they are created
in a path-based manner, it also makes possible to only decompress those blocks that
are relevant for a posed query. Therefore, a critical feature of XCQ is to determine
the accurate block size, given that compression and query performance would be
inversely a�ected.

XCQ supports the evaluation of a subset of XPath queries involving not only
selection and predicates, but also aggregation operators (e.g. count, sum, average,
etc.) and equality comparisons (e.g. =).

XQzip. XQzip [CN04] introduces indexing structures to support a wide range of
XPath queries over the compressed XML document, although partial decompression
is still needed for the matching of string conditions. XQzip separates structure (i.e.
tags and attributes6) from data (i.e. element content and attribute values) while
parsing the XML document. The �rst stream is used to build the Structure Index
Tree (SIT), an indexing structure that removes duplicate structures from the XML
document to improve query performance. In Figure 4.20 b) an example of a SIT is
illustrated, which corresponds to the tree structure of the XML fragment of Figure
4.20 a). In turn, data are �rst grouped into di�erent containers according to their
associated tag/attribute, and then further divided into smaller data blocks which are
separately compressed using gzip. These blocks can be decompressed individually,
hence avoiding full decompression in query evaluation. Yet this leads to a trade-o�
between compression ratio and decompression overhead when querying, as happened
in XCQ. If the block size is small, redundancies across separated blocks are not
properly used, while if a large block size is de�ned it will be costly to decompress
it. Hence, it may be di�cult to �nd a suitable block size for both compression
and query evaluation. To minimize decompression overhead in query evaluation,

6Namespaces, processing instructions and comments are not modeled by XQzip.

90 Chapter 4. XML Storage and Querying - State of the Art Revision

XQzip applies the Least Recently Used (LRU) algorithm to manage a bu�er pool
for the decompressed data blocks, thus avoiding repeated decompressions if the data
is already in the pool. XQzip addresses di�erent types of XPath queries, such as
multiple predicates with mixed value-based and structure-based query conditions,
but it also allows comparison (e.g. =, >, <, >=, <=, etc.), string (e.g. contains and
starts-with) and aggregation operators.

XML Document

21, 2

43, 4

8, 5 11, 9

18, 6 32, 7 52, 8 18, 10 33, 11 52, 12 69, 13

14, 3

0, 0

17, 1

 ROOT

 regions

 region

 @id

 clients

 person

 0

 17

 21

 14

 43

 8

 name

 nif

 phone

company

 cif

 web

 18

 32

 52

 11

 33

 69

Element / Attribute ID assignment

Elem/AttID,

nodeID
Tree node

b)a)

 <regions>

 <region id=”C22">

 <clients>

 <person>

 <name>Miguel Zas</name>

 <nif>32145680N</nif>

 <phone>+34555101212</phone>

 </person>

 <person>

 <name>Sara Weinstz</name>

 <nif>44246381P</nif>

 <phone>+34652124133</phone>

 </person>

 <company>

 <name>EpsTon</name>

 <cif>A15128910</cif>

 <phone>+34981241267</phone>

 <web>www.epston.es</web>

 </company>

 </clients>

 </region>

 </regions>

Figure 4.20: SIT structure (b) of an XML document fragment (a).

XMLZip. This compressor [XMLb] takes as input the DOM tree representation
of an XML document, and it basically divides that tree into di�erent components
by pruning it at a certain depth, d, that can be speci�ed by the user. Then each
component is separately compressed with gzip. The component that contains all
the nodes in the tree up to depth d is called the root component. The rest ones
are child components and correspond to all the sibling subtrees starting at depth
d. These children are replaced into the root component by references. Figure 4.21
shows an example of the DOM tree component division performed by XMLZip using
d = 2. XMLZip does not improve compression ratios, compared with those obtained
by compressing the document with the underlying gzip, yet its main advantage is
that XMLZip supports partial decompression, by decompressing the portions of the
compressed components that are needed for query evaluations.

4.2. XML Compression 91

 <account>

 <sale date=”01/03/2012">

 <product>

<description>

 King bed-ModR124

 </description>

<price>876</price>

 </product>

 </sale>

 <sale date=”02/03/2012">

 <product>

 <description>

 Wardrobe-ModS42

 </description>

 <price>1721</price>

 </product>

 </sale>

 </account>

XML Document

account

sale

date=”01/03/2012"

sale

date=”02/03/2012"

product product

description price description price

King bed-

ModR124
876 Wardrobe-

ModS42
1721

root component

child components

Figure 4.21: DOM tree division in XMLZip.

XQueC. This compressor [ABMP07] focuses on query speed rather than compres-
sion e�ciency. As XGrind and XPRESS, XQueC compresses individual data items
of the XML document to avoid decompression during query processing, but if di�ers
from them on the separation of document structure and data parts. With respect
to structure, tag and attribute names are encoded using a binary representation
of log2N bits, being N the total number of di�erent names. Furthermore, XQueC
builds a structure tree of the input XML document, where each node is assigned
an unique identi�er re�ecting the order of the represented tag/attribute in the
document and also the corresponding assigned code. Meanwhile, data values
speci�ed by the same root-to-leaf path are grouped into a same container. XQueC
can choose to compress the XML data by applying either the ALM algorithm
[Ant97], or the classical Hu�man compressor [Huf52]. In the former situation, order
is preserved in the encoded data, thus allowing one to perform range queries directly
over the compressed values. In turn, Hu�man algorithm supports pre�x-wildcards
(although not inequalities). Moreover, XQueC considers containers grouping into
sets according to their contained data common properties to improve compression
e�ciency. To determine containers association, as well as the appropriate choice
of the suitable compression algorithm, XQueC creates cost models of the di�erent
possible con�gurations by exploiting query workloads information.

XQueC supports a wide subset of XQuery language. To this aim, it also builds
additional data structures and indices. For instance, it creates a dataguide [GW97],
that is, a structural summary representing all possible paths in the document, and
links each node to the corresponding data container. What is more, XQueC links
each individually compressed data item to its corresponding node in the structure

92 Chapter 4. XML Storage and Querying - State of the Art Revision

tree. Those auxiliary structures signi�cantly improve query performance, however
they may incur in a huge space overhead.

XSeq. XSeq [LZLY05] is another example of grammar-based compressor. It
is based on Sequitur [NMW97a, NMW97b], a linear-time on-line algorithm that
generates a context-free grammar that uniquely represents the input string. XSeq
uses this algorithm to compress each of the several containers in which structure
and data tokens of an input XML document have been previously separated. In
addition, XSeq makes use of a set of indices to correlate data values stored in
di�erent containers, thus improving querying e�ciency. For instance, a header
index, pointing to each di�erent container, and a structural index, through which
each data value can be quickly located in the container without decompression. Data
containers also include devoted indices. All those features grant to XSeq the ability
of directly processing queries (in particular, XPath queries) over the compressed
document, without full or partial decompression. XSeq is also able to process only
relevant data values for a given query, thus avoiding a sequential scan of irrelevant
compressed data.

XCPaqs. This compressor [WLLH04] separates structure and content, and
compresses them separately. For the structural part, individual tags, but also
complete root-to-leaf paths are considered. XCPaqs gathers statistics for both
components, and it �rst codes tags with Hu�man compressor [Huf52]. Then paths,
which can be described as a series of tags in Hu�man code, are further encoded,
by using again the same encoder. Connection between structure and content is
kept by the path order in the original document associated to each data. When
processing the document, path type (i.e. data type and range of values of the data
associated to a same root-to-leaf path) is recognized, in such a way, that data is
compressed by using a speci�c compressor depending on the corresponding inferred
path type. For instance, enumerated-type data are dictionary encoded, while string
data are encoded with a su�x compressor, and long text is compressed with the
Burrows-Wheeler Transform [BW94]. The obtained results from structure and
content encoders are �nally combined based on their connection relations, leading
to a 2-ary �nal structure.

XCPaqs can solve XQuery queries. Before query processing, tags in the query
are translated into their corresponding code and then the query plan is split into
three steps: i) to select appropriate path codes; ii) to relate elements and conditions
according to their content; iii) to construct the �nal result.

ISX. ISX [WLS07] proposes a compact storage scheme for XML, providing at the
same time, e�cient support for XPath query evaluation, and also update operations
like insertions and deletions. ISX distinguishes three di�erent storage layers: the
topology layer, the internal node layer, and the leaf node layer. The �rst one

4.2. XML Compression 93

stores the tree structure of the XML document by using a balanced parentheses
encoding derived from [KM90]. The internal node layer, in turn, stores the elements,
attributes and signatures of the data content for enabling fast text queries. Finally,
data values are actually stored in the leaf node layer. Those data are referenced
by the topology layer and can be compressed by various common compression
techniques (usually gzip). Additionally, ISX creates auxiliary data structures over
the basic storage scheme to allow e�cient query processing.

TREECHOP. All procedures in TREECHOP [LMD05] visualize the input XML
document as a tree structure, where non-leaf nodes correspond to elements and
attributes, but also to CDATA sections, comments and processing instructions.
In turn, leaf nodes are character data, such as attribute values and data content
enclosed by an element. TREECHOP compresses the XML document in an adaptive
way. As tokens are received by a SAX parser, new tree nodes are created and sent
to the compression stream. Each non-leaf node is assigned a binary codeword.
This codeword is uniquely assigned based on the complete path from the root
of the tree node. Hence, nodes with the same absolute path, will receive the
same codeword. Formally, the codeword Cn assigned to a non-leaf node n, with
parent node p, is formed by the concatenation of three codes Cp, Gn, and Tn.
Cp, represents the codeword of p, while Gn is a Golomb code [Gol66] assigned
to n based on its order with respect to p. Finally, Tn, is a sequence of 3 bits
denoting the kind of node (e.g. an element, an attribute, a comment, etc.). This
encoding scheme keeps the structure of the original XML document. Regarding
the leaf nodes, they are processed in a similar manner, using in addition reserved
byte values to indicate the beginning and end of the associated character data.
As node information is added to the compression stream, it is compressed using
gzip. Like XGrind, TREECHOP supports exact-match queries through a sequential
scan over the compressed document, while range-match queries require data values
decompression to be further validated.

LZCS. Although it yields into this category, LZCS [ANF07] can not be considered
a general purpose XML compressor, since it is speci�cally adapted to compress
highly structured XML documents, and hence it does not perform well with
arbitrary ones. Inspired by the Ziv-Lempel compression, LZCS replaces identical
subtrees by a pointer to their �rst occurrence. To improve compression the
LZCS transformation of a document can be further compressed with a classical
compressor. In particular, authors use the semi-static word-based Hu�man method
[Mof89] and two PPM schemes [CW84], namely PPMdi and PPMz. The former
keeps LZCS transformation properties related to navigation ability, while the latter
does not. In [ANF09], authors show how to perform some basic XPath operations
(regarding child, descendant, parent, and ancestor axes, and also text matching
operator) over the LZCS transformation, by using a streaming approach. The main

94 Chapter 4. XML Storage and Querying - State of the Art Revision

idea is to speed up path matching operations by taking advantage of the work done
over repeated substructures.

XBzipIndex. As �rst disclosed in Section 4.2.2.2, XBzipIndex is the compressed
and searchable tool of the XBW transform adaption presented in [FLMM06,
FLMM09]. Like XBzip, the XBW transform computation of an XML document,
given by ⟨Ŝlast, Ŝα, Ŝpcdata⟩, constitutes the �rst step of XBzipIndex construction.
But to keep navigation and searching purposes, it also needs to support rank
and select operations over Ŝlast and Ŝα. Hence these two arrays are stored by
using a compressed representation supporting the aforementioned operations (see
[FLMM09] for more implementation details). In turn, Ŝpcdata, is �rst split into
homogeneous buckets, in such a way that two elements are held in the same bucket
if they have the same upward path, and afterwards a FM-index [FM01, FM05]
representation is created for each bucket. Under this representation, XBzipIndex
allows answering two di�erent kind of queries: i) //Π, ii) //Π[fn : contains(., γ)],
where Π denotes a fully-speci�ed path consisting of tag/attribute names and γ is
an arbitrary string.

One of the distinctive features of XBzipIndex is that it constitutes the �rst
solution combining compression and indexing. The compressed data represents at
the same time the structured text and an index built on it. That is called a self-
index [NM07].

SXSI. Like XBzipIndex, Succinct XML Self Index (SXSI) [ACM+10] is another
tool for compressed indexing of XML data. Yet it is able to support a wider range
of XPath queries than that addressed by XBzipIndex. SXSI is tailored to work in
main memory, and uses a compressed index representation for XML data able to
solve queries involving some of the forward XPath axes, together with di�erent text
functions (e.g. `=', contains, and starts-with).

SXSI regards XML documents as both an ordered set of strings, and also as
a labeled tree de�ned by the hierarchical tags. Hence, it establishes a separation
between the structure itself and the text content. Figure 4.22 illustrates the model
used by this proposal for a given XML fragment. Note that the actual tree is
formed by the solid edges, whereas dotted edges show the connection with the
textual parts. Each node of the tree representing an element is labeled by its
corresponding tag name, text nodes are modeled as leaves labeled with #, and each
attribute node is represented as a sequence of nodes where the �rst one is labeled
with @, its child node is the attribute name itself and the leaf child denotes the
associated attribute value by means of the special label %. Observe that there is
exactly one text content related to each tree leaf labeled # or %. Nodes of the
tree are assigned global identi�ers, but also each text content receives its own text

4.2. XML Compression 95

 <shop>

 <product mod=”12b">

 <name>skirt</name>

 <size>m</size>

 </product>

 <product mod=”23c">

 <name>handbag</name>

 <color>black</color>

 </product>

 </shop>

XML Document

<shop

<product

@ <name <size

#

%
skirt

m

mod

12b

#

@ <name <color

#

%
handbag

black

mod

23c

#

<product

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

Figure 4.22: Example of SXSI data model.

identi�er. Then, SXSI concatenates all text data7 and represents them by using
a succinct full-text self-index, namely the FM-index [FM05]. This index is based
on the BWT [BW94] and supports pattern matching operations8. In turn, the
tree structure is represented by combining two di�erent and aligned sequences: a
balanced parentheses representation of the tree skeleton, and a sequence of the tag
identi�ers of each tree node. Tree navigation operations are directly inherited from
the implementation of the �rst sequence [SN10]. Figure 4.23 shows how SXSI models
the structural and textual parts of the example depicted in Figure 4.22.

Par = ((((())) (()) (())) (((())) (()) (()))

Tag = S p @ m % /% /m /@ n # /# /n s # /# /s /p p @ m % /% /m /@ n # /# /n c # /# /c /p /S

S = shop s = size
p = product c = color
n = name

Tree

 T = 12b$skirt$m$23c$handbag$black$

 F = $$$$$$1223aaabbbccdghikklmnrst

 L = Tbwt = kmgctb$$12lbh2d$3ana$kcsbair

Text collection

Figure 4.23: Tree and text data representation in SXSI.

The aforementioned data structures constitute the base for query evaluation.
Each XPath query is translated into an alternating tree automaton [CDG+07,

7Each one appended with the special end-marker $.
8In addition, SXSI also stores the texts in plain format, to enable faster text extraction.

96 Chapter 4. XML Storage and Querying - State of the Art Revision

Hos10]. Conventionally, the run of a tree automaton visits every node of the input
tree, but SXSI makes use of the information kept on the indexes and applies di�erent
techniques to only visit the relevant ones [MN10], thus reducing processing times.

Part II

Our proposal: XXS

97

Chapter 5

The XML Wavelet Tree

In this chapter we present the �rst core part of XXS, the XML Wavelet Tree
(XWT), a new data structure to represent an XML document in a compressed
and self-indexed way (see Figure 5.1). The XWT constitutes a new approach
for compact representation of XML documents, which takes about 30%-40% of
the original document size, allowing at the same time their e�cient processing
and querying: XWT provides implicit indexing properties that can be successfully
pro�ted to e�ciently support XPath queries, as it will be later seen from Chapter
7 to Chapter 9.

Do

XXS

Q
u

e
ry

 P
a

rs
e

r

Query Module

XML

Representation

XML

Document

XML

Wavelet

Tree

Q
u

e
ry

 E
v
a

lu
a
to

r

XXSFigure 5.1: XML representation of XXS: the XML Wavelet Tree (XWT).

99

100 Chapter 5. The XML Wavelet Tree

This chapter focuses on the XML Wavelet Tree data structure description.
Section 5.1 �rst introduces the main construction features of this representation,
while Section 5.2 details the basic procedures to decompress and search over the
XWT. Sections 5.3 and 5.4 end the chapter by uncovering some of the main XWT
properties that lead to an e�cient query support.

5.1 XWT Construction

Following the essence of the WTBC reorganization of codewords strategy explained
in Section 3.1.8, XML Wavelet Tree has been speci�cally designed to deal with
XML documents and to e�ciently support XML retrieval, by especially focusing on
XPath queries.

Although WTBC can be applied to any word-based, byte-oriented semistatic
statistical compression technique, XWT uses the (s,c)-Dense Code compressor
described in Section 3.1.4.3 (the reason of that choice will be explained next). As a
result, the process of obtaining the �nal XWT representation of an XML document
is made in two phases. Making a �rst pass on the source text, the �rst phase
obtains its di�erent words1 and frequencies (the model), and assigns codewords to
each word according to an (s,c)-Dense Code encoding scheme. Then, in a new
pass on the source text, the second phase replaces each word of the text by its
codeword, leading to a compressed representation of the text. But these ones are
not stored consecutively. Codewords are placed along di�erent nodes following a
WTBC organization.

Inside this general construction process, many di�erent and important features
are considered, to make XWT suitable for e�cient querying purposes.

5.1.1 Phase I: Parsing the XML Document and Assigning

Codewords

5.1.1.1 Document Parsing

The �rst step is to parse the input XML document to gather the di�erent words
that will compose the vocabularies and to compute their frequency distribution. To
this aim, we use a variant of the spaceless word model [MNZBY98].

The parsing process distinguishes di�erent kind of words depending on whether
a word is2:

• A start-tag or an end-tag.

1We speak of words to simplify the discussion. In practice both words and separators are
encoded as atomic entities in word-based compression.

2Division implicitly given in accordance with the XPath data model [XPaa].

5.1. XWT Construction 101

• The name of an attribute.

• An attribute value.

• A word inside a comment.

• A word inside a processing instruction.

• A word of the XML document text content.

In some cases, this distinction arises from the same XML document construction
features, with special markups that signal each kind of word. In the other cases, the
di�erences will be internally maintained when parsing. Note that, to hold this, the
basic spaceless word model used is slightly modi�ed. In the basic spaceless word
model, tokens are based on alphanumeric and non-alphanumeric character types, in
such a way that contiguous strings of similar characters are isolated. In our parsing,
we keep this, but not in a strict sense, since we also consider the following cases
as single words independently of the fact that alphanumeric and non-alphanumeric
characters are mixed:

• The group of characters formed by the left angle bracket, <, and the name of
a start-tag markup: <name

• The end-tag markup as a whole: </name>

• The name of an attribute followed by the equal character: name=

• The reserved initial and �nal characters groups de�ning a special markup, such
as comments (<!-- and -->), processing instructions (<? and ?>), CDATA
sections (<![CDATA[and]]>), etc.

As a result, when compressing, a same word will be assigned di�erent codewords
depending on the category it belongs to. For example, if the word book appears
as text content (e.g. ...the great book ...), but also as an attribute value (e.g.
category=�book") and inside a comment (e.g. <!-- ...this book is ...-->) it
will be stored as three di�erent entries in the vocabularies, one for each di�erent
category, leading to three di�erent codewords.

Keeping this di�erence between words sharing a common name according to
their role in the XML document increases the vocabulary size, however it will be
shown that this translates into e�ciency and �exibility when querying.

It is also when parsing that some normalization operations take place (all
according to [XMLa]). For instance, empty-element tags are translated into their
corresponding pair of start-end tag (e.g. <author/> becomes <author> </author>).
While keeping satis�ed the well-formedness constraints according to [XMLa], this
uniformity in the representation maintains both the boundaries of the tags and

102 Chapter 5. The XML Wavelet Tree

the structure relations of the document perfectly de�ned. We also consider some
other minor considerations with no relevant meaning to document processing like
the removal of redundant spaces and spaces inside tags (e.g. <author > becomes
<author>).

Taking the previous classi�cation into account, four di�erent vocabularies are
created while parsing the XML document:

• The content vocabulary, which holds words from the text content category
together with attribute value entries3.

• The tags vocabulary, keeping the di�erent start-tags and end-tags.

• The attributes vocabulary, which stores word entries corresponding to at-
tribute names.

• The nsearch vocabulary, holding words appearing inside processing instruc-
tions and comments.

Notice that the �rst two vocabularies are always present. The rest of
the vocabularies will be created or not, depending on the presence or absence
of attributes, processing instructions, and comments into the particular XML
document being parsed. Henceforth, we also refer as special vocabularies those
apart from the content vocabulary. Figure 5.2, shows an example of a XWT
representation4 built from an XML document sample, for which the four di�erent
vocabularies are created.

5.1.1.2 Codewords Assignment

To assign codewords, we use (s,c)-Dense Code as the compression technique.
Remember that it uses di�erent bytes for continuers and for stoppers. Therefore,
by reserving one of the continuers to be the �rst byte of the codewords assigned
to words of the special vocabularies (one di�erent continuer for each of the
vocabularies), we can gain important bene�ts. These bene�ts arise from the fact
that, by enforcing this encoding, words from each of the previous vocabularies are
all kept located under same branches of the XWT, that is, they are isolated.

For instance, if we consider the example of Figure 5.2, where byte b3 is the
continuer reserved to be used as the �rst byte for all the codewords assigned

3Notice that although attribute values and text content words share a same alphabet, di�erent
word entries are stored in case of same words appearing in both categories, hence receiving di�erent
codewords. For example, in Figure 5.2, the word love appears as an attribute value, but also
inside the text content of opinion tag. Therefore, we keep two di�erent entries inside the content
vocabulary (see loveatt and lovetext entries).

4Note that only the shaded byte sequences are stored in the XWT nodes; the text is shown in
the �gure only for clarity.

5.1. XWT Construction 103

b0

b1

b2

b6b0

b6b1

b6b2

b7b0

b7b1

b7b2

b6b3b0

b6b3b1

b6b3b2

b6b4b0

b6b4b1

b6b4b2

b6b5b0

b6b5b1

>

“

One

lovetext

Timesatt

Theatt

of

most

inatt

loveatt

John

stories

Shakespeareatt

ever

fascinating

written

the

Content vocabulary (3,5)-DC Tags vocabulary (6,2)-DC

SYMBOL CODEFREQUENCY

6

4

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SYMBOL FREQUENCY

2

2

1

1

1

1

1

1

1

1

b3 b0

b3 b1

b3 b2

b3 b3

b3 b4

b3 b5

b3 b6b0

b3 b6b1

b3 b6b2

b3 b6b3

CODE

<name

</name>

<opinion

</opinion>

<author

</author>

<film

</film>

<movies

</movies>

XML document:

<movies>

 <film title=”Shakespeare in love”>

 <author journal=”The Times”>

 <name>John One</name>

 <!-- Using as pseudonym -->

 <name>One</name>

 </author>

 <opinion>

 One of the most fascinating

 love stories ever written

 </opinion>

 </film>

</movies>

Attributes vocabulary (2,6)-DC

1

1

b4 b0

b4 b1

SYMBOL FREQUENCY CODE

NSearch vocabulary (5,3)-DC

pseudonym

as

Using

<!--

-->

1

1

1

1

1

SYMBOL FREQUENCY CODE

b5 b0

b5 b1

b5 b2

b5 b3

b5 b4

journal=

title=

S
h
a

k
e
s
p

e
a
re

a
tt

B6

b2 b0 b1

lo
v
e

a
tt

m
o
s
t

B5

J
o
h
n

S
h

a
k
e
s
p

e
a

re
a

tt

w
ri
tt
e
n

...

 b4 b3 b3 b5 b4 ... b5

B3

 b6 b6 b4 b0 b1 b0 b1 b5 b2 b3 b6 b6

<
m

o
v
ie

s

<
fi
lm

ti
tl
e
=

“ S
h
a

k
e
s
p

e
a
re

a
tt

in
a
tt

lo
v
e

a
tt

<
o
p
in

io
n

b3 b0 b3 b4 b1 b6 b7 b6 … b3 … b6 b7 b6 b6 … b3 b3 b3

fa
s
c
in

a
ti
n
g

lo
v
e

te
x
t

<
/f
ilm

>

<
/m

o
v
ie

s
>

<
/o

p
in

io
n
>

...th
e

m
o
s
t

Complete XML document structure

B6B3 B6B4 B6B5

fa
s
c
in

a
ti
n
g

e
v
e
r

w
ri
tt
e
n

 b0 b2 b1 b0 b1 b2

J
o

h
n

s
to

ri
e
s

th
e

 b1 b0

B3B6

 b2 b0 b1 b3

<
/o

p
in

io
n
>

<
m

o
v
ie

s

<
a
u

th
o
r

<
fi
lm

<
n
a

m
e

<
/n

a
m

e
>

<
n
a

m
e

<
/n

a
m

e
>

<
/a

u
th

o
r>

<
o
p

in
io

n

<
/f
ilm

>

<
/m

o
v
ie

s
>

<
/m

o
v
ie

s
>

<
m

o
v
ie

s

<
fi
lm

<
/f
ilm

>

b1 b0

jo
u
rn

a
l=

ti
tl
e

=

B4

b3 b2 b1 b0 b4

U
s
in

g

a
s

p
s
e

u
d

o
n
y
m

B7
o
f

fa
s
c
in

a
ti
n
g

S
h
a
k
e

s
p
e

a
re

a
tt

lo
v
e

a
tt

in
a

tt

th
e

>

<
!-

-

--
>

Figure 5.2: Example of XWT structure built from an XML document.

to words from the tags vocabulary (see the bytes shaded in the CODE column of
the tags vocabulary), we will notice that the branch B3 (and also its children) is
devoted to exclusively store start-tags and end-tags. Remember that they follow the
document order, and hence maintain their relationships like in the original XML
document, so actually we can say that branch B3 stores the complete structure
of the XML document. Moreover, and as it will be further detailed in Section

104 Chapter 5. The XML Wavelet Tree

5.3, this branch exactly matches a balanced parentheses representation of the XML
document structure. Hereafter, we will refer as XDTree5 the XWT node holding
the complete structure of the XML document.

The same idea of using a speci�c starting byte can be extended to the rest of the
special vocabularies. In Figure 5.2, attribute names are stored under branch B4,
and words from processing instructions and comments, under B5. In the former case
the isolation gives the �exibility needed in XPath to directly operate over attributes,
while in the second one it allows one to easily distinguish fragments that should be
skipped in general text searches. Notice that the remaining words kept in the rest of
the branches of the XWT structure (i.e., text content and attribute values, entries
of the content vocabulary) are those mainly involved in text matching procedures.

Therefore, once parsing has �nished, the words of the content vocabulary are �rst
assigned a codeword following an (s,c)-Dense Code encoding scheme, but keeping
aside as many continuers as needed depending on the number of special vocabularies
we have. Following with the example of Figure 5.2, where a (3, 5)-DC encoding
scheme is used to encode content words, the �rst three continuers, namely bytes b3,
b4, and b5, are disregarded. Notice that they are not used as a �rst byte of any of
the codewords assigned to words of the content vocabulary.

Example To better understand this, let us assume that, as shown in Figure 5.2, we
work with bytes of 3 bits (hence, 23 = 8 di�erent bytes are available, instead of 256
as usual), and that we use a (3, 5)-DC to code content words, so stoppers are values
between 0 and 2 (that is, between 0 and s− 1) and continuers are values between 3
and 7 (that is, between s and s+ c− 1). If we reserve the �rst three continuers (i.e.
3, 4, and 5) to mark words of the special vocabularies, the codewords that could
be assigned to content words are as follows: ⟨0⟩, ⟨1⟩, ⟨2⟩ (one byte codewords),
⟨6, 0⟩, ⟨6, 1⟩,⟨6, 2⟩, ⟨7, 0⟩, ⟨7, 1⟩, ⟨7, 2⟩ (two bytes codewords), ⟨6, 3, 0⟩ . . . ⟨6, 7, 2⟩,
. . . , ⟨7, 3, 0⟩ . . . ⟨7, 7, 2⟩ (three bytes codewords), and so on. Notice that those
codewords starting with 3, 4, and 5 are skipped.

Because of this arrangement, compression could be a�ected6, so to minimize
compression loss, words of the special vocabularies are also coded following another
(s,c)-Dense Code encoding scheme, according to their respective models. That is,
optimal s and c values are computed for each of the special vocabularies. As a
result, the codeword of a word of any of these vocabularies will always start by
the reserved continuer of the corresponding vocabulary, to preserve isolation; but
the remaining bytes of the codeword will follow the (s,c)-Dense Code scheme of
the vocabulary that the word belongs to. Assuming again the example of Figure

5That stands for XML Document Tree.
6Notice that no word from the general vocabulary, that is, from the content vocabulary, can be

encoded with a codeword starting by any of the reserved continuers. Hence, there will be useless
groups of codewords.

5.1. XWT Construction 105

5.2, we can see that codewords assigned to words of the tags vocabulary follow
a (6, 2)-DC encoding scheme, but keeping added as their �rst byte the reserved
continuer b3. In the same way, words of the attributes and nsearch vocabularies are
coded by following a (2, 6)-DC encoding scheme and a (5, 3)-DC encoding scheme,
respectively, but keeping the corresponding continuer (b4 for attributes and b5 for
processing instructions and comments) as their �rst byte.

Example Following with the example detailed above, in which we assumed, as in
Figure 5.2, bytes of 3 bits, the codewords that could be assigned to words of the tags
vocabulary by using a (6, 2)-DC encoding scheme and keeping the byte 3 as the �rst
byte (the �rst continuer reserved from the (3, 5)-DC encoding scheme used to code
content words) are as follows: ⟨3, 0⟩ . . . ⟨3, 5⟩ (two bytes codewords), ⟨3, 6, 0⟩ . . .
⟨3, 6, 5⟩, . . . , ⟨3, 7, 0⟩ . . . ⟨3, 7, 5⟩ (three bytes codewords), ⟨3, 6, 6, 0⟩ . . . ⟨3, 6, 7, 5⟩,
. . . , ⟨3, 7, 6, 0⟩ . . . ⟨3, 7, 7, 5⟩ (four bytes codewords), and so on. In case of codewords
of the attributes vocabulary, that follow a (2, 6)-DC encoding scheme and that have
assigned the continuer 4 as their �rst byte, we distinguish: ⟨4, 0⟩ . . . ⟨4, 1⟩ (two bytes
codewords), ⟨4, 2, 0⟩ . . . ⟨4, 2, 1⟩, . . . , ⟨4, 7, 0⟩ . . . ⟨4, 7, 1⟩ (three bytes codewords),
⟨4, 2, 2, 0⟩ . . . ⟨4, 2, 7, 1⟩, . . . , ⟨4, 7, 2, 0⟩ . . . ⟨4, 7, 7, 1⟩ (four bytes codewords), and
so on. Finally, if we use a (5, 3)-DC encoding scheme to code words of the nsearch
vocabulary, in addition to the continuer 5, that must start any codeword of this
vocabulary, the codewords that could be assigned to these words are as follows:
⟨5, 0⟩ . . . ⟨5, 4⟩ (two bytes codewords), ⟨5, 5, 0⟩ . . . ⟨5, 5, 4⟩, . . . , ⟨5, 7, 0⟩ . . . ⟨5, 7, 4⟩
(three bytes codewords), ⟨5, 5, 5, 0⟩ . . . ⟨5, 5, 7, 4⟩, . . . , ⟨5, 7, 5, 0⟩ . . . ⟨5, 7, 7, 4⟩ (four
bytes codewords), and so on. Notice that the codewords of any word of the special
vocabularies, are always composed by at least two bytes.

5.1.2 Phase II: Compressing and Creating the XWT Struc-

ture

Once codewords are assigned to words, we perform a second pass over the text
replacing each word by its codeword and storing these codeword bytes along the
di�erent nodes of the XWT. The node where a byte of a codeword is stored depends
on the previous bytes of that codeword, as explained in Section 3.1.8. Hence, the
root of the XWT is formed by a vector with all the �rst bytes of the codewords,
following the same order as the words they encode in the original document. Each
node BX in the second level contains all the second bytes of the codewords whose
�rst byte is bx, following again the same order of the text. That is, the second byte
corresponding to the jth occurrence of byte bx in the root, is placed at position j
in node BX, and so on. For instance, in Figure 5.2, the eighth byte in the root is
b6, since loveatt is the eighth word of the text, and its codeword is b6b3b0. The
second byte of its codeword, b3, appears in the second position of node B6 because

106 Chapter 5. The XML Wavelet Tree

Algorithm 5.1: Construction of XWT

Input: d, an XML document
Output: XWT representation of d
// 1st pass

1. parseDoc(d, vocS, bp)
2. foreach voc ∈ vocS do

3. sort(voc)
4. computeOptimalSC(voc)
5. codewordsAssignment(voc)

6. nodeS ← computeTotalNodes(vocS)
7. sizeNodeS ← computeSizeNodes(vocS, nodeS)
8. foreach node ∈ nodeS do

9. XWT [node]← allocate(sizeNodeS[node])
10. track[node]← 1

// 2nd pass
11. foreach w ∈ d do

12. cw ← getCode(w)
13. cNode← root
14. foreach i = 1 . . . |cw| do
15. pos← track[cNode]

16. XWT [cNode][pos]← cwi

17. track[cNode]← pos+ 1

18. cNode← getChildNode(cNode, cwi)

19. return concatenation of XWT nodes, size of each node sequence, vocabularies
20. together with optimal s values, bitmap to construct the balanced parentheses
21. representation of the XML document structure

loveatt is the second word in the text encoded with a codeword starting by b6. In
turn, its third byte is the 1st one of node B6B3 because its second byte is the �rst
b3 in node B6.

The XWT nodes can be allocated and �lled with the codeword bytes as the
second pass takes place, because it is possible to precompute the number of nodes
as well as their sizes in advance (more precisely, just after the �rst phase is �nished).
So, by only keeping an array of markers indicating the next writing position for each
node, they can be sequentially �lled following the order of the words in the text.

At last, the compressed text is generated as the concatenation of the sequences of
each XWT node, plus a header with their sizes. The XWT data structure generated
also includes the di�erent vocabularies, and their respective optimal s values (taken
from the corresponding (s,c)-Dense Code encoding schemes), together with the bit
array representation of the XML document structure (created while parsing the
document, by setting a 1-bit for each start-tag and a 0-bit, for each end-tag), from
which its balanced parentheses representation can be later built.

5.2. XWT Basic Procedures 107

Algorithm 5.1 shows the pseudocode of the global construction procedure of a
XWT representation. It takes an XML document as input, and yields as output
the XWT data structure generated.

5.2 XWT Basic Procedures

As it has been shown in Section 5.1, the XMLWavelet Tree constitutes a compressed
representation of an XML document. Still, it also provides some implicit indexing
properties that make this structure be self-indexed as well. It occupies a space
proportional to the compressed document, but it implicitly allows one to perform
some searching operations more e�ciently than over the typical plain compressed
version.

The two basic procedures using the XWT are to recover any word at a speci�c
position of the document, and to search for a pattern. They both are performed
with simple traversals over the XWT tree by using rank and select operations,
respectively. Original codewords can be rebuilt from the bytes spread along the
di�erent XWT nodes by using rank operations, while words can be e�ciently
located, taking advantage of the self-indexing properties of XWT, by using select
operations. Thereby, the e�ciency of the XWT hinges on the implementation of
the rank and select operations. In this thesis, we use the particular implementation
described in Section 3.2.1.2 that uses a structure of partial counters to speed up
rank and select operations. Next, we will explain how the two basic procedures
and some other primary ones are performed over the XWT, by dividing them into
two di�erent blocks depending on whether they provide decompression or searching
capabilities.

5.2.1 Decompression

5.2.1.1 Random Word Decompression

If we want to decode a word at any position of the document we will use rank
operations and perform a top-down traversal of the XWT. Hence, to extract a
random document word j (random decompression), we �rst access the jth byte of
the root node of the XWT to get the �rst byte of its codeword. If according to
the encoding scheme it is the last byte of a codeword (that is, it is a stopper), we
�nish the procedure. However, if the codeword has more than one byte (since the
read byte is a continuer), we will continue traversing the XWT top-down to get
the rest of the bytes. Notice that, at this point, we have to check if the byte read,
bi, matches any of the continuers reserved to mark the codewords of any word of
the special vocabularies. Depending on this, going down in the XWT to obtain
the remaining bytes will be done by using the s and c values of the corresponding
vocabulary. Whatever the case, by reading bi as the �rst byte, we already know

108 Chapter 5. The XML Wavelet Tree

that the second byte of the codeword is stored in the node Bi. As all the words
whose codeword starts by byte bi will have their second bytes placed at node Bi,
we only have to count how many times the byte bi occurs in the root node until
position j. So we compute rankbi(Root, j) = k, that tells us that the second byte
of the codeword we are decoding is the kth byte of node Bi. Again, if that byte is
not yet the last one (that is, if it is not a stopper), we proceed in a same way until
the last byte of the codeword is reached. Algorithm 5.2 depicts the pseudocode to
decode a word at a given position of the document.

