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Abstract

Consider the fixed regression model with random observation error that follows an
AR(1) correlation structure. In this paper, we study the nonparametric estimation
of the regression function and its derivatives using a modified version of estimators
obtained by weighted local polynomial fitting. The asymptotic properties of the pro-
posed estimators are studied; expressions for the bias and the variance/covariance
matrix of the estimators are obtained and the joint asymptotic normality is estab-
lished. In a simulation study, a better behavior of the Mean Integrated Squared
Error of the proposed regression estimator with respect to that of the classical local
polynomial estimator is observed when the correlation of the observations is large.

Key Words: Nonparametric estimators; local polynomial fitting; autoregressive
process.
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1 Introduction

Local polynomial (LP) fitting has gained acceptance as an attractive method
for estimating the regression function and its derivatives. The advantages
of this nonparametric estimation method include its simplicity, it is highly
intuitive, easy to compute, it achieves automatic boundary corrections and
possesses important minimax properties.

Since early papers on LP, Stone (1977) and Cleveland (1979), many
relevant contributions of this method have appeared in statistics literature,
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such as Tsybakov (1986), Fan (1993), Hastie and Loader (1993), Ruppert
and Wand (1994), Fan and Gijbels (1995) and Ruppert et al. (1995). In
these papers, the independence of the observations was assumed. Masry
(1996b), Masry (1996a), Masry and Fan (1997), Härdle and Tsybakov
(1997), Härdle et al. (1998) and Vilar and Vilar (1998) studied the asymp-
totic properties of LP regression estimator in a context of dependence. A
broad study of this estimation method can be found in the monograph by
Fan and Gijbels (1996).

Let us consider the fixed regression model where the functional rela-
tionship between the design points, xt,n, and the responses, Yt,n, can be
expressed as

Yt,n = m(xt,n) + εt,n, 1 ≤ t ≤ n, (1.1)

where m(x) is a smooth regression function which is defined in [0, 1]. With-
out loss of generality, we can assume that the εt,n, 1 ≤ t ≤ n, are unob-
served random variables with zero mean and finite variance, σ2

ε . We as-
sume, for each n, that {ε1,n, ε2,n, ..., εn,n} have the same joint distribution
as {ε1, ε2, ..., εn}, where {εt, t ∈ Z} is a strictly stationary stochastic pro-
cess. The design points xt,n, 1 ≤ t ≤ n, follow a regular design generated
by a density f . So, for each n, the design points are defined by

∫ xt,n

0
f(x)d(x) =

t− 1

n− 1
, 1 ≤ t ≤ n, (1.2)

where f is a positive function defined in [0, 1] .

For simplicity, the subindex n in the sample data and in the errors
notation will be avoided, that is, we are going to write xi, Yi and εi.

Francisco-Fernández and Vilar-Fernández (2001) studied the properties
of the LP estimator of the regression function and its derivatives for the
model given in (1.1), when the random error εt has absolutely sumable
autocovariances. The asymptotic normality of a general linear smoother of
the regression function, m (x), for model (1.1), under dependence conditions
imposed on the ε′ts, has been established in Roussas et al. (1992) and Tran
et al. (1996).

In this paper, it is supposed that the stochastic process {εt, t ∈ Z}
follows an AR(1) type correlation structure. A new estimator based on
transforming the statistical model to get uncorrelated errors and then use
LP fitting is proposed. That is, the well-studied feature of modelling the
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correlation structure of the data when a global polynomial model is fitted
to the case of LP fitting, is extended.

The organization of the article is as follows: In Section 2, the pro-
posed estimator is defined. In Section 3, expressions for the bias and the
variance/covariance matrix of the proposed estimators of the regression
function and its derivatives are obtained and joint asymptotic normality
is established. In Section 4, a simulation study is presented, where an im-
proved behavior of the proposed estimator with respect to the LP estimator,
under the Mean Integrated Squared Error criterion can be observed, when
the correlation coefficient ρ is large. Finally, the last section is devoted to
the proofs of the obtained results.

2 Definition of the estimators

Consider the regression model given in (1.1) and assume that the (p+1)th
derivative of m (·) at the point x exists. The parameter vector ~β(x) =
(β0(x), β1(x), · · · , βp(x))t, where βj(x) = m(j)(x)/(j!), with j = 0, 1, . . . , p,
using a weighted LP fitting, can be estimated by minimizing the function

Ψ(~β(x)) =
n∑

t=1


Yt −

p∑

j=0

βj(x)(xt − x)j




2

ωn,t, (2.1)

where ωn,t = n−1Kh(xt − x) are the weights, Kh(u) = h−1
n K

(
h−1
n u

)
, K

being a kernel function and hn the bandwidth that controls the degree of
smoothing. Then, assuming the invertibility of X t

(n)W(n)X(n) (for this, at

least p + 1 points with positive weights, ωn,t, are required), the estimator

of ~β(x), obtained as a solution to the weighted least squares problem given
in (2.1), is

β̂L(x) =
(
Xt

(n)W(n)X(n)

)−1
Xt

(n)W(n)
~Y(n) = S−1

(n)
~T(n), (2.2)

where we have introduced the following matrix notation

~Y(n) =




Y1
...
Yn


 , X(n) =




1 (x1 − x) · · · (x1 − x)p

...
...

...
...

