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Abstract. A Finite Element based program has been released to solve the steady 2D Navier-
Stokes equations. The mixed-variable algorithm is used as a first approach to solve the 
differential problem. In order to reduce the number of equations, both a penalty and 
segregated formulation are implemented to give solution to the viscous incompressible flow 
and their results are compared with the former formulation. The program makes use of a 
SUPG type algorithm as a stabilisation procedure, in order to eliminate the numerical 
oscillations, which may appear when the boundary conditions force a sudden change in the 
solution, without necessarily refining the mesh. The three different algorithms are checked 
making use of the benchmark problems of the flow in a square cavity, the backward step and 
the flow past a cylinder. Finally the code is used to solve the flow in some practical problems 
and their results are commented. 
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1 INTRODUCTION 
 

 The finite element method was developed to solve problems of the rigid body, fluids 
instead, are of an ‘odd’ nature compared to solids and the FEM cannot be applied so 
straightforward. In the FE resolution of the structural analysis problems the position of the 
particles is not considered to be a function of time. The solution of the rigid body problem is 
stated in terms of the nodes displacements and instead in fluids, we have a mixed formulation 
in which both velocity and pressure are needed in order to solve the flow. The resulting 
governing equation in fluids is a non-linear differential system and moreover, the so-called 
‘stiffness’ matrix associated to this system, inherits from structural analysis its nomenclature 
but not its symmetry.  

For many of the linear elasticity problems solved using the FEM, the mere requirement of 
the ownership of the functions to a certain set of mathematical spaces ensures the obtaining of 
a stable and meaningful approximation, but this is not again so straightforward in fluids. This 
aspect would require a further discussion that is beyond the scope of this paper. Anyway in 
what follows, the basic finite element functions used will lead to meaningful solutions even 
for basic elements that do not verify strictly the LBB condition, the main theoretical 
restriction when referring to viscous flow problems. 

The viscous incompressible flow is governed by the Navier-Stokes equations. Although 
some other simplified formulae can be adopted to solve flows were the frictional forces can 
be neglected (potential flow) or ‘creeping’ flows (stokes simplification) for instance, the 
Navier-Stokes equations are the only ones to solve the general problem. The unknowns for 
the N-S equations are both velocity and pressure and the most intuitive way of solving the 
problem is simply to transform the constitutive equation into a system of equations in which 
the unknowns were both variables. This straightforward procedure although intuitive and 
simple, is however quite expensive computationally speaking. In order to improve the 
memory requirements, a penalty and segregated algorithm will be used, and their results 
compared for direct and iterative solvers, which have been implemented on them. The SUPG 
(Streamline Upwinding/Petrov-Galerkin) method has been used as a stabilisation procedure so 
as to being able to solve the flow without using very refined meshes. Once the algorithm has 
been checked on some benchmark problems with good results, the program is used to solve 
some practical problems in the field of the wastewater treatment. 
 
2 GOVERNING EQUATIONS 
 

The Navier-Stokes equations, can be written as: 
 

ijjiijijti fupuuu ++−=+ ,,,, ν
ρ
1  

0=iiu ,   in  Ω             (1) 
 

together with the initial and boundary conditions: 
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] ii bu =Γ1
 (Dirichlet)  ] ijij tn =

Γ2
σ  (Newman) 

( ) ( )jiji xuxu 00 =,     with 00 =iiu ,         (2) 
 

where u is velocity, p is pressure, f is the body force per unit mass, ρ  is density, ν  is the 
cinematic viscosity, 1Γ  and 2Γ  are two non overlapping subsets of the piecewise smooth 
domain boundary Γ , bi is the velocity vector prescribed in 1Γ , ti is the traction vector 
prescribed on 2Γ , nj is the outward unit vector normal to 2Γ , and the derivatives are made 
with respect to indices after commas. 
 