Algorithm 5.2: Display text position x

Input: p, a position of the document
Output: w, word at position p in the document

1. cNode← root; cw ←ø
2. b← XWT [cNode][p]
3. cw ← cw || b
4. while b is a continuer do

5. p← rankb(XWT [cNode], p)
6. cNode← getChildNode(cNode, b)
7. b← XWT [cNode][p]
8. cw ← cw || b
9. w ← getWord(cw)

10. return w

Example To know which is the third word in the source document of Figure 5.2,
we will proceed as follows. We start by reading the third byte of the XWT root,
that is, we get Root[3] = b3. According to the encoding scheme, we know that byte
b3 is a continuer, but also that it is one of the reserved continuers, in particular, that
reserved to mark tags codewords. So, on the one hand, we know that the codeword
is not complete yet, and we will have to read a second byte in the second level
of the XWT, more precisely, in node B3, since it holds all the codewords starting
by b3. On the other hand, we also know that hereafter the process will continue
by using the encoding scheme associated to the tags vocabulary. Therefore, the
next step will be to �nd out which position of node B3 we have to read. By using
rankb3(Root, 3) = 2 we obtain that there are 2 bytes b3 in the root until position
3. Thereby, B3[2] = b6, gives us the second byte of the codeword we are looking
for. Again b6 is not a stopper, so we need to continue the procedure. In the child
node B3B6, that corresponds to the �rst two read bytes of the codeword we are
decoding, we have to read the byte at position rankb6(B3, 2) = 2. Finally, we obtain
B3B6[2] = b0. But b0 is a stopper and, therefore, it marks the end of the searched
codeword. The complete codeword is b3b6b0, corresponding to the start-tag <film,
which is precisely the third word in the document, as expected.

5.2. XWT Basic Procedures 109

5.2.1.2 Full Text Extraction

If we want to decompress the whole document from the beginning (full decompres-
sion), we can proceed by extracting each word individually. However, we can take
advantage of a more e�cient procedure. Full decompression implies sequentially
covering the bytes of the root node and getting the codewords whose �rst byte is
stored there. Then the same process as the previous seen to decode a word could
be applied from the beginning of the root, j = 1. But, given that the sequences
of bytes of all the XWT nodes follow the original order of the words in the source
document, full decompression can be e�ciently implemented using pointers to the
next positions to be read in each node. That is, when going to a child node to read
the following byte of an uncomplete codeword, we do not need to compute any rank
operation to �nd out which position of this child node sequence we have to read. It
always will be the next one to process in that child node. The pseudocode for full
decompression is described in Algorithm 5.3.

Algorithm 5.3: Full text extraction

Output: d, original XML document
1. foreach node ∈ nodeS do

2. track[node]← 1

3. d←ø
4. foreach i = 1 . . . sizeNodeS[root] do
5. cNode← root; cw ←ø
6. b← XWT [cNode][i]
7. cw ← cw || b
8. while b is a continuer do

9. cNode← getChildNode(cNode, b)
10. b← XWT [cNode][track[cNode]]
11. cw ← cw || b
12. track[cNode]← track[cNode] + 1

13. d← d || getWord(cw)

14. return d

We will illustrate this procedure with the example of Figure 5.2. The �rst step
consists of initializing an array, we call track, that holds the positions of the �rst
unprocessed entry of each XWT node with the value 1. Then we start by reading
the byte at position 1 in the root node. Since it is a continuer, b3, we know that
the codeword is not complete, so we have to move to the second level of the tree,
in particular, to node B3, and read the second byte of the codeword. It is at this
point that, by using the basic decoding procedure of a word, a rank operation is
performed to know which position of node B3 should be read. Instead, we just have
to read the byte of node B3 at the position given by track [B3] = 1. Therefore, we

110 Chapter 5. The XML Wavelet Tree

obtain the byte b6, and we update the value track [B3] to 2. Again, according to
the encoding scheme, the codeword is still not complete, so we proceed in the same
way, but in node B3B6. That is, we read the byte of that node placed at position
track [B3B6] = 1, which is byte b2, and then update the value of track [B3B6] to
the next unprocessed entry of that node, 2. Since byte b2 is a stopper, we can get
the �rst decoded word, corresponding to the codeword b3b6b2, the word <movies.
After that, we continue with the second word at the root node. The byte of the root
node at position 2 is b0. It is the last byte of a complete codeword, so we �nish the
decompression of the second word of the document, by obtaining the corresponding
word, >. The following word at the root node is the third one. At position 3 in the
root node, we get the byte b3, hence we have to read a second byte of the codeword
in node B3. Since the value of track [B3] = 2, we know that this second byte of the
codeword we are searching for is at position 2 in node B3. So we read byte b6, that
newly leads us to node B3B6. Thus, we �rst update the value of track [B3] to 3,
and then we proceed in an analogous way, but in node B3B6. Finally, we obtain
the third word of the document, <film. We will continue the same procedure, until
reaching the last word of the root node, saving unnecessary rank operations and
making faster the complete document decompression.

5.2.1.3 Partial Decompression

The same smart procedure applied to e�ciently perform full decompression can be
extended to extract a fragment of the document starting from a random position,
instead of from the �rst one. The only di�erence lies in the initialization of the track
array, since we do not start by decompressing the document from the �rst position.
A priori, we cannot know the �rst unprocessed entries of each XWT node, so when
decompressing a word, whenever the track value of a visited node is uninitialized,
we will perform a rank operation to set the value of the next byte to be read.
Otherwise, we will just read the byte at the position given by the corresponding
track entry. That is, at most we have to pay one rank operation for each XWT
node, because once a XWT node has been visited, rank operations are avoided.

Notice also that this mechanism can be used, for instance, to speed up snippet
extraction around a found occurrence of a word, by just applying the procedure
from the earlier position of the snippet in the root node of the XWT up to the last
one.

5.2.2 Searching

5.2.2.1 Word Patterns

Locating. In general, we can �nd the position in the document of any occurrence
of a word by �rst searching for the last byte of its codeword in the corresponding
XWT node, and then performing consecutive select operations up to the root of

5.2. XWT Basic Procedures 111

the XWT. This procedure arises from the own organization of codeword bytes.
Given a codeword ⟨cw1...cwm⟩, if byte cwi occurs at position j in the corresponding
XWT node (that is, in node Bcw1Bcw2 ...Bcwi−1), then the previous byte of that
codeword, cwi−1, will be the jth one occurring in the parent node (that is, in node
Bcw1Bcw2 ...Bcwi−2). Therefore, when the root node is reached, we have the position
of the word into the document. This procedure is sketched in Algorithm 5.4.

Algorithm 5.4: Locate jth occurrence of word w operation

Input: w, a word; j, an integer
Output: pos, position of the jth occurrence of w

1. cw ← getCode(w)

2. cNode← computeLastNode(cw) // the node where cw|cw| is placed
3. pos← j
4. foreach i = |cw| . . . 1 do

5. pos← selectcwi(XWT [cNode], pos)
6. cNode← getParentNode(cNode)

7. return pos

For instance, let us assume we want to locate the �rst occurrence of loveatt in
the example of Figure 5.2. The codeword of this word is b6b3b0, then we have to
start the search at node B6B3, since b6b3 are the �rst bytes of the codeword till the
last one. Next, we will search in which position of node B6B3 the �rst byte b0 occurs
(the last byte of loveatt codeword), by computing selectb0(B6B3, 1) = 1. In this
way, we obtain that it is at position 1, that is, the �rst occurrence of word loveatt is
the �rst one of the words held in node B6B3 (i.e. words with codewords starting by
b6b3). Also, we know that all the codewords whose last byte is stored in node B6B3,
are represented in node B6 with a byte b3, and that they are in the same text order.
Therefore, the value 1 we obtained with the previous select operation indicates that
the �rst byte b3 in node B6 corresponds to the �rst occurrence of word loveatt
in the document. Again, we compute selectb3(B6, 1) = 2, that newly indicates
that our codeword is the second one starting by b6 in the root node. Finally, by
computing selectb6(Root, 2) = 8, we can answer that the �rst occurrence of loveatt
is the 8th word in the document.

To locate all the occurrences of a word, this procedure is repeated for each one.
Since the traversed XWT nodes are the same for each occurrence and these will be
processed consecutively, select operations and thus the whole process, can be sped
up by using pointers to the already found positions in the XWT nodes.

Counting. To count the number of occurrences of a given word, is equivalent
to compute how many times the last byte of the codeword assigned to that word
appears in its corresponding XWT node. This node will be identi�ed by all the

112 Chapter 5. The XML Wavelet Tree

previous bytes of the codeword. Therefore, in a general case, if a word is encoded
with a codeword bxbybz (being bx and by, continuers and bz, a stopper), it is only
necessary to count the number of bytes bz in node BXBY . That is, we only have
to perform rankbz (BXBY, i), where i is the size of the node BXBY . In turn, if the
codeword has just one byte, bz, we will do rankbz(Root,n), where n is the number
of words in the document, that is, the number of bytes in the root of the XWT.
Taking the example of Figure 5.2, if we want to count the number of occurrences
of Shakespeareatt, we have to �rst obtain its codeword, b6b4b0, and then count
the number of times its last byte, b0, appears in the node identi�ed by the �rst
bytes of its codeword (b6b4), that is, in node B6B4. In a same way, to count how
many times the word <name appears in the document, given its codeword b3b0, we
only have to count the number of times the byte b0 (since it is the last byte of its
codeword) occurs in node B3 (since b3 is the �rst byte of its codeword). Regarding
words whose codeword has only one byte, like One in the same example of Figure
5.2, which is encoded by b2, we only have to �gure out how many times the byte
b2 (as it is the solely one, hence also the last byte of the codeword) appears in the
root of the XWT (since all the �rst codeword bytes are placed in that node).

Algorithm 5.5: Count operation for a word w

Input: w, a word
Output: occ, number of occurrences of w

1. cw ← getCode(w)
2. cNode← root
3. foreach i = 1 . . . (|cw| − 1) do
4. cNode← getChildNode(cNode, cwi)

5. occ← rankcw|cw|(XWT [cNode], sizeNodeS[cNode])
6. return occ

Algorithm 5.6: Count operation for a word w until a position p

Input: w, a word; p, a position of the document
Output: occ, number of occurrences of w up to position p

1. cw ← getCode(w)
2. cNode← root; occ← p
3. foreach i = 1 . . . (|cw| − 1) do
4. occ← rankcwi(XWT [cNode], occ)

5. cNode← getChildNode(cNode, cwi)

6. occ← rankcw|cw|(XWT [cNode], occ)
7. return occ

Notice that by applying this procedure, count operation turns into the search of
a byte inside a node of the XWT, instead of searching for the occurrences of a word

5.3. XWT Connection with a Balanced Parentheses Representation 113

inside the whole document, hence the bene�ts are straightforward. Algorithm 5.5
shows the pseudocode of this operation. Moreover, we can also count the number of
occurrences of a word until a given position of the document. In that case, we just
perform the same strategy, but for each codeword byte, tracking down the endpoint
toward the leaf node of the word. The pseudocode for that scenario is presented in
Algorithm 5.6.

5.2.2.2 Phrase Patterns

Locating and counting. Apart from individual words, we may also be interested
in locating several words, that is, in searching phrase patterns. To e�ciently perform
this over the XWT structure, we start by locating the �rst occurrence of the least
frequent word of the pattern in the root node. Then we check if all the �rst bytes
of the codewords of each word of the phrase pattern match the previous and next
bytes of the root node. If those matches happen, we continue by validating the rest
of the bytes of the corresponding codewords, until either we detect a false matching
or we �nd the complete phrase pattern. But if it is not the case, we save going
down in the XWT, and we simply locate the next occurrence of the least frequent
word to be processed in a same way. This same basic procedure is used for both
locating and counting a phrase pattern, and it is shown in Algorithm 5.7.

5.3 XWT Connection with a Balanced Parentheses

Representation

As we brie�y disclosed in Section 5.1.1.2, the XDTree node of XWT (node B3,
in the example of Figure 5.2) provides a structural isolation, that establishes a
biunivocal relationship between this node and a balanced parentheses representation
(BP) of the XML document structure. This correspondence allows to combine both
representations for an e�cient evaluation of XPath queries.

The balanced parentheses representation supports in constant time a very
complete set of tree operations (like �nding the parent, the open/close pair, or
even the depth of a node) given the position of a tree node (that is, a start-tag
or an end-tag, in our case). Notice that a position in the BP matches the same
position in the XDTree node. For instance, if we consider the BP representation
of the example of Figure 5.2, i.e. (((()())())) (see Figure 5.3), we can observe that
the third �(� is closed by the �)� placed at position eight, and that they precisely
match the third and eighth byte entries of node B3, that are <author start-tag
and </author> end-tag, respectively. Therefore, we can easily perform basic tree
operations over the BP, and use the XWT to locate a position of the BP into the

114 Chapter 5. The XML Wavelet Tree

Algorithm 5.7: Count operation for a phrase pattern ph

Input: ph, a phrase
Output: occ, number of occurrences of ph

1. cph← getCodes(ph)
2. ordermin ← getLessFrequentWord(ph) // least frequent word position in ph
3. totalmin ← computeTotalOccurrences(cph[ordermin]) // number of occurrences of

the least frequent word
4. i← 1
5. while i < totalmin do

6. posmin ← locateLessFrequentWord(cph[ordermin], i)
7. fail← 0
8. foreach j = [1 . . . ordermin) ∪ (ordermin . . . |ph|] do
9. if cph[j]1 ̸= XWT [root][posmin − ordermin + j] then

10. fail← 1; break;

11. if !fail then
12. foreach j = [1 . . . ordermin) ∪ (ordermin . . . |ph|] do
13. posj ← posmin − ordermin + j
14. cNode← root
15. foreach k = 1 . . . |cph[j]| − 1 do

16. posj ← rankcph[j]k (cNode, posj)

17. cNode← getChildNode(cNode, cph[j]k)

18. if cph[j]k+1 ̸= XWT [cNode][posj] then
19. fail← 1; break;

20.

21. if fail then break;

22. if !fail then occ← occ+ 1

23. i← i+ 1

24. return occ

original document (by simply going one level up from the matching position in
the XDTree node through a select operation), or even to obtain its corresponding
tag identi�er (by applying the decode procedure described in Section 5.2.1.1, from
the same position in the XDTree node), without the need of any additional data
structure to hold that information.

Let us consider again the example of Figure 5.2 for better understanding of these
powerful relationship. Suppose that we are searching for the �rst occurrence of the
start-tag <opinion. By using the locate procedure of a word pattern explained in
Section 5.2.2, we can obtain its location in the text (in the example, we can see
that it is placed at position 337), but also the location of its codeword bytes, as we
perform consecutive select operations up to the root of the XWT. In case of the

7Reader can infer this position from the XML document fragment of Figure 5.2.

5.3. XWT Connection with a Balanced Parentheses Representation 115

<film </film>

</opinion><opinion

Complete XML document structure

<
/o

p
in

io
n
>

<
m

o
v
ie

s

<
a
u

th
o
r

<
fi
lm

<
n
a

m
e

<
/n

a
m

e
>

<
n
a

m
e

<
/n

a
m

e
>

<
/a

u
th

o
r>

<
o
p

in
io

n

<
/f
ilm

>

<
/m

o
v
ie

s
>

 (((() ()) ()))BP:

1 2 3 4 5 6 7 8 9 10 11 12

findclose (9) = 10enclose (9) = 2

 b6 b4 b0 b1 b0 b1 b5 b6b6 b2 b3 b6

33 44

453

Figure 5.3: Example of correspondence between the XDTree node and a
balanced parentheses representation (BP) of the XML document structure.

XDTree node, we can notice that <opinion corresponds to position 9, and that this
position exactly matches the same location of <opinion in the BP representation,
as stated. Now, let us assume two di�erent scenarios8 that could arise once that
occurrence of <opinion is located (see Figure 5.3):

• Locating the matching end-tag : we might be interested in obtaining where
the corresponding <opinion end-tag (that is, </opinion>) is placed. In that
situation, we can take advantage of the findclose operation provided by the
balanced parentheses representation, and just perform findclose (9) = 10,
given that <opinion is at position 9 there. This tells us that the end-tag we are
searching for corresponds to position 10 of both the BP and also the XDTree

8Those implying the use of �ndclose and enclose tree operations, since they are two of the
most common ones.

116 Chapter 5. The XML Wavelet Tree

node. Therefore, next, by simply computing selectb3(Root, 10) = 44 (since
the codeword of </opinion> is b3b2) we can also answer that </opinion> is
the 44th word of the text9. Last, we know that the �rst occurrence of opinion
starts at position 33 and �nishes at position 44 in the original document.

• Discovering the parent tag : another quite interesting situation may stem, for
instance, from the need of discovering the identi�er of the parent of <opinion.
Notice that the typical enclose operation supported by a balanced parentheses
representation provides that information, but from a positional standpoint.
That is, given a position in the BP, this operation returns the position of the
start-tag that encloses it. Hence, by computing enclose (9) = 2, we can �rst
obtain that the parent of the target occurrence of <opinion corresponds to
position 2 in the BP, but also in the XDTree node of the XWT. Therefore, once
given this location, we simply need to perform the decode procedure described
in Section 5.2.1.1 from that node, to obtain the complete codeword10, and to
�nally decode the word corresponding to the start-tag parent of <opinion,
which is <film.

5.4 Segments in an XML Document

Another important feature worth mentioning at this point is that given an element
(tag), the positions of its corresponding start-tag and end-tag mark the limits of a
segment in the XML document, which covers the text area enclosed by the element.
For instance, see the segments depicted in pink on top of the XWT structure in
Figure 5.3. However, this characteristic does not only apply for elements. In the
same way, phrase patterns can be ultimately regarded as segments whose initial and
�nal positions are given by the positions of the �rst and last word of the pattern,
respectively. Indeed, even when working with words, we can also consider them as
particular cases of segments, this time starting and �nishing at the same position.

That is, any component of an XML document (e.g. an element, an attribute, a
word, a phrase, etc.) could be ultimately regarded as a segment, [s, e], whose limits
arise from the start (s) and end (e) positions in the text, of the own component.
Notice as well that, given two segments, a, [a.s, a.e], and b, [b.s, b.e], such a kind of
representation allows one to compare them by using the relations shown in Figure
5.4.

9Reader can infer again this position from the XML document fragment of Figure 5.2.
10Notice that, in this case, the decode procedure could start from the second byte of the

codeword, since we already know which is the �rst one. Remember that the XDTree node is
devoted to just store the occurrences of start/end-tags, therefore all of them share the same �rst
byte, that is, the reserved continuer b3.

5.4. Segments in an XML Document 117

a < b :

a > b :

a b :

a b :

a = b :

a.s a.e b.s b.e

a.s a.eb.s b.e

a.s a.e

b.s b.e

a.s a.e

b.s b.e

a.s a.e

b.s b.e

a.e < b.s

a.s > b.e

a.s > b.s and a.e < b.e

a.s < b.s and a.e > b.e

a.s = b.s and a.e = b.e

Relation Conditions

Figure 5.4: Segments relationships.

As it will be next discussed in Chapter 7, this segment representation will become
a key factor to perform query evaluation over the XWT.

118 Chapter 5. The XML Wavelet Tree

Chapter 6

Query Plan Construction

In Chapter 5 we presented the storage core of XXS, given by the XWT data
structure. As we could see there, it constitutes a novel approach to represent XML
documents in a compressed and self-indexed way. But more important is the fact
that thanks to the self-indexing properties that this representation provides and its
own construction features, query evaluation can be e�ciently supported.

XXS

Q
u

e
ry

 P
a

rs
e

r

Query Module

XML

Representation

XML

Document

XML

Wavelet

Tree

Q
u

e
ry

 E
v
a

lu
a
to

r

XXS
Figure 6.1: Query parser submodule of the XXS system.

The Query module of the XXS system evaluates XPath queries over XWT. This
module is composed by two main components: the Query parser, and the Query

119

120 Chapter 6. Query Plan Construction

evaluator, that are in charge of the query parsing and the query execution process,
respectively. This chapter focuses on the Query parser submodule (see Figure 6.1).
In this way, Section 6.1 �rst starts by introducing the set of XPath queries addressed
in this work. Then, Section 6.2 shows how the input query is transformed into an
initial representation, the query parse tree. Several transformations are applied
over the query parse tree up to get an optimized plan, the query execution tree. All
these transformations are presented in Section 6.3. Finally, Section 6.4 exhibits the
general procedure performed by this submodule through a complete example.

6.1 XPath Query Support

XXS system supports a wide fragment of XPath, in particular a practical subset of
the �Core XPath� de�ned in [GKP05]. We show below the EBNF notation of the
target fragment, where axis stands for any forward or reverse axis, and nodeTest,
is either a tag/attribute name or the wildcard `*'1.

Core ::= LocationPath | `/' LocationPath

LocationPath ::= LocationStep(`/' LocationStep)*

LocationStep ::= Axis`::'NodeTest |

Axis`::'NodeTest`['Pred`]'

Pred ::= Pred `and' Pred |

Pred `or' Pred | LocationPath |

`(' Pred `)'

In addition, we implement two of the most common text functions of XPath 1.0,
namely the equality (=) and contains (contains()) functions, plus the count node
set function (count()).

6.2 Initial Query Plan: the Query Parse Tree

As stated in Chapter 2, XPath path expressions (also known as location paths) are
regarded as sequences of location steps, where the result of the current step makes up
the context for the next one. Previous and current location steps are related by the
axes. Hence, it is possible to get an initial representation of an input query, we call
query parse tree, produced from the own query parsing2, by converting sequences
of location steps into a composition of binary operators, whose operands are the
corresponding node tests and the composition of the location path itself. That is,

1Node type tests can also be supported, but they are not addressed in this work.
2To parse the input query and to split it into its di�erent components we have

used the source code provided by Benjamin Piwowarski, based on his soul library
(http://sourceforge.net/projects/soulparsing/).

6.2. Initial Query Plan: the Query Parse Tree 121

 XPath: /library/book/descendant::author

1) 2) 3)

descendant

author child

book child

library root

3)

2)

1)

Query Parse Tree:

 Query: Authors of any book
 <library>

 <book>

 <data>

 <title> … summer sunset … </title>

 <author> … </author>

 </data>

 <summary> … </summary>

 </book>

 <book>

 <data>

 <title> … dark mistery … </title>

 <author> … </author>

 </data>

 </book>

 …

 </library>

XML document

Figure 6.2: Example of query parse tree from a query without predicates.

by regarding the query from left to right, the query parse tree is built upwards as
follows. Each location step is translated into a main node labeled with the step
axis name and two children. The left child represents the location step node test,
whose occurrences will be delivered by the main node (that is, its parent node in
the query parse tree). In turn, the right child, is provided by the tree representation
already set up from the previous location step. For instance, let us consider the
query /library/book/descendant::author. Its query parse tree is depicted in
Figure 6.23.

Regarding predicates, the location paths inside them can be similarly trans-
lated into a composition of binary nodes as the above mentioned paths out-
side predicates. This time, however, and to allow their further integration
within the global query parse tree, we must reverse both the order in which
the location steps are considered to build the tree (now from right to left)
and the meaning of the axes. Axes with opposite meaning are, for instance,
child ↔ parent, and descendant ↔ ancestor. Figure 6.3 illustrates two
examples of query parse trees built from two di�erent queries with predicates: a)
/library/book[./data/following-sibling::summary]/descendant::title; b)
/library/book[contains(./descendant::title, �mistery�)]. Observe that,
in both cases, we can assume a separated parse tree for the predicate over book (see
the parse trees inside the striped areas in Figure 6.3), obtained by a right-to-left
traversal4 of the predicate location path together with an axes reversal (namely,
following-sibling ↔ preceding-sibling and child ↔ parent for query a);
and descendant ↔ ancestor, for query b)), which is added to the general parse

3We refer as root, the root node of an XML document, according to the XPath data model.
4Note that in case of query b), the contains predicate would constitute the last step in a typical

left-to-right traversal, since it is applied over title. Hence, if we consider the opposite traversal,
it becomes the �rst step.

122 Chapter 6. Query Plan Construction

title

 XPath: /library/book[contains(./descendant::title,”mistery”)]

1) 2) 1)2)

child

child

library root

2)

1)ancestor

book contains

“mistery”

Q
u

e
ry

 P
a
rs

e
 T

re
e

Predicate

1)

2)

Query: Books whose title contains the word “mistery”

data

 XPath: /library/book[./data/following-sibling::summary]/descendant::title

1) 2) 3)1)2)

descendant

author child

child

library root

3)

2)

1)parent

book preceding-

sibling

summary

Q
u

e
ry

 P
a

rs
e
 T

re
e

Predicate 1)

2)

Query: Title of books with an available summary

XML document

 <library>

 <book>

 <data>

 <title> … summer sunset … </title>

 <author> … </author>

 </data>

 <summary> … </summary>

 </book>

 <book>

 <data>

 <title> … dark mistery … </title>

 <author> … </author>

 </data>

 </book>

 …

 </library>

XML document

 <library>

 <book>

 <data>

 <title> … summer sunset … </title>

 <author> … </author>

 </data>

 <summary> … </summary>

 </book>

 <book>

 <data>

 <title> … dark mistery … </title>

 <author> … </author>

 </data>

 </book>

 …

 </library>

a)

b)

Figure 6.3: Example of query parse trees from queries with predicates.

tree when the second location step is processed to make up its corresponding left
child.

6.3 Query Plan Optimization: Query Parse Tree

Transformations

The initial parse tree of a query can be used as the query execution tree to be further
evaluated. Nevertheless, we still perform some modi�cations over it to gain e�ciency
during evaluation. Some of them are simple algebraic simpli�cations, while some
others are transformations that modify the original query parse tree (which only
considers components of the XPath syntax), by producing an equivalent one in

6.3. Query Plan Optimization: Query Parse Tree Transformations 123

childatt

coveratt

a)

 Query: Book covers

XPath: /library/book/@cover

Query Parse Tree:

child

book child

library root

 <library>

 <book cover=”C10CD.jpg">

 …

 </book>

 <book cover=”C12HU.jpg">

 …

 </book>

 <book>

 …

 </book>

 <book cover=”C26AC.jpg”>

 …

 </book>

 …

 </library>

XML document

parentatt

coveratt

b)

 Query: Books with an available cover

XPath: /library/book[./@cover]

Query Parse Tree:

child

book

child

library root

 <library>

 <book cover=”C10CD.jpg">

 …

 </book>

 <book cover=”C12HU.jpg">

 …

 </book>

 <book>

 …

 </book>

 <book cover=”C26AC.jpg”>

 …

 </book>

 …

 </library>

XML document

Figure 6.4: Examples of use of childatt and parentatt.

terms of retrieved results, but optimized to meet XWT features. In fact, some of
them are not intended to be general optimizations, rather they aim to get a better
performance by creating a query execution tree tailored to exploit the characteristics
of the XWT representation.

But prior to this, let us regard a notation that we will assume hereafter for
better comprehension. We will use att to mark nodes representing attributes, but
also to note nodes which stand for operators (i.e. axes/functions) any of whose child
nodes is ultimately an attribute. This is done to make clear the di�erence between
operators that may share the same name, but which at last result into di�erent
evaluation algorithms, depending on whether they are applied over an element or
over an attribute, as it will be shown in Chapter 8. This notation applies for
containsatt and equalatt text functions, but also for childatt and parentatt. In
particular, we use the two last ones to designate, respectively, the attribute selection

124 Chapter 6. Query Plan Construction

of an element (see Figure 6.4 a)), and to select elements having a given attribute
(see Figure 6.4 b)). Moreover, we will see that transformations may also lead to the
descendantatt and ancestoratt operators, which are a generalization of childatt
and parentatt, respectively. That is, descendantatt will select the attributes of an
element or of any of its descendants, while ancestoratt stands for elements that
either have the target attribute or hold any descendant that has it.

Now, we will describe and exemplify the query parse tree transformations and
also the di�erent scenarios where they are applied, by dividing them into 4 main
groups:

1. Attributes equality simpli�cation: this modi�cation consists of convert-
ing an equality step between an attribute name and its value, such as
...[@name=�New York�]/... or .../@*[.=�Spain�]/... into a phrase
matching operator, as shown in Figure 6.5.

products

 Query: Products sold in “New York”

XPath: /store/city[@name=”New York”]/products

Query Parse Tree:

child

city

child

store root

child

 <store>

 <city name=”Boston”>

 <products>

 <product> … </product>

 <product> … </product>

 …

 </products>

 </city>

 <city name=”New York”>

 <products>

 <product> … </product>

 <product> … </product>

 …

 </products>

 </city>

 <city name=”Chicago”>

 <products>

 <product> … </product>

 <product> … </product>

 …

 </products>

 </city>

 </store>

XML document

equalatt

nameatt “New York”

parentatt

products child

city

child

store root

child

nameatt=“New York”

parentatt

Figure 6.5: Example of Attributes equality simpli�cation.

2. Wildcard optimizations: we distinguish the next three modi�cations over
location steps involving wildcards (i.e., the asterisk wildcard *):

(a) Redundancy suppression: this optimization aims at discarding a costly
(or unnecessary) step. For instance, given the fragment of the query
parse tree illustrated in Figure 6.6, we can avoid processing the parent
step over the wildcard (which potentially selects all elements parent
from an editorial element, to be further analyzed with respect to a

6.3. Query Plan Optimization: Query Parse Tree Transformations 125

XML document

 Query: Books edited by “Salamandra”

XPath: /library/book[.//editorial=”Salamandra"]

Query Parse Tree:

parent

anc-or-self

child

book

child

library root

* equal

editorial “Salamandra"

ancestor

child

book

child

library rootequal

editorial “Salamandra”

 …

 <book>

 <title>Le Petit Prince</title>

 <author>A. de Saint-Exupéry</author>

 <editions>

 <edition year=”1943">

 <editorial>Gallimard</editorial>

 </edition>

 <edition year=”2001">

 <editorial>Salamandra</editorial>

 <edition/>

 <editions/>

 </book>

 <book>

 <title>Man’s Search for Meaning</title>

 <author>Viktor Frankl</author>

 <editions>

 <edition year=”1992">

 <editorial>Volk</editorial>

 </edition>

 <edition year=”2008">

 <editorial>Beacon</editorial>

 <edition/>

 <editions/>

 </book>

 ...

Figure 6.6: Example of Redundancy suppression.

descendantatt

yearatt
desc-or-selfyearatt

 Query: Publishing years of a book

XPath: /library/book//@year

Query Parse Tree:

child

book child

library root

childatt

*

child

book child

library root

 …

 <book>

 <title>Le Petit Prince</title>

 <author>A. de Saint-Exupéry</author>

 <editions>

 <edition year=”1943">

 <editorial>Gallimard</editorial>

 </edition>

 <edition year=”2001">

 <editorial>Salamandra</editorial>

 <edition/>

 <editions/>

 </book>

 <book>

 <title>Man’s Search for Meaning</title>

 <author>Viktor Frankl</author>

 <editions>

 <edition year=”1992">

 <editorial>Volk</editorial>

 </edition>

 <edition year=”2008">

 <editorial>Beacon</editorial>

 <edition/>

 <editions/>

 </book>

 ...

XML document

Figure 6.7: Another example of Redundancy suppression.

book), by combining it with the ancestor-or-self axis into a single
step, ancestor. A similar scenario is shown in Figure 6.7. This time
the involved axes are descendant-or-self and childatt. However,

126 Chapter 6. Query Plan Construction

1)

descendant

A B

desc-or-self

A

B
*

descendantchild

A B

desc-or-self

A

B*

desc-or-self
desc-or-self

2)

ancestor

A B

A

B*
A B

anc-or-self

A

B*

anc-or-self

parent ancestor

anc-or-self

3) 4)

ancestor

A B

anc-or-self

A parent

B*

ancestor parentatt ancestoratt ancestoratt

descendant

A B

child

A desc-or-self

B*

childatt descendantatt

descendantatt

descendant

5)

6)

anc-or-self

A desc-or-self

B*

anc-or-self

A

B*

Figure 6.8: Transformations of the Redundancy suppression category.

they are just some examples of the several transformations that fall into
this category. They are all depicted in Figure 6.8. While preserving
the semantics of the original query, this kind of modi�cations saves
intermediate results generation.

(b) Synonyms translation: with this modi�cation we aim to replace an axis
with another equivalent (that is, producing the same results), and to
produce sequences of same steps that could be further optimized in Steps
uni�cation. Figure 6.9 illustrates these equivalences.

(c) Steps uni�cation: this optimization is devoted to reduce the number of
steps to be performed, by integrating several identical steps over the
wildcard *, into a single one. For instance, let us consider the example

6.3. Query Plan Optimization: Query Parse Tree Transformations 127

child

descendant

*

descendant

child

*

descendant

*

descendant

parent

ancestor

*

ancestor

parent

*

ancestor

*

ancestor

childatt

descendant

*

descendantatt

child

*

descendantatt

*

descendant

parent

ancestoratt

*

ancestor

parentatt

*

ancestor

*

ancestoratt

Figure 6.9: Equivalences of the Synonyms translation modi�cation.

of Figure 6.10. If we observe the XML document fragment depicted in
that �gure, we will notice that tags describing the same concept may
receive a di�erent name depending on the continent we are considering5.
Hence, to answer the query posed in that �gure we should formulate it
as /world/*/*/*/image. That is, we are interested in all those image

elements at distance 4 from the �rst element of the document, which is
world. Instead of iteratively cover each child step involving wildcards,

5Remark country tag in case of europe, and region tag, for asia.

128 Chapter 6. Query Plan Construction

we can perform just one step, by creating a new operator, childdist4 ,
whose semantics arises from that corresponding to the reduced axis
(that is, child in this case), but modi�ed to also validate a distance
parameter. Figure 6.11 shows some other di�erent scenarios for which
this modi�cation applies.

child

child

rootworld

*

child

child

*

*

child

image
childdist 4

image

Query: Images associated to each continent division

XPath: /world/*/*/*/image

Query Parse Tree:

 <world>

 <europe>

 

 <country>

 …

 <description>

 

 …

 </description>

 </country>

 ...

 </europe>

 <asia>

 

 <region>

 …

 <report>

 

 …

 </report>

 </region>

 …

 </asia>

 …

 </world>

XML document

child

rootworld

Figure 6.10: Example of Steps uni�cation.

3. Or/and optimizations: this category regards several modi�cations that try
to simplify the query parse tree taking into account the or and and logical
operators properties. Some of them stem from algebraic simpli�cations like the
following: (A∩B)∪(A∩C) ≡ A∩(B∪C), and (A∪B)∩(A∪C) ≡ A∪(B∩C).
However, we also perform some other transformations such as discovering
duplicated tree patterns related through an or operator, and �attening and

operators evaluated over a same element/attribute.

For instance, Figure 6.12 shows an example of the �rst scenario. Notice that
the �rst step at both sides of the or operator delivers book elements that are
parents of a valid chapter. Hence, it can be set one level up as a common
step, while moving downwards the or logical operator (see Figure 6.12 b)).
The same situation is then encountered, but with respect to chapter. So, we
proceed in a similar manner (see Figure 6.12 c)).

6.3. Query Plan Optimization: Query Parse Tree Transformations 129

A B

A

B

*

descendant

*

. . .

child

child

child

descendant

descendant

X
ti
m

e
s descendantdist x+1

parentdist x+1

A B

A

B

*

ancestor

*

. . .

parent

parent

parent

ancestor

ancestor

X
ti
m

e
s ancestordist x+1

childdist x+1

A B

A

B

*

descendantatt

*

. . .

childatt

child

child

descendant

descendant

X
ti
m

e
s descendantatt dist x

parentatt dist x

A B

A

B

*

ancestor

*

. . .

parent

parent

parentatt

ancestor

ancestoratt

X
ti
m

e
s

ancestoratt dist x

childatt dist x

1)

2)

3)

4)

Figure 6.11: Typical scenarios of Steps uni�cation.

130 Chapter 6. Query Plan Construction

descendant

or

parent

root

book parent

chapter image

parent

book parent

chapter figure

descendant

or

parent root

book

parent

chapter image

parent

chapter figure

descendant

or

parent root

book

image

parent

chapter

figure

a) b) c)

Query: Books that have been illustrated

XPath: /descendant::book[./chapter/image or ./chapter/figure]

Query Parse Tree:

Figure 6.12: Example of or optimization.

descendant

and

ancestor

person email

prec-sibling

person sale

a) b)
descendant

ancestor

person email

prec-sibling

sale

Query: Staff people, with a contact email, who made any sale

XPath: /staff/descendant::person[./descendant::email and ./following-sibling::sale]

Query Parse Tree:

child

rootstaff

child

rootstaff

Figure 6.13: Example of and optimization.

On the other hand, and regarding the and operator, an example of the corre-
sponding transformation is depicted in Figure 6.13. In this case, the and oper-
ator is relating di�erent steps, namely ancestor and preceding-sibling, but
over instances of a same element node, which is person. Since the semantics
of the and operator implies the ful�llment of the predicate conditions of both
sides, that is, the retrieved person element node must be an ancestor of an
email element, but also it must precede (as well as be sibling) a sale element,
both conditions can be composed on a same branch of the query parse tree
(see Figure 6.13 b)).

6.4. Final Query Plan: the Query Execution Tree 131

4. Root node deletion: it stands for a minor transformation that saves performing
an unnecessary validation. Since the root node constitutes the root of the
hierarchy, we know that any other element descends from it. Hence, we can
omit any step involving a descendant selection from the root node. Figure
6.14 illustrates the three di�erent scenarios that belong to this category.

descendant

rootA

desc-or-self descendantatt

A

Figure 6.14: Scenarios of Root node deletion.

6.4 Final Query Plan: the Query Execution Tree

Previous section described in detail the di�erent modi�cations we consider6 before
obtaining the �nal query execution tree. We next discuss some important features
related to their relevance into the general evaluation process.

As the reader could notice the �rst two groups of transformations are intended
to meet XWT features. For instance, the so called Attributes equality simpli�cation,
aims to make use of the XWT procedures designed to deal with phrase patterns,
instead of having to separately search for the attribute name and its value and
then operate with them. In turn, the combination of the three types of Wildcard
optimizations attempts to reduce as much as possible the number of location steps
whose node test is the wildcard `*'7, and ultimately, also to exploit the XWT ability
to obtain the depth of any element/attribute 8. Remember that, as explained before,
most scenarios can be translated into a single step based on a depth (distance) test.
Notice, as well, that to reach this �nal goal, the transformations of this category
must be performed in the same order they have been explained in Section 6.3 (that is,
1) Redundancy suppression, 2) Synonyms translation, 3) Steps uni�cation), as they
are strongly dependent. On the other hand, both Or/and optimizations and Root

6This work does not focus on full optimization features. This is an issue worth of further work.
7Notice that `*' potentially selects all occurrences of any element/attribute, which makes a

location step over it be extremely costly.
8Thanks to its linkage with the balanced parentheses representation.