1 (xn − x) · · · (xn − x)p


 , (2.3)
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W(n) = diag (ωn,1, . . . , ωn,n) is the diagonal matrix of weights, S(n) is the

matrix (p + 1) × (p + 1) whose (i + 1, j + 1)th element is s
(n)
i,j = s

(n)
i+j ,

i, j = 0, . . . , p, with

s
(n)
j =

1

n

n∑

t=1

(xt − x)jKh (xt − x) , 0 ≤ j ≤ 2p, (2.4)

and ~T(n) is the vector
(
t0,(n), t1,(n), ..., tp,(n)

)t
, with

ti,(n) =
1

n

n∑

t=1

(xt − x)iKh (xt − x)Yt, 0 ≤ i ≤ p. (2.5)

The asymptotic properties of the LP estimator, β̂L(x), were studied by
Francisco-Fernández and Vilar-Fernández (2001) when the random errors
are correlated. In this paper, it is assumed that the stochastic process εt
follows an AR(1) type correlation structure: εt = ρεt−1 + et, t ∈ Z, with
|ρ| < 1 and {et}t∈Z

, a noise process, with mean zero and finite variance, σ2
e .

The variance/covariance matrix of this process is E
(
~ε~ε t
)

= σ2
eΩ(n), where

~ε t = (ε1, ε2, ..., εn) and Ω(n) is a nonsingular matrix and positive definite,
given by

Ω(n) =
1

1 − ρ2




1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
. . .

. . .
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1



.

Since Ω(n) is positive definite, a nonsingular matrix P(n), with the prop-

erty P t(n) P(n) = Ω−1
(n), always exists. This matrix is

P(n) =




√
1 − ρ2 0 0 . . . 0
−ρ 1 0 . . . 0
0 −ρ 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −ρ 1



.

To calculate the new nonparametric estimator of the regression function
and its derivatives, in a first step, the observations are transformed to obtain
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a model with uncorrelated errors. For this purpose, performing a Taylor
series expansion in a neighborhood of x, one gets

m (xt) =

p∑

j=0

m(j)(x)

j!
(xt − x)j +

m(p+1)(x)

(p+ 1)!
(xt − x)p+1 + o (xt − x)p+1 ,

t = 1, . . . , n, (2.6)

or, in matrix form,

~M(n) = X(n)
~β(x) +

m(p+1)(x)

(p+ 1)!




(x1 − x)p+1

...
(xn − x)p+1


+




o(x1 − x)p+1

...
o(xn − x)p+1


 ,

(2.7)
where ~M(n) = (m (x1) , ...,m (xn))

t. So, model (1.1) can be approximated
by

~Y(n) ≈ X(n)
~β(x) + ~ε(n), (2.8)

and the errors of the following regression model are uncorrelated

P(n)
~Y(n) = P(n)X(n)

~β(x) + P(n)~ε(n). (2.9)

Now, assuming that X t
(n)P

t
(n)W(n)P(n)X(n) is nonsingular, an estimator

of ~β(x) is obtained using weighted least squares

β̃G(x) =
(
Xt

(n)P
t
(n)W(n)P(n)X(n)

)−1
Xt

(n)P
t
(n)W(n)P(n)

~Y(n)

= C̃−1
(n)G̃(n), (2.10)

where C̃(n) = Xt
(n)P

t
(n)W(n)P(n)X(n) and G̃(n) = Xt

(n)P
t
(n)W(n)P(n)Y(n).

The drawback of this estimator is that in most practical situations it
cannot be computed because the matrix P(n) is unknown but should be
estimated. A natural estimator for P(n) is obtained substituting ρ by the
estimator ρ̂(n),

ρ̂(n) =

∑n−1
t=1 ε̂t ε̂t+1∑n
t=1 ε̂

2
t

, (2.11)

where ε̂t = Yt − m̂n(xt), 1 ≤ t ≤ n, are nonparametric residuals. These
are calculated using a consistent estimator of m(xt), for example, the LP
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estimator given in (2.2). Now, the new estimator of ~β(x) is

β̂F (x) =
(
Xt

(n)P̂
t
(n)W(n)P̂(n)X(n)

)−1
Xt

(n)P̂
t
(n)W(n)P̂(n)

~Y(n)

= Ĉ−1
(n)Ĝ(n), (2.12)

where it is assumed that Ĉ−1
(n) exists.

The extension of β̂F (x) to regression models with more general correla-
tion structures, for example, ARMA(p, q) models, is conceptually straight-
forward but with the drawback that the P(n) matrix depends on more pa-
rameters and these need to be estimated.

3 Asymptotic analysis

In this section, asymptotic expressions for the bias and variance/covariance
matrix of β̂F (x) are obtained and the joint asymptotic normality is estab-
lished. Firstly, the asymptotic properties of β̃G(x) defined in (2.10) are
studied. We follow a similar approach to that employed by Francisco-
Fernández and Vilar-Fernández (2001) to obtain the asymptotic normality
of the LP estimator β̂L(x).

The following assumptions will be made in our analysis:

A.1. The functions f ′ and m(p+1) are continuous on [0, 1] .

A.2. The kernelK is symmetric, with support [−1, 1], Lipschitz continuous
and K > 0.

A.3. The point x at which the estimation is taking place satisfies hn <
x < 1 − hn, for all n ≥ n0 where n0 is fixed.

A.4. The sequence of bandwidths, {hn}, satisfies that hn > 0, hn → 0,
nhn → ∞ as n→ ∞.

First, the convergence for the entries of matrices C̃(n) =
(
c̃
(n)
i,j

)p
i,j=0

and

G̃(n) =
(
g̃j,(n)

)p
j=0

is studied.