3 FINITE ELEMENT FORMULATION 
 

The weighted residuals method is applied in order to transform our differential problem 
into an integral equation over the domain Ω . The differential equation is multiplied by a set 
of weighting functions iw , q, and integrated over the domain Ω : 
 

01
=Ω








−−++∫

Ω

dfupuuuw ijjiijijtii ,,,, ν
ρ

   ∫
Ω

=Ω 0dqu ii ,     (3) 

 

So as to introduce a Galerkin type FE formulation we are going to define some function 
spaces in which our variables will be included. Let ( )Ω2L  be the space of functions that are 
square integrable over the domain Ω , and the Sovolev space ( )ΩkH , the subspace of ( )Ω2L , 
in which the derivatives of order up to k belong also to the space ( )Ω2L . The subspace ( )Ω2

0L  
is defined as the subspace of ( )Ω2L  with the constraint of having a zero mean over the 
domain Ω ; this subspace could be used in connection with the pressure unknown or be 
replaced by the constraint of fixing the pressure at a point. The subspace 1

0H  is formed by 
functions that belong to 1H  and vanish on the boundary Γ . 

Next we are going to apply the gauss theorem to find out the weak version of the former 
equations, so as to reduce the order of the derivatives involved and together with it, the 
derivability requirements of the functions. Our problem is therefore reduced to that of finding 

1Hpui ∈, , such that: 
 

( ) 01
2

2
=Γ−Ω−Ω+−+ ∫∫∫∫ ΓΩΩ

Ω

dwtpdwduwfuuuw iiiijijiijijtii ,,,,, ρ
ν  ∫

Ω

=Ω 0dqu ii ,  

 

1Hwi ∈∀  1Hq∈∀ , with  ] 0
1

=Γiw  ] ii bu =Γ1
 ( ) ( )jiji xuxu 00 =,     (4) 

 

Next step in the resolution of our partial differential equation by the FEM will be the 
splitting of our arbitrarily shaped domain Ω , into a set of basic elements approximating the 
shape of Ω . The solution to be obtained afterwards will be an approximation to the exact 
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solution of the differential equation that we are not able to solve analytically and which will 
be given only in a few points of the domain, specifically in the vertices of the basic elements. 
We are going to obtain our approximate solution once we have determined h

iu , ph belonging 

to some subspaces ( )Ω∈ 1
00 HV h  and ( )Ω∈ 2

00 LS h , where h is a parameter related to the size of 
the grid in which the domain Ω  is subdivided. 

Velocity and pressure can then be expressed in terms of this discretization as: 
 

∑
=

=
N

j

jj
i

h
i vu

1

α   and   ∑
=

=
N

j

jjh qp
1

β          (5) 

 

where v and q are known as the trial functions. As a first guess we are going to use a 
Galerkin-type FEM formulation and therefore weighting functions will be equal to trial 
functions. Introducing the approximation into equation (4) the following expression is 
obtained: 
 

( ) 01
2

2

=Γ−Ω−Ω+−+ ∫∫∫∫ ΓΩΩ
Ω

dwtpdwduwfuuuw h
i

h
i

h
ii

h
ji

h
jii

h
ji

h
j

h
ti

h
i ,,,,, ρ

ν  ∫
Ω

=Ω 0duq h
ii

h
,  

 

hh
i Hw ∈∀  hh Hq ∈∀ , with  ] 0

1
=Γ

h
iw  ] i

h
i bu =Γ1

 ( ) ( )
j

h
ij

h
i xuxu 00 =,    (6) 

 

Once the weighted residuals method has been applied and the approximation has been 
introduced, we should proceed to the integration of the elementary matrices and the resolution 
of the system of equations that is consequently obtained. Nonetheless the use of a Galerkin 
formulation, that takes weighting functions equal to trial functions, may lead to some 
problems in the obtaining of the flow solution by the FEM. The finite element method was 
applied when first released to structural problems and this solution thus obtained had the ‘best 
approximation’ property, that is, the difference between the finite element solution and the 
exact solution was reduced with respect to a certain norm. The stiffness matrix resulting from 
structural problems solved by the FEM is symmetric, instead the ‘stiffness’ matrix obtained 
for fluids is only symmetric if we consider the Stokes simplification, that is if we neglect the 
non-linear convective term jijuu , . This simplification can only be made for the so-called 
creeping flow, or in other words sufficiently slow flows with scant depth. In any other case 
the coefficient matrix of the resulting system of equations is going to be non-symmetric and 
as a result, the ‘best approximation’ property is lost. The faster the flow turns, the more non-
symmetric the coefficient matrix becomes. In practice this is featured by the appearance of 
some spurious node-to-node oscillations also known as ‘wiggles’, when a downstream 
boundary condition forces a fast change in the velocity field solution. One way of avoiding 
these oscillations is a refinement of the mesh such that convection no longer dominates on an 
element level. 