132 Chapter 6. Query Plan Construction

node deletion scenarios constitute general transformations that are not speci�cally
intended to bene�t from XWT properties. Rather they aim to save processing time
during query evaluation, by considering the evaluation strategy we use, which is
next explained in Chapter 7.

If we now consider the overall set of modi�cations as a whole, one can note
that there are not tight dependencies as those pointed out inside the Wildcard
optimizations category. Hence, they are not tied to an speci�c global order. Yet,
we must consider that Wildcard optimizations must precede the Root node deletion,
to determine if the last one applies or not. Figures 6.15 to 6.20 illustrate an
example of the global transformation procedure performed to make up the �nal
query execution tree of the following query sample9: /*/descendant- or-self::*

/paper[./parent ::journal or ./parent::book] /content/ */*/summary [./

@keyword=�XML�].

child

parentatt child

summary equalatt

keywordatt “XML”

* child

*
child

content child

or desc-or-self

* child

*
root

keywordatt=”XML”

1)

Query: Summary of journal and book papers whose keyword attribute is equal to “XML”

XPath: /*/descendant-or.self::*/paper[./parent::journal or ./parent::book]/content/*/*/summary[./@keyword=”XML”]

child

paper journal

child

paper book

Attributes equality simplification

Figure 6.15: Application of Attributes equality simpli�cation transformation
over the initial query parse tree.

9Let us assume an XML document for which such a query applies.

6.4. Final Query Plan: the Query Execution Tree 133

child

parentatt child

summary child

child

content child

desc-or-self

* child

* root

keywordatt=”XML”

2) Wildcard optimizations

2.1) Redundancy suppression

descendant

root*

or

child

paper journal

child

paper book

*

*

Figure 6.16: Application of Redundancy suppression transformations over the
query parse tree obtained from Figure 6.15.

child

parentatt child

summary child

content

keywordatt=”XML” *

2.2) Synonyms translation

descendant

root
*

descendant

descendant

*

*
child

child

or

child

paper journal

child

paper book

or

root

Figure 6.17: Application of Synonyms translation modi�cation over the query
parse tree resulted from Figure 6.16.

134 Chapter 6. Query Plan Construction

child

parentatt
child

summary
child

keywordatt=”XML” *

2.3) Steps unification

descendant

root*

or

descendantdist 2

root

parentatt

childdist 3

child

*
child

content descendant

or

child

paper journal

child

paper book

Figure 6.18: Steps uni�cation transformations applied over the query parse tree
obtained from Figure 6.17.

or

3)

child

paper journal

child

paper book

Or/and optimizations

orpaper

journal

child

book

parentatt

summary

child

contentkeywordatt=”XML”

root

descendantdist 2

childdist 3

Figure 6.19: Or/and optimizations applied over the query parse tree resulted
from Figure 6.18.

6.4. Final Query Plan: the Query Execution Tree 135

parentatt

summary

child

contentkeywordatt=”XML”

orpaper

journal

child

book

Final Query Execution Tree

root

descendantdist 2

childdist 3

Figure 6.20: Final query execution tree of the query example described in Figure
6.15.

As we reach the �nal query execution tree (see Figure 6.20), this can be used as
input for the next submodule: the Query evaluator. Notice that each node of the
query execution tree will be directly translated into an operator that stands for the
speci�c component/axis/function that it is representing. Chapter 7 addresses the
query evaluation process, given a �nal query execution tree.

136 Chapter 6. Query Plan Construction

Chapter 7

Query Evaluation

Chapter 6 focused on the Query parser component of the Query module of XXS,
and covered the description of the preliminary query parsing up to its realization
as an execution plan, given by the so called query execution tree. Now, we regard
the second component of the XXS Query module, namely the Query evaluator, and
address the actual evaluation of the �nal query execution tree obtained from the
previous submodule (see Figure 7.1). In this way, Section 7.1 is devoted to provide a
conceptual description of the general evaluation procedure that the Query evaluator
performs, and to discuss the main strategies that characterize it. After that, Section
7.2 deepens the implementation of these general concepts, by explaining the two
main operational schemes we distinguish depending on whether leaf or internal
nodes (of the query execution tree) are considered.

XXS

Q
u

e
ry

 P
a
rs

e
r

Query Module

XML

Representation

XML

Document

XML

Wavelet

Tree

Q
u

e
ry

 E
v
a
lu

a
to

r

Figure 7.1: Query evaluator submodule of the XXS system.

137

138 Chapter 7. Query Evaluation

7.1 Conceptual Description

As pointed out in Section 5.4, any component of an XML document (e.g. an element,
an attribute, a word, a phrase, etc.) can be ultimately regarded as a segment, [s, e],
given by the start (s) and end positions (e) of the text that the own component
covers. Recall, for instance, that in case of an element, the initial and �nal segment
positions arise from that of the corresponding start-tag and end-tag, respectively.
Similarly, the segment of a phrase is given by the positions of the �rst and last
word of the pattern. Moreover, any single word (e.g. an attribute name, a word
of the textual content, etc.) stands for a particular case of segment starting and
�nishing at the same position. This common representation constitutes one of the
key features of our query evaluation, since, as it will be next described, it is based
on the use of segments [NBY95].

Given a query execution tree, the overall evaluation procedure starts by
demanding the �rst result to the root node. This request is sent down through
the tree nodes of the query execution tree until reaching the leaves. Note that tree
nodes are either leaf nodes or internal nodes.

• Leaf nodes: they constitute the basic extraction operands. Each leaf
node retrieves, from the XWT, the occurrences (segments) of the speci�c
component that it represents, and returns the valid segment found to the tree
node above it.

• Internal nodes: these are operators that compare the segments they receive
from both sides, using the comparison relations between segments shown in
Section 5.41. Notice that the internal node semantics (that stems from the
semantics of the axis or text function that the own node represents) indicates
the type of relationship that the received segments should keep. In Figure
7.2 we show, for the most common XPath axes, the target relation that the
received segments must satisfy to meet their semantics. Remark that, in
some cases, additional checks would be needed, in addition. That is, for some
operators, compared segments not only must keep a given relationship, they
also must ful�ll, for instance, to have a given depth (see parent and child axes
in Figure 7.2), or even to share a common parent (see following-sibling

and preceding-sibling axes in Figure 7.2)2. For example, in Figure 7.3,
each time the contains node receives an article segment, [a.s, a.e], and a
�Olympic games� segment, [t.s, t.e], it must check whether the ⊃ relation
holds, that is, a.s < t.s and a.e > t.e.

If the compared segments satisfy the required relationship, the internal node
sends upwards (that is, to its parent node in the query execution tree) the

1Recall <, >, ⊂, ⊃, and =.
2In Chapter 8 a detailed description of the target relationships and additional validations

required by all the di�erent operators, apart from those shown in Figure 7.2, is provided.

7.1. Conceptual Description 139

internalnode

A B

a b

Internalnode Relation

a bancestor

descendant

parent

child

following

preceding

following-sibling

preceding-sibling

self

a b

a b 1

a b 1

a > b

a < b

a > b 2

a < b 2

a = b

1 Additional validation of the segments depth

 depth(a) = depth(b) – 1 (parent)

 depth(a) = depth(b) + 1 (child)

2 Segments must share the same parent, in addition

Figure 7.2: Target relations that compared segments must keep to satisfy
the semantics of an internal node representing di�erent XPath axes.

segment received from its left child3. Otherwise, the internal node will keep
searching, consuming results from either child, until if �nds a segment from
the left side that ful�lls the required relationship with a segment of the right
side. During this search, the request of new segments from both sides will
be based on the result of the comparison between current segments. That is,
depending on the relationship that current segments actually keep, and the
relationship that they should ful�ll to meet the internal node semantics, this
node determines the side from which a new result will be required to continue
the process.

By following this operational scheme, results retrieved by each leaf or internal
node are sent upwards, until the root of the query execution tree, which operates
accordingly, �nally delivers the �rst result. At this point, the whole procedure is
repeated again searching for the next query result, in such a way that results are
retrieved one by one, providing a lazy evaluation scheme, in which results can be
delivered on user demand.

Example Let us assume the query execution tree of Figure 7.3 to show how our
general evaluation scheme works when executing the query //image [contains

(./parent::article, �Olympic games�)]. As stated, the evaluation always

3This is the general behavior, with the exception of the or operator, which may deliver segments
from both sides.

140 Chapter 7. Query Evaluation

image

child

contains

“Olympic games"article

Sequence of requests (i.e. calls to next() procedure)

 Flow of delivered results

a.s a.e

a.ea.s

t.s t.e

t.s t.e

a.ea.s

t.s t.e

a) b)i.s i.e

a.ea.s

i.s i.e

a.ea.s

i.s i.e

c) d)

Query: Images of articles containing the phrase pattern “Olympic games”

XPath: //image[contains(./parent::article, “Olympic games”]

 <newspaper>

 <section>

 <article>

 … Olympic games ...

 

 …

 </article>

 <article>

 …

 </article>

 </section>

 <section>

 <article>

 … Olympic games ...

 

 …

 </article>

 …

 </section>

 ...

 </newspaper>

XML document

Figure 7.3: General query evaluation scheme.

starts by asking for the �rst result to the root node of the query execution tree. Since
it is an internal node, it must proceed by comparing the segments received from both
children (i.e. from both sides). Hence it �rst propagates the request downwards to
obtain those segments. The left side of the root node is a leaf node, therefore this
node retrieves the segment associated to the �rst occurrence of the image element,
and then delivers it to its parent (the root node, in this case). In turn, its right
child is an internal node again (the contains one), so it proceeds by demanding to its
children the �rst article and �Olympic games� segments, respectively, to operate
with them. Once the contains node receives these segments, it compares them by
checking if the article segment contains or not the received segment of �Olympic
games�. In the former situation, we have a hit, thus contains reports the article
segment to the node above it, to continue the process in a same way up (see Figure
7.3 a)). Otherwise, and depending on the comparison result, next occurrences of
either child of contains will be requested, to proceed with comparisons until �nding a
valid article segment (that is, an article containing the phrase pattern �Olympic

games�). For instance, in Figure 7.3 b) we can see that a.e < t.s, therefore contains
would ask for the next article occurrence to continue validations. Finally, when
contains �nds a valid article, the child node of the query execution tree can
operate. In case that the received �rst segment of image is a child of the article
segment delivered by contains, then we can produce the �rst query result (see Figure
7.3 c)). In turn, if both segments do not ful�ll the child semantics (for example, in
Figure 7.3 d), we can see that image is a descendant of article, but not a direct
child, as their depth di�erence is greater than 1) the process continues with the child
node requesting the next image segment or article segment containing �Olympic

games�, accordingly, depending on the relation between the current segments.

7.1. Conceptual Description 141

Bottom-up

Lazy Skipping

Query

evaluation

Figure 7.4: Main strategies that characterize XXS query evaluation.

7.1.1 Evaluation Strategies

As stated, the general evaluation scheme combines both a bottom-up approach,
which starts from the leaf nodes of the query execution tree and works its way up
to the root (see �ow of pink arrows in the query example of Figure 7.3), and also
a lazy evaluation plan4, as �nal results can be provided by a loop that sequentially
obtains them on demand.

Yet, there is still another important factor that determines the e�ciency of XXS
(see Figure 7.4). Recall that internal nodes keep on requesting segments from either
side whenever the current ones do not ful�ll the imposed relationship. As stated,
the decision of which side it has to ask for a new segment is done depending on
the relation that the current segments satisfy and that required according to the
node semantics. But what is more important is the fact that the sent request makes
use of a skipping strategy: the request will be actually restricted by a minimum
admissible position that the next retrieved segment has to accomplish.

For instance, let us consider the example at the top of Figure 7.5, where movie
elements that are ancestor of any rating element are retrieved. We can see that
the current segments (those marked in bold face in the �gure), do not ful�ll the
ancestor axis condition, so instead of just requesting the next occurrence of movie
in a sequential order, we can perform a more intelligent procedure and ask for
the next occurrence of movie �nishing after the end position of rating (that is,
m′.e > r.e). In this way, we avoid visiting all those occurrences of movie that could
happen before the current occurrence of rating and which are not useful.

A similar example, but regarding the descendant axis is sketched at the bottom
of Figure 7.5. In this case, the current segments do not satisfy the descendant
relationship either. What is more, given their current relation, r.e < m.s, just
an occurrence of rating starting after the beginning of the current movie segment

4This kind of evaluation may (although it does not have to) be slower than a full oriented one,
however it is the optimal choice to save space, specially when working with large text databases,
since it avoids to store all intermediate results into main memory.

142 Chapter 7. Query Evaluation

m.s m.e

r’.s > m.s

… <book> … <rating>… </rating> </book> … <book> … <rating> … </rating> </book> … <movie> … <rating> …</rating> … </movie> …

XPath: //movie/descendant::rating

DESCENDANT

XML doc:

r.s r.e

...

Query : Movie ratings

 The start of the new rating segment, r’.s,

 must be larger than the start of the current

movie segment, m.s

… <movie> … </movie> <movie> … </movie> <movie> … </movie> … <movie> … <rating> …<rating>… </movie> …

XPath : //movie[./descendant::rating]

ANCESTOR

m.s m.e
...

r.s r.e

XML doc:

Query : Movies that have been rated

ancestor

movie rating

 The end of the new movie segment, m’.e,

 must be larger than the end of the current

rating segment, r.e

descendant

rating movie

m’.e > r.e

Figure 7.5: Skipping of segments.

could ful�ll the desired relationship. Hence, the search for the next valid occurrence
of rating may be more accurately performed, avoiding also to visit useless rating
segments, if it regards that condition, that is, if we seek for the next rating

occurrence ful�lling r′.s > m.s.

Therefore, formally, when a node of the query execution tree is required to deliver
a new segment, it will perform a position restricted retrieval regarding the start or
end position of the new requested segment, as applicable. Note that according to
this evaluation model segments are traversed in preorder, but only visiting relevant

7.2. General Implementations 143

ones, that is, segments that we must touch, as a minimum, in order to answer the
query. This general behavior is similar to the idea of the staircase join strategy
[GvKT03] referred in Section 4.1.2.2.

7.2 General Implementations

We have just conceptually described the general query evaluation strategy. In this
section, we deepen on its actual implementation. Notice that the evaluation process
is ultimately regarded as a sequence of linked requests (see blue arrows of Figure
7.3) demanding new segments to either a leaf or to an internal node, modi�ed
by the positional restrictions (that is, the minimum admissible positions) that the
requested segment must ful�ll. In practice, these requests are implemented through
a procedure we call next. We next discuss the practical details of this procedure,
by considering the operational scheme of both leaf and internal nodes, regardless
the component/axis/function that they may represent. The implementation of the
next procedure for each particular component/axis/function will be later analyzed
in Chapter 8.

7.2.1 Leaf Nodes

Leaf nodes are in charge of delivering the basic components, that is, elements,
attribute names, words and phrase segments. The next procedure of a leaf node
commonly receives a single positional restriction which is referred to the start
position of the segments that it retrieves. Still, in case of elements, it will admit
positional restrictions related to the element start-tag and to its end-tag (that is,
to the segment start position, but also to its end limit). Note that positional
restrictions are generated by internal nodes of the query execution tree during
query evaluation, and transmitted downwards through requests to its child nodes,
which in turn may generate as well other restrictions that ultimately apply over a
same leaf node. As shown in Figure 7.5, some restrictions generated by internal
nodes working over elements may refer to the element start-tag, while others will be
referred to the element end-tag. Hence, at last, a leaf node delivering elements may
receive positional restrictions related to each of the element limits5 . Therefore, in
this particular situation, the �rst step of the next procedure will determine which of
the two incoming positional restrictions (and thus which of the two element limits,
namely the element start-tag or its end-tag) should be used to perform the retrieval.
To ensure the best skipping, the most forward incoming positional restriction will
be always selected.

Then, given a positional restriction, p, the next procedure of a leaf node mainly
consists of �rst counting the number of occurrences of the speci�c component that

5In Section 7.2.2, where the general next procedure of an internal node is explained, reader
will get further insight into the actual positional restrictions propagation.

144 Chapter 7. Query Evaluation

the leaf node represents6, c, until that position, k = count(c, p), and second, locating
the (k + 1)th occurrence of it. Recall that one of the main advantages of the XWT
data structure is the implicit self-indexing capabilities it provides, which, precisely,
permit to e�ciently count the number of occurrences of a word in the document,
but also up to a speci�c position, and to locate any occurrence of a word, as shown
in Section 5.2.2. Therefore, these basic operations become key to implement the
next procedure of a leaf node.

7.2.1.1 Further Discussions

As it will be further explained in Chapter 8, the general behavior of the next
procedure of a leaf node may be slightly modi�ed in case that self-nested XML
elements are involved, and also when dealing with phrase patterns.

s’.e > p

s1.s s1.e

s3.s s3.e

s4.s s4.e s5.s s5.e

s2.s s2.e

Figure 7.6: Example of self -nested elements.

For instance, let us consider the example of Figure 7.6, for a better compre-
hension of the self-nesting scenario. There, we have depicted several section
segments that exhibit the self-nested property. Now let us assume that, in such
a scenario, the next procedure of the leaf node delivering those section segments
has to retrieve the next occurrence of section whose end-tag (s′.e) occurs after
the positional restriction set by p (that is, s′.e > p). Following the general
next procedure described above, it would retrieve the segment inside the striped
rectangle. Notice that the procedure will be applied over the section end-tag, as
the restriction is referred to s′.e. Therefore, it will start by counting the number of
occurrences of a section end-tag (represented as si.e in Figure 7.6) before p, that
is 1 (that corresponding to s2.e), and then it will locate the next one, that is, the
2nd occurrence of a section end-tag, that corresponds to s4.e. Hence, in this way it
will retrieve the segment s4. But recall that segments must be delivered in preorder.
Thus, all those section elements containing the segment s4, which indeed satisfy

6Taking into account that for elements, this procedure may be applied over the element start-tag
or over its end-tag, as stated.

7.2. General Implementations 145

the restriction s′.e > p, and that appear before s4 regarding a preorder traversal
(namely, s1 and s3 segments, that are marked in blue in Figure 7.6), should be
previously delivered.

7.2.2 Internal Nodes

Regarding the internal nodes, an important feature �rst to note is that the
positional restrictions received by the next algorithm always apply to the child
node of the query execution tree whose occurrences are delivered by the internal
node, that is commonly the node of its left side. Yet in case of the or operator, the
incoming restrictions may be applied to any of the child nodes, since the delivered
results can be obtained from both sides. Notice, as well, that if the internal node
ultimately delivers any basic component apart from elements, its next procedure
actually will receive a single positional condition, referred to the start position of the
requested segments. Just in case of working over elements, the received conditions
will be referred to the start and end limits (that is, to the element start-tag, but
also to its end-tag), in line with that mentioned in Section 7.2.1.

Algorithm 7.1: General scheme for the next procedure of an internal node

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling the node semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. - Segments comparison:
7. left < right, left > right, left ⊂ right, left ⊃ right, left = right
8. - Depending on the comparison result (and eventually, on some additional
9. validations):

10. if we reach a valid result then
11. 1) We update the left positional restrictions:
12. lefts, lefte
13. 2) We deliver the obtained result:
14. result← left; return result

15. else // we retrieve the next left / right valid segment, as applicable
16. 1) We update the corresponding positional restrictions:
17. lefts, lefte / rights, righte
18. 2) We request the next segment from the left (L) / right (R) side:
19. left← L.next(lefts, lefte) / right← R.next(rights, righte)

20. result← ø
21. return result

146 Chapter 7. Query Evaluation

Anyway, those conditions constitute the start point of the next procedure of
an internal node, whose general scheme is sketched in Algorithm 7.17. In this
algorithm, we assume the case of an internal node representing an operator di�erent
from or (as delivered segments are obtained from the left side), that operates over
elements (as it receives both start and end incoming positional restrictions).

As shown in Algorithm 7.1, the �rst step of the next algorithm of an internal
node obtains a new segment from the left side (in case of an or operator, the new
segment will be obtained from the side which delivered the last result), in order to
set both sides ready to start the segments comparisons. To this aim a next call over
the corresponding side is triggered by using the received positional restrictions (see
lines from 1 to 3 in Algorithm 7.1). It is important to highlight at this point why
this segment request is performed at the beginning of the procedure, and not just
after a valid segment is found and sent upwards:

• Whenever a valid segment is recovered by an internal node, we could ask
for the next segment of the delivered child node, to keep both sides ready
for a future next request over that internal node. However, as stated, we do
not do that. Instead, in such a moment, we just proceed by updating the
positional restrictions that the next requested segment from the retrieved side
should satisfy (see lines 11 and 12 in Algorithm 7.1). Note that new received
conditions of a future request could imply a better skipping. Thus, given that
case, if the segment request would has been performed once a valid result is
found, we should discard the new segment obtained in the previous call to
the next procedure and send a new request over the retrieved side with the
new better incoming restrictions. In turn, if just an update of the restrictions
is done after retrieving a valid segment, this avoids doing unnecessary work,
by just taking the best of the positional restrictions (see lines 1 and 2 in
Algorithm 7.1) between the ones inferred from the previous call to next and
the new received ones (that is, lefts and lefte, and news and newe, respectively,
in Algorithm 7.1), and then performing the segment request (see line 3 in
Algorithm 7.1).

Once performed the request over the left child (or the corresponding one in case
of the or operator), the next procedure starts by searching for a valid segment
(see lines from 5 through 19 in Algorithm 7.1), that is, a segment that satis�es the
semantics of the internal node. To this aim, the current segments of both sides
are compared. According to their relation, and eventually by also verifying some
additional checks, we know if a valid segment has been found or not. If the semantics
is ful�lled, then the retrieved segment is sent upwards (also updating the related

7We denote by L/R the left and right child nodes of the internal node, respectively; by
left/right, the cursors to the current segments received from each child node; and we use
lefts,lefte/rights,righte to represent the positional start and end restrictions that new requested
segments from each side must ful�ll.

7.2. General Implementations 147

positional restrictions to further obtain a next valid segment, as just mentioned).
If not, we determine which of the two current segments must be advanced to keep
on searching for a result ful�lling the internal node semantics, and also its jump.
That is, if we have to ask for a new segment of the left side, then their positional
restrictions, namely lefts or lefte in Algorithm 7.1, will be updated accordingly. In
case it is the segment of the right side, then rights or righte will be rather updated.
Finally, the procedure follows by requesting the next segment from either child
node, as applicable, and continues the process in the same way.

7.2.2.1 Further Discussions

As new segments are consumed from either child of an internal node, until it �nds
a valid result, positional restrictions are generated. Recall that they depend on
the actual relationship kept by current segments, and also on the semantics of
the particular internal node, that is on the semantics of the axis/function that
the internal node represents. However, in case of internal nodes which work over
elements, we also may found that, even for a same axis/function, these conditions
are di�erent depending on whether it operates over elements that are self-nested or
not. As a result, a same internal node may �nally lead to several implementations
of the next procedure. Chapter 8 describes in detail these di�erent implementations
for each of the axes/functions that an internal node may stands for.

148 Chapter 7. Query Evaluation

Chapter 8

Implementations Description

Chapter 7 introduced a conceptual description of the query evaluation procedure
performed by the Query evaluator submodule of XXS. It also provided some basic
general notions about the practical implementation of that procedure, depending
on whether leaf or internal nodes of the query execution tree were considered.
In this Chapter we explain in detail the particular implementations of each
component/axis/function that a leaf or internal node may stand for, according
to the subset of XPath addressed in this work. Section 8.1 �rst details some
preliminary remarks about practical segment representations, to consider in the
rest of the chapter explanations. Then, Section 8.2 focuses on the description of the
di�erent implementations.

8.1 Practical Segment Representation

Prior to starting with the core of this chapter, it is important to highlight a practical
consideration that di�ers from the conceptual description explained in Section 7.1,
concerning the segment representation assumed for XML elements. Recall that
leaf nodes recover from the XWT the occurrences of elements, attributes, words,
etc., represented as segments, [s, e], with start and end positions given by their
limits in the text. That is, s and e correspond to positions in the root node of the
XWT. However, in case of elements, we also consider an alternative representation
where those initial and �nal positions arise from the positions of the element start-
tag and end-tag regarding the structure of the XML document, that is, regarding
the XDTree node (or analogously, the balanced parentheses structure). Figure 8.1
depicts both assumed representations.

Whenever elements are the components related through an internal node
representing an XPath axis, this alternative representation is used for segment
comparisons. Note that relations between element segments can be equally

149

150 Chapter 8. Implementations Description

...

1238

Original text

 positions:

<film

1354

</film>

1277

<cast

1321

</cast>

fs fe

cs ce

... ...

<film </film><cast </cast>

fs fe

cs ce

101 105 106 108

...

Structural

 positions:

Figure 8.1: Di�erent segment representations for elements.

determined by modeling them in that way, given that the XWT nodes are built
by following the order of the words in the text. Yet we obtain a better performance,
since we can take advantage of the fact that the XDTree node positions match those
of the balanced parentheses representation, and also save doing additional select
operations, as we do not have to go up to the root of the XWT to gather the actual
text positions, unless it is needed. Anyway, the regular representation may be used
as well for elements, when necessary. For instance, to compare them with respect to
other components than elements, for which only the regular representation applies,
or for displaying purposes, as well.

8.2 Implementations

In Section 7.2 we showed that the general evaluation procedure could be ulti-
mately regarded as a sequence of linked requests modi�ed by incoming positional
restrictions, implemented through the so called next procedure. Notice that
di�erent general next procedures were devised depending on working with leaf
or internal nodes of the query execution tree. We will next describe the
practical implementations of these next procedures by considering the di�erent
components/axes/functions that a leaf or internal node may represent. Observe
that, whenever applicable, pseudocodes will mark in pink color the operations
performed over the balanced parentheses data structure, to emphasize the relevance
of its use in combination with the XWT structure.

8.2.1 Leaf Nodes

Elements, attributes, words and phrases are the basic components delivered by leaf
nodes. In case of elements, as previously uncovered in Section 7.2.1, we distinguish

8.2. Implementations 151

three di�erent next implementations depending on whether or not the elements
are self-nested, but also in case that the leaf node represents the wildcard `*'. In
turn, attributes and words share the same next procedure, as they can be dealt in
a same way. Finally, we also distinguish two di�erent scenarios (hence, also two
di�erent next procedures) when working with phrase patterns, one that supports
text searches over phrases spanning more than one text node, and the other which
does not.

Algorithm 8.1: Next procedure of a non self-nested element

Input: news, newe (new positional restrictions)
Output: next valid occurrence of the element

1. if news ≥ newe then

2. occs ← count(tags, news)
3. if occs + 1 ≤ ntag then

4. poss ← locate(tags, occs + 1)
5. pose ← findclose(poss)
6. result← segment(poss, pose)

7. else

8. result← ø

9. else

10. occe ← count(tage, newe)
11. if occe + 1 ≤ ntag then

12. pose ← locate(tage, occe + 1)
13. poss ← findopen(pose)
14. result← segment(poss, pose)

15. else

16. result← ø

17. return result

8.2.1.1 Elements

Non self-nested elements. If elements are not self-nested, the next procedure
is rather simple. Algorithm 8.1 shows the pseudocode. It �rst selects the best
incoming positional restriction between news and newe

1, and determines if the
search will be performed with respect to the element start-tag or with respect to its
end-tag. Then it proceeds with the XWT count procedure applied over the element
start/end-tag until the news/newe position, obtaining occs/occe occurrences (see
lines 2 and 10 in Algorithm 8.1). If we have not reached the last appearance of the
start/end-tag, the algorithm continues by locating the occs +1/occe +1 occurrence
of the corresponding tag. Remember that the XWT locate procedure performs

1Recall that news refers to the element start-tag, while newe �xes the minimum admissible
position for its end-tag.

152 Chapter 8. Implementations Description

Algorithm 8.2: Next procedure of a self-nested element

Input: news, newe (new positional restrictions), lasts (start-tag position of the
last delivered segment), stack

Output: next valid occurrence of the element
1. if news ≥ newe then

2. inspectStack(news)
3. occs ← count(tags, news)
4. if occs + 1 ≤ ntag then

5. poss ← locate(tags, occs + 1)
6. pose ← findclose(poss)
7. result← segment(poss, pose)

8. else

9. result← ø

10. else

11. maxs = max(news − 1, lasts)
12. inspectStack(newe, news)
13. occe ← count(tage, newe)
14. if occe + 1 ≤ ntag then

15. pose ← locate(tage, occe + 1)
16. poss ← findopen(pose)
17. if poss ≤ maxs then

18. news ← pose + 1; go to 3.

19. else

20. result← ø
21. return result

22. occs ← count(tags, pose)
23. occnested ← occs − occe − 1
24. match← poss; i← 0
25. while i < occnested do

26. parents ← enclose(match)
27. if parents > maxs then

28. if checkTag(parents) then
29. stack.push(segment(poss, pose))
30. poss ← parents
31. pose ← findclose(poss)
32. match← parents; i← i+ 1

33. else

34. match← parents

35. else

36. break

37. result← segment(poss, pose)
38. return result

8.2. Implementations 153

consecutive select operations from the leaves up to the root of the XWT. However,
as previously stated, in case of elements we stop the process one level before
the root node, that is, at the XDTree node in this case, and use the segment
representation given by the positions of the element boundaries at this level. The
just performed locate operation provides us the position of only one of those limits,
namely poss/pose, since the search is performed by considering either the element
start-tag or its end-tag. But thanks to the connection between the XDTree node
and the balanced parentheses representation that works on par of that node, we
can also �nd the position of its matching boundary. We simply need to perform a
�ndclose/�ndopen operation over the balanced parentheses data structure, to �nally
obtain the delivered segment: [poss,�ndclose(poss)]/[�ndopen(pose), pose].

Self-nested elements. With regards to self-nested elements we have to manage
situations like that exempli�ed in Section 7.2. Basically, the problem comes from
the need of a preorder delivery of the segments when the search is performed with
respect to the end-tag of an element that may contain occurrences of the same
element inside it. In that case, given a positional restriction, the general procedure
locates the most internal segment that ful�lls the condition. Nevertheless, it may
be still necessary to check their ancestors in order to �nd occurrences of the same
element that should be previously retrieved (as they also satisfy the restriction, but
appear before, if we consider a preorder traversal), while keeping stored the internal
(and subsequent) ones into a stack, to be delivered in further requests.

The pseudocode for this scenario is presented in Algorithm 8.2. Regardless the
next procedure is performed related to the start or end position of an element (that
is, related to its start-tag or to its end-tag) the algorithm initially inspects the
stack of valid segments located in previous requests, but still not delivered, looking
for a segment satisfying the appropriate incoming positional restriction. Notice
that in case of a search related to the end-tag, the procedure still considers the
restriction referred to the start-tag position, as well, to inspect the stack2. If found,
the segment will be immediately output3, without further processing. Any other
way, di�erent procedures will be applied depending on the case:

1. If the search is performed regarding the start-tag, we proceed analogously as
for elements which are not self-nested (see lines from 3 to 9 in Algorithm 8.2)

2. If we work with end positions, an additional scan of the ancestors of the �rst
valid segment found (that is, the �rst element whose end-tag satis�es the newe

incoming positional restriction, and with an appropriate start-tag4), may be

2Observe that, in this situation, a segment of the stack ful�lling the newe positional restriction,
may not ful�ll news.

3As the stack precisely aims to keep a preorder delivery of segments.
4Note again that the start-tag position of the retrieved element can not precede the maximum

value between the incoming start positional restriction (news) and the start position of the last
delivered segment (lasts) (see line 17 in Algorithm 8.2).

154 Chapter 8. Implementations Description

required in case that other occurrences of the same element contain it. This
can be determined by the number of element occurrences whose start-tag
precedes the end position of the current segment, but whose end-tag does not
(see lines 22 − 23 in Algorithm 8.2). If applicable (see lines from 24 through
36 in Algorithm 8.2), ancestors will be visited taking advantage of the enclose
operation provided by the balanced parentheses representation. Whenever an
occurrence of the target element is encountered (by codewords comparisons5),
we push into the stack the current segment, take the just encountered segment
as the new current one (since it should be delivered before), and proceed in
a same way with the rest of the ancestors. Notice that the procedure �nishes
either when reaching the number of self-nested occurrences, or if we get an
ancestor whose start-tag precedes the position corresponding to the maximum
value between news, the incoming start positional restriction, and lasts, the
start position of the last delivered segment (that is, the occurrence of the
element delivered in the previous call to the next procedure).

Wildcard `*'. There is still another scenario when requesting the next occurrence
of an element: the use of the wildcard `*' applied to elements. In this case, we are
not asking for the next occurrence of a speci�c element, any element will be valid.
Hence, on the one hand, we know that we must proceed similarly as done for self-
nested elements, since all element segments will be regarded as occurrences of a
same element type. But, on the other hand, another important feature arises: we
do not have to use speci�c start/end-tags as word patterns for the count and locate
procedures. Instead, we can pro�t from the use of the balanced parentheses data
structure, which precisely makes the di�erence between start/end-tags through the
use of opening/closing parentheses. Therefore, it is enough to replace count/locate
operations over the XWT in Algorithm 8.2 by rank/select operations over the
balanced parentheses structure6. This shows again the bene�ts of using on par
both structures, the XWT and the balanced parentheses representation.

8.2.1.2 Attributes and Words

The same next procedure can be used to obtain both the next occurrence of an
attribute name or the next occurrence of a word. Unlike elements, incoming
positional restrictions are solely referred to the start positions of the requested
segments, and the self-nested property does not apply in this scenario. As a result,
the algorithm works in the same way as that used for non self-nested elements, but
without the initial positional conditions comparison. What is more, in this case we

5Recall that, as discussed in Section 5.3, the balanced parentheses data structure e�ciently
provides the position of the parent of an element through the enclose operation, and that we can
use that information to then apply the XWT decode procedure and to discover its codeword.

6There is another minor di�erence in case ancestors are visited, since we can omit the type
test, given that all elements are equally considered (see lines 28 to 38 of Algorithm B.1).

8.2. Implementations 155

Algorithm 8.3: Next procedure of attributes and words

Input: news(new positional restriction)
Output: next valid occurrence of the attribute/word

1. occ← count(patt, news)
2. if occ+ 1 ≤ npatt then

3. poss ← locate(patt, occ+ 1)
4. pose ← poss
5. result← segment(poss, pose)

6. else

7. result← ø

8. return result

do not need to �nd the end position of a retrieved segment, since both the start
and end positions are the same for those components. The Algorithm 8.3 shows the
pseudocode for this procedure.

Notice that the same algorithm can be used as well when the wildcard `*' is
referred to attributes (e.g. //book/@*). This time, the gain is obtained thanks to
having reserved a same �rst byte, say bx, for the codewords of all the words of the
attributes vocabulary during the XWT construction. Hence, in this situation, the
codeword associated to the word pattern patt in Algorithm 8.3 will merely consists
of just one byte, that is, bx.

8.2.1.3 Phrases

When dealing with phrases we distinguish two di�erent scenarios: i) to match
a continued phrase pattern7, or ii) to match a phrase pattern that may span
more than one text node. The �rst one is used, for instance, for text matches
that stem from Attributes equality simpli�cations, as those presented in Section 6.3
(e.g. .../@name[.=�New York�]/... → name=�New York�). In turn, the second
situation arises whenever equal and contains text functions are involved, since,
according to their semantics, a match may occur regardless interleaved start/end-
tags, and even processing instructions or comments appear. Let us assume
the query //section[contains(.,�trip to Manhattan dreams�)]. If an XML
document contains the following section fragment: ... <section> ... trip

to <keyword>Manhattan</keyword> dreams ... </section> ..., it should be
delivered. Hence, keyword start-tag and end-tag must be skipped.

To e�ciently perform the next procedure in both scenarios, we use the same
strategy as that performed in the XWT basic procedures over phrase patterns (see
Section 5.2.2.2). That is, the search is focused on the least frequent word of the
pattern, and only further validations are done whenever the �rst bytes of the
codewords of each word of the pattern match the previous and next bytes of the

7We denote with this terminology a phrase that must appear exactly as shown in the pattern.

156 Chapter 8. Implementations Description

Algorithm 8.4: Next procedure of a continued phrase

Input: news(new positional restriction)
Output: next valid occurrence of the phrase

1. news ← news + ordermin // ordermin : least frequent word position
2. occ← count(wordmin, news) // wordmin : least frequent word
3. i← occ+ 1
4. while i ≤ nmin do

5. posmin ← locate(wordmin, i)
// matchPhrase : tries to match the �rst bytes of the codewords. Then, if
// applicable, it continues validating the rest ones

6. if matchPhrase(posmin, phrase) then
7. poss ← posmin − ordermin

8. pose ← poss + phrasenwords − 1
9. result← segment(poss, pose)

10. return result

11. else

12. i← i+ 1

13. result← ø
14. return result

Algorithm 8.5: Next procedure of an interleaved phrase

Input: news(new positional restriction)
Output: next valid occurrence of the phrase

1. news ← news + ordermin // ordermin : least frequent word position
2. occ← count(wordmin, news) // wordmin : least frequent word
3. i← occ+ 1
4. while (i ≤ nmin) do
5. posmin ← locate(wordmin, i)

// matchSkippedPhrase : tries to match the �rst bytes of the codewords,
// while skipping occurrences of start/end-tags, comments and processing
// instructions. Then, if applicable, it continues validating the rest ones.
// poss and pose are discovered during the process

6. if matchSkippedPhrase(posmin, phrase, poss, pose) then
7. result← segment(poss, pose)
8. return result

9. else

10. i← i+ 1

11. result← ø
12. return result

root node, from the position of the just located occurrence of the least frequent
word. Hence, the general scheme of the next algorithm presented for single words
and attributes can be used now, as well, but regarding the least frequent word of the

8.2. Implementations 157

phrase pattern. Yet we need to include an additional check for a complete phrase
matching in the word surroundings once it has been located (see line 6 in Algorithm
8.4 and Algorithm 8.5).

cw1
1 cw2

1... bz bz...cw3
1 by ... cw>

1 cw5
1 by cw6

1 bz ... bz cw7
1 ...