LPR smoothers with AR-error structure 445

Proposition 3.1. Under assumptions A1-A4, we have

lim
n→∞

h−(i+j)
n c̃

(n)
i,j = (1 − ρ)2 f(x)µi+j , 0 ≤ i, j ≤ p+ 1. (3.1)

This result can be expressed in matrix form as

lim
n→∞

H−1
(n)C̃(n)H

−1
(n) = (1 − ρ)2 f(x)S, (3.2)

where H(n) = diag
(
1, hn, h

2
n, · · · , hpn

)
and S is the (p+ 1) × (p+ 1) matrix

whose (i + 1, j + 1)th element is si,j = µi+j, i, j = 0, . . . , p, with µr =∫
urK (u) du.

By condition A2, S is positive definite, see Lemma 1 of Tsybakov (1986),
and therefore nonsingular.

The next proposition establishes the asymptotic variance/covariance

matrix of vector G̃∗(n) = Xt
(n)P

t
(n)W(n)P(n)

(
~Y(n) − ~M(n)

)
=
(
g̃∗j,(n)

)p
j=0

,

that is, of vector G̃(n) centered with respect to ~M(n)= (m(x1), · · · ,m(xn))
t.

Proposition 3.2. Under assumptions A1-A4, we have

lim
n→∞

nhnCov
(
h−jn g̃∗i,(n), h

−i
n g̃
∗
j,(n)

)
= νj+if(x)(1 − ρ)2σ2

e , 0 ≤ i, j ≤ p,

(3.3)
or, in matrix form

lim
n→∞

nhnE
(
H−1

(n)G̃
∗
(n)G̃

∗t
(n)H

−1
(n)

)
= S̃f(x) (1 − ρ)2 σ2

e , (3.4)

where S̃ is the matrix (p + 1) × (p + 1) whose (i + 1, j + 1)th element is
s̃i,j = νi+j, i, j = 0, . . . , p, with νr =

∫
urK2 (u) du.

Now, using these propositions, the mean squared convergence of β̃G(x)
can be established. For this, from (2.7) and (2.10), we obtain

E
(
β̃G(x)

)
− ~β(x) =

m(p+1)(x)

(p+ 1)!
C̃−1

(n)




c̃
(n)
0,p+1

c̃
(n)
1,p+1

...

c̃
(n)
p,p+1




+ o
(
hp+1
n

)
~1, (3.5)
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where ~1 = (1, . . . , 1)t .

From this equation and using Proposition 3.1 and A2, the asymptotic
bias of ~β(x) is obtained.

Corollary 3.1. Under assumptions in Proposition 3.1, we have

H(n)

(
E
(
β̃G(x)

)
− ~β (x)

)
=
m(p+1)(x)

(p+ 1)!
hp+1
n S−1~µ+ o

(
hp+1
n

)
~1, (3.6)

where ~µ = (µp+1, . . . , µ2p+1)
t.

With regard to the variance, from

V ar
(√

nhnH(n)β̃G(x)
)

= nhnH(n)E
(
C̃−1

(n)G̃
∗
(n)G̃

∗t
(n)C̃

−1t
(n)

)
H(n), (3.7)

and Propositions 3.1 and 3.2, the following corollary is obtained.

Corollary 3.2. Under assumptions of Proposition 3.1, we have

V ar
(
H(n)β̃G(x)

)
=

σ2
ε

nhnf(x)

1 + ρ

1 − ρ
S−1S̃S−1 + o

(
1

nhn

)
. (3.8)

Now, the asymptotic normality of β̃G(x) is obtained, but first the asymp-
totic normality of G̃∗(n) is established. Moreover, an additional assumption
is necessary

A.5. lim
n→∞

nh2p+3
n = C <∞ .

Proposition 3.3. Under assumptions A1-A5, the following holds

√
nhnH

−1
(n)G̃

∗
(n)

L−→ N(p+1)

(
~0, S̃f(x) (1 − ρ)2 σ2

e

)
, (3.9)

where N(p+1) (·, ·) denotes the (p+ 1)-variate normal distribution.

From this result and corresponding Proposition 3.1, the asymptotic nor-
mality of estimator β̃G(x) is obtained.
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Theorem 3.1. Under the assumptions of Proposition 3.3, the following
holds:

√
nhn

[
H(n)

(
β̃G(x) − ~β(x)

)
− m(p+1)(x)

(p+ 1)!
hp+1
n S−1~µ

]
L−→ N(p+1)

(
~0,Σ

)
,

(3.10)

where Σ =
σ2
ε

f(x)

1 + ρ

1 − ρ
S−1S̃S−1 =

σ2
e

f(x)

1

(1 − ρ)2
S−1S̃S−1.

On the other hand, the convergence in probability of the estimator ρ̂(n),
given in (2.11), is obtained following similar arguments to those in (Stute,
1995, Corollary 2.5).

Proposition 3.4. Under assumptions A1, A2 and A4, one gets

ρ̂(n) → ρ, as n→ ∞, with probability 1. (3.11)

Now, using Proposition 3.4 and A5, the convergence to zero of the term
β̂F (x) − β̃G(x) is obtained.

Proposition 3.5. Under assumptions A1-A5, we have

√
nhnH(n)

(
β̂F (x) − β̃G(x)

)
→ 0, as n→ ∞, with probability 1.

(3.12)

Finally, from (3.10) and (3.12), the asymptotic normality of β̂F (x) is
established.

Theorem 3.2. Under assumptions A1-A5, we obtain

√
nhn

[
H(n)

(
β̂F (x) − ~β(x)

)
− m(p+1)(x)

(p+ 1)!
hp+1
n S−1~µ

]
L−→ N(p+1) (0,Σ) .