The SUPG (Streamline/Upwinding Petrov-Galerkin) method succeeds in eliminating the 
spurious velocity field without carrying out the refinement of the mesh. The Galerkin FE 
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formulation involving piecewise linear interpolations results in a central-difference type 
approximation of the derivatives. The finite difference solutions of fluid flow problems are 
also affected by these oscillations. In these approaches the use of upwinding differencing was 
discovered to be useful in the obtaining of stable velocity field solutions 

The consideration of an upwind approximation of the derivatives brings about the addition 
of the proper amount of artificial diffusion that is needed in order to correct the 
underdiffusivity of the central difference approaching method. It should not be forgotten that 
this coefficient affects the way in which the derivatives are interpolated and not the actual 
physical magnitudes involved in the equations. 

The multi-dimensional generalisation of the upwind treatment of the advection diffusion 
equation brings an additional problem and this is the appearance of an excessive diffusion 
normal to the flow. The streamline upwind method eliminates this spurious crosswind 
diffusion by considering and ‘artificial’ diffusivity that acts only in the direction of the flow 
(see Brooks1 for details). 

The streamline upwind Petrov-Galerkin weighting functions to be considered are of the 
form: 

iii pww ~~ +=              (7) 
 

and therefore an extra term should be included in the equation (6) to yield: 
 

( ) +Γ−Ω−Ω+−+ ∫∫∫∫ ΓΩΩ
Ω

2
2

1
dwtpdwduwfuuuw h

i
h
i

h
ii

h
ji

h
jii

h
ji

h
j

h
ti

h
i ,,,,, ρ

ν  

0 1
=Ω








−+−++ ∑ ∫

Ω

dfpuuuup
N

e
i

h
,i

h
i,jj

h
i,j

h
j

h
ti

h
i

e
ρ

ν,
~   0=Ω∫

Ω

dqu hh
ii ,  , 

 

hh
i Hw ∈∀  hh Hq ∈∀ , with  ] 0

1
=Γ

h
iw  ] i

h
i bu =Γ1

 ( ) ( )
j

h
ij

h
i xuxu 00 =,   (8) 

 

where h
ip~ , is the discretized streamline upwind contribution to the weighting function 

defined as: 

2h

h
ji

h
jh

i

u

wuk
p ,=               (9) 

 

where the multi-dimensional definition of k  is:  

2
ηηξξ ηξ huhu

k
hh +

=  











−=

ξ
ξ α

αξ 1coth   









−=

η
η α

αη 1coth  
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ν
α ξξ

ξ 2
hu h

=   
ν

α ηη
η 2

hu h

=  

h
eii

h ueu ξξ =   h
eii

h ueu ηη =            (10) 
 

where ξh , ηh  and ieξ , ieη  are the characteristic basic element lengths and unit vectors in 

the direction of ξ  and η (see figure 1), ξα  and ηα  are the directional Reynolds numbers 

of the basic element, h
eiu  is the velocity in the interior of the element and ν  is the 

cinematic viscosity of the fluid. 
 
 
 
 
 
 
 
 

Fig. 1 Basic element. 
 

 

The implementation of an SUPG-type stabilisation algorithm on the convective terms 
allows for good results on not very refined meshes and flows featured by high Reynolds 
numbers. The use of a very dense mesh involves high computational costs and 
consequently large amounts of memory requirements and vast CPU times. Consequently 
the SUPG formulation yields as a result, a better computational efficiency. 
 