XWT root node

backward validation forward validation

while != bywhile == bz

 if) then skip

 else

 skip while != cw>
1 while == bz

cw4
1

><tagname<!-- --> </tagname> <!-- -->

Phrase pattern: cw1 cw2 cw3 cw4 cw5 cw6 cw7

1st byte of start/end-tags codewords: by

 1st byte of comments/pi’s codewords: bz

Figure 8.2: First bytes validation with skipping, used to match a phrase
pattern.

In the �rst scenario (that is, when we are searching for a continued phrase),
the additional check does not di�er from that described for XWT locate and
count procedures over phrase patterns. However, in the second situation (that
is, when requesting phrases that may span more than one text node), we also
need to skip interleaved occurrences of start/end-tags, comments and processing
instructions. Recall that we reserved speci�c �rst bytes to code the words of those
special vocabularies when we assigned codewords during the XWT construction. In
particular, here we are interested in the tags and nsearch vocabularies, which are
precisely those whose occurrences we need to disregard. Therefore, the fragments
that should be omitted can be easily recognized while �rst bytes validation is
performed in the root of the XWT. Notice that, by doing this, we keep the aim
of avoiding further processing, unless the �rst bytes comparison applies. Figure 8.2
shows how the skipping is performed. In the example, we have considered a phrase
composed of 7 words, coded as cw1, cw2 . . . cw7, respectively, and whose �rst bytes
are denoted as cw1

1, cw
1
2...cw

1
7. We have also assumed byte by to be the �rst byte of

the codewords assigned to start/end-tags, and byte bz, for comments together with
processing instructions, and we have represented the codeword of the right angle
bracket, >, as cw> = cw1

>
8. Now, let us take the fourth word of the pattern as its

least frequent word. Then, we have to perform a backward and forward validation
from its position trying to match the �rst bytes of the codewords of each word of
the phrase.

8Given its high frequency, > will always be assigned a codeword of only one byte.

158 Chapter 8. Implementations Description

In both cases, and regarding comments and processing instructions, occurrences
of byte bz are used as boundaries to skip regions of bytes regardless their values.
Yet, for start/end-tags, we follow di�erent approaches depending on the validation
direction. Recall that the codewords of any start/end-tag share the same �rst
byte, by, and also that a start-tag codeword is always followed by a > codeword
(although it has not have to immediately appear, since the start-tag may contain any
attribute). Hence, if we are moving backward, start-tags (and also their attributes)
can be skipped whenever we match an occurrence of byte cw1

>, by just omitting
byte values until we reach an instance of by. Indeed, isolated occurrences of byte by
(that is, which are not preceded by cw1

>) are also skipped, since we know they are
representing end-tags.

In turn, if we are moving forward, occurrences of byte by may stand for start-tags
or end-tags. In case of start-tags, bytes should be skipped until byte cw1

> is found.
However, for end-tags, we just need to disregard that byte and keep on validating the
next one. Again, the use of the balanced parentheses data structure is key to discern
between both situations. Let us consider that byte by is placed at position posby in
the root node of the XWT. We only have to compute count(by, posby) = k and to
inspect the kth position of the balanced parentheses representation, to discover if it
matches an opening or closing parenthesis9. Then, we can operate accordingly.

book

XPath: //book

Query execution tree:

XPath:

Query execution tree:

//*

*

priceatt

XPath: //@price

Query execution tree:

XPath:

Query execution tree:

//@*

*att

Figure 8.3: Examples to which optimized next procedures can be applied.

8.2.1.4 Optimized Leaf Nodes

There are speci�c queries searching for all the occurrences of an element (e.g.
//book) (or equally, any element, //*), as well as, for all the appearances of an
attribute (e.g. //@price) (or equally, any attribute, //@*), whose �nal query
execution trees are just given by a leaf node representing the element/attribute
we are interested in (see some examples in Figure 8.3). In those cases, the query

9And by extension, an start-tag or an end-tag, respectively.

8.2. Implementations 159

Algorithm 8.6: Optimized next procedure of speci�c elements (regardless they

are or not self-nested)

Input: order
Output: orderth occurrence of the element

1. if order ≤ ntag then

2. poss ← locate(tags, order)
3. pose ← findclose(poss)
4. result← segment(poss, pose)

5. else

6. result← ø

7. return result

evaluation can be performed more e�ciently by using optimized versions of the
corresponding next procedures. Since all the occurrences are valid, we can omit the
count operation related to the incoming positional restriction. We know that the
result of this count operation will be the jth occurrence delivered by the previous
call to the next procedure. Hence, just the order of the next occurrence to be
requested is needed. Algorithms 8.6, 8.7 and 8.8 present the pseudocode of the
procedures for these situations.

Algorithm 8.7: Optimized next procedure of any element

Input: order
Output: orderth occurrence of an element

1. if order ≤ n(then

2. poss ← select((order)
3. pose ← findclose(poss)
4. result← segment(poss, pose)

5. else

6. result← ø

7. return result

Algorithm 8.8: Optimized next procedure of attributes and words

Input: order
Output: orderth occurrence of the attribute/word

1. if order ≤ npatt then

2. poss ← locate(patt, order)
3. pose ← poss
4. result← segment(poss, pose)

5. else

6. result← ø

7. return result

160 Chapter 8. Implementations Description

8.2.1.5 Further Discussions

In previous sections, we have just discussed the next procedures used when leaf
nodes are requested to deliver the next valid occurrence of the basic components
(i.e. elements, attributes, words and phrases) they may represent. As one could
have noticed, the traversed XWT nodes for each speci�c pattern over which count
and locate procedures are performed, inside a next algorithm, are always the same.
Indeed, they will be forward processed. Therefore, rank and select operations
underneath can be sped up by keeping the values obtained from previous calls.
That is, by storing the number of occurrences of a byte up to a given position, or
by just using pointers to already located occurrences, respectively.

Since several rank/select operations will be performed for the same byte values,
in case of rank, the information stored can be used when the target position of the
previous rank operation corresponds to the same block as the new sought one, while
for select, the same applies, but regarding the position of the byte value occurrence
previously selected. Hence, instead of counting/searching from the �rst position of
the block, we can start the sequential count/search from the position related to the
previous rank/select operation.

8.2.2 Internal Nodes

The internal nodes of a query execution tree may stand for any XPath axis, but
also they may represent the equal and contains text functions. What is more,
remember that also di�erent new axes were devised as a result of the query parse
tree modi�cations. For example, it is the case of the axes obtained from the Steps
uni�cation transformation (e.g. childdist, parentdist, descendantdist, etc.) as
well as those related with the use of attributes (e.g. parentatt, descendantatt,
ancestoratt_dist., etc.). We denote all of them as operators, for simplicity.

Notice also that, similarly to what happened to leaf nodes delivering element
segments, the next procedure of those internal nodes which also retrieve element
segments, but even of those which do not deliver them at last, but work over
elements10, may result into several versions according to the elements self-nested
nature. For instance, in case of internal nodes that ultimately receive element
segments from both child nodes11, they lead to four di�erent variants of the next
procedure, depending on which side exhibits the property:

• Non-nested : if none of the elements recovered from the child nodes may
contain occurrences of the same element.

• Full-nested : if elements from both sides are self-nested.
10For example, childatt, delivers attribute segments (left side), but operates over elements, as

well (right side).
11Remark that each node of the query execution tree ultimately works over segments of any of

the basic components: elements, attributes, words or phrases.

8.2. Implementations 161

• Left-nested : if we can �nd self-nested occurrences of elements that come from
the left side.

• Right-nested : if elements delivered by the right side may contain occurrences
of the same element inside it.

These four versions become two in case of internal nodes for which only one
of their sides delivers element segments. In that situation we just discern between
non-nested and full-nested variants12. Since there is little point in detailing the
features of each version for all the operators, we will focus on the performance of
the next procedure for non-nested and full-nested scenarios, in order to exemplify
both the simplest and more complex variant.

Descriptions will show the most relevant features of each operator regarding
the general implementation scheme of the next procedure of an internal node,
presented in Section 7.2. Therefore, likewise, pseudocodes will equally denote as
L/R, the left and right child nodes, respectively, of the internal node in the query
execution tree13; while they use left/right to represent the cursors to the current
segments obtained from each side. Moreover, lefts,lefte/rights,righte will describe
the positional restrictions (that is, the minimum admissible start and end positions)
that new requested segments from the left and right nodes, respectively, must satisfy.

Algorithm 8.9: Next procedure of ancestor operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling ancestor semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. rights ← left.s+ 1; right← R.next(rights, righte)

10. case left ⊆ right
11. lefts ← right.e+ 1; left← L.next(lefts, lefte)

12. otherwise

13. lefts ← left.e+ 1; result← left; return result

14. result← ø
15. return result

12By considering just the side that delivers elements.
13Recall that L always represent the side whose segments are sent upwards by the internal node,

with the exception of the or operator.

162 Chapter 8. Implementations Description

8.2.2.1 Ancestor (or-self)

Ancestor axis provides a simple example to begin with operators description.
Regardless we are in non-nested or full-nested scenario, the leftmost segment is
advanced as long as current left and right segments are disjoint. Yet the particular
advance di�ers between both situations. In case left<right, non-nested variant
advances to the next left segment which �nishes after the end position of right.
Instead, full-nested version moves to the next left segment whose end occurs after
the start position of the current right segment, as some nested occurrences of R
ful�lling the condition may be contained into right (see Figure 8.4 a)). In turn,
if left>right, both variants move to the next right segment starting after left
beginning.

L1 R1

R2

L2

a)

R1

R2

L1

b)

Figure 8.4: Segment advance for left<right (a) and left⊆right (b) in
full-nested scenario of ancestor axis.

Algorithm 8.10: Next procedure of ancestor operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling ancestor semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left ⊃ right
9. lefte ← right.s+ 1; result← left; return result

10. otherwise

11. rights ← left.s+ 1; right← R.next(rights, righte)

12. result← ø
13. return result

8.2. Implementations 163

At some moment, segments are contained one into the other. If it is left the
contained one (that is, left⊂right), non-nested alternative advances up to the
occurrence of L appearing after the end of right. However, full-nested option
still may �nd a valid occurrence of R under left, that makes left become a valid
result, hence this time right segment is advanced after left start (see Figure 8.4 b)).
Finally, if right is inside left (that is, left⊃right), then left is sent upwards in
both scenarios, �rst updating lefts or lefte, as required.

Algorithms 8.9 and 8.10 give the pseudocode of both non-nested and full-nested
variants. If we replace ⊆ by ⊂ and ⊃ by ⊇, we obtain the same versions, but for
ancestor-or-self axis.

Algorithm 8.11: Next procedure of descendant operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling descendant semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. righte ← left.e+ 1; right← R.next(rights, righte)

10. case left ⊂ right
11. lefts ← left.e+ 1; result← left; return result

12. otherwise

13. rights ← left.e+ 1; right← R.next(rights, righte)

14. result← ø
15. return result

8.2.2.2 Descendant (or-self)

Descendant and ancestor are axes with opposite meaning and, thus, opposite
behavior under the same cases of segment relations. Again the leftmost segment is
advanced whereas current segments are not intersected. Yet, in case of left<right,
we move to the next left segment beginning after right start, regardless the variant.
Notice that this behavior is similar to that performed by ancestor in the opposite
situation, that is, when left>right. The same happens to left>right, this time
with regards to the ancestor performance for left<right. In this situation, non-
nested version advances the right segment up to the next occurrence that �nishes
after the end position of left, while the same movement, but referred to the start

164 Chapter 8. Implementations Description

position of left, is performed for the full-nested variant, since nested occurrences of
L satisfying the operator semantics could occur inside left.

Algorithm 8.12: Next procedure of descendant operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling descendant semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left > right
7. righte ← left.s+ 1; right← R.next(rights, righte)

8. case left ⊂ right
9. lefts ← left.s+ 1; result← left; return result

10. otherwise

11. lefts ← right.s+ 1; left← L.next(lefts, lefte)

12. result← ø
13. return result

Once we �nd no disjoint segments, we can discriminate between left⊂right
and left⊇right. If the �rst relation applies, then descendant relationship is
ful�lled, and left is delivered upwards. Also lefts is updated to the left end position
if we are working with non-nested elements. Otherwise, it is updated to the left
start position. On the other hand, the second comparison (that is, left⊇right)
leads to the search of the next valid segment from the right side beginning after
the end of left, in case of non-nested scenario. Instead, full-nested variant still
tries to �nd a valid occurrence of L under right, by using its start position as
the skipping condition, given that L admits self-nested occurrences. Note again
that the axis performance for each of these relations is analogous to the behavior
discussed for the opposite ones in the ancestor axis. Algorithms 8.11 and 8.12
show the pseudocodes. The operational scheme of the descendant-or-self axis
can be obtained by doing the same replacement over the descendant schema than
that pointed out for ancestor-or-self.

8.2.2.3 Parent

One can assume that parent axis works similarly to ancestor, with the proviso that
only the segments whose depth level di�ers in one unit from that of the descendant
target segment are valid. However, this solely applies if we deal with elements that
are not self-nested. Hence, in that case, the same next procedure as that described in
Section 8.2.2.1 for the non-nested variant of ancestor can be used, but including the

8.2. Implementations 165

Algorithm 8.13: Next procedure of parent operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling parent semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. rights ← left.s+ 1; right← R.next(rights, righte)

10. case left ⊆ right
11. lefts ← right.e+ 1; left← L.next(lefts, lefte)

12. otherwise

13. if depth(right.s) = (depth(left.s) + 1) then
14. lefts ← left.e+ 1; result← left; return result
15. else

16. rights ← right.e+ 1; right← R.next(rights, righte)

17. result← ø
18. return result

aforementioned validation into the group of actions performed under left⊃right
comparison. Algorithm 8.13 presents the pseudocode. Note that to check the depth
of an element we just need to make use of the depth operation provided by the
balanced parentheses representation of the XML document structure.

R1

L2

L1

R2

L3

R3

(1) (2)

L4

Figure 8.5: Example for full-nested variant of parent axis.

Any next procedure of an internal node does not discard a segment without �rst
ensuring that it has no choice to become a valid result according to the operator
semantics. This feature yields some problems in case of the full-nested variant of
parent. Let us consider the example of Figure 8.5, where L1 and R1 (see segments
marked in blue in Figure 8.5) represent the current segments obtained from the left
and right side, respectively. Notice that we may need to traverse all occurrences

166 Chapter 8. Implementations Description

Algorithm 8.14: Next procedure of parent operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling parent semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. if getbit(bitmap, left.s) then
7. lefts ← left.s+ 1; result← left; return result
8. else

9. case left < right
10. lefts ← left.s+ 1; left← L.next(lefts, lefte)

11. case left ⊇ right
12. rights ← right.s+ 1; right← R.next(rights, righte)
13. if right ̸=ø then

14. pos_sparent ← enclose(right.s)
15. max_sparent ← max(max_sparent, pos_sparent)
16. setbit(bitmap, pos_sparent, 1)

17. otherwise

18. rights ← left.s+ 1; right← R.next(rights, righte)
19. if right ̸=ø then

20. pos_sparent ← enclose(right.s)
21. max_sparent ← max(max_sparent, pos_sparent)
22. setbit(bitmap, pos_sparent, 1)

23. while left ̸=ø and left.s ≤ max_sparent do

24. if getbit(bitmap, left.s) then
25. lefts ← left.s+ 1; result← left; return result
26. else

27. lefts ← left.s+ 1; left← L.next(lefts, lefte)

28. result← ø
29. return result

of R that descend from L1 before �nding one that selects it (see the sequence
of movements tracked by the striped arrows in Figure 8.5). However, since nested
occurrences of same elements could exist, traversed segments of R may be necessary
to select further occurrences of L. For instance, in Figure 8.5, the occurrences of R
(R1 and R2) visited before locating R3, which quali�es L1 segment, would select the
occurrences of L depicted in green (L2 and L3, respectively). Therefore, we need
to remember traversed R segments to make further occurrences of L qualify. To
this aim, an additional bitmap su�ces to implement the full-nested variant of the
parent operator. Each traversed occurrence of R �ags the position of its parent.

8.2. Implementations 167

These positions are then checked by left segments to know whether they must be
delivered or not (see line 6 in Algorithm 8.14). The pseudocode is described in
Algorithm 8.14. Observe that even if the last occurrence of R has been reached,
left segments can still qualify (see lines 19 to 23 in Algorithm 8.14).

Algorithm 8.15: Next procedure of child operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling child semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. righte ← left.e+ 1; right← R.next(rights, righte)

10. case left ⊂ right
11. if depth(left.s) = (depth(right.s) + 1) then
12. lefts ← left.e+ 1; result← left; return result
13. else

14. lefts ← left.e+ 1; left← L.next(lefts, lefte)

15. otherwise

16. rights ← left.e+ 1; right← R.next(rights, righte)

17. result← ø
18. return result

L1

R2

R1

L2

Figure 8.6: Example for the full-nested variant of child axis.

8.2.2.4 Child

The same note made to parent axis regarding the non-nested variant can also be
applied to child. That is, the next procedure of the same descendant variant
can be used, and just to introduce in addition a depth validation in case of
left⊂right (see Algorithm 8.15). Yet for full-nested version, we must follow a
di�erent approach. The problem is that given current occurrences from the left and

168 Chapter 8. Implementations Description

Algorithm 8.16: Next procedure of child operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling child semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. while left * top(stack) do // stack update
7. pop(stack)

8. if enclose(left.s) = top(stack).s then
9. lefts ← left.s+ 1; result← left; return result

10. else

11. case left < right
12. if isEmpty(stack) then
13. lefts ← right.s+ 1; left← L.next(lefts, lefte)
14. else

15. lefts ← left.s+ 1; left← L.next(lefts, lefte)

16. case left > right
17. righte ← left.s+ 1; right← R.next(rights, righte)

18. case left ⊂ right
19. push(stack, right)
20. rights ← right.s+ 1; right← R.next(rights, righte)

21. otherwise

22. lefts ← right.s+ 1; left← L.next(lefts, lefte)

23. while left ̸=ø and ! isEmpty(stack) do
24. while left * top(stack) do // stack update
25. pop(stack)

26. if enclose(left.s) = top(stack).s then
27. lefts ← left.s+ 1; result← left; return result
28. else

29. lefts ← left.s+ 1; left← L.next(lefts, lefte)

30. result← ø
31. return result

right side, say Lx and Ry, respectively, such that Lx ⊂ Ry, we may have to enter
inside Ry in order to �nd the parent of Lx (or even of some other nested occurrences
of Lx). However, later it may occur that Ry quali�es a subsequent occurrence of Lx.
Figure 8.5 illustrates an example for better understanding. If we start at L1 and R1,
we must move to R2 to properly select L1. Nevertheless, when we advance to L2,

8.2. Implementations 169

R1 will have been already traversed, and hence L2 could not be delivered14. This
situation is managed with the use of a stack of ancestors of the current occurrence
of R, which have already been visited. We also keep the invariant left⊆ top(stack).
Algorithm 8.16 shows the pseudocode in that case.

8.2.2.5 Parameterized Operators: the distance parameter

Once seen the di�erent scenarios faced by parent and child axes, we are ready to
follow with some of the special operators created from the integration of several steps
of the query parse tree (e.g. parentdist, ancestordist, childdist, descendantdist),
as they also meet the same problems. We assume an input distance parameter d
for all of them. We just refer the main features of each one related to previous
procedures.

Parentdist

This operator denotes the selection of an element ancestor which is precisely d
levels above the target element. Therefore, non-nested variant can be deduced
from the same variant of parent axis, with the solely modi�cation, in case of
left⊃right, of a depth validation that now considers the distance value d (see line
13 of Algorithm 8.13): depth(right.s) = (depth(left.s) + 1) =⇒ depth(right.s) =
(depth(left.s) + d). In turn, full-nested version requires again the use of an
additional bitmap together with the support of the BP data structure. Recall that,
when working with parent axis, traversed occurrences of R marked their parents
as a way to keep them memorized in order to qualify further occurrences of L.
We also apply the same strategy for parentdist. This time, however, we are not
interested in the parent of a right segment, but in the ancestor at distance d. Hence,
here we can use the level_ancestor operation provided by our BP representation,
instead of the enclose one we used there (see lines 14 and 20 of Algorithm 8.14):
pos_sparent ← enclose(right.s) =⇒ pos_sparent ← level_ancestor(right.s, d).

Ancestordist

In this case not only ancestors at distance d from a target element are valid,
but also those at a greater distance. Therefore, similar schemas to that used
for parentdist can also be applied for this operator, with minor changes. For
instance, if we are in non-nested scenario, the variation comes from the use of
a di�erent comparison inequality during the check of the depth level condition:
depth(right.s)=(depth(left.s) + d) =⇒ depth(right.s)≥(depth(left.s) + d). On
the other hand, and regarding full-nested variant, now each traversed occurrence

14Note that L2 will be compared with R2, which is the current segment of the right side, at this
moment.

170 Chapter 8. Implementations Description

of R must mark the ancestor at distance d, along with the rest of its ancestors
up to the root. That is, right segments must �ag ancestors at distance d
or more. Thus, the use of level_ancestor is extended to cover all of them:
level_ancestor(right.s, i) ∀i = d . . . depth(right.s).

L

1
R

R
3

depth

6
1

3

stack

R
4

4

 d = 3

ta
rg

e
t d

e
p

th

s
e
a

rc
h

targetdepth = depth(L) – d = 6 - 3 = 3

R

R

R

...

Figure 8.7: Example for the full-nested variant of childdist axis.

Algorithm 8.17: Modi�cation to be applied over full-nested variant of child

operator to meet childdist semantics

1. while left * top(stack) do // stack update
2. pop(stack)

3. if ! isEmpty(stack) then // targetdepth search
4. i← 0; depthstack ← getDepth(stack, i)
5. while depthstack > targetdepth and i < size(stack) do
6. i← i+ 1; depthstack ← getDepth(stack, i)

7. else

8. depthstack ← −1
9. if depthstack = targetdepth then

10. lefts ← left.s+ 1; result← left; return result
11. else

12. case ...

Childdist

Childdist looks for elements at distance d descending from a target segment.
Thus, similarly to parentdist with regards to parent, non-nested variant of
childdist emulates the corresponding non-nested version of child, but including
the d distance parameter to validate an occurrence of L when left⊂right (see line
11 of Algorithm 8.15): depth(left.s) = (depth(right.s) + 1) =⇒ depth(left.s) =
(depth(right.s)+d). Likewise, full-nested alternative follows an equivalent approach
to child axis for the same scenario, since a stack is also needed to store the

8.2. Implementations 171

ancestors of right that have already been traversed. Yet, to deliver an occurrence
of L the condition to be ful�lled is slightly modi�ed. Note that left could be
selected whenever there is an occurrence of R in the stack whose depth level matches
targetdepth =depth(left.s)−d (see Figure 8.7). Hence, once the stack is updated, we
must look for that occurrence. Algorithm 8.17 presents the fragment of pseudocode
by which lines from 6 to 10 and lines from 24 to 28 should be replaced in the just
seen Algorithm 8.16, to consider that new feature. Notice that we do not need to
inspect all the segments of the stack, since depth levels descend as we deepen into
the stack (by de�nition). Therefore, we stop searching when we reach a depth level
equal to targetdepth, or even lower than it.

Descendantdist

Descendantdist is to childdist as ancestordist is to parentdist. That is,
left comes a valid result if it has an ancestor of type R at distance d or more.
For instance, let us consider the same example illustrated in Figure 8.7, but now
assuming that d = 4. If we use childdist operator, the occurrence of L depicted
in blue does not qualify under this condition, as there is no occurrence of R at
distance targetdepth = 6 − 4 = 2. However, the same occurrence of L will be
sent upwards in case of descendantdist. Note that, in this situation, it is enough
for L segment, an occurrence of R being at least 4 levels above it. Thus, the
occurrence whose depth is 1 makes L qualify. This di�erence results into simple
changes over the depth check conditions, for both variants, regarding childdist
pseudocodes. In case of non-nested scenario the equality comparison turns into
≥: depth(left.s)=(depth(right.s) + d) =⇒ depth(left.s)≥(depth(right.s) + d). On
the other hand, full-nested variant replaces depthstack=targetdepth (see line 9 of
Algorithm 8.17) by depthstack≤targetdepth.

childdist 5

root*

* dist 5

descendantdist 5

root*

* dist >= 5

a) b)

Figure 8.8: Special cases of use of childdist and descendantdist.

Childdist and Descendantdist optimizations

As leaf operators, for which we noted special queries where general next
procedures could be optimized, some of the previously discussed parameterized
operators can also be performed more e�ciently. In particular, childdist and

172 Chapter 8. Implementations Description

descendantdist operators, as long as they are used in queries like /*/*/*/*/*

(see Figure 8.8 a)) and /*/*//*/* (see Figure 8.8 b)), respectively. Note that in
these situations, both operators eventually lead to leaf nodes that must cover the
occurrences of elements with given depths. Therefore, we could take advantage of
some of the tree operations provided by the balanced parentheses data structure: i)
level_leftmost, which obtains the leftmost node (an element for us, since the tree is
de�ned by the XML document structure) with a given depth; ii) level_next, that
gets the next node (element) of another one in BFS15 order.

Algorithm 8.18: Next procedure of any element of depth d

Input: d (depth), laste (end position of the last delivered result)
Output: next occurrence of an element of depth d
// 1st call

1. poss ← level_leftmost(d)
2. pose ← findclose(poss)

// Next calls
3. poss ← level_next(laste)
4. pose ← findclose(poss)
5. result← segment(poss, pose); return result

Algorithm 8.19: Next procedure of any element of depth ≥ d

Input: d (depth), laste (end position of the last delivered segment of depth d)
Output: next occurrence of an element of depth ≥ d
// 1st call

1. poss ← level_leftmost(d)
2. pose ← findclose(poss)
3. find_descendants(queue, poss)
4. result← segment(poss, pose)

// Next calls
5. if ! isEmpty(queue) then
6. result← segment(pos,pose)
7. else

8. poss ← level_next(laste)
9. pose ← findclose(poss)

10. find_descendants(queue, poss)
11. result← segment(poss, pose)

12. return result

In case of the operator deduced from childdist semantics, next procedure just
receives the end position of the last delivered result, besides d distance. Then, the

15BFS: breadth �rst search.

8.2. Implementations 173

�rst call locates the position of the �rst element in the XML document whose depth
is d. Next calls to the same function deliver subsequent occurrences of elements also
ful�lling the same depth condition. Algorithm 8.18 shows the pseudocode. If we
are in the second scenario, elements of depth d, but also greater than d, are valid.
Thus, each time an occurrence of depth d is found, its descendants are stored into
a queue, from which segments are then delivered until it becomes empty. At this
moment, the next occurrence of depth d is located, and the whole procedure is
repeated. The pseudocode is presented in Algorithms 8.19 and 8.20.

Algorithm 8.20: find_descendants procedure

Input: queue (queue of descendants), targets (start position of the element whose
descendants must be located)

Output: queue �lled with the descendants of targets
1. childs ← first_child(targets)
2. while childs ̸= −1 do

3. push(queue, childs, findclose(childs))
4. find_descendants(queue, childs)
5. childs ← next_sibling(childs)

Algorithm 8.21: Next procedure of following operator (non-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling following semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left > right
7. lefts ← left.e+ 1; result← left; return result

8. otherwise

9. lefts ← right.e+ 1; left← L.next(lefts, lefte)

10. result← ø
11. return result

8.2.2.6 Following

Following axis constitutes an special operator that always advances to the next
left segment, once �xed the correct right one. In case of non-nested elements, this
correct right segment matches the �rst occurrence of R. Yet, for full-nested variant
it may yield a problem.

174 Chapter 8. Implementations Description

L1

R1

L2

(1)

(2)

R2

L5

R3

L3 L4

(3)

(4)

Figure 8.9: Example for following axis.

Algorithm 8.22: Next procedure of following operator (full-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling following semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)

// Initialization: rightprev is �xed to the correct R segment
// rights ← 1; rightprev ← R.next(rights, righte)
// rights ← rightprev.s+ 1; rightnext ← R.next(rights, righte)
// while rightnext.e < rightprev.e do
// rightprev ← rightnext

// rights ← rightnext.s+ 1; rightnext ← R.next(rights, righte)
// end

4. right← rightprev
5. while left ̸=ø and right ̸=ø do

6. case left > right
7. lefts ← left.s+ 1; result← left; return result

8. otherwise

9. lefts ← right.e+ 1; left← L.next(lefts, lefte)

10. result← ø
11. return result

Let us consider the example of Figure 8.9. The �rst occurrence of R is R1, which
is precisely the current right segment, together with L1, the current occurrence of
the left side. Hence, given their relationship L1 ⊂R1, we should move to the next
occurrence of R after R1 start position, since a nested occurrence or R may still
occur before L1. This leads to R2 segment. Now, L1 <R2, so we advance to the next
left segment starting after R2 beginning, that is, L3. Again, we are in a situation
similar to the initial one, thus we proceed in the same way, and move to R3, which
also causes L to be advanced to L5 segment (striped arrows in Figure 8.9 indicate
the �ow of movements). Notice that L5 already ful�lls following semantics, as it
appears after R1 and even R2. However, given current segments, R3 and L5, we
can not detect L5 as a valid result: L5 ⊂R3, thus a right advance would be applied.

8.2. Implementations 175

Therefore, the solution is to �x the correct right segment at the beginning, from
which then we can start a general next procedure. This target right segment is
the furthest occurrence of R, not starting after the end of any other right segment.
In the example of Figure 8.9 this occurrence is represented by R2. The complete
pseudocode describing both variants is presented in Algorithms 8.21 and 8.22.

Algorithm 8.23: Next procedure of preceding operator (non-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling preceding semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← left.e+ 1; result← left; return result

8. case left ⊆ right
9. rights ← right.e+ 1; right← R.next(rights, righte)

10. otherwise

11. rights ← left.e+ 1; right← R.next(rights, righte)

12. result← ø
13. return result

L2

L1

R1L3

R2

...

Figure 8.10: Example for preceding axis.

8.2.2.7 Preceding

If we deal with non-nested version, preceding performance is based on the
advance of segments from the right side whenever current segments do not satisfy
left<right. At this moment, we move to the next left segment, until it
overcomes/intersects right. Algorithm 8.23 describes the pseudocode.

In turn, full-nested variant is not as simple, since we must be aware of whether
right holds the last occurrence of R. As shown in Figure 8.10, given current left and
right segments, L1 and R1, respectively, if R1 is not the last occurrence, we could
advance to the next right segment. Note that any other forward occurrence of R
would qualify the same left segments than R1, and maybe some additional ones.

176 Chapter 8. Implementations Description

For instance, if we assume that there is a segment such as R2, it would make L2

and L3 be selected (as R1), but also L1. Nevertheless, if R1 is the last one, instead
of moving to the next right segment, we should keep it and advance the left side,
since L2 and L3 can still be delivered. The pseudocode for this scenario is presented
in Algorithm 8.24.

Algorithm 8.24: Next procedure of preceding operator (full-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling preceding semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← left.s+ 1; result← left; return result

8. case left > right
9. rights ← left.s+ 1; right← R.next(rights, righte)

10. case left ⊆ right
11. if ! rLastFound then

12. rights ← left.s+ 1; right← R.next(rights, righte)
13. else

14. break;

15. otherwise

16. if ! rLastFound then

17. rightlast ← right; rights ← right.s+ 1; right← R.next(rights, righte)
18. if right =ø then

19. right← rightlast; rLastFound← 1
20. lefts ← left.s+ 1; left← L.next(lefts, lefte)

21. else

22. lefts ← left.s+ 1; left← L.next(lefts, lefte)

23. result← ø
24. return result

A di�erent approach, with respect to the general performance of internal nodes,
can be assumed by preceding axis, when the right child is a leaf node. In that case,
regardless of working with elements that are self-nested or not, preceding operator
is solved by directly locating the last occurrence of the right side, and then using it
as a limit up to which left segments can advance. The pseudocodes of non-nested
and full-nested variants under these conditions are shown in Algorithms 8.25 and
8.26, respectively.

8.2. Implementations 177

Algorithm 8.25: Special next procedure of preceding operator (non-nested

variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling preceding semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)

// Initialization: rightlast is set to the last occurrence of R
// occ_sright ← count(tag_sright, XWTrootlength)
// pos_sright ← locate(tag_sright, occ_sright)
// pos_eright ← findclose(pos_sright)
// rightlast ← segment(pos_sright, pos_eright)

4. right← rightlast
5. while left ̸=ø do

6. case left < right
7. lefts ← left.e+ 1; result← left; return result

8. otherwise

9. break;

10. result← ø
11. return result

Algorithm 8.26: Special next procedure of preceding operator (full-nested

variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling preceding semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)

// Initialization: rightlast is set to the last occurrence of R
// occ_sright ← count(tag_sright, XWTrootlength)
// pos_sright ← locate(tag_sright, occ_sright)
// pos_eright ← findclose(pos_sright)
// rightlast ← segment(pos_sright, pos_eright)

4. right← rightlast
5. while left ̸=ø do

6. case left < right
7. lefts ← left.s+ 1; result← left; return result

8. case left ⊃ right
9. lefts ← left.s+ 1; left← L.next(lefts, lefte)

10. otherwise

11. break;

12. result← ø
13. return result

178 Chapter 8. Implementations Description

R1

C1

C2

(1) (2)

R3

R2 L1

L2 R4

Figure 8.11: Example for following-sibling axis.

8.2.2.8 Following-sibling

Similarly to full-nested variant of parent axis, where the parents of traversed R
segments should be remembered through a bitmap to qualify forward occurrences
of L, following-sibling also makes use of an auxiliary structure. This time, the
bitmap is replaced by a hash table. Notice that now, unlike parent, to know that
a given segment has been marked by a child of type R is not enough. Actually,
the parent element should be stored together with the right segment that caused
it to be �agged. Indeed, if an element has more than one children of type R, only
the leftmost one should be recorded, according to following-sibling semantics.
Hence, whenever an occurrence of R is traversed, we search for its parent in the hash
table. If it is not found, we store the parent together with the own right segment.
Otherwise, we do not perform any additional process (since it means that a previous
right segment has already marked the same parent). Figure 8.11 illustrates an
example. Being L1 and R1 current left and right segments, respectively, we need to
advance to the next right segment starting after the end of the current one. Thus,
we reach R2 and update the hash table with the information about its parent, that
is, C2. Since L1 parent matches C2 and L1 is after R2, L1 becomes a valid result,
which is sent upwards. The next call moves to the next occurrence of L1, in that
example, L2, and then looks for its parent, C1, in the hash table. Recall that this
segment was kept along with R1, when this last one was traversed. This allows L2

to be now quali�ed.

The explained solution applies regardless the variant of following -sibling.
The pseudocode of full-nested procedure is described in Algorithm 8.21. Note as
well that once the last occurrence of R has been visited, left segments can still
qualify, as long as they precede the end position of the furthest parent classi�ed by
a right segment.

8.2.2.9 Preceding-sibling

The same approach discussed for following-sibling can also be applied for
preceding-sibling axis. Yet, in this case, the hash table does not store the
earlier R child for a given parent, but the last one encountered at each moment.

8.2. Implementations 179

Algorithm 8.27: Next procedure of following-sibling operator (full-nested

variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling following-sibling semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. if hash[search(enclose(left.s))].pos_schild < left.s then
7. lefts ← left.s+ 1; result← left; return result
8. else

9. case left < right
10. lefts ← left.e+ 1; left← L.next(lefts, lefte)

11. case left > right
12. pos_erparent ← findclose(enclose(right.s))
13. if left.s > pos_erparent then

14. rights ← pos_erparent + 1; right← R.next(rights, righte)
15. else

16. rights ← right.e+ 1; right← R.next(rights, righte)

17. if search(enclose(right.s)) = −1 then

18. max_erparent ← max(max_erparent, pos_erparent)
19. insert(enclose(right.s), right.s)

20. case left ⊂ right
21. rights ← right.s+ 1; right← R.next(rights, righte)
22. if search(enclose(right.s)) = −1 then

23. pos_erparent ← findclose(enclose(right.s))
24. max_erparent ← max(max_erparent, pos_erparent)
25. insert(enclose(right.s), right.s)

26. otherwise

27. lefts ← right.s+ 1; left← L.next(lefts, lefte)

28. while left ̸=ø and left.s < max_erparent do

29. if hash[search(enclose(left.s))].pos_schild < left.s then
30. lefts ← left.s+ 1; result← left; return result
31. else

32. lefts ← left.s+ 1; left← L.next(lefts, lefte)

33. result← ø
34. return result

Thus, whenever we advance to a new right segment, although its parent had already
been marked by a previous occurrence of R, we update it with the information of
the just one found. The rest of the actions performed under the di�erent segments

180 Chapter 8. Implementations Description

comparison scenarios work in line with preceding-sibling semantics. Algorithm
8.28 shows the pseudocode for the full-nested variant.

Algorithm 8.28: Next procedure of preceding-sibling operator (full-nested

variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling preceding-sibling semantics

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. if hash[search(enclose(left.s))].pos_schild > left.s then
7. lefts ← left.s+ 1; result← left; return result
8. else

9. case left < right
10. if right.s > findclose(enclose(left.s)) then
11. lefts ← left.s+ 1; left← L.next(lefts, lefte)
12. else

13. max_sright ← right.s
14. rights ← right.s+ 1; right← R.next(rights, righte)
15. insert(enclose(right.s), right.s)

16. case left ⊃ right
17. max_sright ← right.s
18. rights ← right.s+ 1; right← R.next(rights, righte)
19. insert(enclose(right.s), right.s)

20. otherwise

21. max_sright ← right.s
22. rights ← left.s+ 1; right← R.next(rights, righte)
23. insert(enclose(right.s), right.s)

24. while left ̸=ø and left.s < max_sright do
25. if hash[search(enclose(left.s))].pos_schild > left.s then
26. lefts ← left.s+ 1; result← left; return result
27. else

28. lefts ← left.s+ 1; left← L.next(lefts, lefte)

29. result← ø
30. return result

8.2.2.10 Basic Operators over Attributes

Up to now, the above mentioned internal nodes worked over child nodes delivering
elements. But some of the axes also apply for attributes (e.g. ancestoratt,

8.2. Implementations 181

descendantatt, parentatt, and childatt). In those cases, special procedures are
devised to deal with them.