(3.13)

From these results, it can be observed that β̂F (x) presents the same
asymptotic properties as the LP estimator β̂L(x) defined in (2.2). The
asymptotic properties of β̂L(x), with respect to model (1.1), were stud-
ied by (Francisco-Fernández and Vilar-Fernández, 2001, Theorem 2), and
the asymptotic properties of a general nonparametric estimator regression
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function β̂0(x) = m̂n(x), under general dependence conditions on the errors,
εt,n, were studied in Roussas et al. (1992), and Tran et al. (1996).

From Theorem 3.2 the asymptotic normality of the individual compo-

nents β̂
(j)
F (x) =

m̂
(j)
F (x)

j!
can be obtained.

Corollary 3.3. Under assumptions A1-A5, we have

√
nh1+2j

n

[(
m̂

(j)
F (x) −m(j)(x)

)
− hp+1−j

n

m(p+1)(x)

(p+ 1)!
j!Bj

]
L−→ N

(
0, σ2

j

)
,

(3.14)

where σ2
j =

σ2
ε

f(x)

1 + ρ

1 − ρ
(j!)2Vj and the terms Bj and Vj denote, respectively,

the jth element of S−1~µ and the jth diagonal element of S−1S̃S−1.

Once the asymptotic properties of this new estimator have been ob-
tained, the following step in our study is to give some guides about the
important problem of bandwidth selection. In this point, two plug-in tech-
niques are proposed to obtain the smoothing parameter which can provide
local or global bandwidths, depending on the choice of a local or a global
measure of the estimation error.

The former of these methods is called asymptotic plug-in and it consists
of finding the bandwidths that minimize the asymptotic mean squared er-
ror (AMSE) or the asymptotic mean integrated squared error (AMISE)
-depending on the use of local or global bandwidths- and then substituting
the unknown quantities that appear in these bandwidths by some estima-
tors. In this particular case, using the asymptotic expressions of the bias

and the variance, given in (3.14), the AMSE of m̂
(j)
F (x) is given by:

AMSE
(
m̂

(j)
F (x)

)
=

(
hp+1−j
n

m(p+1)(x)

(p+ 1)!
j!Bj

)2

+
1

nh2j+1
n

σ2
ε

f(x)

1 + ρ

1 − ρ
(j!)2Vj .

(3.15)

So, minimizing expression (3.15) in hn, the asymptotically optimal lo-
cal bandwidth to estimate the jth derivative of the regression function is
obtained. This bandwidth is given by:
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hoptj,l,as (x) = Cj,p (K)




σ2
ε

(
1 + ρ

1 − ρ

)

n(m(p+1)(x))2f(x)




1/(2p+3)

, (3.16)

where Cj,p (K) is a real number that depends on the kernel K.

On the other hand, using the AMISE, we can obtain the asymptotically
optimal global bandwidth to estimate the jth derivative of the regression
function given by:

hoptj,g,as (x) = Cj,p (K)




σ2
ε

(
1 + ρ

1 − ρ

)

n
∫

(m(p+1)(x))2f(x)dx




1/(2p+3)

. (3.17)

In (3.16) and (3.17), there are four unknown quantities: σ2
ε , ρ, m

(p+1)(x)
and

∫
(m(p+1)(x))2f(x)dx. These must be estimated to produce practical

smoothing parameters from (3.16) and (3.17). In Francisco-Fernández and
Vilar-Fernández (2001), some ideas to that aim are presented.

Another possibility is to design a bandwidth selection procedure based
on using the exact expressions of the bias and the variance of the estimator.
This technique follows the same idea as the exact plug-in method proposed
for the local polynomial estimator in Fan and Gijbels (1996). For the
estimator β̃G(x), given in (2.10), the exact expressions of the bias and the
variance are given by:

Bias
(
β̃G(x)

)
= C̃−1

(n)X
t
(n)P

t
(n)W(n)P(n)

~R(n)

and

V ar
(
β̃G(x)

)
= σ2

ε

(
1 − ρ2

)
C̃−1

(n)X
t
(n)P

t
(n)W

2
(n)P(n)X(n)C̃

−1
(n),

where ~R(n) = ~M(n) −X(n)
~β(x), P(n), σ

2
ε and ρ are unknown. Using, for ex-

ample, the approximations of these quantities given in Francisco-Fernández
and Vilar-Fernández (2001) and changing P(n) by P̂(n), local or global band-
widths to estimate the jth derivative of the regression function can be
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obtained. Obviously, the same bandwidths can be used with m̂
(j)
F (x), an

estimator of the jth regression function derivative, j = 0, 1, . . . , p, obtained
from β̂F (x). These kind of smoothing parameters are called local or global
exact plug-in bandwidths.

4 Simulation study

In this section, the performance of the proposed nonparametric estimator
defined in (2.12) is illustrated. It will be seen that β̂F behaves adequately
for regression curve estimation and it is better than other kernel type es-
timators under the Mean Integrated Square Error (MISE) criterion. For
this purpose, a simulation study was carry out to compare the following
estimators of the regression function: the Nadaraya-Watson (NW), the
Gasser-Müller (GM), the local linear (LL) and the new feasible local linear
(FLL) estimators. The simulation studies presented here are representative
of many others performed by the authors.

We simulated B = 200 samples of size n from a fixed and equally spaced
model in the interval [0, 1] with random errors following an AR(1) process
withN(0, σ2) distribution. Optimal bandwidths by minimizing the Average
Squared Error (ASE) were computed. Using Montecarlo approximations,
the integrated squared bias, the integrated variance and the MISE for
each of the four estimators were then approximated. In the study, to avoid
possible boundary effects, two situations have been considered: estimation
of the regression function in interval [0, 1] (global region) and estimation
of the function in the central region, [0.3, 0.7]. In each case, the obtained
optimal bandwidths are different. The kernel function used was the quartic
kernel (K(u) = 15

16(1 − u2)2, if |u| ≤ 1).