3.1 Mixed formulation. 
 

Once the modified weighting functions have been introduced and after interpolating ui, p 
and wi let’s go on with the resolution of the steady Navier-Stokes equations: 
 

( ) 0
1

2
2

=Γ−Ω−Ω+− ∫∫∫∫ ΓΩΩ
Ω

dwtpdwduwfuuw h
i

h
i

h
ii

h
ji

h
jii

h
ji

h
j

h
i ,,,, ρ

ν  0=Ω∫
Ω

dqu hh
ii ,  , 

 

hh
i Hw ∈∀  hh Hq ∈∀ , with  ] 0

1
=Γ

h
iw  ] i

h
i bu =Γ1

 ( ) ( )
j

h
ij

h
i xuxu 00 =,    (11) 

 

The most intuitive way of solving the above equations is simply to transform the integral 
equation into a system of equations in which the unknowns were both velocity and pressure. 
This straightforward procedure although intuitive and simple is however quite expensive 
computationally speaking. The associated coefficient matrix of the resulting system for a 
Q1/P0 basic element, is 2M+N dimensional, where M and N are the number of velocity and 
pressure unknowns respectively, and therefore for refined meshes the memory requirements 
for the computational resolution may became very large. 

x1 

x2 

eη 

eξ ξ 

η 

hη 

hξ 
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The matrix notation for the steady problem could be: 
 

( ) fBpAuuuC =−+  
0uB =T               (12) 

 

Where the matrices involved result from the assembling of the elementary matrices which 
can be written as: 

∫Ω
Ω+=

e

d
y

N

y

w

x

N

x

w
A jiji

ij ∂
∂

∂
∂

∂
∂

∂
∂ν  

∫Ω
Ω=

e

d
x

w
B j

ix
ij χ

∂
∂

ρ
1   ∫Ω

Ω=
e

d
y

w
B j

iy
ij χ

∂
∂  

∫Ω
Ω=

e

dfwF xi
x

i   ∫Ω
Ω=

e

dfwF yi
y

i          (13) 
 

The connective term ( )uuC  is not a product of matrices but a non-linear velocity 
dependent function. This term should be avoided in order to transform the system into a linear 
system of equations. The method used for this linearization will be the, so-called, successive 
approximation method, because of its simplicity and the good results achieved for problems 
with Reynolds numbers of moderate order up to 103. In this method the convective term is 
iteratively obtained as a function of the previously determined values of the velocity field. 
The non-linear velocity dependent function for the n-th iteration ( )nuC is taken as the product 
of the constant coefficient matrix C, times the column vector u, unknown of the problem at 
the present iteration. 

( ) ( ) nnnn uuCuC  1−≈  with n=1,2,... 

∫
Ω

−− Ω








∂

∂
+

∂

∂
=

e

d
y

N
vN

x

N
uNwC jn

kk
jn

kki
n
ij  11        (14) 

 

The matrix C is not anymore a function of the present unknowns but depends on the 
previous values of the vector field, and is taken as zero as a first-iteration guess. The solution 
is usually achieved within some tens of iterations and depends on the Reynolds number of the 
flow, or in other words on the amount of convection we have to deal with. The compressed 
and expanded matrix forms can be expressed as: 
 

( ) fBpAuuuC =−+− nnnnn 1   0uB =nT  
 

( ) ( ) 














=

































+
+

−

−

0

f
f

0

v
u

0BB

BCA0
B0CA

y

x
n

n

TyTx

xn

xn

1

1

 n=1,2,....    (15) 
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set of iterative constant-coeficient linear system of equations, which gives solution to the 
viscous incompressible flow for given boundary conditions. 

This formulation not only results in a large dimensioned system but also generates a 
stiffness matrix radically different to the narrow-band type of matrix, which is required for the 
direct resolution of the system of equations. To overcome these shortcomings, some way of 
avoiding the resolution of these large dimensioned systems is to be developed and following, 
the penalty and segregated methods are presented. The basic element used for these 
calculations will be the Q1/P0 (bilinear velocity-constant pressure), that, although does not 
verify the LBB conditions, achieves a good approximation for the problems considered. 
 