Notice that unlike elements, for which the segment representation arose from
positions in the XDTree node, attribute representation regards positions in the
text, that is, in the root of the XWT. As a result, we have to perform some
conversions to make both work together. For instance, segment comparisons will
be made, as in general next procedures of internal nodes, regarding positions in
the XDTree node. Thus, attribute positions in the root node must be converted
to positions in the XDTree, which turn into a representation that matches the
start-tag position of the element holding that attribute. Let us assume that by is
the byte reserved to be the �rst byte of start/end-tags, and that we are working
with an occurrence of an attribute name placed at position p in the root node.
Then, pXDTree = rankby (XWTroot, p) give us its segment representation in the
XDTree node, [pXDTree, pXDTree]. Also observe that, at this level, the attribute
representation always stands for a point, since its segment will start and �nish at
the same position. Indeed, the typical �ve di�erent segment relations come to four,
as elements containment makes no sense.

Moreover, also segments advance may impose positional conversions in some
cases. Note that the request of new segments must be made in accordance with
the representation used for each kind of component. Hence, whenever attributes
skipping is determined by element positions, we must perform their transformation
to gather the actual text positions16, from which the attributes advance is then
performed. The same happens in the reverse scenario, but regarding attribute
positions in the XDTree node, to perform elements skipping.

Ancestoratt

This operator delivers elements (the left side) that either have the target
attribute (the right side) or hold any descendant having it. Therefore, similarly
to ancestor, whenever left<right, we advance to the next left segment whose
end position �nishes after the right start. In turn, if left>right, we move to
the next attribute segment starting after left beginning. Finally, if left⊇right,
then left becomes a valid result. The update of the new positional restrictions
is the same for both variants (that is, for the non-nested and full-nested variants),
under the �rst two comparison scenarios. Yet they di�er regarding the last situation
(that is, if left⊇right). In case of full-nested version, once a valid left segment
is found, it still may contain some other nested occurrences also ful�lling the
ancestoratt semantics. Thus the update is made accordingly, that is, as performed
for left<right. Algorithms 8.29 and 8.30 show the pseudocode of both variants.

16Notice that we only need to perform an additional select operation from the current start
(s)/end (e) position in the XDTree node, to �nd the corresponding one in the root of the XWT:
sroot = selectby (XWTroot, s) / eroot = selectby (XWTroot, e).

182 Chapter 8. Implementations Description

Algorithm 8.29: Next procedure of ancestoratt operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling ancestoratt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. otherwise

14. lefts ← left.e+ 1; result← left; return result

15. result← ø
16. return result

Algorithm 8.30: Next procedure of ancestoratt operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling ancestoratt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. otherwise

14. lefte ← right.s+ 1; result← left; return result

15. result← ø
16. return result

8.2. Implementations 183

Algorithm 8.31: Next procedure of descendantatt operator (applicable for non-
nested and full-nested variants)

Input: news (new positional restriction)
Output: next occurrence of the left side ful�lling descendantatt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. left← L.next(lefts)
3. if left.sroot ̸=ø then

4. left.s← rankby (XWTroot, left.sroot)

5. right← R.result
6. while left ̸=ø and right ̸=ø do

7. case left < right
8. right.sroot ← selectby (XWTroot, right.s)
9. lefts ← right.sroot + 1; left← L.next(lefts)

10. if left ̸=ø then left.s← rankby (XWTroot, left.sroot)

11. case left > right
12. righte ← left.s+ 1; right← R.next(rights, righte)

13. otherwise

14. lefts ← left.sroot + 1; result← left; return result

15. result← ø; return result

Descendantatt

Descendantatt reverses ancestoratt semantics. Hence, in that case, we select
an attribute if it corresponds to the target element or to any of its descendants.
Note that now L denotes attribute occurrences, while R is representing element
segments. The next procedure presented in Algorithm 8.31 is used to perform the
non-nested variant, but also the full-nested one, unlike descendant axis, since there
di�erences between both variants mainly resulted from the fact that the left side
could be self-nested. This situation does not apply for attributes.

Parentatt

Unlike parent, for which we need to remember the parents of traversed nested
occurrences of R by using a bitmap, here that problem does not crop up, as the right
node stands for attribute occurrences. Therefore, the performance of parentatt is
quite similar to ancestoratt, but with minor changes, if we consider that now we
are not looking for left segments containing the current attribute, but just the
occurrence of L whose start position precisely matches the position of the attribute
in the XDTree node. That is, the exact element that holds the current attribute.
As a result, if left<right, both non-nested and full-nested variants advance to the
next left segment beginning at right start, converted to a position in the XDTree
node17, while in the opposite scenario (i.e. left>right) it is the right one which

17Recall that the segment representation of elements refers to positions in this branch.

184 Chapter 8. Implementations Description

Algorithm 8.32: Next procedure of parentatt operator (non-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling parentatt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← right.s; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then right.s← rankby (XWTroot, right.sroot)

12. case left ⊃ right
13. lefts ← left.e+ 1; left← L.next(lefts, lefte)

14. otherwise

15. lefts ← left.e+ 1; result← left; return result

16. result← ø
17. return result

Algorithm 8.33: Next procedure of parentatt operator (full-nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling parentatt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left > right
7. left.sroot ← selectby (XWTroot, left.s)
8. rights ← left.sroot + 1; right← R.next(rights)
9. if right ̸=ø then right.s← rankby (XWTroot, right.sroot)

10. case left.s = right.s
11. lefts ← left.s+ 1; result← left; return result

12. otherwise

13. lefts ← right.s; left← L.next(lefts, lefte)

14. result← ø
15. return result

8.2. Implementations 185

is moved to that appearing after left start. Note that this time left start
must be converted to a position in the XWT root node, according to attributes
representation. In turn, for left⊃ right, full-nested variant makes the left side
obtain the next occurrence that may occur inside left, holding the current attribute,
whereas in non-nested version, we are sure that this occurrence does not exist,
hence we simply advance to the next left segment starting after the end of left.
The remaining comparison case, right.s=left.s, delivers left upwards in both
scenarios, also updating the start positional restriction of new retrieved left segments
to the current left start (in case of full-nested variant) or end (in case of the non-
nested variant), as applicable. We can see the pseudocodes of non-nested and
full-nested versions in Algorithm 8.32 and Algorithm 8.33, respectively.

Algorithm 8.34: Next procedure of childatt operator (non-nested variant)

Input: news (new positional restriction)
Output: next occurrence of the left side ful�lling childatt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. left← L.next(lefts)
3. if left.sroot ̸=ø then

4. left.s← rankby (XWTroot, left.sroot)

5. right← R.result
6. while left ̸=ø and right ̸=ø do

7. case left < right
8. right.sroot ← selectby (XWTroot, right.s)
9. lefts ← right.sroot + 1; left← L.next(lefts)

10. if left ̸=ø then

11. left.s← rankby (XWTroot, left.sroot)

12. case left > right
13. rights ← left.s; right← R.next(rights, righte)

14. case left ⊂ right
15. rights ← right.e+ 1; right← R.next(rights, righte)

16. otherwise

17. lefts ← left.sroot + 1; result← left; return result

18. result← ø
19. return result

Childatt

Again, the fact of attributes not being self-nested makes the use of a stack
unnecessary, unlike what happened to child axis. On the other hand, and
likewise parentatt with regard to ancestoratt, childatt, also performs similarly

186 Chapter 8. Implementations Description

to descendantatt. Yet, we still distinguish di�erent next procedures depending
on whether we are working with self-nested elements or not. Anyway, the main
di�erences regarding descendantatt stem from the own childatt semantics, which
searches for occurrences of attributes that qualify the target element, and do not
any of its descendants. Thus, whenever left>right, we do not advance to the next
right segment containing the current attribute, but to the next occurrence from the
right side that exactly matches the attribute start position in the XDTree node, if
it exists. In a same way, if segments are related through a descendant relationship
(i.e. left⊂ right), full-nested variant still tries to �nd an exact match within the
nested occurrences that may occur inside right. In case of non-nested version, this
does not apply and we simply move to the next right segment after the current
one. Algorithms 8.34 and 8.35 show the pseudocodes of both variants for childatt
operator.

Algorithm 8.35: Next procedure of childatt operator (full-nested variant)

Input: news (new positional restriction)
Output: next occurrence of the left side ful�lling childatt semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. left← L.next(lefts)
3. if left.sroot ̸=ø then

4. left.s← rankby (XWTroot, left.sroot)

5. right← R.result
6. while left ̸=ø and right ̸=ø do

7. case left < right
8. right.sroot ← selectby (XWTroot, right.s)
9. lefts ← right.sroot + 1; left← L.next(lefts)

10. if left ̸=ø then

11. left.s← rankby (XWTroot, left.sroot)

12. case left.s = right.s
13. lefts ← left.sroot + 1; result← left; return result

14. otherwise

15. rights ← left.s; right← R.next(rights, righte)

16. result← ø
17. return result

8.2.2.11 Parameterized Operators over Attributes: the distance param-
eter

The operators previously discussed in Section 8.2.2.5, for which a distance parameter
was used, can also be extended to work with attributes. Hence we distinguish as

8.2. Implementations 187

well parentatt_dist, ancestoratt_dist, childatt_dist, and descendantatt_dist. For
each operator, both non-nested and full-nested variants follow the same guidelines
and remarks made for their respective counterparts in Section 8.2.2.518. That is,
non-nested versions introduce simple depth validations, while full-nested ones work
with additional auxiliary structures (e.g. a bitmap in case of parentatt_dist, and
ancestoratt_dist, and a stack, in case of childatt_dist, and descendantatt_dist).
Thus, we do not explain them again. We refer the reader to Section 8.2.2.5, for a
new review if needed.

Algorithm 8.36: Next procedure of and (self) operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling and semantics
// Note that left⊂right and left⊃right make no sense for this variant

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefts ← right.s; left← L.next(lefts, lefte)

8. case left > right
9. rights ← left.s; right← R.next(rights, righte)

10. otherwise // left=right
11. lefts ← left.e+ 1; result← left; return result

12. result← ø
13. return result

8.2.2.12 And

And operator searches for same segments. As happened with some of the previous
operators, we devise di�erent next procedures depending on whether it is applied
over elements or over attributes. We denote them as and and andatt, respectively,
according to the notation used until now.

In case of elements, and also stands for self axis. Algorithms 8.36 and 8.37
present the pseudocodes of non-nested and full-nested variants. Notice that, in
both scenarios, the procedure always requests a new segment from the side whose
current segment appears before, using as restriction the start position of the segment
from the other side, as a way to meet the equality relationship.

18Although now also combined together with the attribute features described at the beginning
of Section 8.2.2.10.

188 Chapter 8. Implementations Description

Algorithm 8.37: Next procedure of and (self) operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of the left side ful�lling and semantics
// In this scenario, left⊂right and left⊃right must be considered, since child
// nodes may deliver occurrences of elements regardless its type (i.e. when
// any of them works with `*')

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right or left ⊃ right
7. lefts ← right.s; left← L.next(lefts, lefte)

8. case left > right or left ⊂ right
9. rights ← left.s; right← R.next(rights, righte)

10. otherwise // left=right
11. lefts ← left.s+ 1; result← left; return result

12. result← ø
13. return result

On the other hand, and related to andatt, the same strategy is used. Algorithm
8.38 describes the pseudocode in that case. Observe that unlike some of the
operators previously discussed in Section 8.2.2.10 and Section 8.2.2.11, no positional
conversions are needed, since andatt does not combine the use of elements with
attributes, and hence all positions are referred to locations in the root of the XWT.

Algorithm 8.38: Next procedure of andatt operator

Input: news (new positional restriction)
Output: next occurrence of the left side ful�lling andatt semantics

1. lefts ← max(lefts, news); left← L.next(lefts)
2. right← R.result
3. while left ̸=ø and right ̸=ø do

4. case left < right
5. lefts ← right.sroot; left← L.next(lefts)

6. case left > right
7. rights ← left.sroot; right← R.next(rights)

8. otherwise // left=right
9. lefts ← left.sroot + 1; result← left; return result

10. result← ø
11. return result

8.2. Implementations 189

Algorithm 8.39: Next procedure of or operator (full-nested variant)

Input: news, newe (new positional restrictions)
Output: next occurrence of any child

1. left← L.result
2. right← R.result
3. if lastL or (left ̸=ø and (left.s < news or left.e < newe)) then
4. lefts ← max(lefts, news)
5. lefte ← max(lefte, newe)
6. left← L.next(lefts, lefte)

7. if lastR or (right ̸=ø and (right.s < news or right.e < newe)) then
8. rights ← max(rights, news)
9. righte ← max(righte, newe)

10. right← R.next(rights, righte)

11. lastL← 0; lastR← 0
12. if left ̸=ø and right ̸=ø then

13. case left < right or left ⊃ right
14. lefts ← left.s+ 1; lastL← 1; result← left; return result

15. case left > right or left ⊂ right
16. rights ← right.s+ 1; lastR← 1; result← right; return result

17. else

18. if left ̸=ø then

19. lefts ← left.s+ 1; lastL← 1; result← left; return result
20. else

21. if right ̸=ø then

22. rights ← right.s+ 1; lastR← 1; result← right; return result
23. else

24. result←ø; return result

8.2.2.13 Or

Or constitutes a special operator, since against the rest of the internal nodes, which
deliver segments that come from the left side, or may deliver occurrences received
from any side. Therefore, the segment request performed at the beginning of the
next procedure will not obtain a new segment from the left side, as usual, but from
the last delivered side. What is more, even the side that has not been delivered
in the previous call, may also be requested for a new segment together with the
corresponding one, in case that the incoming restrictions imply its update. Then,
whenever we do not reach the last occurrence from any side, current segments
are compared to deliver the one starting �rst. Any other way, results are directly
requested to the unique side from which segments remain to be obtained.

190 Chapter 8. Implementations Description

This procedure applies whether we work with elements, or with attributes19.
Furthermore, as a result of the modi�cations performed over the query parse tree
(see Or/and optimizations in Section 6.3), or operator may also deal with nodes
delivering words or even phrases20. Again, the same general guidelines are followed
in those cases. We next show the pseudocode of full-nested variant of the or operator
over elements (see Algorithm 8.39). The rest of the pseudocodes are presented in
Appendix B (see Algorithm B.2, Algorithm B.3 and Algorithm B.4).

Algorithm 8.40: Next procedure of contains text function for single words (full-

nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling contains semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. lefte ← right.s+ 1; result← left; return result

15. otherwise

16. lefts ← left.e+ 1; left← L.next(lefts, lefte)

17. result← ø
18. return result

8.2.2.14 Text Functions: contains and equal

Equality and containment functions follow quite di�erent approaches depending on
whether they are applied over elements or attributes. Hence we will refer to them
separately to discuss the main features of each one.

• Let us start with text functions over elements. Similarly to what happens
when we work with operators that combine elements and attributes from

19We denote the operator as oratt in this case.
20In case of words, the same oratt procedure can be used. Yet in case of phrases, a new orphrase

algorithm is devised.

8.2. Implementations 191

both children (e.g. parentatt, descendantatt, childatt_dist, etc.), here the
use of words/phrases, makes positional conversions be necessary to perform
segment comparisons, as well as to update the positional restrictions used by
new segment requests when they are determined by the segment positions of
the other side. Like attributes, the conversion of the segment representation
of a word to positions in the XDTree node leads to a point given, in that case,
by the position in that branch of the start/end-tag that immediately precedes
it. In turn, phrases may lead to a point, or even to a segment, in case it spans
more than one text node (i.e. if there are interleaved start/end-tags)21.

Algorithm 8.41: Next procedure of contains text function for a phrase (full-

nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling contains semantics
// We assume that by is the �rst byte of a start/end-tag codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. lefte ← right.e+ 1; result← left; return result

15. case left.s > right.s and left.e > right.e
16. rights ← right.eroot + 1; right← R.next(rights)
17. if right ̸=ø then

18. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

19. otherwise

20. lefts ← right.e+ 1; left← L.next(lefts, lefte)

21. result← ø
22. return result

21Notice that if the positional conversion of a phrase representation yields a segment, this does
not have to match the limits of a speci�c element. As a result, more segments comparison scenarios
are possible, as overlaps may occur.

192 Chapter 8. Implementations Description

Non-nested and full-nested variants are possible under this scenario. Algo-
rithm 8.40 and Algorithm 8.41 show the pseudocodes of full-nested version
for words and phrase containment, respectively22.

Regarding the equal function, the same procedures can be generalized to meet
its semantics. This time we need to include an additional check whenever
an occurrence of the left side contains the current right segment, to ensure
the equality condition, before delivering the left one. This validation may
imply the skipping of interleaved occurrences of start/end-tags, comments
and processing instructions between the boundaries of both segments. Thus,
a similar procedure to that explained in Section 8.2.1.3, where these special
components were skipped when searching for interleaved phrases, is also
applied in that situation (see Algorithms B.7 to B.10 in Appendix B).

Algorithm 8.42: Next procedure of containsatt text function

Input: news (new positional restrictions)
Output: next occurrence of the left side ful�lling containsatt semantics
// We assume that bx is the �rst byte of an attribute codeword

1. lefts ← max(lefts, news)
2. left← L.next(lefts, lefte)
3. right← R.result
4. while left ̸=ø and right ̸=ø do

5. case left < right
6. att_to_left = rankbx(XWTroot, left.sroot)
7. att_to_right = rankbx(XWTroot, right.sroot)
8. if (att_to_right− att_to_left) > 0 then

9. pos_satt_to_right ← selectbx(XWTroot, att_to_right)
10. lefts ← pos_satt_to_right; left← L.next(lefts)

11. else

12. lefts ← left.sroot + 1; result← left; return result

13. otherwise

14. rights ← left.sroot + 1; right← R.next(rights)

15. result← ø
16. return result

• If we consider the same text functions, but applied over attributes, then
containsatt and equalatt operators arise. Unlike the previous scenario, no
positional conversions are performed, since both attribute and word/phrase
segments are referred to positions in the same XWT node, that is, to positions
in the root of the XWT, in that case.

22Non-nested versions are described by Algorithm B.5 and Algorithm B.6, in Appendix B.

8.2. Implementations 193

Algorithm 8.42 shows the pseudocode of containsatt. Notice that the same
pseudocode can be used regardless we are working with words or phrases. In
both cases, there are just two di�erent comparison scenarios.

When left<right, containment condition is �gured out by simply computing
the number of attribute occurrences23 between the start boundaries of each
current segment. That is, let us assume that bx is the byte used to
mark the �rst byte of an attribute codeword, and that sl and sr are the
start positions of current left and right segments, respectively. Then, i =
rankbx(XWTroot, sl) gives us the number of attributes before sl. Likewise,
j = rankbx(XWTroot, sr), provides the same information but regarding sr.
The containment condition is ful�lled if the subtraction of i from j is equal to
0. If not the case, we request the next occurrence from the left side beginning,
at least, at the start position of the jth attribute: selectbx(XWTroot, attsr).
Notice that, although we do not know if the jth attribute is an occurrence of
the same type as those delivered by the left side, this positional restriction
permits to skip all those intermediate left segments that we are sure that are
not valid.

In case of any other comparison relationship between current segments (see
lines 13 − 14 in Algorithm 8.42), we advance to the next occurrence of the
word/phrase starting after the current attribute segment.

Algorithm 8.43: Next procedure of equalatt text function

Input: news (new positional restrictions)
Output: next occurrence of the left side ful�lling equalatt semantics
// We assume that bx is the �rst byte of an attribute codeword

1. lefts ← max(lefts, news)
2. left← L.next(lefts, lefte)
3. right← R.result
4. while left ̸=ø and right ̸=ø do

5. case left < right
6. if right.sroot ̸= (left.sroot + 1) then
7. lefts ← right.sroot − 1; left← L.next(lefts)
8. else

9. lefts ← left.sroot + 1; result← left; return result

10. otherwise

11. rights ← left.sroot + 1; right← R.next(rights)

12. result← ø
13. return result

23Regardless they are or not those speci�ed by the left node.

194 Chapter 8. Implementations Description

With regards to equalatt operator24 a similar general scheme is used (see
Algorithm 8.43). However, this time, in case the attribute starts before the
word/phrase (that is, in case left<right), just a simple validation must be
performed to determine if that attribute becomes a valid result: we only need
to check if the word/phrase is placed immediately after the attribute (see line
6 in Algorithm 8.43).

8.2.2.15 Other Functions: count

If we are only interested in counting the number of results of a given query,
count function may be used: count(query). In a general case, to solve this
function, we must �rst solve the query (that is, to locate the di�erent valid results),
and then deliver the number of results found. However, this procedure can be
optimized for the same set of queries presented in Section 8.2.1.4, such as //image,
//*, //@author or even //@*. If count function is applied over these kind of
queries, what we are actually looking for is the number of occurrences of a given
element/attribute (likewise, the total number of elements/attributes in the examples
that use `*'). Therefore, we can save processing time by just performing a count
operation of that given pattern (i.e. the speci�c element or attribute) over the
XWT. For instance, let us consider the attribute author, whose codeword is bxbi.
Then, count(//@author) = count(bxbi, XWTrootlength).

8.2.2.16 Further Discussions

Similarly to what happened with rank and select operations involved in count and
locate procedures of leaf nodes, the same strategy used there to speed them up, can
also be applied to those internal nodes that make use of positional conversions, such
as parentatt, descendantatt, equal or even contains. Note that all of them need
to perform forward rank and select operations over the byte reserved to mark the
codewords of start/end-tags. Thus, by storing the result for previous operations,
we can save processing time.

24Remember that one of the �rst modi�cations of the query parse tree presented in Section
6.3 was the Attributes equality simpli�cation, which stands for the transformation of an attribute
equality step into an unique text matching operation (in particular, into a continued phrase leaf
node). Yet, this modi�cation only applies whenever the left side of the equal operator is directly
represented by an attribute leaf node, as shown in Figure 6.5. If it corresponds to an internal
node, then equalatt operator is kept.

Chapter 9

Experimental Evaluation

Chapter 5 to Chapter 7 described in detail our proposal, the XXS system, by
focusing on the two main core parts that compose it: the representation module,
provided by the XML Wavelet Tree (XWT) data structure, and the query module,
for the e�cient evaluation of XPath queries over that representation. Now, we
present the set of experiments performed to evaluate our work. As a new XML
queriable compression tool, both compression properties and querying capabilities
have been benchmarked.

Section 9.1 starts by describing the experimental framework used to empirically
test the XXS system: the machine used, the collection of documents selected, and
the set of queries tested. After that, Section 9.2 focuses on compression features
(compression ratio, and compression and decompression times) and presents a large
study by comparing our tool with some other general text and XML conscious
non-queriable compressors, but also with some well-known solutions supporting
XPath, whose space requirements are considered, as well. These last systems are
then evaluated again in Section 9.3, this time, regarding their query evaluation
performance, to benchmark XXS querying capabilities.

9.1 Experimental Framework

9.1.1 Test Machine

An isolated Intel R⃝Pentium R⃝Core i5 2.67 GHz system, with 16 GB dual-channel
DDR-1200Mhz RAM was used in our tests. It ran Ubuntu 11.04 GNU/Linux
(kernel version 2.6.38). The compiler used was g++ version 4.5.2 and -O9 compiler
optimizations were set.

195

196 Chapter 9. Experimental Evaluation

9.1.2 Document Corpus

We have collected a large corpus of XML documents selected from multiple data
sources. We next present a brief description of the di�erent documents that compose
our data set, and point out some of their main properties in Table 9.1. There, the
�rst column indicates the name of the document, while the second and third ones
refer to its size (in MBytes), and its maximum depth level, respectively. Then,
from column 4 through column 7, the number of di�erent words in the vocabularies
of tags (VTags), attributes (VAttributes), text content (VContent), and processing
instructions and comments (VNSearch), are shown. Finally, columns 8 to 11, also
record the total number of words that hold into each of these vocabularies (see
columns tagged as #Tags, #Attributes, #Content, and #NSearch in Table 9.1).

• XMark: �les generated with xmlgen, an XML data generator developed inside
XMark Project1. This tool produces XML documents modelling an auction
website, using a parameter (−f) to indicate the size of the documents
generated. For our experiments, we created four XML documents using
increasing scaling factors.

• Dblp: �les providing bibliographic information about the most important
computer science conferences and publications2. The documents used
correspond to the revisions of April 2008, and January 2012.

• Psd: �le belonging to the public proteins database, Integrated Protein
Informatics Resource for Genomic and Proteomic Research3. It contains an
integrated collection of proteins functionally annotated.

• Medline: �les containing bibliographic information about biomedical and life
sciences publications4. We selected three �les of di�erent sizes.

• Alfred: �le of gene frequency data on human populations supported by the
U. S. National Science Foundation5.

• Baseball: document that provides a complete description of baseball
statistics of the team players participating in the 1998 Major League.

• Lineitem: �le providing information about the transactional relational
database benchmark TPC-H 6.

1http://monetdb.cwi.nl/xml
2http://dblp.uni-trier.de/xml
3http://pir.georgetown.edu
4http://www.nlm.nih.gov/bsd/pmresources.html
5http://alfred.med.yale.du/alfred
6http://www.tpc.org/tpch

9.1. Experimental Framework 197

Table 9.1: Document properties.

S
iz
e
(
M
B
)

M
a
x
D
e
p
t
h

V
T
a
g
s

V
a
t
t
r
ib
u
t
e
s

V
C
o
n
t
e
n
t

V
N
S
e
a
r
c
h

#
T
a
g
s

#
A
t
t
r
ib
u
t
e
s

#
C
o
n
t
e
n
t

#
N
S
e
a
r
c
h

XMark1 55.32 12 148 9 85441 12 1665820 191160 9276986 13

XMark2 115.76 12 148 9 132359 12 3470166 397928 19384255 13

XMark3 513.96 12 148 9 417309 12 15381746 1762307 85916582 13

XMark4 1029.18 12 148 9 757852 12 30749422 3525025 171832697 13

Dblp2008 282.42 6 70 6 1750576 14 13856520 1426867 60222798 17

Dblp2012 961.75 6 70 9 4525940 14 47888064 6082270 214012325 17

Psd 683.64 7 128 7 3142459 9 42611636 1052770 105568992 9

Medline1 121.02 7 156 5 266168 0 5732160 138315 16490261 0

Medline2 593.14 7 164 15 894702 14 28478436 4436417 87413949 15

Medline3 877.32 7 166 16 1360745 14 40199504 6468566 131882636 15

Alfred 74.16 5 120 0 75630 14 4089784 0 8105935 17

Baseball 0.64 6 92 0 3149 0 56612 0 60897 0

Lineitem 30.80 3 36 1 39593 0 2045952 1 3411432 0

Mondial 1.78 5 46 32 19086 30 44846 47423 321201 33

Nasa 23.89 8 122 9 77687 0 953292 56317 4180538 0

Shakespeare 7.53 7 44 0 28346 9 359380 0 1505075 9

Swissprot 112.76 5 170 14 500909 0 5954062 2189859 23166916 0

Treebank 85.42 36 500 1 1979256 0 4875332 1 10439446 0

USHouse 0.51 16 86 21 5179 14 13424 2732 82414 15

Tcsd-normal 107.18 8 48 1 613408 33 5499502 7333 22129473 37

Scsd-normal 105.37 8 100 3 663514 33 4485398 150000 14547468 37

Uniprot1 434.99 6 144 39 1061320 14 17587730 11364588 89110893 15

Uniprot2 716.00 6 144 39 1608280 14 28999340 18671115 146563011 15

EXI-Array 22.06 10 94 17 94951 27 453046 226550 3600182 33

EXI-Factbook 4.04 5 398 0 28013 39 110906 0 604601 54

EXI-Invoice 0.93 7 104 7 16748 9 30150 14060 109538 9

EXI-Weblog 2.53 3 24 0 1260 0 186870 0 435894 0

EnwikiNews 69.42 5 40 7 311877 0 809304 35000 15416589 0

EnwikiQuote 124.27 5 40 7 412082 0 525910 23837 29155406 0

EnwikiTionary 556.61 5 40 7 3479730 0 16770268 726129 104853291 0

EnwikiVersity 81.40 5 40 7 300349 0 991678 43621 18830566 0

EnwikiAbstract1 660.56 5 18 1 540589 0 28327694 3811222 140817649 0

EnwikiAbstract2 327.96 5 18 1 420168 0 13692938 1714361 70280032 0

• Mondial: world geographic database integrated from the CIA World Fact-
book, the International Atlas, and the TERRA database among other
sources7.

• Nasa: �le from the NASA XML Project 8. It contains astronomical datasets
converted from legacy �at-�le format into XML and then made available to
the public.

• Shakespeare: �le containing a collection of Shakespeare plays.

• Swissprot/Uniprot: manually and automatically annotated protein sequence
databases9 which provide a high level of annotations (such as the description

7http://www.cs.washington.edu/research/xmldatasets/www/repository.html
8http://xml.nasa.gov
9www.uniprot.org

198 Chapter 9. Experimental Evaluation

of the function of a protein, its domains structure, post-translational modi�-
cations, variants, etc.).

• Treebank: �le of parsed English sentences from the Wall Street Journal10.
The main feature of this document is that all text nodes have been encrypted
since they are copywritten text. It also shows a very deep and recursive
structure.

• USHouse: legislative document that contains information about the ongoing
work of the U.S. House of Representatives11.

• TCSD/DCSD: documents belonging to the XBench family of benchmarks that
capture di�erent XML application characteristics12. The generated �les are
categorized as text centric (TC) or data centric (DC), depending on they
contain data that are actually stored as XML (e.g. book collections in a
digital library, and news article archives), or data which are not originally
modeled in XML format (e.g. e-commerce catalog data and transactional
data), respectively. These two models can be represented either in the form
of a single document (SD) or multiple documents (MD). For our corpus, we
selected TC-SD and DC-SD examples.

• EXI: sample documents from the E�cient XML Interchange (EXI) working
group13.

• Wikipedia: group of documents representing some extracted dumps from the
English Wikipedia14.

This collection of documents is used in Section 9.2 to evaluate the compression
properties of our proposal, and to compare it with some other alternatives.

9.1.3 Query Test Bed

To benchmark the query evaluation performance of our tool (see Section 9.3), we
have developed a complete query test bed for the XMark documents presented in
Section 9.1.215. The set of queries gives support to the whole practical subset
of XPath discussed in Section 6.1, and aims to test the e�ciency, scalability and
stability of the analyzed systems. Queries are divided into four di�erent categories
as we will next describe:
10http://www.cis.upenn.edu/ treebank
11http://xml.house.gov
12http://www.cs.uwaterloo.ca/ tozsu/ddbms/projects/xbench/index.html
13http://www.w3.org/XML/EXI
14http://dumps.wikimedia.org/backup-index.html, http://dumps.wikimedia.org/enwiki
15We have focused on these documents of the data set, since the XMark project has been

acknowledged as a reference for XML data benchmarking.

9.1. Experimental Framework 199

• A (Q01-Q21): XPathMark16 is a well established benchmark [Fra06] that
provides a collection of queries to test the performance of an XML query
processing system with regards to XPath 1.0. All the queries are intended to
simulate realistic query needs of a potential user of an auction site modeled
by any of the XML documents generated with the xmlgen tool of the XMark
project (that is, the XMark documents of our corpus). Yet they are classi�ed
into several groups according to the fragment of XPath targeted (e.g. XPath
axes, relational and arithmetic operators, positional functions, etc.).

In this way, category A of our test bed takes the queries of the XPathMark
benchmark related to the practical subset of XPath addressed in this work.
In particular, all those groups of queries that cover the forward and reverse
XPath axes, using as node tests either a tag/attribute name or the wildcard
`*', and that admit the use of predicates, in combination with conjunctive
and disjunctive boolean operators17. Indeed, we have also included some
additional queries, created ad-hoc, exhibiting the same properties. They are
all presented in Figure 9.1.

• B (Q22-Q42): one of the most challenging scenarios for query evaluation is
that posed by queries involving a sequence of steps over the wildcard `*', due
to the potentially high number of intermediate results that can be generated
(e.g. /book/*/*//*/section). This part of the query test bed is precisely
devoted to validate the systems performance under these situations. Figure
9.2 shows the queries created to this aim, regarding both elements (Q22-Q32)
and attributes (Q33-Q37). Additionally, queries from Q38 to Q42 constitute
`crash tests' speci�cally designed to work with various intermediate results
sizes.

• C (Q43-Q58): as users can be interested in selective queries, they may look
for occurrences of speci�c elements and attributes, as well (e.g. //book,
//@reference, etc.). This category focuses on this case. Selected queries of
elements and attributes randomly chosen are shown in the left side of Figure
9.3. Notice that we also regard the special queries searching for any element
(Q43) or attribute (Q54) appearance.

• D (Q59-Q73): categories A, B and C do not consider text functions, as they
are pure structural based queries. Hence, this last group has been devoted to
cover examples of typical queries that an user could formulate over any XMark

document, by using the contains or equal functions applied either over an
element content (Q59-Q68) or even an attribute value (Q69-Q73). They have
been created by considering both single words and phrase patterns, as shown
in the right side of Figure 9.3.

16http://sole.dimi.uniud.it/∼massimo.franceschet/xpathmark
17Note that we do not consider relational and arithmetic operators, nor positional functions, as

they are not addressed in this thesis.

200 Chapter 9. Experimental Evaluation

Q01: /site/closed_auctions/closed_auction/annotation/description/text/

 keyword

 Q02: //closed_auction//keyword

Q03: /site/closed_auctions/closed_auction//keyword

Q04: /site/closed_auctions/closed_auction[./annotation/description/text/

 keyword]/date

Q05: /site/closed_auctions/closed_auction[./descendant::keyword]/date

Q06: /site/people/person[./profile/gender and ./profile/age]/name

Q07: /site/people/person[./phone or ./homepage]/name

Q08: /site/people/person[./address and (./phone or ./homepage) and

 (./creditcard or ./profile)]/name

Q09: /site/regions/*/item[./parent::namerica or ./parent::samerica]/name

Q10: //keyword/ancestor::listitem/text/keyword

Q11: //happiness/ancestor::closed_auction/annotation/author

Q12: /site/open_auctions/open_auction/bidder[./following sibling::bidder]

Q13: /site/*/person[./homepage/following sibling::creditcard]/name

 Q14: /site/open_auctions/open_auction/bidder[./preceding sibling::bidder]

Q15: /site/people/person/*/gender[./preceding sibling::education]

Q16: /site/regions/*/item[./following::item]/name

Q17: /site/open_auctions/open_auction/reserve/following::happiness

 Q18: //type/preceding::price

Q19: /site/regions/*/item[./preceding::item]/name

Q20: //person[./profile/@income]/name

Q21: //open_auction[./privacy]/itemref/@item

Figure 9.1: First group of queries (A).

Q22: //mailbox/*/*/keyword

Q23: //namerica/*/mailbox//*/*/keyword

Q24: //open_auction/*/author

Q25: //regions/*/*/*/*/*/parlist//emph

Q26: //categories/*/description/*/*/keyword

Q27: //categories/*/description//*/*/keyword

Q28: //keyword/parent::*/parent::*/parent::mail/date

Q29: //author/parent::*/parent::open_auction/itemref

Q30: //parlist/parent::*/parent::*/parent::*/parent::*/parent::*/

 parent::regions

Q31: //keyword/parent::*/parent::*/ancestor::description/parent::category/

 name

Q32: //keyword/parent::*/ancestor::description/parent::item

 [./parent::namerica]/location

Q33: //open_auction[.//*/*/@person]/seller

Q34: //person[.//*/*/@category]/homepage

Q35: //person[./*/*/@open_auction]/name

Q36: //categories//*/@id

Q37: //person//*/@income

Q38: /*/*/*//*//*//*/*/*/*

Q39: /*/*/*/*/*/*/*/*/*

Q40: /*//*/*/*/*

Q41: /*/*/*/*

Q42: /*

Figure 9.2: Second group of queries (B).

9.2. Compression Properties 201

Q59: //mail//text[contains(.,"image")]

Q60: //item/location[contains(.,"Island")]

Q61: //location[.="Israel"]

Q62: /site/regions/europe/*/location[.="United States"]

Q63: //open_auction/bidder[./date="09/13/1998"]

Q64: //payment[contains(.,"Creditcard")]

 Q65: //australia//payment[contains(.,"Personal Check, Cash")]/

 parent::item/@id

Q66: //namerica//payment[contains(.,"Personal Check, Cash")]

Q67: //text[contains(.,"weaker dove")]

Q68: //annotation[contains(.,"dove miserable")]

 Q69: //person/profile/@income[.="9876.00"]

Q70: /site/regions/*/item[./@featured.="yes"]/name

Q71: /site//interest[./@category="category266"]

Q72: //interest/@category[.="category328"]

Q73: //@category[.="category328"]

 Q43: //*

Q44: //edge

Q45: //australia

Q46: //province

Q47: //age

Q48: //street

Q49: //homepage

Q50: //parlist

 Q51: //keyword

 Q52: //date

 Q53: //time

 Q54: //@*

Q55: //@from

 Q56: //@featured

Q57: //@income

 Q58: //@id

Figure 9.3: Third (C) and fourth (D) group of queries.

9.2 Compression Properties

XXS constitutes, in essence, a new XML queriable compression tool. Therefore,
related to compression features, fair and consistent comparisons stand from its
analysis against other queriable compressors. Yet, despite the large amount of
research that has been developed along the years focused on this compression area,
as stated in Section 4.2, almost all the tools presented in the literature do not have
currently available source codes. To the best of our knowledge, solely the XGrind,
XBzipIndex and SXSI tools are accessible. Of them, XGrind could not be run under
the Linux version operating system of our test machine. Hence, just XBzipIndex
and SXSI remain as available queriable compressors that have been benchmarked.