As explained in Section 2, to compute β̂F (x) it is necessary to estimate
the parameter ρ. This was achieved by using the estimator given in (2.11),
with a pilot bandwidth empirically determined. The results are presented
in the following tables.

In Table 1, the regression function is m(x) = sin(πx), the sample size
is n = 300 and the error is AR(1), with σ = 0.1 and two values for the
autocorrelation coefficient, ρ = 0.9 (strong dependence) and ρ = 0.0 (inde-
pendence) have been considered.

In Table 2, all the parameters are the same as in Table 1 but the re-
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ρ = 0.9 NW GM LL FLL

Central Mean hopt 0.1843 0.1842 0.1842 0.3145∫
Bias2 0.00080 0.00080 0.00080 0.00036∫
V ariance 0.00167 0.00167 0.00167 0.00154

MISE 0.00247 0.00247 0.00247 0.00190

Global Mean hopt 0.1226 0.1695 0.2017 0.3137∫
Bias2 0.00091 0.00073 0.00062 0.00043∫
V ariance 0.00301 0.00237 0.00220 0.00215

MISE 0.00392 0.00310 0.00282 0.00258

ρ = 0.0 NW GM LL FLL

Central Mean hopt 0.1086 0.1085 0.1085 0.1115∫
Bias2 0.00008 0.00008 0.00008 0.00008∫
V ariance 0.00019 0.00019 0.00019 0.00019

MISE 0.00026 0.00026 0.00026 0.00026

Global Mean hopt 0.0645 0.0870 0.1203 0.1243∫
Bias2 0.00016 0.00009 0.00006 0.00007∫
V ariance 0.00036 0.00034 0.00023 0.00024

MISE 0.00052 0.00043 0.00030 0.00031

Table 1: m(x) = sin(πx), n = 300, σ = 0.1, ρ = 0.9 and ρ = 0.0.

ρ = 0.9 NW GM LL FLL

Central Mean hopt 0.2070 0.2070 0.2070 0.3649∫
Bias2 0.00192 0.00192 0.00192 0.00066∫
V ariance 0.00191 0.00191 0.00191 0.00154

MISE 0.00383 0.00383 0.00383 0.00220

Global Mean hopt 0.2016 0.2034 0.2099 0.3642∫
Bias2 0.00213 0.00135 0.00100 0.00092∫
V ariance 0.00223 0.00226 0.00236 0.00220

MISE 0.00436 0.00361 0.00336 0.00312

Table 2: m(x) = 16x2(1 − x)2, n = 300, σ = 0.1, ρ = 0.9.

gression function is m(x) = 16x2(1 − x)2 and ρ = 0.9.

To observe the importance of the correlation coefficient estimator used
in the FLL estimator, in the following two tables, the results for the new
generalized local lineal estimator (GLL) obtained from β̃G(x) are included,
where the theoretical correlation coefficient, ρ, is used.
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In Table 3 we have considered m(x) = 1 + 5x, n = 100, σ = 0.5 and
ρ = 0.9

ρ = 0.9 NW GM LL FLL GLL

Central Mean hopt 0.4970 0.6879 0.7887 0.7951 0.8055∫
Bias2 0.00434 0.00275 0.00069 0.00049 0.00042∫
V ariance 0.05882 0.03801 0.04727 0.04269 0.04010

MISE 0.06316 0.04076 0.04796 0.04317 0.04052

Global Mean hopt 0.2817 0.4421 0.8171 0.8715 0.8578∫
Bias2 0.02411 0.01803 0.00084 0.00078 0.00053∫
V ariance 0.08898 0.07022 0.07475 0.07041 0.06977

MISE 0.11309 0.08826 0.07559 0.07110 0.07030

Table 3: m(x) = 1 + 5x, n = 100, σ = 0.5, ρ = 0.9.

Finally, in Table 4, the model used was m(x) = x3, n = 300, σ = 0.1
and ρ = 0.9. In general, the FLL estimator performed better than the

ρ = 0.9 NW GM LL FLL GLL

Central Mean hopt 0.29560 0.29220 0.29320 0.31390 0.31610∫ ∫
Bias2 0.00040 0.00043 0.00042 0.00041 0.00042∫

V ariance 0.00080 0.00079 0.00080 0.00081 0.00080
MISE 0.00120 0.00122 0.00122 0.00122 0.00122

Global Mean hopt 0.1656 0.2587 0.3105 0.3278 0.3282∫
Bias2 0.00076 0.00047 0.00032 0.00030 0.00031∫
V ariance 0.00234 0.00171 0.00163 0.00158 0.00157

MISE 0.00310 0.00218 0.00195 0.00188 0.00188

Table 4: m(x) = x3, n = 300, σ = 0.1, ρ = 0.9.

other estimators studied. The broad study showed that this improvement
is greater when ρ is close to one. Furthermore, when ρ is near zero or
negative, the new estimator is not worse than the LL estimator, as observed
in Table 1.

A figure is also presented from which similar conclusions can be de-

duced. Figure 1 shows the plot of
MISE(Est)

MISE(NW )
× 100 versus ρ, where

MISE(Est) is theMISE of FLL, LL andGM estimators in central region
and MISE(NW ) is the MISE of NW estimator. The model considered
in this figure is the same as that in Table 2, that is, m(x) = 16x2(1 − x)2,
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Figure 1: Plot of MISE(Est)
MISE(NW ) × 100 versus ρ, with Est = GM, LL and FLL.

m(x) = 16x2(1 − x)2, n = 300, σ = 0.1.

n = 300, σ = 0.1, ρ goes from −0.9 to 0.9.