3.2 Penalty formulation 
 

This alternative formulation gives the possibility of imposing the incompressibility 
constraint without solving an auxiliary pressure equation by replacing the continuity equation 
by 
 

Pu ii ε−=,              (16) 
 

where the so-called penalty parameter ε  is a number that tends to zero. This equation is 
incorporated into the dynamic equation and therefore a system of equations that depends on 
both velocity and pressure is transformed into a velocity-dependant single equation that 
converges to the fully incompressible problem as ε  approaches to zero. 

The variational Lagrange multipliers technique gives solution to the problem of finding the 
stationary values of an integral expression I(u) (the dynamic equation), constrained by an 
additional equality J(u) = 0 (the incompressibility condition), transforming the problem into 
the obtaining of the stationary values of the modified expression 
 

( ) ( ) ( )uu,u JII
ε

λ 1
+= .           (17) 

 

It may be proved that as ε  approaches to zero, the solution given by the minimisation of 
(17) converges to the solution of the problem posed in (1). For practical purposes the value of 
ε  must be balanced between a sufficiently small value in order to achieve a solution closer to 
the real one and a value large enough so as not to promote the ill conditioning of the stiffness 
matrix. By applying this method, we have achieved the splitting of the unknowns involved 
and therefore the velocities can be obtained in advance for a sufficiently small value of ε  by 
solving the discrete system of equations 

01
=Ω+−∫

Ω

dwuwfwu h
ii

h
ii

h
ii

h
ii

h
ii ,,,, ε

ν  

 

the pressure field can be post-processed using 
 

h
ii

h up ,ε
1

−=  
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The solution to these equations will approximate to that of the initial problem as ε  tends to 
zero, provided that a consistency condition analogous to that of the mixed problem hold now 
for the penalty formulation, this approach may lead to the obtaining of a singular coefficient 
matrix associated to the penalty term 
 

∫
Ω

Ωdwu h
ii

h
ii ,,ε

1              (20) 

 

As ε  tends to zero, this term happens to dominate the system of equations and therefore the 
problem is over-constrained and the only possible solution may be the trivial one. This is a 
problem totally analogous to the one obtained when an equal order interpolation for both 
velocity and pressure is chosen in the mixed formulation. This problem can be avoided by 
making a so-called selective reduced integration of the elementary matrices involved in the 
resolution of the problem. A reduced numerical integration consists in using a quadrature rule 
that is not exact for the polynomials considered. The use of this reduced integration rule for 
the penalty term transforms the associated ‘penalty’ matrix into a rank deficient matrix and 
consequently ‘unlocks’ the obtaining of a non-trivial solution. For instance, if a bilinear 
interpolation of the velocity field is used, a Newton-Cotes interpolation that can integrate only 
constant functions exactly may be used. 
The full steady convective-term-including penalised equations would be now 
 

Ω=Ω+ ∫∫
ΩΩ

dwfdwuwu
hh

h
ii

h
ii

h
ii

h
ii

h
ii ,,,, ε

ν 1          (21) 

 

Once the basic element has been chosen and the approximation for ui 
 

∑
=

=
N

j

jj
i

h
i Nuu

1

              (22) 

 

is introduced, we can carry out the integration and assembling of the elementary matrices to 
obtain the ‘single matrix equation 

( ) fpBAuuuC =++
ε
1             (23) 

Where 
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N
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∂
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∂
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


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


=
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x
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∫
Ω
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
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




∂

∂
+

∂

∂
=

e
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y
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N
uNwC jn
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ij  11  

∫Ω
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d
x
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x

N
B jix

ij ∂
∂

∂
∂

ρ
1  ∫Ω Ω=
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d
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y
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B jiy

ij ∂
∂

∂
∂

ρ
1  ∫Ω Ω=

e

d
y

N

x

N
D jix

ij ∂
∂

∂
∂

ρ
1  

∫Ω
Ω=

e

dfNF xi
x

i     ∫Ω Ω=
e

dfNF yi
y

i         (24) 
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3.3 Segregated formulation: 
 