Even so, we have also decided to validate our proposal against some of the
non-queriable compressors18, as well as general text compression methods. Reader
should notice that the comparison results in those scenarios can not be considered
straightforward, since none of them exhibit the querying ability. They are shown
just as basic references. Similarly to what happen with queriable compressors,
XML conscious non-queriable tools also su�er from the lack of source code/binaries
[Sak09]. As a result, only those available ones have been compared19.

Our experimental environment includes the compressors next detailed. For any
of the tested compressors, we use the maximum and minimum compression options
whenever they exist:

18We discard schema-dependent compressors since they are not commonly used in practice.
19Apart from Exalt compressor. Although it is accesible, it failed to successfully compress most

of the documents. Therefore, we excluded it from comparisons.

202 Chapter 9. Experimental Evaluation

• General text compressors

� (s,c)-DC: general back-end compression method used by the XWT
representation.

� Plain Huffman: another word-based byte-oriented semistatic statistical
compressor, based on Hu�man codes.

� Gzip: a Ziv-Lempel based compressor. In particular, it makes use of the
LZ77 technique. Fastest (-1) and best (-9) compression options of gzip
are evaluated.

� Bzip2: Seward's bzip2, a compressor based on the Burrows Wheeler
Transform. As gzip, we also experiment with both the fastest (-1) and
best (-9) alternatives.

� PPMdi: as a representative method of the PPM family, we used PPMdi
compressor, applying the minimum (-l 0) and maximum (-l 9) level of
compression.

� p7zip: is a LZMA based compressor with a dictionary of up to 4
Gigabytes.

• XML conscious compressors

� Non-queriable tools

∗ XMill: we have used the three general back-ends compressors
provided by XMill, namely gzip, bzip2 and PPM, thus yielding
three di�erent compressors: XMillGzip, XMillBzip2 and XMillPPM.
Moreover, in case of XMillGzip, XMill allows one to set the
compression factor to the minimum (-1) or maximum (-9) value.
∗ XMLPPM: based on PPM compression scheme.
∗ SCMPPM: the SCM variant achieving the highest compression ratios.
It also supports fastest (-1) and best (-9) compression options.
∗ XWRT: two variants are used, depending on we select zlib20 or lpaq21

as back-end compressors. Both alternatives provide maximum and
minimum compression options. However, the compression gain
obtained when using the maximum ones (less than 1%), does not
pay o� the compression times (between 1.5 and 2 times slower).
Hence, minimum compression options are set when running these
compressors.

� Queriable tools

∗ XBzipIndex: adaptation of the XML Burrows Wheeler Transform.

20It is based on the same de�ate compression algorithm than gzip compressor
(http://www.zlib.net/).
21http://mattmahoney.net/dc/

9.2. Compression Properties 203

∗ SXSI: an up-to-date proposal for compressed indexing of XML
documents.

Apart from compressors, we have also benchmarked XXS compression properties
against some of the best current state of the art database based solutions supporting
XPath, whose query performance will be further analyzed in Section 9.3. Both
MonetDB/XQuery and Qizx/DB are the examples of systems from this category
used there, that are included, as well, in this part of the study to validate them
regarding their space features.

9.2.1 Results Evaluation

We have compared XXS with the above mentioned compressors and query systems.
In case of pure compression methods, such as general text compressors and XML
conscious yet non-queriable compressors, we have analyzed their main compression
parameters, namely the compression ratio and the compression and decompression
times. In turn, for actually queriable approaches, such as SXSI, MonetDB/XQuery,
and Qizx/DB, we have measured the global size of the representation created to
allow query evaluation, and also their construction times. Figures from 9.4 to
9.7 show the results obtained for each of the di�erent XML documents previously
described in Section 9.1. To allow a better understanding of these �gures and
the corresponding discussions, results are grouped by using di�erent colour ranges,
according to the following categorization of the solutions tested:

• XXS : the results obtained by our system are depicted in blue.

• General text compressors: they are all marked in black. We use −f and −b to
make clear the distinction between the fast and best variants of a compressor,
whenever these compression options are applicable.

• XML conscious non-queriable compressors22: in this case, results are high-
lighted by using the pink colour palette. Like general text compressors, we
also use −f and −b options to mark the fast and best variants of some of
these compression tools.

It is important to note, as well, that some of the XML conscious compressors
failed to either compress or decompress some of the documents. It is the case of
XMill compressors, with regards to Mondial23, or even of SCMPPM, related
to that same document, but also to Nasa, Uniprot �les and Treebank24.

22We also include in this group the XBzipIndex. Although it is generally classi�ed as a queriable
XML conscious compressor, it provides a very limited query support in comparison with the rest
of the queriable solutions.
23The resulting error is `Parse error in line 15: Symbol `>' expected after `/' in tag!'.
24In case of Treebank, fast variant of SCMPPM does not fail, but the best one does. The error

produced for all the failed documents arises during compression as `Not well-formed document!
<DL>'

204 Chapter 9. Experimental Evaluation

Likewise, XBzipIndex and XWRT failed to compress Dblp documents25 and
to decompress EXI-Factbook26, respectively.

• Queriable solutions : this group covers MonetDB/XQuery and Qizx/DB
databases, but also SXSI tool. The values corresponding to these proposals
are marked in green in Figure 9.4 and Figure 9.7. Notice that, in some cases,
results are not shown for a given document due to system construction failures.
For instance, MonetDB/XQuery and SXSI failed when working with Dblp

documents and Alfred �le27. The former did not succeed also over USHouse28.

9.2.1.1 Compression Ratios

Figure 9.4 shows the compression ratios (in % with respect to the original document
size) obtained by each of the compared solutions. Notice that regarding our
proposal, we have distinguished two di�erent compression ratios, marked as `XWT'
and `XXS', respectively. Recall that XXS compressed storage arises from the XML
Wavelet Tree data structure. Hence we denote with `XWT' the compression ratios
achieved by the XWT representation of each document, just considering the space
needed to perform compression and decompression tasks. In turn, `XXS' represents
the waste of extra space needed for e�cient query evaluation, including that used
for the structures of partial counters to speed up rank and select operations over
the XWT bytemaps (see Section 3.2.1.2), and also that needed for the succinct tree
representation of the balanced parentheses data structure29. We include, as well,
the amount of space used to maintain the vocabularies of words into hash tables.
Notice that, in general, XXS space requirements amount an additional 4%-8% of
extra space over the XWT basic representation30. In this way, `XWT' values will
be used for comparisons with general compression methods and XML conscious
non-queriable compressors, whereas `XXS' ones will be compared against queriable
solutions.

XWT versus general text compressors. From the results presented in Figure
9.4 we can observe that, in general, XWT represents each document by using
about 30%-40% of its original size. If we compare its performance against (s,c)-
DC compressor, which constitutes the basis of XWT compression scheme, we will

25The compression fails trying to search for the document DTD.
26Output error: `File corrupted (s.size()>WORD_MAX_SIZE)! Not enough memory!'.
27In case of Dblp �les the failure arises when loading the external entity `dblp.dtd'. For Alfred

we obtain `Parse error: space needed here <?xml version=�1.0�? >'
28Output error: `XML input not well-formed'.
29Recall that we use the fully-funcional succinct tree representation [SN10] presented in Section

3.2.2.
30There are some particular exceptions, such as Mondial, Treebank, USHouse and EXI-Invoice,

for which these space di�erences are higher, mainly due to the amount of spaced needed to maintain
the vocabulary hash tables.

9.2. Compression Properties 205

10
0

10
1

10
2

C
om

pr
es

si
on

 r
at

io
 (

%
)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1

D
bl

p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed

B
as

eb
al

l

Li
ne

ite
m

M
on

di
al

N
as

a

S
ha

ke
sp

ea
re

S
w

is
sp

ro
t

T
re

eb
an

k

U
S

H
ou

se

T
C

S
D

−
no

rm
al

D
C

S
D

−
no

rm
al

U
ni

pr
ot

1

U
ni

pr
ot

2

E
X

I−
A

rr
ay

E
X

I−
F

ac
tb

oo
k

E
X

I−
In

vo
ic

e

E
X

I−
W

eb
lo

g

E
nw

ik
iN

ew
s

E
nw

ik
iQ

uo
te

E
nw

ik
iT

io
na

ry

E
nw

ik
iV

er
si

ty

E
nw

ik
iA

bs
tr

ac
t1

E
nw

ik
iA

bs
tr

ac
t2

XWT

XXS

SXSI

Monet

Qizx

(s,c)−DC

PH

gzip −f

gzip −b

bzip2 −f

bzip2 −b

ppmdi −f

ppmdi −b

p7zip

xmillgzip −f

xmillgzip −b

xmillbzip2

xmillppm

xbzipindex

xmlppm

scmppm −f

scmppm −b

xwrtzlib

xwrtlpaq

Figure 9.4: Compression ratios achieved by our proposal (in blue), general
text compressors (in black), XML conscious non-queriable compressors (in
pink), and queriable tools (in green) over di�erent XML documents.

206 Chapter 9. Experimental Evaluation

note that XWT needs, on average, just about 3%-4% more space than (s,c)-DC
to compress the same document. However, within such a little di�erence, XWT
exhibits some properties that are key to further allow XML querying purposes.
Note as well, that a similar remark can be done if we consider the other example of
word-based byte-oriented compressor used, that is, Plain Hu�man.

In comparison with the rest of the general text compressors, the compression
ratios achieved by the aforementioned techniques (that is, XWT, (s,c)-DC and Plain
Hu�man) are higher, as expected. In this case, the reader should have in mind that
(s,c)-DC (and by extension also XWT) and Plain Hu�man are mostly intended
to compress natural language text. In fact, one can notice that for the documents
close to that nature31 (such as XMark �les, Shakespeare, TCSD, DCSD, EXI-Factbook,
EnwikiNews, and EnwikiQuote) di�erences are not as signi�cant.

On the other hand, if we just focus on the comparison among the general text
compressors themselves, apart from XWT, (s,c)-DC and Plain Hu�man, we can
observe that, in general, gzip variants obtain the worst compression ratios, while
bzip, ppmdi and p7zip show a quite similar performance. Yet the best variant of
ppmdi usually achieves the best compression ratio for each document.

XWT versus XML conscious non-queriable compressors. The compres-
sion ratios of most of the XML conscious compressors tested are closely related
to that of the corresponding general back-end compressors (such as gzip, bzip2,
and PPM variants). Therefore, similar conclusions to those disclosed from the
comparisons between XWT and the general compressors can be inferred also for
this scenario. As it can be noted in Figure 9.4, XWT obtains worse compression
ratios than the rest of the XML conscious non-queriable compressors. However,
reader must recall that the tools from this category precisely aim to compress to
the best, rather than equally provide an e�cient query support, as they do not
admit any query ability32.

If we analyze the performance of XML conscious non-queriable compressors
among themselves, we can observe that, in general, gzip based compressors, such
as XMillGzip variants, and also XBzipIndex, are overcome by bzip2 variants, like
XMillBzip2, which is in turn beaten by PPM based alternatives, as XMillPPM,
XMLPPM and SCMPPM compressors. Now going into detail, XBzipIndex behaves
quite similarly to the best variant of XMillGzip. The same happens to XMillPPM
with regards to XMLPPM. However, in case of SCMPPM, the fast compression
option achieves results which are much closer to that obtained by XMillBzip2,
than that of PPM based compressors. Yet, when using the maximum compression
option, SCMPPM performs better in terms of compression ratio, than any of them.

31That is, with a larger number of natural language text fragments.
32Apart from XBzipIndex. Yet, even XBzipIndex can not be actually considered a queriable

tool, as previously pointed out.

9.2. Compression Properties 207

It is worth noting, as well, the behavior of XWRT, since XWRTzlib compresses,
in general, better than the rest of the gzip based compressors33, and closer to
XMillBzip2, whereas XWRTlpaq is by far the XML conscious compressor which
obtains the best compression ratios.

XXS versus queriable solutions. To perform the space comparisons against
the queriable solutions, we have considered the overall space usage of our proposal,
including the amount of extra space needed to speed up rank and select operations
over the XWT bytemaps, as well as the corresponding counterpart for the balanced
parentheses data structure, and also the space waste of maintaining the vocabularies
into hash tables. Recall that these values are represented in Figure 9.4 under the
`XXS' label. As it can be observed, our proposal is by far the system that obtains the
best compression ratios, followed by Qizx/DB, SXSI, and �nally, MonetDB/XQuery,
whose space requirements rise up to twice the original document size for almost all
the tested �les. As a queriable compression tool, based on a compressed and self-
indexed representation of the document, XXS uses an amount of space closer to that
obtained by pure compression methods. However, the most remarkable feature, is
that within such a little amount of space, XXS is able to provide powerful XPath
evaluation capabilities, like the queriable solutions that require, on average, between
2 and 5 times more space than our solution.

9.2.1.2 Time Measures

Regarding time measures, we next analyze the compression and decompression times
(in seconds) of the di�erent compressors tested (see Figure 9.5 and Figure 9.6) and
also the construction times (in seconds, as well) of the queriable solutions (see Figure
9.7). For XXS, we must note that construction times are actually given by the time
required to compress the document, that is, to create the XWT representation and
to store it into disk, since the additional rank/select structures used for e�cient
searching are created on-the-�y when data structures are loaded from disk.

XWT versus general text compressors. As depicted on top of Figure 9.5,
if we compare XWT against (s,c)-DC and Plain Hu�man codes, we will note that
XWT takes larger times to compress the input data, due to the more complex
parsing we perform to meet XML features. In turn, decompression times are not
a�ected. What is more, they are even improved in many cases (see the graph on
top of Figure 9.6).

From the behavior of the rest of the general text compressors, we can infer
that XWT outperforms both compression and decompression times of virtually all
of them. Just in case of the fast variant of gzip, this compressor obtains better
compression times than XWT (and actually than (s,c)-DC and Plain Hu�man) for
most of the documents. If we consider the gzip best variant that conclusion is not

33Recall that both zlib and gzip are based on the same deflate compression algorithm.

208 Chapter 9. Experimental Evaluation

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

C
om

pr
es

si
on

 T
im

e
(s

ec
.)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1
D

bl
p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed
B

as
eb

al
l

Li
ne

ite
m

M
on

di
al

N
as

a
S

ha
ke

sp
ea

re
S

w
is

sp
ro

t
T

re
eb

an
k

U
S

H
ou

se
T

C
S

D
−

no
rm

al
D

C
S

D
−

no
rm

al
U

ni
pr

ot
1

U
ni

pr
ot

2
E

X
I−

A
rr

ay
E

X
I−

F
ac

tb
oo

k
E

X
I−

In
vo

ic
e

E
X

I−
W

eb
lo

g
E

nw
ik

iN
ew

s
E

nw
ik

iQ
uo

te
E

nw
ik

iT
io

na
ry

E
nw

ik
iV

er
si

ty
E

nw
ik

iA
bs

tr
ac

t1
E

nw
ik

iA
bs

tr
ac

t2

XWT
(s,c)−DC
PH
gzip −f
gzip −b
bzip2 −f
bzip2 −b
ppmdi −f
ppmdi −b
p7zip

10
−2

10
−1

10
0

10
1

10
2

10
3

C
om

pr
es

si
on

 ti
m

e
(s

ec
.)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1
D

bl
p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed
B

as
eb

al
l

Li
ne

ite
m

M
on

di
al

N
as

a
S

ha
ke

sp
ea

re
S

w
is

sp
ro

t
T

re
eb

an
k

U
S

H
ou

se
T

C
S

D
−

no
rm

al
D

C
S

D
−

no
rm

al
U

ni
pr

ot
1

U
ni

pr
ot

2
E

X
I−

A
rr

ay
E

X
I−

F
ac

tb
oo

k
E

X
I−

In
vo

ic
e

E
X

I−
W

eb
lo

g
E

nw
ik

iN
ew

s
E

nw
ik

iQ
uo

te
E

nw
ik

iT
io

na
ry

E
nw

ik
iV

er
si

ty
E

nw
ik

iA
bs

tr
ac

t1
E

nw
ik

iA
bs

tr
ac

t2

XWT
xmillgzip −f
xmillgzip −b
xmillbzip2
xmillppm
xbzipindex
xmlppm
scmppm −f
scmppm −b
xwrtzlib
xwrtlpaq

Figure 9.5: Compression times. Comparison with general text compressors
(top), and with XML conscious non-queriable compression tools (bottom).

9.2. Compression Properties 209

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

D
ec

om
pr

es
si

on
 ti

m
e

(s
ec

.)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1
D

bl
p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed
B

as
eb

al
l

Li
ne

ite
m

M
on

di
al

N
as

a
S

ha
ke

sp
ea

re
S

w
is

sp
ro

t
T

re
eb

an
k

U
S

H
ou

se
T

C
S

D
−

no
rm

al
D

C
S

D
−

no
rm

al
U

ni
pr

ot
1

U
ni

pr
ot

2
E

X
I−

A
rr

ay
E

X
I−

F
ac

tb
oo

k
E

X
I−

In
vo

ic
e

E
X

I−
W

eb
lo

g
E

nw
ik

iN
ew

s
E

nw
ik

iQ
uo

te
E

nw
ik

iT
io

na
ry

E
nw

ik
iV

er
si

ty
E

nw
ik

iA
bs

tr
ac

t1
E

nw
ik

iA
bs

tr
ac

t2

XWT
(s.c)−DC
PH
gzip −f
gzip −b
bzip2 −f
bzip2 −b
ppmdi −f
ppmdi −b
p7zip

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

D
ec

om
pr

es
si

on
 ti

m
e

(s
ec

.)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1
D

bl
p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed
B

as
eb

al
l

Li
ne

ite
m

M
on

di
al

N
as

a
S

ha
ke

sp
ea

re
S

w
is

sp
ro

t
T

re
eb

an
k

U
S

H
ou

se
T

C
S

D
−

no
rm

al
D

C
S

D
−

no
rm

al
U

ni
pr

ot
1

U
ni

pr
ot

2
E

X
I−

A
rr

ay
E

X
I−

F
ac

tb
oo

k
E

X
I−

In
vo

ic
e

E
X

I−
W

eb
lo

g
E

nw
ik

iN
ew

s
E

nw
ik

iQ
uo

te
E

nw
ik

iT
io

na
ry

E
nw

ik
iV

er
si

ty
E

nw
ik

iA
bs

tr
ac

t1
E

nw
ik

iA
bs

tr
ac

t2

XWT
xmillgzip −f
xmillgzip −b
xmillbzip2
xmillppm
xbzipindex
xmlppm
scmppm −f
scmppm −b
xwrtzlib
xwrtlpaq

Figure 9.6: Decompression times. Comparison with general text
compressors (top), and XML conscious non-queriable compressors (bottom).

210 Chapter 9. Experimental Evaluation

as clear, as XWT obtains lower times for some documents. Yet, regarding
decompression times, both variants of gzip are overcome by XWT.

Related to the performance of the remaining general compressors, that is, bzip
compressors, and ppmdi and p7zip tools, the performance of p7zip, particularly slow
in compression, but not at decompression, is remarkable. In this last scenario, ppmdi
compressors have the longest decompression times, followed by bzip techniques, and
�nally by p7zip34, whose results are far from the high decompression times of the
previous ones, and much closer to that of the fastest methods.

XWT versus XML conscious non-queriable compressors. Regarding the
times invested to compress the documents (see the graphic at the bottom of Figure
9.5), XWT achieves almost the same compression times as XMillGzip compressor
with the minimum compression options, both tools being the best ones. The rest
of the techniques are largely slower. Actually, they are much slower than their
general counterparts, so much that compression ratios improvements are ultimately
blurred by time requirements. Just XWRTzlib is able to achieve compression ratios
comparable to that of p7zip, but in less time.

From a detailed analysis, we can observe that PPM based techniques work
similarly, all of them showing worst compression times than gzip based XML
conscious compressors, and in general, than XBzipIndex. Yet the times obtained
by XBzipIndex are much closer to those required by PPM based compressors, than
to XMillGzip or XWRTzlib values. Notice, as well, that whereas XWRTlpaq was
the compressor with the best compression ratios, now it is the one with the largest
compression times. Also XMillBzip2 is quite slow, even worsening the results of
PPM based XML conscious compressors.

The graphic at the bottom of Figure 9.6 represents the di�erences of decom-
pression times among the XML conscious non-queriable compressors. In this
case, XWT has no competitor. Although far from XWT, the next compressors
requiring lower decompression times are both variants of XMillGzip, followed
by XWRTzlib. Regarding XBzipIndex, it produces again higher decompression
times than XMillGzip and XWRTzlib compressors, in particular, similarly to that
required by SCMPPM compressors. SCMPPM alternatives constitute the best
of the PPM based techniques, since both XMillPPM and XMLPPM are slower.
Anyway, XWRTlpaq yields once more the worst decompression times. If we focus
on XMillBzip2, a change on its behavior can be observed. This compressor required
high compression times, but at decompression, it performs close to, although not
better than, XWRTzlib.

XXS versus queriable solutions. If we stare at the construction times of
the queriable solutions shown in Figure 9.7, we will note that XXS and Mon-
etDB/XQuery are the fastest alternatives, both requiring only a few seconds, while

34Contrary to what happened in case of compression times.

9.3. Query Evaluation Performance 211

Qizx/DB and SXSI may take several minutes. In particular, SXSI construction
times are specially slow.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

C
on

st
ru

ct
io

n
tim

e
(s

ec
.)

X
M

ar
k1

X
M

ar
k2

X
M

ar
k3

X
M

ar
k4

D
bl

p1
D

bl
p2

P
sd

M
ed

lin
e1

M
ed

lin
e2

M
ed

lin
e3

A
lfr

ed
B

as
eb

al
l

Li
ne

ite
m

M
on

di
al

N
as

a
S

ha
ke

sp
ea

re
S

w
is

sp
ro

t
T

re
eb

an
k

U
S

H
ou

se
T

C
S

D
−

no
rm

al
D

C
S

D
−

no
rm

al
U

ni
pr

ot
1

U
ni

pr
ot

2
E

X
I−

A
rr

ay
E

X
I−

F
ac

tb
oo

k
E

X
I−

In
vo

ic
e

E
X

I−
W

eb
lo

g
E

nw
ik

iN
ew

s
E

nw
ik

iQ
uo

te
E

nw
ik

iT
io

na
ry

E
nw

ik
iV

er
si

ty
E

nw
ik

iA
bs

tr
ac

t1
E

nw
ik

iA
bs

tr
ac

t2

XXS (XWT)
SXSI
Monet
Qizx

Figure 9.7: Construction times of queriable solutions.

9.3 Query Evaluation Performance

To show the e�ciency of XXS in query evaluation, we have benchmarked it
against the performance of some queriable solutions. In particular, those �rst
referred in Section 9.2, namely MonetDB/XQuery35, Qizx/DB36, and SXSI. All
of them constitute well established solutions from the di�erent categories analyzed
in Chapter 4.

Although XBzipIndex is generally categorized as a queriable compression tool,
we have discarded it from this study, as it gives support to a very limited class of
XPath queries37. It is also worth noting that we have decided to not go in depth

35We used version Oct2010-SP1 of MonetDB, that includes version 4.40.3 of MonetDB4 server
and version 0.40.3 of the XQuery module
36We used Qizx/DB free edition, version 4.2.
37Remember that only full-speci�ed paths of the form //x1/x2/x3 and

//x1/x2/x3[contains(., γ)], where x1, x2 and x3 denote tag/attribute names, and γ is an
arbitrary string, are supported by XBzipIndex.

212 Chapter 9. Experimental Evaluation

on the streaming XPath engines (e.g. GCX, and SPEX), or on the in-memory
processors (e.g. Galax, and SAXON). Such a comparison is hardly fair, since in the
�rst case, streaming processors need to parse the whole XML document input at
each run. For instance, when compared with XXS, SPEX streaming processor runs
about 475 times slower than our proposal. In turn, the limitation of in-memory
processors comes from the construction times required to build the in-memory
representation, prior to evaluating the query at each run, which in case of SAXON,
made it run about 125 times slower than XXS. In addition, this kind of tools usually
represents XML data by means of machine pointers implementations that blow up
memory consumption. In particular, SAXON needs 4-5 times the size of the original
XML documents used in our experiments.

9.3.1 Documents Tested

As �rst pointed out in Section 9.1, the experimental framework for query evaluation
has been designed to be tested over any XMark document. In particular, we have
run the experiments over the XMark2 and XMark4 documents of our collection.
Table 9.2 details the construction features (taken from the results of Section 9.2)
of the di�erent systems over those selected documents, namely, the size of the data
structures created to perform query evaluation (in % of the document size), and
also the construction times (in seconds). We marked in boldface the best values.
In case of XXS, the results presented correspond to a XWT implementation with a
particular waste of 3% of extra space for the space needed to build the rank/select
structures over the XWT bytemaps, and also for the succinct representation of the
balanced parentheses data structure38.

Table 9.2: Systems construction performance.

Document Total size (%) Construction time (sec.)

size (MB) XXS SXSI Monet Qizx XXS SXSI Monet Qizx

XMark2 115.76 36.94 168.58 218.73 99.05 4.11 272.64 9.66 39.55

XMark4 1029.18 36.43 169.98 206.03 96.54 36.37 3059.26 51.11 280.50

9.3.2 Query Results

To perform the query evaluation tests we kept the best of �ve runs, for each query,
by using the systems timing reports. For MonetDB, times are given by the -t option
of the client program, mclient. The server is properly exited and restarted before
each group of �ve runs. For Qizx/DB, we used the −r 2 option of the command

38The space needed to maintain the vocabularies into hash tables represents around 1% of the
compression ratios shown in Table 9.2.

9.3. Query Evaluation Performance 213

line interface to run twice each individual run (the second one, being always faster).
For all systems, we do not consider the index loading times into main memory.

9.3.2.1 Structural based Queries

We �rst addressed the performance of the four systems with respect to the evaluation
of structural based queries, represented by the groups of queries A (Q01-Q21), B
(Q22-Q42) and C (Q43-Q58) presented in Section 9.1.3. Tables from 9.3 to 9.8
summarize, for each individual query, the running times (in milliseconds) of the main
search operations: count, materialize, andmaterialize+serialize the results39. In the
�rst scenario, queries shown in Section 9.1.3 are run by adding the XPath count

function to each one. For instance, a query such as //closed_auction //keyword

will result into count(//closed_auction//keyword). The results materialization
stands for their location, while the third operation also includes the actual results
display. For Qizx/DB, it is not possible to isolate the materialization times, so we
only compare it in the other two scenarios. Notice also, that some of the queries
could not be run by SXSI, since it does not support following, attribute, nor
reverse axes.

In general, we can conclude that XXS shows an outstanding performance,
specially if we consider that its competitors require 2−5 times more space than our
proposal. At �rst sight, we can observe that it is the only system that reached to
solve all the queries.

Related to counting and materializing scenarios, timing results show that XXS
performs on par with the other solutions and even better, since it achieves the best
running times in most queries. It is also important to notice that in those cases,
XXS and SXSI do not experience performance variability with the document size
(in terms of number of queries reporting the best running times). Nevertheless, it
is not the case of MonetDB/XQuery or Qizx/DB. The former performs better over
XMark2, but its performance gets worse over XMark4; while the opposite happens
to Qizx/DB, specially on the group of queries A. Anyway, Qizx/DB does not show,
in general, a remarkable performance, as it gets the best running times in very few
cases.

With respect to materializing plus serializing times, most of the best results are
obtained by MonetDB/XQuery and SXSI, when dealing with the small document
instance. However, MonetDB/XQuery does not get as good timing results for the
biggest document (XMark4), while XXS and SXSI still do. Regarding Qizx/DB,
again it does not get any outstanding result. To properly valuate the XXS
performance in this scenario40, we have to consider that one of the main advantages
of our proposal are its minimal space requirements. It works over a compressed

39Results are serialized to the /dev/null device, to discard data output.
40Note that, in this case, XXS times taken to serialize the results obfuscate the pure query

processing time.

214 Chapter 9. Experimental Evaluation

(and self-indexed) version of the text, and with no additional indexes to keep the
compression gain. Therefore, to fully report the results of a query we have to
decompress each word by decoding it through top-down traversals over the XWT,
while in SXSI, for instance, a plain text representation is used to precisely enable
fast text extraction.

In addition, since another main feature of XXS is the possibility of obtaining
the results on user demand, we also consider important to show its behavior by
assuming a scenario where the results are gradually consumed. Hence, we show the
execution times of reporting the �rst 50 results for each query, as well (see data
marked in blue from Table 9.3 to Table 9.8). Note that in most cases, those results
are reported in less than one millisecond.

The aforementioned conclusions applies to the three groups of queries analyzed
in this section. However, it is worth also to discuss the performance of XXS by
focusing on groups B and C, as both constitute special groups of queries:

• In case of queries of group B, Table 9.5 and Table 9.6 illustrate the great
performance of our solution, in particular, the e�ciency of the parameterized
operators (such as descendantdist, childdist, ancestordist, parentdist, and
their respective att counterparts), designed to overcome the challenge posed
by the evaluation of queries with several steps over the `*' wildcard. Even in
case of `crash tests' (see queries Q38-Q42) XXS shows its robustness, as well.

• On the other hand, and regarding group C (see Table 9.7 and Table 9.8), we
should recall that these queries aim to seek for all the occurrences of a given
element/attribute (also including the special node test `*', in queries Q43
and Q54). Unlike other cases, where XXS times to count and to materialize
the results are the same, in this group, time results for counting scenario
bene�t from the optimization explained in Section 8.2.2.15. Recall that, as
stated there, for this kind of queries XXS simply needs to compute how many
times the last byte of the codeword assigned to the speci�c element/attribute
appears in its corresponding XWT node. As shown in Tables 9.7 and 9.8,
this operation is performed very e�ciently, just requiring some microseconds,
beating by far the rest of the systems.

Another interesting feature that arises from the analysis of this group
of queries is that, in case of materialization times of element searches,
MonetDB/XQuery performs particularly well even over the biggest document
instance. Yet, it does not cope with attributes, while XXS does.

9.3.2.2 Text oriented Queries

To evaluate the performance of the systems over queries involving a text function,
we used the Full text extension of XQuery [Ful] available in the tested version of

9.3. Query Evaluation Performance 215

Table 9.3: Running times (in milliseconds) for the group of queries A over XMark2
document.

XMark2

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q01 19.91 14.86 17.46 26.00 0.307 19.91 15.39 17.70 1.208 87.83 20.95 23.99 66.00

Q02 7.41 9.51 8.56 42.00 0.030 7.41 14.20 9.13 0.725 202.17 30.54 24.52 54.00

Q03 8.13 9.23 10.99 14.00 0.036 8.13 13.86 11.36 0.725 203.04 30.24 28.18 47.00

Q04 21.89 17.76 21.45 19.00 0.546 21.89 18.35 21.65 0.725 32.61 20.99 25.96 74.00

Q05 10.01 23.43 16.66 22.00 0.095 10.01 24.44 16.82 0.290 27.39 30.00 24.19 73.00

Q06 27.24 30.18 23.65 18.00 0.463 27.24 31.56 23.83 0.966 62.61 35.30 28.80 182.00

Q07 33.08 25.24 37.63 76.00 0.115 33.08 27.06 37.21 0.531 217.83 45.98 54.49 93.00

Q08 36.97 32.38 49.13 79.00 0.280 36.97 33.96 49.27 0.725 108.70 41.53 57.53 118.00

Q09 12.79 * 52.38 58.00 0.116 12.79 * 53.12 0.483 104.78 * 68.01 61.00

Q10 91.15 * 44.71 258.00 0.154 91.15 * 43.68 0.773 600.37 * 85.45 285.00

Q11 16.42 * 20.33 115.00 0.101 16.42 * 20.87 0.580 107.83 * 29.32 112.00

Q12 58.84 23.15 31.66 79.00 0.099 58.84 28.51 32.68 0.628 565.22 110.48 181.53 309.00

Q13 21.73 25.51 20.74 72.00 0.193 21.73 26.83 20.99 0.580 86.96 33.86 27.65 112.00

Q14 45.82 * 138.53 206.00 0.087 45.82 * 139.29 0.628 550.87 * 288.24 448.00

Q15 11.17 * 27.97 35.00 0.182 11.17 * 28.04 0.290 22.61 * 31.00 79.00

Q16 24.23 * + 476.00 0.057 24.23 * + 0.435 209.13 * + 547.00

Q17 10.56 * 33.33 + 0.054 10.56 * 33.55 0.242 84.35 * 54.78 +

Q18 3.93 * 54.71 + 0.029 3.93 * 56.69 0.338 56.52 * 67.37 +

Q19 24.25 * + + 0.058 24.25 * + 0.435 209.13 * + +

Q20 42.28 * 28.61 65.00 0.226 42.28 * 28.48 0.676 168.70 * 41.51 109.00

Q21 35.73 * 24.40 96.00 0.367 35.73 * 24.03 0.480 50.00 * 27.40 114.00

⋆: Query with axes not supported by SXSI +: Query did not �nish

Fastest running times are marked in boldface

Table 9.4: Running times (in milliseconds) for the group of queries A over XMark4
document.

XMark4

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q01 179.44 111.07 199.18 175.00 0.349 179.44 114.41 213.20 1.215 786.92 164.82 1453.99 294.00

Q02 67.66 76.51 164.76 64.00 0.059 67.66 117.12 168.53 0.748 1803.85 263.48 1393.73 557.00

Q03 73.93 70.16 174.79 66.00 0.073 73.93 111.89 181.78 0.934 1809.23 258.05 1368.61 565.00

Q04 197.38 134.05 217.74 123.00 0.576 197.38 137.78 221.34 0.841 293.85 162.49 1430.75 187.00

Q05 90.28 187.49 202.30 174.00 0.138 90.28 194.58 200.78 0.280 250.77 244.67 1388.79 381.00

Q06 243.18 242.13 347.47 106.00 0.461 243.18 252.29 345.61 0.934 564.62 284.73 1035.76 537.00

Q07 301.22 201.67 449.95 444.00 0.124 301.22 214.97 439.04 0.561 2006.15 384.61 1141.98 613.00

Q08 334.30 251.14 488.25 537.00 0.299 334.30 261.61 488.04 0.654 1003.08 329.61 1154.95 592.00

Q09 114.49 * 1017.51 3946.00 0.077 114.49 * 1015.49 0.561 954.67 * 3476.10 4193.00

Q10 837.10 * 2788.87 12584.00 0.156 837.10 * 2779.43 0.748 5599.23 * 8717.87 18649.00

Q11 148.04 * 1290.47 3428.00 0.148 148.04 * 1325.94 0.561 978.67 * 1407.37 4488.00

Q12 538.32 185.41 1078.08 669.00 0.095 538.32 231.92 1125.28 0.561 5191.08 977.32 2614.23 3768.00

Q13 197.66 202.28 619.44 458.00 0.211 197.66 212.27 621.47 0.654 800.00 274.70 880.73 552.00

Q14 417.85 * 2079.71 2163.00 0.085 417.85 * 2096.99 0.561 5062.06 * 3622.60 4381.00

Q15 99.72 * 684.28 418.00 0.191 99.72 * 682.57 0.280 206.92 * 955.96 374.00

Q16 216.64 * + 15117.00 0.061 216.64 * + 0.374 1879.23 * + 15499.00

Q17 95.51 * 1324.84 + 0.049 95.51 * 1436.23 0.280 727.69 * 3826.42 +

Q18 35.33 * 2989.78 + 0.037 35.33 * 3032.29 0.187 503.85 * 3969.07 +

Q19 217.01 * + + 0.055 217.01 * + 0.467 1876.92 * + +

Q20 388.41 * 377.44 414.00 0.215 388.41 * 396.95 0.654 1545.38 * 1127.75 569.00

Q21 323.93 * 357.78 358.00 0.349 323.93 * 364.25 0.467 452.31 * 391.42 459.00

⋆: Query with axes not supported by SXSI +: Query did not �nish

Fastest running times are marked in boldface

216 Chapter 9. Experimental Evaluation

Table 9.5: Running times (in milliseconds) for the group of queries B over XMark2
document.

XMark2

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q22 17.39 44.11 19.67 42.000 0.060 17.39 47.15 18.58 0.821 235.22 64.49 38.34 78.00

Q23 9.15 53.93 21.67 13.00 0.113 9.15 56.93 23.60 0.773 120.87 66.38 33.60 62.00

Q24 14.18 91.51 20.97 56.00 0.081 14.18 96.32 19.93 0.580 130.44 110.52 34.46 100.00

Q25 16.92 124.59 40.52 72.00 0.106 16.92 127.57 41.55 0.821 133.48 136.96 52.66 68.00

Q26 0.71 5.28 11.52 13.00 0.589 0.71 5.44 11.15 1.450 1.30 5.57 11.39 13.00

Q27 0.82 10.35 11.86 11.00 0.044 0.82 10.84 12.05 0.773 14.78 12.13 13.33 40.00

Q28 18.72 * 47.49 149.00 0.596 18.72 * 47.39 0.966 29.13 * 50.47 171.00

Q29 21.50 * 21.78 112.00 0.122 21.50 * 21.61 0.531 135.22 * 34.36 96.00

Q30 0.003 * 34.77 105.00 0.003 0.003 * 34.73 539.370 541.48 * 488.00 654.00

Q31 1.06 * 57.37 159.00 0.176 1.06 * 56.93 0.628 3.48 * 57.51 165.00

Q32 18.04 * 59.41 216.00 0.287 18.04 * 58.92 0.531 43.48 * 65.09 231.00

Q33 55.80 * 145.70 561.00 0.290 55.80 * 145.51 0.773 171.74 * 159.95 578.00

Q34 29.36 * 91.99 318.00 0.316 29.36 * 91.82 0.725 81.74 * 99.24 374.00

Q35 34.97 * 82.50 141.00 0.192 34.97 * 82.33 0.580 146.96 * 94.03 162.00

Q36 1.53 * 8.62 17.00 0.113 1.53 * 9.13 0.193 3.91 * 9.56 28.00

Q37 22.71 * 64.07 196.00 0.131 22.71 * 62.69 0.241 51.74 * 67.87 226.00

Q38 28.73 325.73 261.46 5403.00 0.009 28.73 372.63 259.35 1.014 5414.35 783.89 524.79 6298.00

Q39 13.75 204.06 109.40 683.00 0.007 13.75 222.98 107.57 1.400 2836.96 437.07 271.05 1150.00

Q40 209.24 498.38 333.26 2515.00 0.009 209.24 664.70 325.37 0.241 33666.10 3999.33 2448.67 9567.00

Q41 63.88 68.43 31.61 149.00 0.012 63.88 109.69 30.58 7.440 9463.48 1261.67 1198.04 3089.00

Q42 0.009 0.88 5.49 1.00 0.001 0.009 0.92 4.60 1051.400 1117.83 867.63 1187.31 3221.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

Table 9.6: Running times (in milliseconds) for the group of queries B over XMark4
document.