Once more, to study the influence of the correlation coefficient estimator
in the FLL estimator obtained from β̂F (x), another figure (Figure 2) is
presented, where the relative efficiency between the FLL estimator and the
ideal GLL estimator as a function of ρ, with the same model as in Figure
1, is shown.

It can be seen, in Figure 1, that the best behavior of the FLL estimator
is obtained when ρ is close to one, but, on the other hand, the plot shown
in Figure 2 indicates that when ρ decreases, the difference between the
MISE of the FLL estimator and the MISE of the GLL estimator becomes
larger. So, if we had been more careful in the problem of estimating ρ for
all the values of the correlation coefficient -and therefore the FLL estimator
would be closer to the ideal GLL estimator-, the improvements of the FLL
estimator would have been greater for any value of ρ.

Another interesting point is that when ρ increases, the MISE of the
estimators also increases. Thus, the MISE associated with negative ρ mod-
els can be slightly lower than in the context of independent data (ρ = 0).
This is due to the behavior of the variance and it is compatible with the
asymptotic expression obtained in Section 3 (see Corollary 3.3).
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Figure 2: Plot of MISE(FLL)
MISE(GLL) versus ρ. m(x) = 16x2(1 − x)2, n = 300, σ = 0.1.

In conclusion, the results of Section 3 show that estimators β̂L and
β̂F have the same asymptotic properties. But, from the numeric study
presented in this section we can deduce that β̂F has a better behavior than
β̂L for finite samples when ρ is large.

5 Proofs

In this section, we sketch the proofs of the results presented in Section 2. In
what follows, the letter C will be used to indicate generic constants whose
values are not important and may vary. We will use the following result of
Francisco-Fernández and Vilar-Fernández (2001) (see Propositions 1 and 2
in this paper),

Proposition 5.1. Under assumptions A1-A4, we have

lim
n→∞

h−jn s
(n)
j = f(x)µj , 0 ≤ j ≤ 2p+ 1, (5.1)

and

lim
n→∞

nhnCov
(
h−in t

∗
i,(n), h

−j
n t∗j,(n)

)
= νj+if(x)

σ2
e

(1 − ρ)2
, 0 ≤ j, i ≤ p,

(5.2)

where t∗i,(n) = ti,(n) − E
(
ti,(n)

)
.
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Proof of Proposition 3.1. Let c̃
(n)
i,j , i, j = 0, ..., p be the terms of matrix

C̃(n) = Xt
(n)P

t
(n)W(n)P(n)X(n), then

c̃
(n)
i,j =

1

n

n∑

r=1

(xr − x)i+j Kh (xr − x) − ρ2

n
(x1 − x)i+j Kh (x1 − x)

−ρ
n

n∑

r=2

(xr − x)i (xr−1 − x)jKh (xr − x)

−ρ
n

n∑

r=2

(xr − x)j (xr−1 − x)iKh (xr − x)

+
ρ2

n

n∑

r=2

(xr−1 − x)i+j Kh (xr − x)

= ∆1 + ∆2 + ∆3 + ∆4 + ∆5. (5.3)

Thus,

∆1 = s
(n)
i,j , (5.4)

with s
(n)
i,j defined in (2.4). With regard to the other terms, using assump-

tions A2 and A4, and (1.2), we obtain

∆2h
−i−j
n ≤ C

1

nhn
= o (1) , (5.5)

∆3 = ∆4 = −ρs(n)
i,j − ∆2

ρ
− ρ

j∑

k=1

(
j

k

)
s
(n)
i+j−kn

−k, (5.6)

∆5 = ρ2s
(n)
i,j + ∆2 + ρ2

i+j∑

k=1

(
i+ j

j

)
s
(n)
i+j−kn

−k. (5.7)

Consequently we have

c̃
(n)
i,j h

−i−j
n = (1 − ρ)2 s

(n)
i,j + o (1) , (5.8)

and using 5.1, equation (5.1), the proof is concluded. �

Proof of Proposition 3.2. Let us denote g̃∗j,(n), j = 0, 1, ..., p to the terms
of the vector

G̃∗(n) = Xt
(n)P

t
(n)W(n)P(n)

(
~Y(n) − ~M(n)

)
,
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therefore

g̃∗j,(n) =
1 − ρ2

n
(x1 − x)jKh (x1 − x) ε1 (5.9)

+
1

n

n∑

r=2

(
(xr − x)j − ρ (xr−1 − x)j

)
Kh (xr − x) er.

Taking into account the independence between ε1 and er, r > 1, for
i, j = 0, 1, ..., p, and that variables er are independent, we have

Cov
(
h−jn g̃∗j,(n), h

−i
n g̃
∗
i,(n)

)
= G1 +G2, (5.10)

with

G1 =

(
1 − ρ2

)2

n2hj+in

(x1 − x)i+j K2
h (x1 − x)σ2

ε

≤ C

(
1 − ρ2

)2
σ2
ε

σ2
εn

2h2
n

= o
(
n−1h−1

n

)
, (5.11)

where the assumptions A2, A4 and (1.2) have been used, and

G2 =
σ2
e

n2hj+in

n∑

r=2

(
(xr − x)j − ρ (xr−1 − x)j

)
(5.12)

×
(
(xr − x)i − ρ (xr−1 − x)i

)
K2
h (xr − x) .