The penalty method succeeds in solving the Navier-Stokes equations with a large reduction 
in the execution time and great memory savings, thanks to the smaller number of equations to 
be solved. Anyhow, this is an approximate method that depends on the election of the 
parameter ε , which for very small values produces an ill conditioning of the stiffness matrix 
and for too large values, may prevent the system from converging. Most finite difference and 
finite volume approaches to the problem of viscous incompressible flow employ some form 
of segregated method such as the SIMPLE and SIMPLEST algorithms in which the velocity 
and pressure unknowns are not obtained simultaneously. The segregated method calculates 
velocities and pressures in an alternative iterative sequence, requiring much less storing 
requirements than the conventional mixed method. Moreover, achieves a greater reduction in 
the number of equations compared to the penalty formulation that is reduced to the number of 
nodes, and avoids the use of the sometimes inconvenient penalty parameter. 

Another gain of these segregated algorithms is that a mixed-order interpolation can be 
used. As it has already been said, the mixed and penalty methods required a velocity 
approximation different from that of the pressure. The easier-to-implement discretization of 
the domain in terms of the same basic functions for both velocity and pressure, leads to 
oscillation-free solutions even when the div-stability condition is not verified, and the 
tendency to produce the checkerboard pressure distribution is therefore eliminated. 

The momentum equations are treated by the weighted residuals finite element method in 
the former cases, but this time the pressure term ∫Ω Ωdpw ii  ,  is not considered as an unknown 
anymore but included in the right hand of the system. For the first iteration the pressures are 
taken as zero as a first guess and for the following, this zero value will be properly corrected. 
With this, we do not only get rid of the ‘unwanted’ pressure unknown, but also accomplish 
that, due to the independence of the x-component dynamic equation with respect to v and the 
y-component with respect to u, the system to be solved is of n dimension. Following Rice8 the 
dynamic equation can be written: 

 

( ) ∫Ω
Ω

∂

∂
−==+ dp

x

N
w j

j
i

uu  fuKAuv,uC ν  

( ) ∫Ω Ω
∂

∂
−==+ dp

y

N
w j

j
i

vv  fvKAvv,uC ν         (25) 

 

This equation could be rewritten as: 

i

u
ii x

p
Kuu 








∂
∂

−= ~  

 
i

v
ii y

p
Kvv 








∂
∂

−= ~             (26) 

 

where iu~  and iv~  are termed pseudo-velocities and defined as : 
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and the pressure-velocity coupling coefficients v
i

u
i KK  , are equal to: 

∫Ω
Ω= dw

k
K iu

ii

u
i

1
 

 ∫Ω
Ω= dw

k
K iv

ii

v
i

1              (28) 

 

The approximation (26) will be the required relation between velocity and pressures. 
Although it is only comparable to the use of a secant approximation in Newton´s method, it is 
enough for the algorithm to converge. Since an equal order bilinear approximation is used for 
the pressure, the continuity residual is formed by the product of the same weighting functions 
as those used in the dynamic equations: 

0=Ω∫
Ω

duw
h

jji , , 

 

using the divergence theorem, the following expression is obtained 
 

0=Γ−Ω ∫∫
ΓΩ

dnuwduw jjihjji

h

,             (29) 

 

where nj is the normal outward vector with respect to the boundary Γ , or in expanded form 
 

( ) Γ+=Ω
∂

∂
+

∂

∂
∫∫ ΓΩ

dnvwnuwwdvw
y

w
uw

x

w
yjjxjjijj

i
jj

i          (30) 

 

Substituting (26) into (30) we obtain the discretized integral expression 
 

pp fpK =              (31) 
 

Ω
∂

∂

∂
∂

+
∂

∂

∂
∂

= ∫Ω d
y

N
KN

y

N

x

N
KN

x

N
k jv

kk
iju

kk
ip

ij
h

        (32) 