XMark4

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q22 158.97 372.25 552.21 353.00 0.059 158.97 395.45 607.06 0.748 2067.33 550.15 5542.68 1585.00

Q23 81.96 429.90 298.68 75.00 0.075 81.96 453.87 318.36 0.934 1053.85 534.53 2506.55 376.00

Q24 127.20 796.12 526.44 290.00 0.073 127.20 857.33 524.44 0.561 1188.77 988.70 1009.86 1170.00

Q25 152.80 1066.80 723.32 259.00 0.106 152.80 1091.68 801.17 0.841 1210.00 1179.68 5865.52 631.00

Q26 6.08 20.51 30.90 70.00 0.706 6.08 20.92 35.31 1.495 14.62 21.49 137.89 85.00

Q27 6.82 45.77 37.74 72.00 0.061 6.82 48.34 37.81 0.654 128.46 59.01 145.77 115.00

Q28 170.00 * 2620.16 11674.00 0.603 170.00 * 2725.06 0.841 265.39 * 6134.37 11771.00

Q29 193.08 * 1277.29 4242.00 0.108 193.08 * 1280.66 0.467 1213.08 * 1400.22 5126.00

Q30 0.006 * 1471.50 4391.00 0.006 0.006 * 1452.63 5004.530 4983.46 * 6657.49 25138.00

Q31 9.07 * 2816.36 12764.00 0.211 9.07 * 2834.58 0.654 33.08 * 2806.94 12828.00

Q32 162.52 * 2812.76 13420.00 0.197 162.52 * 2819.11 0.467 398.46 * 4348.52 14712.00

Q33 508.13 * 1604.71 6630.00 0.282 508.13 * 1586.22 0.841 1558.46 * 2058.12 7665.00

Q34 267.85 * 934.28 2453.00 0.314 267.85 * 935.80 0.748 746.15 * 1632.58 2573.00

Q35 320.75 * 880.27 1213.00 0.225 320.75 * 875.88 0.561 1342.31 * 1560.14 1319.00

Q36 12.71 * 32.03 92.00 0.150 12.71 * 34.27 0.280 33.08 * 36.83 127.00

Q37 206.36 * 702.54 1471.00 0.124 206.36 * 699.20 0.187 459.23 * 742.30 1536.00

Q38 259.72 2842.77 3622.11 61387.00 0.009 259.72 3336.40 3620.15 1.121 47665.20 7432.12 12500.89 76102.00

Q39 125.05 1771.12 2352.33 20521.00 0.008 125.05 1945.51 2347.83 1.402 24987.90 3868.97 11706.21 23397.00

Q40 1863.08 4034.35 4050.25 44569.00 0.008 1863.08 6669.74 4101.93 0.280 296303.00 36412.75 24665.71 124960.00

Q41 563.93 589.70 1572.09 11242.00 0.012 563.93 950.93 1604.03 7.196 84443.10 11249.80 14584.12 41609.00

Q42 0.002 0.87 7.70 1.00 0.002 0.002 0.90 13.59 10071.700 10117.00 7708.88 15705.40 43168.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

9.3. Query Evaluation Performance 217

Table 9.7: Running times (in milliseconds) for the group of queries C over XMark2
document.

XMark2

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q43 0.001 0.684 38.25 618.00 0.008 224.78 171.15 30.24 1602.500 49428.10 6398.10 6596.96 19873.00

Q44 0.003 0.580 5.78 3.00 0.017 0.16 2.33 6.17 0.097 8.26 3.46 7.55 30.00

Q45 0.003 0.585 4.85 1.00 0.003 0.009 0.629 4.92 55.507 57.39 45.10 51.59 160.00

Q46 0.003 0.579 6.17 7.00 0.015 1.66 1.30 5.03 0.290 39.13 8.03 13.13 63.00

Q47 0.003 0.577 5.02 7.00 0.015 1.69 1.32 4.85 0.145 23.48 7.90 12.96 59.00

Q48 0.004 0.576 5.91 11.00 0.012 2.64 1.94 6.00 0.386 103.91 14.95 20.98 43.00

Q49 0.004 0.579 4.90 5.00 0.012 2.66 1.95 4.89 0.435 120.44 16.98 19.58 46.00

Q50 0.003 0.584 5.73 12.00 0.015 6.83 5.38 5.90 7.633 3505.65 450.28 351.75 1275.00

Q51 0.003 0.580 5.76 8.00 0.009 13.85 7.62 5.18 0.580 1125.65 100.27 97.04 161.00

Q52 0.003 0.579 5.76 15.00 0.009 16.47 9.34 5.48 0.145 261.74 97.02 88.90 124.00

Q53 0.003 0.574 6.84 13.00 0.012 10.09 6.55 6.35 0.193 206.52 61.78 51.06 92.00

Q54 0.003 * 451.39 1212.00 0.013 79.73 * 455.22 0.097 926.96 * 570.96 1396.00

Q55 0.003 * 411.78 1124.00 0.018 0.20 * 406.06 0.048 2.61 * 406.52 1130.00

Q56 0.003 * 409.39 1147.00 0.153 6.53 * 408.47 0.241 11.74 * 409.64 1144.00

Q57 0.003 * 416.89 1126.00 0.031 5.39 * 415.54 0.097 33.48 * 420.74 1126.00

Q58 0.003 * 426.56 1096.00 0.032 30.76 * 424.73 0.145 165.65 * 444.57 1200.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

Table 9.8: Running times (in milliseconds) for the group of queries C over XMark4
document.

XMark4

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q43 0.001 0.672 1479.27 19261.00 0.008 1985.51 1511.98 1535.915 15280.200 441356.00 57049.30 61894.76 218665.00

Q44 0.003 0.574 7.29 13.00 0.008 1.40 29.59 11.08 0.467 110.00 39.26 27.73 180.00

Q45 0.003 0.579 8.57 1.00 0.006 0.006 0.61 8.53 508.785 504.62 386.04 606.70 1264.00

Q46 0.003 0.571 12.17 11.00 0.016 14.77 6.51 11.02 0.280 363.08 66.63 1122.53 94.00

Q47 0.003 0.569 8.76 10.00 0.016 14.86 6.61 8.10 0.187 203.85 64.23 1191.19 93.00

Q48 0.004 0.572 13.14 17.00 0.012 24.02 12.29 11.66 0.280 939.23 129.41 1146.89 159.00

Q49 0.004 0.573 10.23 11.00 0.014 24.02 12.41 10.04 0.467 1086.15 147.16 1115.25 249.00

Q50 0.003 0.578 16.68 19.00 0.014 61.78 42.80 16.26 7.477 30645.30 4008.04 11671.49 19054.00

Q51 0.003 0.577 24.48 72.00 0.008 125.42 62.50 25.11 0.561 9969.23 890.25 11609.33 11181.00

Q52 0.003 0.577 27.96 96.00 0.012 147.94 78.06 27.00 0.093 2374.62 870.13 11453.98 8733.00

Q53 0.003 0.567 21.47 62.00 0.010 91.22 53.62 19.15 0.187 1849.23 556.13 3506.14 1641.00

Q54 0.003 * 5225.31 24360.00 0.014 721.87 * 5308.76 0.093 8348.46 * 6284.36 29676.00

Q55 0.003 * 4895.67 23720.00 0.018 1.78 * 4905.57 0.093 21.54 * 4786.40 23761.00

Q56 0.003 * 4910.53 23930.00 0.154 58.97 * 4862.37 0.280 106.92 * 4781.53 23720.00

Q57 0.002 * 4897.69 23762.00 0.031 51.03 * 4913.76 0.093 303.85 * 4854.26 28575.00

Q58 0.003 * 4988.83 24417.00 0.031 286.08 * 5015.04 0.187 1488.46 * 5125.83 24777.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

Qizx/DB, and rewrote some of the queries of group D41 to make them as e�cient as
possible, while preserving the semantics of the original ones. To this aim, we used
the ftcontains text function instead of the standard contains, since it is more
e�cient42. For MonetDB/XQuery, the PF/Tijah text index [LMR+05] included

41Remember that this group is devoted to cover queries with contains and equal text functions.
42ftcontains allows to express contains-like queries, but also regular expression matching. It

makes use of the full-text index.

218 Chapter 9. Experimental Evaluation

also supports some full-text capabilities43. However it does not include an optimized
version of the contains operator, hence we used the standard one, that relies on
string conversions. Regarding SXSI, we must realize that its contains and equal

implementations do not support text searches over phrases spanning more than one
text node. Therefore, in case of SXSI times should not be considered in a strict
sense, as text searches may potentially require less processing than that faced by
the rest of the systems.

Table 9.9: Running times (in milliseconds) for the group of queries D over XMark2
document.

XMark2

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q59 29.91 73.83 187.77 40.00 3.873 29.91 75.60 187.62 10.097 83.48 82.58 192.76 62.00

Q60 6.50 8.63 30.77 32.00 2.927 6.50 8.83 30.76 3.720 7.39 9.42 31.30 34.00

Q61 1.76 1.50 22.44 3.00 1.761 1.76 1.58 22.43 1.981 1.74 1.64 22.58 4.00

Q62 33.75 184.28 17.62 42.00 0.450 33.75 189.85 17.35 0.628 48.70 192.83 20.48 84.00

Q63 13.69 2.27 48.70 21.00 13.684 13.69 2.37 48.23 14.444 14.78 2.50 48.69 31.00

Q64 65.85 88.78 28.62 8.00 0.329 65.85 90.81 28.88 0.531 106.96 103.66 38.80 83.00

Q65 14.73 * 12.81 48.00 1.387 14.73 * 12.87 1.450 16.09 * 13.24 58.00

Q66 38.02 55.37 18.66 39.00 0.856 38.02 56.42 18.54 1.111 49.57 59.55 20.70 92.00

Q67 5.75 2.21 415.04 10.00 5.768 5.75 2.30 422.09 9.758 9.57 2.74 413.72 16.00

Q68 2.70 1.59 218.12 9.00 2.699 2.70 1.68 216.84 3.913 3.91 1.67 217.11 18.00

Q69 22.89 * 24.73 90.00 0.576 22.89 * 24.35 0.918 36.09 * 25.06 111.00

Q70 52.10 * 23.62 69.00 1.236 52.10 * 23.99 1.785 77.78 * 27.88 96.00

Q71 3.42 * 12.96 53.00 2.974 3.42 * 12.99 3.532 4.07 * 13.14 55.00

Q72 3.10 * 33.92 57.00 2.810 3.10 * 34.43 2.995 3.48 * 34.56 69.00

Q73 3.98 * 448.03 1305.00 0.573 3.98 * 453.72 0.773 4.78 * 453.91 1304.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

Table 9.9 and 9.10 presents the execution times obtained for each text oriented
query. As it is shown, XXS performs on par with SXSI, and MonetDB/XQuery
for tests over XMark2 (as none of them actually stands out from the other),
all of them outperforming Qizx/DB44. Yet in case of XMark4 (the biggest �le),
MonetDB/XQuery obtains quite larger times, while both XXS and SXSI scale well.
If we consider Qizx/DB, we can see that the bigger the document, the better the
performance it exhibits. In particular, we must highlight its good time results for
the count scenario of XMark4.

By analyzing each individual query in detail, we can observe that XXS performs
better than the rest of the systems when evaluating queries involving elements
content searches over single words, while phrase patterns may blur these time
di�erences. This is mainly due to the fact that phrase processing requires several
top-down traversals to verify the codewords around the occurrence of the least
frequent word of the pattern. However, for attributes, XXS beats any of the tools.

43Such as a complex about operator for approximate matches, which ranks results by order of
relevance.
44With the proviso of MonetDB/XQuery for some queries.

9.3. Query Evaluation Performance 219

Table 9.10: Running times (in milliseconds) for the group of queries D over
XMark4 document.

XMark4

Count Materialize Materialize+Serialize

XXSall SXSI Monet Qizx XXS50 XXSall SXSI Monet XXS50 XXSall SXSI Monet Qizx

Q59 267.66 597.52 6481.68 88.00 3.947 267.66 610.25 6935.21 10.280 748.46 677.27 6981.74 222.00

Q60 44.77 72.61 4730.67 36.00 2.574 44.77 73.46 4735.92 3.271 57.69 78.92 4993.35 59.00

Q61 13.18 7.95 4598.22 20.00 3.613 13.18 7.98 4791.35 4.112 16.15 8.34 4791.75 27.00

Q62 304.39 1525.35 1398.49 295.00 0.396 304.39 1568.06 1399.03 0.561 438.46 1600.01 1504.30 481.00

Q63 120.37 12.94 2781.56 126.00 15.353 120.37 13.07 2859.08 16.168 126.15 14.01 2867.76 191.00

Q64 596.17 800.89 4631.92 28.00 0.329 596.17 817.25 4645.80 0.467 963.85 930.57 4738.66 1686.00

Q65 129.72 * 469.91 172.00 1.331 129.72 * 463.80 1.495 140.77 * 486.67 204.00

Q66 337.20 499.99 2127.11 143.00 0.838 337.20 506.31 2207.13 1.028 450.00 535.68 2229.77 246.00

Q67 53.27 11.96 12148.06 71.00 8.463 53.27 12.04 12220.45 15.794 95.39 15.91 12322.78 119.00

Q68 18.41 7.95 8950.99 19.00 18.491 18.41 7.93 8970.11 26.822 26.92 7.94 8971.28 42.00

Q69 205.23 * 371.11 352.00 0.671 205.23 * 375.70 0.927 323.08 * 382.55 459.00

Q70 466.73 * 1163.32 4279.00 1.251 466.73 * 1211.98 1.782 699.23 * 4858.95 4286.00

Q71 2.80 * 775.83 246.00 2.768 2.80 * 776.26 3.783 3.85 * 778.77 262.00

Q72 2.15 * 250.33 291.00 2.221 2.15 * 252.89 2.430 2.31 * 253.04 292.00

Q73 2.80 * 5186.66 25522.00 0.763 2.80 * 5221.96 0.934 3.85 * 5298.02 25936.00

⋆: Query with axes not supported by SXSI Fastest running times are marked in boldface

Unlike the groups of structural based queries, textual queries are commonly
much more selective in terms of number of results produced. Hence, XXS
materialization plus serialization times are not as a�ected by the times required
to recompose the codeword bytes of the words before decoding them, as happened
there. Anyway, note that we also show the XXS running times of retrieving the
�rst 50 results for each query, requiring just a few milliseconds.

220 Chapter 9. Experimental Evaluation

Chapter 10

Conclusions and Future Work

10.1 Summary of Contributions

The use of the eXtensible Markup Language (XML) has been constantly growing
in the last years, due to its great �exibility for semi-structured data representation
and its acknowledged suitability for data exchange on the Internet. As its relevance
increased, query languages were also proposed to process and extract relevant
information from this kind of documents, as well as solutions to give them support.
Some of these approaches focused on the query aspect, and devoted their e�orts to
provide e�cient query evaluation solutions, without regarding space requirements.
In turn, other works pursued the same aim, but also considered one of the main
drawbacks of XML, its verbosity, and tried to use the minimum amount of space as
possible, in the form of compressed representations. The main advantage of these
tools arises from space reductions, but they also add some extra bene�ts: dropping
the space may be key to �t data structures in main memory rather than swapping
out to disk, operating in higher and faster levels of the memory hierarchy; to use
fewer machines, or even to achieve a feasible solution when the memory is limited
(as in mobile devices). Hence, the relevance of these approaches has triggered a
large amount of research in this area. However, today there is no available solutions
providing e�cient query support within the space of the compressed text.

In this thesis we address the problem of a stated lack of practical tools with
the aforementioned features and present what can be considered the �rst practical
available solution for compressed self-indexed storage of XML documents, which
takes a very little amount of space, and which provides, at the same time, e�cient
query support, by specially focusing on XPath evaluation. Our system, which we
called XXS, includes two main contributions to the state of the art:

221

222 Chapter 10. Conclusions and Future Work

• First, we have proposed the XML Wavelet Tree (XWT), a new compressed
self-indexed representation of XML documents, which permits compact
storage, providing in addition e�cient querying capabilities. Our structure
occupies a space proportional to the compressed text, (about 30%-40% of
the original document size), keeping almost the same compression ratios as
other word-based byte-oriented semistatic statistical compression methods
(just requiring about 4%-5% more, on average), and taking reasonable times to
compress the document (since a more complex parsing of the input document
is performed to meet XML features), and better decompression times.

In comparison with other general text compressors and XML conscious but
non-queriable compressors, XWT compression ratios are not as good as that
obtained by these other tools, as might be expected, since none of them
exhibits the querying ability. They rather aim to compress to the best.
However, XWT drastically improves the compression and decompression times
of virtually all of them.

Yet the most important feature of the XWT representation is that with just
a little amount of extra space (about 4%-8%) to provide this structure with
powerful indexing capabilities1 (for the structures of partial counters used
to speed up basic operations, and for the succinct tree representation of
the document structure), it is able to further allow e�cient XML querying
purposes.

• Second, we have designed and implemented a complete Query module for
the e�cient evaluation of XPath queries over a XWT representation, taking
advantage of its valuable self-indexing properties. This module has been
divided into two main parts, namely the Query parser and the Query
evaluator, whose detailed descriptions has been presented from Chapter 6
to Chapter 8. For the Query parser submodule, in charge of the query
parsing tasks, the process from the preliminary representation of a query
(the query parse tree) up to the obtention of the �nal query execution plan
(the query execution tree) has been explained. For the Query evaluator
submodule, devoted to perform the actual evaluation tasks, we have described
the performance of the global evaluation procedure, characterized by three
main strategies: a bottom-up approach, a lazy evaluation scheme, and a
skipping strategy; and also we have fully provided the implementations of
every operator, with comprehensive discussions.

As a whole, XXS provides e�cient XPath evaluation within the space of the
compressed document. Experiments show that our system successfully competes
with some well known solutions in the state of the art supporting XPath, and that
it largely outperforms them in terms of amount of space used.

1We also include the space needed to maintain the vocabularies into hash tables.

10.2. Future Work 223

In particular, experimental results have shown XXS outstanding performance.
If we consider the retrieval of the whole set of query results, it has been proved
that, most times, XXS performs better than the best current alternatives, for both
counting and materializing scenarios. Only when serialization is involved, XXS does
not exhibit such a remarkable behavior (although its results are still competitive),
since unlike other systems, which have a straightforward access to the text, XXS
needs to recompose the codeword bytes spread along the di�erent XWT nodes
before decoding and displaying a word. But in this case, we must stand out one of
the main XXS features that makes these time di�erences be actually blurred: the
ability of obtaining results on user demand, thanks to its lazy evaluation scheme.
As experiments showed, XXS is able to immediately report (within one millisecond
in most queries) a �rst batch of query results, and to continue producing the rest
while the others are still being consumed by the user.

The other striking characteristic of XXS is that it is by far the system that
uses less amount of space (and also less time to be constructed). Note that the
compressed (and self-indexed) storage of XXS arises from the XWT data structure
(plus the above mentioned additional waste of extra space used to improve its
e�ciency). Experiments showed that the rest of the systems (including XML
conscious queriable compressors, such as SXSI) require between 2 and 5 times more
space than that used by XXS. Hence, it results in a good alternative to work with
huge corpus that otherwise should be manipulated on disk.

Summarizing, XXS requires little space, provides e�cient and outstanding
XPath querying capabilities, and shows a robust and scalable behavior, features
that lead XXS to have no current competitors with comparable query evaluation
performance in the same amount of space.

10.2 Future Work

In this section we detail some of the plans considered for future work after this
thesis:

• Given the good performance of XXS, we plan to extend the practical subset
of XPath targeted in this work to also meet some of the XPath extensions,
such as inequalities and positional predicates, and to consolidate its status,
even more, giving support to the XQuery language. As XPath constitutes the
core of XQuery, we intend to apply the e�cient querying capabilities of XXS
to solve FLWOR clauses.

• Another quite interesting future plan is to introduce document retrieval into
our structures. In this way, query evaluation could also provide document
information, more suitable for some scenarios. For instance, if we want to
�nd relevant documents to user queries when working with collections of

224 Chapter 10. Conclusions and Future Work

several documents. In addition, the introduction of relevance measures is
also planned, to provide each retrieved result (in the form of speci�c XML
components or documents) with a retrieval status value, and even to carry
out ranking tasks with respect to a query.

An initial approach to this goal has already been studied, and presented in
[BCPNP12].

• As a way to promote the use of XXS by the community, we aim to create both
an API interface, to allow its integration with other systems such as digital
libraries; and also a complete application focused on providing compressed
storage of XML documents and XPath querying facilities, based on the work
developed.

Appendix A

Publications and Other

Research Results

Publications

Journals to be submitted

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. XXS: E�cient XPath
Evaluation over Compressed Self-Indexed XML documents. Manuscript to
be submitted to a high-level journal.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G., Pedreira, O. Space E�cient
Ranked Document Retrieval. Manuscript to be submitted to a high-level
journal.

International conferences

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. A Compressed Self-indexed
Representation of XML Documents. In Proc. of the 13th European Conference
on Digital Libraries (ECDL) - LNCS 5714, pp. 273-284, Corfu, Greece, 2009.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G., Pasi, G. An E�cient
Implementation of a Flexible XPath Extension. In Proc. of the 9th Interna-
tional Conference on Adaptivity, Personalization and Fusion of Heterogeneous
Information (RIAO), pp. 140-147, Paris, France, 2010.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G., Pedreira, O. Ranked
Document Retrieval in (Almost) No Space. In Proc. of the 19th International

225

226 Appendix A. Publications and Other Research Results

Symposium on String Processing and Information Retrieval (SPIRE) - LNCS
7608, pp. 155-160. Cartagena de Indias, Colombia, 2012.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. XPath Evaluation over
Compressed and Self-indexed XML documents. In 7th Workshop on Com-
pression, Text, and Algorithms of the 19th International Symposium on
String Processing and Information Retrieval (SPIRE). Cartagena de Indias,
Colombia, 2012.

National conferences

• Álvarez, S., Cerdeira-Pena, A., Fariña, A., Ladra, S. Desarrollo de un
Compressor de Textos Orientado a Palabras basado en PPM. In Actas de
las XIV Jornadas de Ingeniería del Software y Bases de Datos (JISBD), pp.
237-248. San Sebastián, Spain, 2009.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G., Pasi, G. Estrategias de
Optimización de Consultas XPath Flexibles sobre XML Wavelet Trees. In
Actas del I Congreso Español de Recuperación de Información (CERI), pp.
207-218. Madrid, Spain, 2010.

• Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. A Compressed Self-indexed
Representation of XML Documents. In Actas de las XV Jornadas de
Ingeniería del Software y Bases de Datos (JISBD), pp. 199-199. Valencia,
Spain, 2010.

Research stays

• February, 2008 - July, 2008. Research stay at Universidad de Chile,
Departamento de Ciencias de la Computación (Santiago, Chile).

• September, 2009 - December, 2009. Research stay at Università degli Studi
di Milano, Information Retrieval Group (Milano, Italy).

• March, 2010 - May, 2010. Research stay at Universidad de Chile, Departa-
mento de Ciencias de la Computación (Santiago, Chile).

• January, 2011. Research stay at Universidad de Chile, Departamento de
Ciencias de la Computación (Santiago, Chile).

• January, 2012. Research stay at Universidad de Chile, Departamento de
Ciencias de la Computación (Santiago, Chile).

Appendix B

Algorithms

This appendix details the pseudocode of some operators whose implementation is
discussed in Chapter 8.

Algorithm B.1: Next procedure of any element (i.e. `*' applied to elements)

Input: news, newe (new positional restrictions), lasts (start position of the last
delivered segment), stack

Output: next valid occurrence of any element
1. if news ≥ newe then

2. inspectStack(news)
3. occs ← rank((news)
4. if occs + 1 ≤ n(then

5. poss ← select((occs + 1)
6. pose ← findclose(poss)
7. result← segment(poss, pose)
8. else

9. result← ø
10. end

11. else

12. maxs = max(news − 1, lasts)
13. inspectStack(newe, news)
14. occe ← rank) (newe)
15. if occe + 1 ≤ n) then

16. pose ← select) (occe + 1)
17. poss ← findopen(pose)

227

228 Appendix B. Algorithms

18. if poss ≤ maxs then

19. news ← pose + 1; go to 3.
20. end

21. else

22. result← ø
23. return result
24. end

25. occs ← rank((pose)
26. occnested ← occs − occe − 1
27. match← poss; i← 0
28. while i < occnested do

29. parents ← enclose(match)
30. if parents > maxs then

31. stack.push(segment(poss, pose))
32. poss ← parents
33. pose ← findclose(poss)
34. match← parents; i← i+ 1
35. else

36. break

37. end

38. end

39. result← segment(poss, pose)
40. end

41. return result

229

Algorithm B.2: Next procedure of or operator (non-nested variant)

Input: news, newe (new positional restrictions)
Output: next element segment from any side

1. left← L.result
2. right← R.result
3. if lastL or (left ̸=ø and (left.s < news or left.e < newe)) then
4. lefts ← max(lefts, news)
5. lefte ← max(lefte, newe)
6. left← L.next(lefts, lefte)

7. if lastR or (right ̸=ø and (right.s < news or right.e < newe)) then
8. rights ← max(rights, news)
9. righte ← max(righte, newe)

10. right← R.next(rights, righte)

11. lastL← 0; lastR← 0
12. if left ̸=ø and right ̸=ø then

13. case left < right or left ⊃ right
14. lefts ← left.e+ 1; lastL← 1; result← left; return result

15. case left > right or left ⊂ right
16. rights ← right.e+ 1; lastR← 1; result← right; return result

17. else

18. if left ̸=ø then

19. lefts ← left.e+ 1; lastL← 1; result← left; return result
20. else

21. if right ̸=ø then

22. rights ← right.e+ 1; lastR← 1; result← right; return result
23. else

24. result←ø; return result

230 Appendix B. Algorithms

Algorithm B.3: Next procedure of oratt operator

Input: news (new positional restriction)
Output: next attribute segment from any side

1. left← L.result
2. right← R.result
3. if lastL or (left ̸=ø and left.sroot < news) then
4. lefts ← max(lefts, news)
5. left← L.next(lefts)

6. if lastR or (right ̸=ø and right.sroot < news) then
7. rights ← max(rights, news)
8. right← R.next(rights)

9. lastL← 0; lastR← 0
10. if left ̸=ø and right ̸=ø then

11. case left < right
12. lefts ← left.sroot + 1; lastL← 1; result← left; return result

13. case left > right
14. rights ← right.sroot + 1; lastR← 1; result← right; return result

15. else

16. if left ̸=ø then

17. lefts ← left.sroot + 1; lastL← 1; result← left; return result
18. else

19. if right ̸=ø then

20. rights ← right.sroot + 1; lastR← 1; result← right; return result
21. else

22. result←ø; return result

231

Algorithm B.4: Next procedure of orphrase operator

Input: news (new positional restriction)
Output: next phrase segment from any side

1. left← L.result
2. right← R.result
3. if lastL or (left ̸=ø and left.sroot < news) then
4. lefts ← max(lefts, news)
5. left← L.next(lefts)

6. if lastR or (right ̸=ø and right.sroot < news) then
7. rights ← max(rights, news)
8. right← R.next(rights)

9. lastL← 0; lastR← 0
10. if left ̸=ø and right ̸=ø then

11. case left < right or left ⊃ right
12. lefts ← left.eroot + 1; lastL← 1; result← left; return result

13. case left > right or left ⊂ right
14. rights ← right.eroot + 1; lastR← 1; result← right; return result

15. else

16. if left ̸=ø then

17. lefts ← left.eroot + 1; lastL← 1; result← left; return result
18. else

19. if right ̸=ø then

20. rights ← right.eroot + 1; lastR← 1; result← right; return result
21. else

22. result←ø; return result

232 Appendix B. Algorithms

Algorithm B.5: Next procedure of contains text function for single words (non-

nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling contains semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. lefts ← left.e+ 1; result← left; return result

15. otherwise

16. lefts ← left.e+ 1; left← L.next(lefts, lefte)

17. result← ø
18. return result

233

Algorithm B.6: Next procedure of contains text function for a phrase (non-nested
variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling contains semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. lefte ← left.e+ 1; result← left; return result

15. case left.s > right.s and left.e > right.e
16. rights ← right.eroot + 1; right← R.next(rights)
17. if right ̸=ø then

18. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

19. otherwise

20. lefts ← right.e+ 1; left← L.next(lefts, lefte)

21. result← ø
22. return result

234 Appendix B. Algorithms

Algorithm B.7: Next procedure of equal text functions for single words (non-

nested variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling equal semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. left.sroot ← selectby (XWTroot, left.s)
15. left.eroot ← selectby (XWTroot, left.e)

// checkBoundaries : veri�es equality condition, despite of interleaved
// occurrences of start/end-tags, comments and processing instructions,
// which are skipped.

16. if checkBoundaries(left.sroot, left.eroot, right.sroot, right.eroot) then
17. lefts ← left.e+ 1; result← left; return result
18. else

19. rights ← left.eroot + 1; right← R.next(rights)
20. if right ̸=ø then

21. right.s← rankby (XWTroot, right.sroot)

22. otherwise

23. lefts ← left.e+ 1; left← L.next(lefts, lefte)

24. result← ø
25. return result

235

Algorithm B.8: Next procedure of equal text function for single words (full-nested
variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling equal semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.s+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. left.sroot ← selectby (XWTroot, left.s)
15. left.eroot ← selectby (XWTroot, left.e)

// checkBoundaries : veri�es equality condition, despite of interleaved
// occurrences of start/end-tags, comments and processing instructions,
// which are skipped.

16. if checkBoundaries(left.sroot, left.eroot, right.sroot, right.eroot) then
17. lefte ← right.s+ 1; result← left; return result
18. else

19. lefte ← right.s+ 1; left← L.next(lefts, lefte)

20. otherwise

21. lefts ← left.e+ 1; left← L.next(lefts, lefte)

22. result← ø
23. return result

236 Appendix B. Algorithms

Algorithm B.9: Next procedure of equal text function for a phrase (non-nested

variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling equal semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. left.sroot ← selectby (XWTroot, left.s)
15. left.eroot ← selectby (XWTroot, left.e)

// checkBoundaries : veri�es equality condition, despite of interleaved
// occurrences of start/end-tags, comments and processing instructions,
// which are skipped.

16. if checkBoundaries(left.sroot, left.eroot, right.sroot, right.eroot) then
17. lefts ← left.e+ 1; result← left; return result
18. else

19. rights ← left.eroot + 1; right← R.next(rights)
20. if right ̸=ø then

21. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

22. otherwise

23. lefts ← right.e+ 1; left← L.next(lefts, lefte)

24. result← ø
25. return result

237

Algorithm B.10: Next procedure of equal text function for a phrase (full-nested

variant)

Input: news,newe (new positional restrictions)
Output: next occurrence of the left side ful�lling equal semantics
// We assume that by is the �rst byte of a start/end-tag's codeword

1. lefts ← max(lefts, news)
2. lefte ← max(lefte, newe)
3. left← L.next(lefts, lefte)
4. right← R.result
5. while left ̸=ø and right ̸=ø do

6. case left < right
7. lefte ← right.e+ 1; left← L.next(lefts, lefte)

8. case left > right
9. left.sroot ← selectby (XWTroot, left.s)

10. rights ← left.sroot + 1; right← R.next(rights)
11. if right ̸=ø then

12. right.s← rankby (XWTroot, right.sroot);
right.e← rankby (XWTroot, right.eroot)

13. case left ⊇ right // left.s<=right.s and left.e>right.e
14. left.sroot ← selectby (XWTroot, left.s)
15. left.eroot ← selectby (XWTroot, left.e)

// checkBoundaries : veri�es equality condition, despite of interleaved
// occurrences of start/end-tags, comments and processing instructions,
// which are skipped.

16. if checkBoundaries(left.sroot, left.eroot, right.sroot, right.eroot) then
17. lefte ← right.e+ 1; result← left; return result
18. else

19. lefte ← right.e+ 1; left← L.next(lefts, lefte)

20. otherwise

21. lefts ← right.e+ 1; left← L.next(lefts, lefte)

22. result← ø
23. return result

238 Appendix B. Algorithms

Appendix C

Descripción del Trabajo

Realizado

C.1 Introducción

Desde su aparición en 1998, la importancia del lenguaje de marcado eXtensible
Markup Language (XML) [XMLa] ha ido creciendo de manera constante gracias a
las enormes posibilidades que ofrece para el intercambio de datos en Internet y, en
general, para la comunicación de información semi-estructurada entre aplicaciones
de diferentes plataformas. De hecho, hoy día se considera el estándar de facto para la
representación de datos semi-estructurados, siendo utilizado para el almacenamiento
de grandes volúmenes de información en dominios que abarcan desde el comercio
electrónico, las bibliotecas digitales, o los catálogos, hasta aplicaciones biológicas y
médicas, especi�caciones de metadatos, etc.

Una de las principales características del XML es su expresividad. Para poder
aprovechar ésta al máximo, son varios los lenguajes de consulta que se han venido
de�niendo a lo largo de los años. Es el caso de dos de sus máximos exponentes,
XPath y XQuery, lenguajes que permiten la realización de consultas tanto sobre
el contenido del documento como sobre su estructura. La importancia creciente
de estos lenguajes unido al reto que supone dar un soporte e�ciente a ellos,
ha motivado numerosos trabajos de investigación con el objeto de proporcionar
soluciones competitivas, bien como propuestas teóricas, bien en forma de sistemas
reales. Estos sistemas se dividen generalmente en dos grandes categorías: aquéllos
que siguen una aproximación en streaming (por ejemplo, GCX [SSK07], SPEX
[SPE], etc.), y que por tanto deben realizar una lectura secuencial del documento
previa respuesta de una consulta; y los indexados (tales como Saxon [Kay08], Galax
[FSC+03], MonetDB/XQuery [BGvK+06], Qizx/DB [Qiz], etc.), los cuales llevan

239

240 Appendix C. Descripción del Trabajo Realizado

a cabo un procesamiento previo del documento con el �n de crear estructuras de
datos adicionales, que después son utilizadas para poder responder las consultas sin
necesidad de recorrer secuencialmente los documentos de cada vez.

Los sistemas indexados resultan atractivos en multitud de escenarios, espe-
cialmente en aquellos casos en los que el coste de un recorrido secuencial puede
llegar a ser prohibitivo o, incluso, cuando son muchas las consultas que se van
a formular sobre un mismo documento. Sin embargo, y aunque en primera
instancia los sistemas secuenciales puedan ser considerados como soluciones más
lentas respecto de las soluciones indexadas, no siempre tiene por qué darse esta
situación. Es importante mencionar que las soluciones indexadas mejoran las
capacidades de consulta a expensas de incrementar sus necesidades de espacio,
debido al uso de índices. Así pues, en caso de que el tamaño de estos obligue
a su manipulación en disco, la e�ciencia puede verse directamente afectada por
tiempos de transferencia de E/S, incurriendo en tiempos incluso mayores que las
aproximaciones secuenciales. Debido a ello, muchas investigaciones han dirigido sus
esfuerzos a conseguir minimizar los elevados requisitos de espacio de los sistemas
indexados, mediante la creación de índices en memoria principal.

En relación con el consumo de espacio, otra línea de investigación destacada ha
sido el desarrollo de métodos de compresión para XML. Una de las propiedades
fundamentales del modelo de datos XML es su gran �exibilidad. No obstante,
ésta característica también constituye uno de sus principales inconvenientes, ya que
puede dar lugar a documentos de gran tamaño que es preciso almacenar, transmitir,
y consultar. En este sentido, el uso de herramientas de compresión no sólo supone un
ahorro de espacio, sino también de tiempo, ya que procesar una versión comprimida
de un documento permite reducir tiempos de transmisión, de acceso a disco, o más
importante aún, de procesamiento. Así, son varios los trabajos que se han venido
desarrollando a lo largo de estos últimos años en este ámbito. Desde la aplicación
de compresores de texto generales, categorizados como compresores XML ciegos
(por ejemplo, las técnicas Ziv-Lempel [ZL77, ZL78, Wel84], los códigos Hu�man
[Huf52, dMNZBY00], los métodos basados en PPM [CW84], o la familia de los
Dense Codes [BFNP07]), hasta la creación de herramientas especí�cas para explotar
las características propias de esta clase de documentos (también conocidos como
compresores XML especí�cos). Asimismo, y dentro de estas últimas, algunos de
los compresores dedicados han tratado de ir un paso más allá, y proporcionar a
mayores un soporte para la realización de consultas (es el caso de compresores como
XGrind [TH02], XPRESS [MPC03], XCQ [LNWL03, NLWL06], XQzip [CN04],
XQueC[ABMP07], etc.). Algunos de ellos permiten que las consultas puedan ser
resueltas directamente sobre la representación comprimida del documento (bien de
manera secuencial, bien a través de índices). Otros, en cambio, precisan realizar
algún tipo de descompresión (bien total, bien parcial) antes de poder operar sobre
él. Sin embargo, y a pesar de las numerosas propuestas, se ha constatado que, en la
actualidad, existe una carencia importante de herramientas prácticas a disposición

C.2. Metodología 241

de los usuarios [Sak09], especialmente en el caso de mayor relevancia, el de técnicas
de compresión especí�cas para XML, con capacidades de consulta.