G2 can be split as follows:

G2 =
σ2
e

n2hj+in

n∑

r=2

(
(xr − x)i+j + ρ2 (xr−1 − x)i+j

)
K2
h (xr − x)

− ρσ2
e

n2hj+in

n∑

r=2

(
(xr − x)j (xr−1 − x)i + (xr−1 − x)j (xr − x)i

)

×K2
h (xr − x)

= G21 +G22.

Taking into account A2 and A4, and using Riemann approximations,
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we have

1

n2hj+in

n∑

r=2

(xr − x)i+j K2
h (xr − x)

=
1

nh2
n

∫ (
u− x

hn

)i+j
K2

(
u− x

hn

)
f(u)du+O

(
n−2h−2

n

)

=
1

nhn
f (x) νi+j + o

(
n−1h−1

n

)
.

On the other hand, we obtain that

1

n2hi+jn

n∑

r=2

(xr−1 − x)i+j K2
h (xr − x)

=
1

n2hi+jn

n∑

r=2

(xr − x)i+j K2
h (xr − x) +R,

where R is a residual part, with

R =
1

n2hi+jn

n∑

r=2

i+j∑

s=1

(
i+ j

s

)
(xr−1 − xr)

s (xr − x)i+j−sK2
h (xr − x)

≤ O

(
1

n2h2
n

)
,

which allows us to conclude that

G21 =
(
1 + ρ2

)
σ2
ef (x) νi+j

1

nhn
+ o

(
1

nhn

)
. (5.13)

With respect to G22, using similar arguments, we obtain that

1

n2hj+in

n∑

r=2

(xr − x)j (xr−1 − x)iK2
h (xr − x)

=
1

n2hj+in

n∑

r=2

(xr − x)j+iK2
h (xr − x) +R′,

with R′ ≤ O
(
n−2h−2

n

)
. So,

G22 = −2ρσ2
ef (x) νi+j

1

nhn
+ o

(
1

nhn

)
. (5.14)
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Now, we conclude that

Cov
(
h−jn g̃∗j,(n), h

−i
n g̃
∗
i,(n)

)
= (1 − ρ)2 σ2

ef (x) νi+j
1

nhn
+ o

(
1

nhn

)
, (5.15)

and (3.4) is a consequence of (5.15). �

Proof of Proposition 3.3. Let Qn be an arbitrary linear combination of
h−in g̃

∗
i,(n)

Qn =

p∑

i=0

αi h
−i
n g̃
∗
i,(n), with αi ∈ R. (5.16)

By (5.9),
√
nhnQn can also be written in the form

√
nhnQn =

1√
n

n∑

t=1

ξt,n, (5.17)

where

ξ1,n =
(
1 − ρ2

)
h1/2
n Kh (x1 − x)

p∑

i=0

αi (x1 − x)i h−in ε1

and if t = 2, . . . , n,

ξt,n = h1/2
n Kh (xt − x)

(
p∑

i=0

αi

(
(xt − x)i − ρ (xt−1 − x)i

)
h−in

)
et.

If the asymptotic normality of
√
nhnQn is established, then (3.9) fol-

lows from the Cramer-Wold Theorem. For this, from (5.9), it follows that
E (Qn) = 0 and using Proposition 3.2, we obtain that

lim
n→∞

V ar
(√

nhnQn

)
= (1 − ρ)2 σ2

ef (x)

p∑

i=0

p∑

j=0

αiαjνi+j = σ2
Q <∞.

(5.18)

Now, we prove that the standard Lindenberg-Feller condition is satis-
fied. Here, this condition takes the form

lim
n→∞

1

n

n∑

t=1

E
(
ξ2t,nI

(
|ξt,n| ≥ εσQ

√
n
))

= 0, ∀ε > 0, ε ∈ R.
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For this purpose, we employ a truncation argument. Let M be a fixed
truncation point and let us denote

et,M = etI (|et| ≤M) , t = 2, . . . , n

(the same is done with ε1). We have that et = et,M + ẽt,M , with ẽt,M =
I {|et| > M} . Replacing et by et,M (or ẽt,M ), we can write Qn,M (or Q̃n,M ),
as the same linear combination as Qn. Now, reasoning as in (5.18), we have
that

lim
n→∞

V ar
(√

nhnQn,M

)
= (1 − ρ)2 σ2

e,Mf (x)

p∑

i=0

p∑

j=0

αiαjνi+j=σ
2
Q,M <∞,

where σ2
e,M = V ar (et,M ) . By assumptions A2 and A4, we have

|ξt,n,M | ≤ C√
hn
M,

where ξt,n,M is obtained replacing et by et,M in ξt,n. Hence

max
1≤t≤n

1√
n
|ξt,n,M | ≤ C√

nhn
M → 0, as n→ ∞.

Therefore,
{
ξ2t,n,MI {|ξt,n,M | ≥ εσQ,M

√
n}
}

is an empty set when n is

large enough, and the Lindenberg-Feller condition is satisfied. So

√
nhnQn,M

L−→ N
(
0, σ2

Q,M

)
. (5.19)

In order to complete the proof, it suffices to show that

ϕQn(t) −→ ϕ
σ2

Q

Z (t), as n→ ∞, (5.20)

where ϕQn(t) and ϕ
σ2

Q

Z (t) denote the characteristic functions of
√
nhnQn

and of the distribution N(0, σ2
Q), respectively.