Otra línea de trabajo más reciente ha sido la de combinar compresión e
indexación, a través de lo que se conoce como autoíndices. En este caso, hablamos de
estructuras que ocupan un espacio proporcional al texto comprimido, lo reemplazan
y además proporcionan un acceso e�ciente al mismo [NM07]. Uno de los objetivos
principales de estos índices es su almacenamiento en memoria principal, para evitar
los elevados costes de acceso a disco. En este dominio, todavía son pocos los
trabajos desarrollados en torno al ámbito de tratamiento de documentos XML.
Un ejemplo lo encontramos en la herramienta XBzipIndex [FLMM05, FLMM06],
un autoíndice especí�co para documentos XML, que además permite la realización
de consultas, si bien limitadas a tipos muy especí�cos. Otra propuesta reciente,
enfocada en la indexación comprimida de documentos XML, ha sido la herramienta
SXSI [ACM+10]. Diseñada para trabajar en memoria principal, esta herramienta
es capaz de responder un subconjunto más amplio de consultas. No obstante, en
este caso, su principal inconveniente reside en los elevados requisitos de espacio que
presenta, si se compara con el tamaño del texto comprimido.

Así pues, se puede observar que a día de hoy todavía existe una clara necesidad
de implementaciones e�cientes, escalables y estables que ocupen poco espacio y
además ofrezcan, al mismo tiempo, un soporte competitivo para la consulta de
documentos XML.

C.2 Metodología

En este trabajo se ha tenido en cuenta la casuística presentada en la Sección C.1,
y en concreto, la ausencia de herramientas prácticas disponibles que aúnen a la vez
importantes capacidades de consulta, junto con unos requisitos de espacio mínimos.
De esta manera, se ha desarrollado lo que puede considerarse como la primera
solución práctica disponible para el almacenamiento comprimido y auto-indexado de
documentos XML, capaz de ofrecer un soporte e�ciente a la evaluación de consultas
XPath en el espacio del texto comprimido (alrededor de un 30%-40% del tamaño
original del documento). El planteamiento seguido para su consecución se muestra
a continuación:

• Inicialmente, se realizó un completo estudio bibliográ�co en relación a las
propiedades y modelo de datos del lenguaje de marcado XML, así como de
los lenguajes de�nidos para su tratamiento y consulta, con especial énfasis
en el lenguaje de consulta XPath. El objetivo era adquirir un profundo
conocimiento acerca de las características del XML para la representación
de información semi-estructurada y las necesidades básicas del procesamiento
de documentos en este formato.

242 Appendix C. Descripción del Trabajo Realizado

• Tras este primer paso, se procedió a una revisión exhaustiva de trabajos
existentes en el ámbito del almacenamiento y consulta de documentos
XML. Desde aproximaciones enfocadas a proporcionar un soporte e�ciente
a la consulta de este tipo de documentos, pero sin abordar con igual
énfasis la problemática del espacio de almacenamiento, hasta aquellas otras
soluciones cuya motivación principal reside precisamente en este último
aspecto, pudiendo permitir algunas de ellas la realización de consultas. Se
pretendía de esta manera establecer las bases del estado del arte, para
poder contrastar las ventajas y debilidades de las distintas alternativas, así
como determinar las necesidades principales a las que se debía dar solución.
Dicho análisis permitió identi�car la ausencia constatada de herramientas
disponibles que ofreciesen un soporte de consultas e�ciente, empleando
requisitos de espacio mínimos.

• Los análisis realizados nos llevaron a proponer una nueva solución para el
almacenamiento, procesamiento y consulta de documentos XML, e�ciente en
tiempo y en espacio, centrándonos en particular, en el lenguaje de consulta
XPath. Así pues, la primera contribución de nuestro trabajo consistió en
una nueva propuesta para la representación comprimida y auto-indexada de
documentos XML, denominada XML Wavelet Tree (XWT). Esta estructura
no sólo ofrece un almacenamiento compacto (obtiene ratios de compresión
del 30%-40%), sino que además proporciona al mismo tiempo importantes
capacidades de consulta. La constatación de este hecho se pone de mani�esto
a través de la segunda de las contribuciones, el diseño e implementación de un
módulo de consulta para la e�ciente evaluación de consultas XPath sobre una
representación XWT. En conjunto, ambos trabajos desarrollados constituyen
un sistema completo, XXS (XPath evaluation on XML documents using a
Self-index), capaz de resolver e�cientemente consultas del lenguaje XPath
sobre documentos XML comprimidos y auto-indexados.

• Ya por último, se llevó a cabo la validación del sistema propuesto a
través de una batería exhaustiva de experimentos. Los resultados obtenidos
demostraron que nuestra solución es capaz de competir exitosamente con
algunas de las herramientas más conocidas del estado del arte con soporte
a la realización de consultas XPath, superándolas además ampliamente en
términos de espacio. Este hecho evidencia, por tanto, la consecución de los
objetivos iniciales, logrando cubrir la necesidad actual de una herramienta con
estas características.

C.3 Conclusiones y Contribuciones

Conforme el uso del eXtensible Markup Language se ha venido haciendo más popular
como estándar para la representación de datos semi-estructurados y el intercambio

C.3. Conclusiones y Contribuciones 243

de datos en Internet, también lo han hecho los lenguajes de consulta propuestos
para su explotación y procesamiento, así como los trabajos desarrollados con el
�n de proporcionar soluciones a los retos que su tratamiento impone. Algunas
de estas aproximaciones se han centrado en el desarrollo de propuestas enfocadas
hacia una e�ciente evaluación de consultas, como objetivo principal, relegando a
un segundo plano las necesidades de espacio. Otras, sin embargo, han dirigido sus
esfuerzos a tratar de abordar uno de los principales inconvenientes del lenguaje
XML, su verbosidad, y usar el mínimo espacio posible a través de representaciones
comprimidas, proporcionando en la medida de lo posible, posibilidades de consulta.
En este sentido, la principal ventaja de estas últimas no sólo parte de una
evidente reducción de espacio, sino también de una serie de bene�cios adicionales.
Por ejemplo, la reducción del espacio ocupado es fundamental para permitir el
almacenamiento de estructuras de datos en niveles superiores (y, por tanto, más
rápidos) de la jerarquía de memoria (como memoria principal), y evitar los costosos
accesos a disco. A mayores, puede permitir también el uso de un menor número de
máquinas en determinados contextos, o incluso ser un aspecto crucial para lograr
una solución factible cuando el uso de memoria es limitado (como sucede en el
caso de dispositivos móviles). Esto ha hecho que las aportaciones en este área a lo
largo de los años hayan sido numerosas. No obstante, y a pesar de ello, hoy día
no existe una solución disponible competitiva en términos de capacidad y tiempo
de resolución de consultas, cuyas necesidades de espacio sean mínimas, cercanas al
tamaño del texto comprimido.

En este trabajo de investigación hemos tratado de dar solución a esta prob-
lemática. Como resultado, esta tesis presenta una nueva propuesta para el
almacenamiento comprimido y auto-indexado de documentos XML con soporte a la
evaluación e�ciente de consultas, en concreto, del lenguaje XPath. Nuestra solución,
que hemos dado en llamar XXS, se compone de dos contribuciones principales:

• Primero, se ha propuesto el XML Wavelet Tree (XWT), una nueva repre-
sentación comprimida y auto-indexada para documentos XML, que propor-
ciona al mismo tiempo almacenamiento compacto, y características implícitas
de auto-indexación. Nuestra estructura, basada en el uso de una técnica de
compresión orientada a byte y a palabra, conocida como (s,c)-Dense Code,
modi�cada especí�camente para dotar al XWT de capacidades de consulta,
permite la representación de documentos XML ocupando un 30%-40% de
su tamaño original. Esto supone un incremento despreciable (alrededor del
4%-5%) con respecto a los ratios de compresión obtenidos por el propio
(s,c)-Dense Code, y otras métodos de compresión de texto genéricos de las
mismas características. Mientras, nuestra propuesta mantiene unos tiempos
de compresión razonables (algo mayores debido a la complejidad que conlleva
el procesamiento de documentos XML contemplando la identi�cación de los
distintos componentes del modelo de datos subyacente), y mejora los tiempos
de descompresión.

244 Appendix C. Descripción del Trabajo Realizado

En comparación con otros compresores de propósito general y herramientas
de compresión especí�ca XML, aunque no capaces de soportar ningún tipo de
consulta, XWT presenta, generalmente, unos ratios de compresión mayores,
como es de esperar; ya que el propósito de los demás compresores es
precisamente obtener la máxima compresión, sin proporcionar capacidades de
consulta. No obstante, en relación a los tiempos, XWT mejora drásticamente
tanto los tiempos de compresión como los de descompresión de prácticamente
todos ellos.

En cualquier caso, la característica más importante de XWT es que con
una mínima cantidad de espacio adicional (en torno al 4%-8%), necesaria
para conferir a nuestra estructura destacadas capacidades de indexación1

(mediante la creación de estructuras de contadores utilizadas para agilizar
operaciones básicas de rank y select, así como de aquéllas empleadas para la
representación sucinta de la propia estructura del documento XML), puede
ser usado e�cientemente con propósitos de evaluación de consultas; tal y como
se pone de mani�esto a través de la segunda de las contribuciones.

• Como segunda contribución, se ha diseñado y desarrollado un módulo para
la e�ciente evaluación de consultas XPath sobre documentos comprimidos
con XWT. En este sentido, hemos presentado una completa descripción de
dicho módulo, distinguiendo sus dos principales componentes: el submódulo
encargado del ánalisis sintáctico de la consulta, y su transformación en un plan
de ejecución; y el submódulo dedicado a la propia evaluación de la consulta.
En esta última parte, además de describir el procedimiento de evaluación
general, caracterizado principalmente por tres estrategias: una aproximación
bottom-up, un esquema de evaluación lazy y una estrategia de salto que
permite procesar únicamente aquellas partes del documento relevantes para
la consulta; se ha proporcionado también una detallada explicación de la
implementación de cada posible operación2.

En su conjunto, el sistema propuesto, XXS, proporciona un soporte a la
evaluación de consultas XPath e�ciente, en el espacio del texto comprimido. Los
experimentos realizados prueban que XXS compite favorablemente con algunas de
las soluciones más destacadas en el estado del arte para la resolución de consultas
XPath, empleando además una cantidad de espacio mucho menor.

En concreto, los resultados experimentales evidencian el comportamiento real-
mente bueno de nuestro sistema. Si consideramos la situación en que la totalidad
de resultados de una consulta es recuperado en su conjunto, se ha constatado
que XXS logra mejorar, para la mayoría de los casos, los tiempos de las mejores
alternativas actuales, tanto a la hora de contabilizar como localizar los resultados

1También se incluye el espacio ocupado por el uso de tablas hash para mantener los vocabularios
de palabras.

2De acuerdo al subconjunto de XPath abordado en este trabajo.

C.4. Trabajo Futuro 245

de la consulta. Sólo en caso de que a mayores se precise su serialización, XXS
no exhibe un comportamiento tan destacadao (si bien sigue siendo competitivo),
ya que a diferencia de otros sistemas, que pueden acceder directamente al texto,
XXS necesita recomponer los bytes que constituyen el código de una palabra y que
se encuentran repartidos en los distintos nodos del XWT, antes de decodi�carla y
poder mostrarla al usuario. Sin embargo, en este caso, cabe mencionar una de las
principales características de XXS que hacen que esas diferencias de tiempos en este
escenario sean relativas: su capacidad para obtener los resultados bajo demanda,
gracias al esquema de evaluación lazy. XXS es capaz de devolver inmediatamente
(en menos de un milisegundo, en gran parte de las consultas) un primer conjunto
de resultados y continuar produciendo el resto mientras los primeros son analizados
por el usuario.

De otro lado, en relación al espacio, XXS es, con diferencia, la herramienta que
utiliza una menor cantidad de espacio, así como la que requiere también menores
tiempos de construción. Es importante notar que, en XXS, la representación
comprimida (y auto-indexada) de los documentos es proporcionada a través del
XWT (teniendo en cuenta el gasto de espacio adicional para mejorar su e�ciencia,
previamente indicado). Los experimentos demuestran que el resto de los sistemas
analizados (incluyendo también compresores especí�cos XML con capacidades de
consulta) requieren entre 2 y 5 veces más espacio que el ocupado por XXS. Esta
propiedad de XXS resulta especialmente relevante a la hora de trabajar con corpus
de gran tamaño que, de otra forma, deberían ser manipulados en disco.

Así pues, con este trabajo se ha puesto de mani�esto que nuestra propuesta,
XXS, es una herramienta robusta y escalable, que permite responder de manera
e�ciente un amplio subconjunto del lenguaje de consulta XPath, utilizando para
ello una cantidad de espacio mínima. Actualmente, no existe otra alternativa con
características comparables, capaz de mostrar un comportamiento igual de notable
en la misma cantidad de espacio.

C.4 Trabajo Futuro

Los trabajos realizados en esta tesis, así como los resultados obtenidos, hacen
que algunas de las posibles líneas de investigación futuras a considerar sean las
siguientes:

• Dado el buen comportamiento y propiedades exhibidas por XXS, estamos
planeando ampliar el subconjunto de XPath abordado en este trabajo y
tratar también algunas de sus extensiones más recientes, como desigualdades,
o predicados posicionales, así como consolidar su status dando soporte, a
mayores, al lenguaje de consultas XQuery. Si tenemos en cuenta que este
último utiliza de base XPath, resulta realmente interesante poder aplicar las

246 Appendix C. Descripción del Trabajo Realizado

destacadas capacidades de consulta de nuestra herramienta a la resolución de
consultas FLWOR propias del lenguaje XQuery.

• Otra importante línea de investigación futura pasa por incluir opciones de
recuperación de documentos en nuestra solución, de forma que los resultados
de la consulta puedan proporcionar también una información a nivel de
documento. Este tipo de recuperación es adecuado para determinados
escenarios, como por ejemplo, aquél donde un usuario quiere encontrar
los documentos más relevantes a una consulta de entre una colección de
ellos. Asimismo, también planeamos estudiar la introducción de medidas de
relevancia, de manera que los resultados (bien en forma de componentes XML
especí�cos, bien en forma de documentos) posean un grado de importancia
en el contexto de las consultas, que posibilite además realizar su clasi�cación
atendiendo a ese valor.

Una primera aproximación a este objetivo ha sido ya estudiada, y presentada
en [BCPNP12].

• Como forma de poner nuestro trabajo a disposición de los miembros de la
comunidad y promover su uso, tenemos planeado proporcionar una API que
permita la integración de XXS en otros sistemas como, por ejemplo, bibliotecas
digitales; y también se prevé iniciar el proceso de creación de una completa
aplicación para el almacenamiento comprimido y consulta de documentos
XML, utilizando de base el trabajo desarrollado.

Bibliography

[ABMP07] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. XQueC: A
query-conscious compressed XML database. ACM Transactions on
Internet Technology, 7(2), 2007.

[Abr63] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[ACM+10] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro,
K. Nguyen, J. Sirén, and N. Välimäki. Fast in-memory XPath search
using compressed indexes. In Proc. of the 26th IEEE International
Conference on Data Engineering (ICDE), pages 417�428, 2010.

[ANF07] J. Adiego, G. Navarro, and P. Fuente. Lempel-Ziv compression of
highly structured documents. Journal of the American Society for
Information Science and Technology, 58(4):461�478, 2007.

[ANF09] J. Adiego, G. Navarro, and P. Fuente. A prototype for querying over
lzcs transformed documents. IEEE Latin American Transactions,
7(3):353�360, 2009.

[Ant97] G. Antoshenkov. Dictionary-based order-preserving string compres-
sion. International Journal on Very Large Data Bases, 6(1):26�39,
1997.

[BB04] D. K. Blandford and G. E. Blelloch. Compact representations of
ordered sets. In Proc. of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 11�19, 2004.

[BCCN06] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-based
XML projection. In Proc. of the 32th International Conference on
Very Large Data Bases (VLDB), pages 271�282, 2006.

[BCPN09] N. R. Brisaboa, A. Cerdeira-Pena, and G. Navarro. A compressed
self-indexed representation of XML documents. In Proc.of the 13th
European Conference on Digital Libraries (ECDL), pages 273�284,
2009.

247

248 Bibliography

[BCPNP12] N. R. Brisaboa, A. Cerdeira-Pena, G. Navarro, and O. Pedreira.
Ranked document retrieval in (almost) no space. In Proc. of the
19th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 155�160, 2012.

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice
Hall, 1990.

[BDM+05] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman,
and S. S. Rao. Representing trees of higher degree. Algorithmica,
43(4):275�292, 2005.

[BFLN08] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Reorganizing
compressed text. In Proc. of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 139�146, 2008.

[BFLN12] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Implicit
indexing of natural language text by reorganizing bytecodes.
Information Retrieval, 15(6):527�557, 2012.

[BFNP03] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. (s, c)-
Dense Coding: An optimized compression code for natural language
text databases. In Proc. of the 10th International Symposium on
String Processing and Information Retrieval (SPIRE), pages 122�
136, 2003.

[BFNP07] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá.
Lightweight natural language text compression. Information
Retrieval, 10(1):1�33, 2007.

[BGvK+06] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: a fast XQuery processor powered by
a relational engine. In Proc. of the 2006 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 479�490,
2006.

[BHMR07] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for
strings, binary relations and multi-labeled trees. In Proc. of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 680�689, 2007.

[BINP03] N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá. An
e�cient compression code for text databases. In Proc. of the 25th
European Conference on Information Retrieval Research (ECIR),
pages 468�481, 2003.

Bibliography 249

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762�772, 1977.

[Bon02] P. A. Boncz. Monet: A Next-Generation DBMS Kernel for Query-
Intensive Applications. PhD thesis, University of Amsterdam,
Amsterdam, Netherlands, 2002.

[BR04] T. Böhme and E. Rahm. Supporting e�cient streaming and insertion
of XML data in RDBMS. In Proc. of the 3rd International Workshop
on Data Integration over the Web (DIWeb), pages 70�81, 2004.

[BSTW86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally
adaptive data compression scheme. Communications of the ACM,
29(4):320�330, 1986.

[BW94] M. Burrows and D. Wheeler. A block-sorting lossless data
compression algorithm. In Tech. Rep 124, Digital Equipment
Corporation, 1994.

[BYRN99] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Weslwy Longman, 1999.

[CAYBF05] E. Curtmola, S. Amer-Yahia, P. Brown, and M. F. Fernández.
Galatex: a conformant implementation of the XQuery full-text
language. In Proc. of the 14th International World Wide Web
Conference (WWW), pages 1024�1025, 2005.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications, 2007.

[Che01] J. Cheney. Compressing XML with multiplexed hierarchical PPM
models. In Proc. of the 11th Data Compression Conference (DCC),
pages 163�172, 2001.

[Che05] J. Cheney. An empirical evaluation of simple DTD-conscious
compression techniques. In Proceedings of the 8th International
Workshop on the Web and Databases (WebDB), pages 43�48, 2005.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Ontario, Canadá, 1996.

[CLL05] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with
applications. SIAM Journal on Computing, 34(4):924�945, 2005.

[CM01] J. Clark and M Murata. RELAX NG speci�cation. OASIS
Committee, 2001.

250 Bibliography

[CN04] J. Cheng and W. Ng. XQzip: Querying compressed XML using
structural indexing. In Proc. of the 9th International Conference on
Extending Database Technology (EDBT), pages 219�236, 2004.

[CN07] F. Claude and G. Navarro. A fast and compact web graph
representation. In Proc. of the 14th Symposium on String Processing
and Information Retrieval (SPIRE), pages 118�129, 2007.

[CW84] J. Cleary and I. H. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communication,
32(4):396�402, 1984.

[Deu96] P. Deutsch. De�ate compressed data format speci�cation version 1.3,
1996.

[dMNZBY00] E. Silva de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-
Yates. Fast and �exible word searching on compressed text. ACM
Transactions on Information Systems, 18(2):113�139, 2000.

[DOM] DOM, W3C Recommendation of Document Object Model.
http://www.w3.org/DOM.

[DRR06] O. Delpratt, N. Rahman, and R. Raman. Engineering the louds
succinct tree representation. In Proc. of the 5th International
Workshop on Experimetal Algorithms (WEA), pages 134�145, 2006.

[EXI] eXist-DB Open Source Native XML Database.
http://www.exist-db.org.

[FLMM05] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan.
Structuring labeled trees for optimal succinctness, and beyond.
In Proc. of the 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 184�196, 2005.

[FLMM06] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan.
Compressing and searching XML data via two zips. In Proc. of the
15th International World Wide Web Conference (WWW), pages 751�
760, 2006.

[FLMM09] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan.
Compressing and indexing labeled trees, with applications. Journal
of the ACM, 57(1):4:1�4:33, 2009.

[FM01] P Ferragina and G. Manzini. An experimental study of a compressed
index. Information Sciences: special issue on �Dictionary Based
Compression�, 135(1-2):13�28, 2001.

Bibliography 251

[FM05] P. Ferragina and G. Manzini. Indexing compressed text. Journal of
the ACM, 52(4):552�581, 2005.

[FM08a] A. Farzan and J. I. Munro. Succinct representations of arbitrary
graphs. In 16th Annual European Symposium (ESA), pages 393�404,
2008.

[FM08b] A. Farzan and J. I. Munro. A uniform approach towards succinct
representation of trees. In Proc. of the 11th Scandinavian Workshop
on Algorithm Theory (SWAT), pages 173�184, 2008.

[FM11] A. Farzan and J. Ian Munro. Succinct representation of dynamic
trees. Theoretical Computer Science Journal, 412(24):2668�2678,
2011.

[Fra06] M. Franceschet. XPathMark: Functional and performance tests for
XPath. In XQuery Implementation Paradigms, 2006.

[FSC+03] M. F. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The Galax experience. In Proc. of the
29th International Conference on Very Large Data Bases (VLDB),
pages 1077�1080, 2003.

[Ful] W3C Recommendation of XQuery and XPath Full Text 1.0.
http://www.w3.org/TR/xpath-full-text-10.

[Gal] Galax. http://galax.sourceforge.net.

[GGG+07] A. Golynski, R. Grossi, A. Gupta, R. Raman, and S. S. Rao. On
the size of succinct indices. In Proc. of the 15th Annual European
Symposium on Algorithms (ESA), pages 371�382, 2007.

[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In Proc. of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 841�850, 2003.

[GGV04] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals
compression: experiments with compressing su�x arrays and
applications. In Proc. of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 636�645, 2004.

[GHSV06] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data
structures: Dictionaries and data-aware measures. In Proc. of the
16th Data Compression Conference (DCC), pages 213�222, 2006.

[GKP05] G. Gottlob, C. Koch, and R. Pichler. E�cient algorithms for
processing XPath queries. ACM Transactions on Database Systems,
30(2):444�491, 2005.

252 Bibliography

[GMOS02] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing
XML streams with deterministic automata. In Proceedings of the 9th
International Conference on Database Theory (ICDT), pages 173�
189, 2002.

[GMR06] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proc. of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 368�
373, 2006.

[GN07] R. González and G. Navarro. Compressed text indexes with fast
locate. In Proc. of the 18th Annual Symposium on Combinatorial
Pattern Matching (CPM), pages 216�227, 2007.

[Gol66] S. W. Golomb. Run-length encodings. IEEE Transactions on
Information Theory, 12(3):399�401, 1966.

[GP98] C. Goldfarb and P. Prescod. The XML Handbook. Prentice Hall,
1998.

[GRR04] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees
with level-ancestor queries. In Proc. of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1�10, 2004.

[GRRR04] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple
optimal representation for balanced parentheses. In Proc. of the
15th Annual Symposium on Combinatorial Pattern Matching (CPM),
pages 159�172, 2004.

[GRRR06] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A
simple optimal representation for balanced parentheses. Theoretical
Computer Science, 368(3):231�246, 2006.

[GS00] M. Girardot and N. Sundaresan. Millau: an encoding format for
e�cient representation and exchange of XML over the web. Computer
Networks, 33(1-6):747�765, 2000.

[GST04] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL hosts. In
Proc. of the 30th International Conference on Very Large Data Bases
(VLDB), pages 252�263, 2004.

[Gur89] E. M. Gurari. Introduction to the theory of computation. Computer
Science Press, 1989.

[GvKT03] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach
a relational DBMS to watch its (axis) steps. In Proc. of the 29th
International Conference on Very Large Data Bases (VLDB), pages
524�525, 2003.

Bibliography 253

[GvKT04] T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath
evaluation in any RDBMS. ACM Transactions on Database Systems,
29:91�131, 2004.

[GW97] R. Goldman and J. Widom. Dataguides: Enabling query formulation
and optimization in semistructured databases. In Proc. of the 23th
International Conference on Very Large Data Bases (VLDB), pages
436�445, 1997.

[Hea78] H. Heaps. Information Retrieval - Computational and Theoretical
Aspects. Academic Press, 1978.

[HM10] M. He and J. I. Munro. Succinct representations of dynamic strings.
In Proc. of the 17th Symposium on String Processing and Information
Retrieval (SPIRE), pages 334�346, 2010.

[HMR07] M. He, J. Ian Munro, and S. S. Rao. Succinct ordinal trees based
on tree covering. In Proc. of the 34th International Colloquium on
Automata, Languages and Programming (ICALP), pages 509�520,
2007.

[Hos10] H. Hosoya. Foundations of XML Processing: The Tree Automata
Approach. Cambridge University Press, 2010.

[How93] P. G. Howard. The design and analysis of e�cient lossless data
compression systems. Technical report, Providence, RI, USA, 1993.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[Huf52] D. Hu�man. A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers, 40(9):1098�
1101, 1952.

[Jac89] G. Jacobson. Space-e�cient static trees and graphs. In Proc. of the
30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 549�554, 1989.

[JSS07] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct
representation of ordered trees. In Proc. of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 575�584,
2007.

[Kay08] Michael Kay. Ten reasons why Saxon XQuery is fast. IEEE Data
Engineering Bulletin, 31(4):65�74, 2008.

254 Bibliography

[KM90] J. Katajainen and E. Mäkinen. Tree compression and optimization
with applications. International Journal of Foundations of Computer
Science, 1(4):425�448, 1990.

[Kra49] L. G. Kraft. A device for quantizing, grouping and coding amplitude
modulated pulses. Master's thesis, Department of Electrical
Engineering, MIT, Cambridge, MA, USA, 1949.

[KY00] J. C. Kie�er and E. Yang. Grammar-based codes: A new class of
universal lossless source codes. IEEE Transactions on Information
Theory, 46(3):737�754, 2000.

[KYNC00] J. C. Kie�er, E. Yang, G. J. Nelson, and P. C. Cosman.
Universal lossless compression via multilevel pattern matching. IEEE
Transactions on Information Theory, 46(4):1227�1245, 2000.

[Lad11] S. Ladra. Algorithms and Compressed Data Structures for
Information Retrieval. PhD thesis, University of A Coruña, A
Coruña, Spain, 2011.

[LDM05] G. Leighton, J. Diamond, and T. Müldner. AXECHOP: A grammar-
based compressor for XML. In Proc. of the 15th Data Compression
Conference (DCC), page 467, 2005.

[LE07] C. League and K. Eng. Schema-based compression of XML data with
RELAX NG. Journal of Computers, 2(10):9�17, 2007.

[Li03] W. Li. XComp: an XML Compression Tool. Master's thesis,
University of Waterloo, Waterloo, Ontario, Canadá, 2003.

[LM00] N. J. Larsson and A. Mo�at. O�-line dictionary-based compression.
Proceedings of the IEEE, 88(11):1722 �1732, 2000.

[LMD05] G. Leighton, T. Müldner, and J. Diamond. TREECHOP: A tree-
based queriable compressor for XML. Technical report, Acadia
University, 2005.

[LMR+05] J. A. List, V. Mihajlovic, G. Ramírez, A. P. de Vries, D. Hiemstra,
and H. E. Blok. Tijah: Embracing IR methods in XML databases.
Information Retrieval, 8(4):547�570, 2005.

[LNWL03] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene. XCQ: XML
compression and querying system. In Proc. of the 12th International
World Wide Web Conference (WWW), 2003.

[LS00] H. Liefke and D. Suciu. XMill: An e�cient compressor for XML
data. In Proc. of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 153�164, 2000.

Bibliography 255

[LW02] M. Levene and P. Wood. XML structure compression. In Proc. of
the 2nd International Workshop on Web Dynamics, 2002.

[LY08] H.-I. Lu and C.-C. Yeh. Balanced parentheses strike back. ACM
Transactions on Algorithms, 4(3):28:1�28:13, 2008.

[LZLY05] Y. Lin, Y. Zhang, Q. Li, and J. Yang. Supporting e�cient query
processing on compressed XML �les. In Proceedings of the 20th
Annual ACM Symposium on Applied Computing (SAC), pages 660�
665, 2005.

[Mei02] W. Meier. eXist: An Open Source Native XML Database. In Web,
Web-Services, and Database Systems, pages 169�183, 2002.

[MN07] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science Journal, 387(3):332�347, 2007.

[MN10] S. Maneth and K. Nguyen. XPath whole query optimization.
International Journal on Very Large Data Bases, 3(1):882�893, 2010.

[MNW98] A. Mo�at, R. M. Neal, and I. H. Witten. Arithmetic coding revisited.
ACM Transactions on Information Systems, 16(3):256�294, 1998.

[MNZBY98] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching
on compressed text allowing errors. In Proc. of the 21st Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pages 298�306, 1998.

[Mof89] A. Mo�at. Word-based text compression. Software: Practice and
Experience, 19(2):185�198, 1989.

[Mof90] A. Mo�at. Implementing the PPM data compression scheme. IEEE
Transactions on Communication, 38(11):1917�1921, 1990.

[MPC03] J. Min, M. Park, and C. Chung. XPRESS: A queriable compression
for XML data. In Proc. of the 2003 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 122�133,
2003.

[MR97] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses, static trees and planar graphs. In Proc. of the 38th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 118�126, 1997.

[MR01] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing,
31(3):762�776, 2001.

256 Bibliography

[MR04] J. I. Munro and S. S. Rao. Succinct representations of functions. In
Proc. of the 31th International Colloquium on Automata, Languages
and Programming (ICALP), pages 1006�1015, 2004.

[MRR01] J. I. Munro, V. Raman, and S. S. Rao. Space e�cient su�x trees.
Journal of Algorithms, 39(2):205�222, 2001.

[MS03] A. Marian and J. Siméon. Projecting XML documents. In Proc. of the
29th International Conference on Very Large Data Bases (VLDB),
pages 213�224, 2003.

[MT02] A. Mo�at and A. Turpin. Compression and Coding Algorithms.
Kluwer Academic Publishers, 2002.

[Mun96] J. I. Munro. Tables. In Proc. of the 16th Conference on
Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 37�42, 1996.

[MWA+98] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman.
Indexing semistructured data. Technical Report 1998-46, Stanford
InfoLab, 1998.

[NBY95] G. Navarro and R. Baeza-Yates. A language for queries on structure
and contents of textual databases. In Proc. of the 18th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pages 93�101, 1995.

[NLWL06] W. Ng, W. Y. Lam, P. T. Wood, and M. Levene. XCQ: A queriable
XML compression system. Knowledge and Information Systems,
10(4):421�452, 2006.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1), 2007.

[NMW97a] C. G. Nevill-Manning and I. H. Witten. Compression and explanation
using hierarchical grammars. The Computer Journal, 40(2/3):103�
116, 1997.

[NMW97b] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical
structure in sequences: A linear-time algorithm. Journal of Arti�cial
Intelligence Research, 7(1):67�82, 1997.

[NR02] G. Navarro and M. Ra�not. Flexible Pattern Matching in Strings -
Practical on-line search algorithms for text and biological sequences.
Cambridge University Press, 2002.

Bibliography 257

[Olt07] D. Olteanu. SPEX: Streamed and progressive evaluation of XPath.
IEEE Transactions on Knowledge and Data Engineering, 19(7):934�
949, July 2007.

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
forward. In XML-Based Data Management and Multimedia
Engineering - EDBT 2002 Workshops, pages 109�127, 2002.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc.of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007.

[Pag99] R. Pagh. Low redundancy in static dictionaries with O(1) worst
case lookup time. In Proc. of the 26th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 595�604,
1999.

[PC05] F. Peng and S. S. Chawathe. XSQ: A streaming XPath engine. ACM
Transactions on Database Systems, 30(2):577�623, 2005.

[Qiz] XML Mind products. Qizx XML database engine.
http://www.xmlmind.com/qizx.

[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc.
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 233�242, 2002.

[RSF06] C. Re, J. Siméon, and M. F. Fernández. A complete and e�cient
algebraic compiler for XQuery. In Proc. of the 22nd International
Conference on Data Engineering (ICDE), page 14, 2006.

[Sad03] K. Sadakane. New text indexing functionalities of the compressed
su�x arrays. Journal of Algorithms, 48(2):294�313, 2003.

[Sad07] K. Sadakane. Compressed su�x trees with full functionality. Theory
of Computing Systems, 41(4):589�607, 2007.

[Sak09] S. Sakr. XML compression techniques: A survey and comparison.
Journal of Computer and System Sciences, 75(5):303�322, 2009.

[SAXa] SAX. http://www.saxproject.org.

[Saxb] Saxon: The XSLT and XQuery Processor.
http://saxon.sourceforge.net.

[Sch] Schematron. A language for making assertions about patterns found
in XML documents. http://www.schematron.com.

258 Bibliography

[SGS08] P. Skibinski, S. Grabowski, and J. Swacha. E�ective asymmetric
XML compression. Software: Practice and Experience, 38(10):1027�
1047, 2008.

[Shk02] D. Shkarin. PPM: One step to practicality. In Proc. of the 12th Data
Compression Conference (DCC), pages 202�211, 2002.

[SK64] E. S. Schwartz and B. Kallick. Generating a canonical pre�x
encoding. Communications of the ACM, 7(3):166�169, 1964.

[SM02] N. Sundaresan and R. Moussa. Algorithms and programming
models for e�cient representation of XML for internet applications.
Computer Networks, 39(5):681�697, 2002.

[SN10] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc.
of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 134�149, 2010.

[SPE] SPEX: XPath Evaluation against XML streams.
http://spex.sourceforge.net.

[SS05] H. Subramanian and P. Shankar. Compressing XML documents
using recursive �nite state automata. In Proc. of the 10th
International Conference on Implementation and Application of
Automata (CIAA), pages 282�293, 2005.

[SSK07] M. Schmidt, S. Scherzinger, and C. Koch. Combined static and
dynamic analysis for e�ective bu�er minimization in streaming
XQuery evaluation. In Proc. of the 23rd International Conference
on Data Engineering (ICDE), pages 236�245, 2007.

[SW49] C. E. Shannon and W. Weaver. A Mathematical Theory of
Communication. University of Illinois Press, 1949.

[TH02] P. M. Tolani and J. R. Haritsa. XGring: A query-friendly XML
compressor. In Proc. of the 18th International Conference on Data
Engineering (ICDE), pages 225�234, 2002.

[TM97] A. Turpin and A. Mo�at. Fast �le search using text compression. In
Proc. of the 20th Australian Computer Science Conference (ACSC),
pages 1�8, 1997.

[Tom03] V. Toman. Compression of XML data. Master's thesis, Charles
University, Prague, Czech Republic, 2003.

Bibliography 259

[TVB+02] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.
Shekita, and C. Zhang. Storing and querying ordered XML using
a relational database system. In Proc. of the 2002 ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages
204�215, 2002.

[Wan03] R. Wan. Browsing and Searching Compressed Documents. PhD
thesis, Dept. of Computer Science and Software Engineering,
University of Melbourne, Melbourne, Australia, 2003.

[WB91] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085�1094, 1991.

[Wel84] T. A. Welch. A technique for high-performance data compression.
IEEE Computer, 17(6):8�19, 1984.

[WLLH04] H. Wang, J. Li, J. Luo, and Z. He. XCPaqs: Compression of XML
documents with XPath query support. In International Conference
on Information Technology: Coding and Computing (ITCC), pages
354�358, 2004.

[WLS07] R. K. Wong, F. Lam, and W. M. Shui. Querying and maintaining a
compact xml storage. In Proc. of the 16th International World Wide
Web Conference (WWW), pages 1073�1082, 2007.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520�540, 1987.

[Xal] The Apache Xalan Project. http://xalan.apache.org.

[XDM] XDM, W3C Recommendation of XQuery 1.0 and XPath 2.0 data
model. http://www.w3.org/TR/xpath-datamodel.

[XLi] XLink, W3C XML Linking Language 1.0.
http://www.w3.org/TR/xlink.

[XMLa] XML 1.0, W3C Recommendation of Extensible Markup Language
(XML) 1.0. http://www.w3.org/TR/REC-xml.

[XMLb] XMLZip - XML Solutions. http://www.xmls.com.

[XPaa] XPath 1.0, W3C Recommendation of XML Path Language (XPath)
1.0. http://www.w3.org/TR/xpath.

[XPab] XPath 2.0, W3C Recommendation of XML Path Language (XPath)
2.0. http://www.w3.org/TR/xpath20.

260 Bibliography

[XPo] XPointer, W3C XML Pointer Language.
http://www.w3.org/TR/xptr.

[XQu] XQuery 1.0, W3C Recommendation of XML Qquery Language 1.0.
http://www.w3.org/TR/xquery.

[XSD] XSD, W3C XML Schema De�nition Language 1.1.
http://www.w3.org/XML/Schema.

[XSL] XSLT, W3C Recommendation of XSL Transformations.
http://www.w3.org/TR/xslt.

[XSQ] XSQ: A Streaming XPath Engine.
http://www.cs.umd.edu/projects/xsq.

[XUp] XUpdate, W3C Recommendation of XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10.

[Zip49] G. K. Zipf. Human Behavior and the Principle of Least E�ort.
Addison-Wesley (Reading MA), 1949.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337�
343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory,
24(5):530�536, 1978.