We have
∣∣∣∣ϕQn(t) − ϕ

σ2
Q

Z (t)

∣∣∣∣ ≤
∣∣ϕQn,M

(t)
∣∣
∣∣∣ϕQ̃n,M

(t) − 1
∣∣∣+
∣∣∣∣ϕ
σ2

Q,M

Z (t) − ϕ
σ2

Q

Z (t)

∣∣∣∣

+

∣∣∣∣ϕQn,M
(t) − ϕ

σ2
Q,M

Z (t)

∣∣∣∣ ≡ ∆1 + ∆2 + ∆3.
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As n → ∞, the terms ∆1 and ∆2 tend to zero by the dominated con-
vergence theorem when M ↑ ∞. And the convergence to zero of ∆3 follows
from (5.19) and the Levy theorem, for every M > 0. Now, the proof of
Proposition 3.3 is complete. �

Proof of Proposition 3.5 To prove Proposition 3.5, we will use the fol-
lowing auxiliary results.

Lemma 5.1. Under assumptions A1-A4, we have

H−1
(n)X

t
(n)

(
Ω̂−1
W − Ω−1

W

)
X(n)H

−1
(n) = oP (1) , (5.21)

where Ω−1
W = P t(n)W(n)P(n) and Ω̂−1

W = P̂ t(n)W(n)P̂(n).

Proof. Taking into account the form of the matrix Ω̂−1
W −Ω−1

W , and applying
Propositions 3.1 and 3.4, the conclusion of the lemma is deduced.

Lemma 5.2. Under assumptions A1-A4, we have

√
nhnH

−1
(n)X

t
(n)Ω

−1
W ~ε(n) = OP (1) . (5.22)

Proof. From the form of the matrix P(n), it is sufficient to prove that

√
nhnH

−1
(n)X

t
(n)W(n)~ε(n) =

√
nhnH

−1
(n)
~T ∗(n) = OP (1) ,

where ~T ∗(n) = Xt
(n)W(n)

(
~Y(n) − ~M(n)

)
. And, this is deduced from Proposi-

tion 5.1, statement (5.2).

Using similar arguments to those in Lemma 5.1, the following lemma is
obtained.

Lemma 5.3. Under assumptions A1-A4, we have

√
nhnH

−1
(n)X

t
(n)

(
Ω̂−1
W − Ω−1

W

)
~ε(n) = oP (1) . (5.23)

Now we can prove Proposition 3.5.

From the definitions of β̃G(x) and β̂F (x), the regression model (1.1) and
(2.6), we have that
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√
nhnH(n)

(
β̂F (x) − β̃G(x)

)
= Γ1 + Γ2 + o (1) , (5.24)

where

Γ1 =
m(p+1) (x)

(p+ 1)!

√
nhnH(n)

×



(
Xt

(n)Ω̂
−1
W X(n)

)−1
Xt

(n)Ω̂
−1
W




(x1 − x)p+1

...

(xn − x)p+1




−
(
Xt

(n)Ω
−1
W X(n)

)−1
Xt

(n)Ω
−1
W




(x1 − x)p+1

...

(xn − x)p+1





 ,

and

Γ2 =
√
nhnH(n)

[(
Xt

(n)Ω̂
−1
W X(n)

)−1
Xt

(n)Ω̂
−1
W ~ε(n)

−
(
Xt

(n)Ω
−1
W X(n)

)−1
Xt

(n)Ω
−1
W ~ε(n)

]
.

Now, the convergence in probability to zero of Γ1 and Γ2 is proved. In
the first place, using assumptions A1 and A2, we have

Γ1 = C
√
nhnH(n)[(

Xt
(n)Ω̂

−1
W X(n)

)−1
Xt

(n)

(
Ω̂−1
W − Ω−1

W

)

+

((
Xt

(n)Ω̂
−1
W X(n)

)−1
−
(
Xt

(n)Ω
−1
W X(n)

)−1
)
Xt

(n)Ω
−1
W

]

×




(x1 − x)p+1

...

(xn − x)p+1


 .

Applying Propositions 3.1 and 3.4, we obtain that

Γ1 = C
√
nhnh

p+1
n o (1) . (5.25)

From Assumption A5, the convergence in probability to zero of Γ1 fol-
lows.
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With regard to the second term Γ2, we can write

Γ2 =
√
nhnH(n)

[(
Xt

(n)Ω̂
−1
W X(n)

)−1
Xt

(n)

(
Ω̂−1
W − Ω−1

W

)
~ε(n)

]

+
√
nhnH(n)

[((
Xt

(n)Ω̂
−1
W X(n)

)−1
−
(
Xt

(n)Ω
−1
W X(n)

)−1
)

Xt
(n)Ω

−1
W ~ε(n)

]

= Γ2,1 + Γ2,2.

Using Proposition 3.1 and Lemma 5.3, we have

Γ2,1 =
√
nhn

(
H−1

(n)Ĉ(n)H
−1
(n)

)−1
H−1

(n)X
t
(n)

(
Ω̂−1
W − Ω−1

W

)
~ε(n)

= C
√
nhnH

−1
(n)X

t
(n)

(
Ω̂−1
W − Ω−1

W

)
~ε(n) = oP (1) . (5.26)

Finally, only the convergence to zero of Γ2,2 remains to be proved. Using
Lemmas 5.1 and 5.2, and Proposition 3.1, we derive that

Γ2,2 =

([
H−1

(n)X
t
(n)

(
Ω̂−1
W − Ω−1

W

)
X(n)H

−1
(n) +H−1

(n)X
t
(n)Ω

−1
W X(n)H

−1
(n)

]−1

−
[
H−1

(n)X
t
(n)Ω

−1
W X(n)H

−1
(n)

]−1
)√

nhnH
−1
(n)X

t
(n)Ω

−1
W ~ε(n)

= oP (1) . (5.27)

From (5.24), (5.25), (5.26) and (5.27), the conclusion of Proposition 3.5
is deduced. �
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