 

( ) Γ+−Ω
∂
∂

+
∂

∂
= ∫∫ ΓΩ

dnvNnuNNdvN
y

N
uN

x

N
f

hh
yjjxjjijj

i
jj

ip
i   ~~     (33) 

 

As it can be observed, the coefficient matrix for the pressure equation is similar to that 
obtained for the diffusive term in the conventional finite element formulation if the viscosity 
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is replaced by K. This equation results consequently in a robust system with a symmetric and 
positive definite associated matrix. To solve this pressure equation we should take into 
account not only the prescribed nodal pressure values, that usually are given at the outlets and 
at least are given a point, but also the implicitly prescribed pressures on the nodes where the 
velocity is given. For this type of implicitly imposed pressure, the pseudo-velocities are set 
equal to the prescribed nodal velocities and therefore the values of u

iK  and v
iK  are set equal 

to zero. 
Once we have solved the pressure system, velocities are updated using 

Ω
∂

∂
−= ∫Ω

dp
x

N
w

k
uu j

j

iu
ii

ii   
1~ ;  Ω

∂

∂
−= ∫Ω

dp
y

N
w

k
vv j

j

iv
ii

ii   
1~ ,   (34) 

to ensure continuity. 
The iterative process is based in assuming a zero velocity as a first guess for the resolution 

of the dynamic equation. Once the pseudo-velocities and the pressure-velocity coefficients 
have been calculated, the pressure continuity system is assembled and solved. Finally the 
velocities are updated, making use of the newly determined pressure field and with both new 
velocities and pressures the dynamic equations are reassembled, the dynamic system is again 
solved and the same procedure is repeated until convergence is achieved. 

When using a segregated algorithm, the use of uncoupled velocity and pressure fields may 
lead to the divergence of the whole process. To avoid this problem, an under-relaxation of the 
unknowns is to be introduced in order of the algorithm to converge. The linear relaxation 
formulae to be used is 

( )11 −− −+= nnnn φφαφφ ,           (35) 
 

where nφ  is the value of the unknowns (either velocity or pressure) at the present iteration.  
 
4 Numerical Results 
 

The FEM results in a system of linear equations containing a big amount of equations and 
unknowns. For instance when a mixed formulation together with a Q1/P0 (Bilinear velocity-
Constant pressure) quadrilateral element the number of equations and unknowns is settled as 
twice the number of nodes plus the number of basic elements and the storage of such a big 
amount of information requires a clever data-keeping strategy. When using a direct numerical 
method for the resolution of the system of equations, an alternative way of data storing is the 
so-called skyline or column profile storage. Instead of storing every single matrix-element, we 
could think of storing only the first non-zero element of each column and the following 
elements in that column up to the diagonal. Due to the fact that we are dealing with 
convective-term including formulations the coefficient matrix associated to the system is 
going to be non-symmetric, and another vector-valued variable is required for the lower 
triangular matrix. Together with this vector valued variable v, an additional pointer vector p 
has to be defined so as to indicate the position of the elements. Nevertheless when either the 
mesh is progressively refined or very large domains are going to be considered, the memory 
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requirements became extraordinarily large, in order to avoid this problem an alternative and 
more efficient storing schedule should be used. 

The ‘cheapest’ storing mechanism is to keep exclusively those elements different from 
zero. This is a much better procedure that avoids wasting memory resources in storing mid-
height zeros, which can be more numerous than the number of non-zero elements even when 
the mesh is re-numbered so as to reduce the band width to a minimum and specially when a 
mixed method is used. Provided that the sparse storage cannot be used in combination with a 
direct solver because some elements could be ‘thrown out’ of the sparse stencil, when this 
type of storage is used, some other algorithm should be implemented to solve the system of 
equations. For the present calculations a Preconditioned Biconjugate Gradient Method 
(PBCG) type of solver will be implemented in order to solve the resulting system. 
 The skyline storing together with a Crout solver, will be also used in those meshes with a 
reasonable number of elements, therefore obtaining exact and one-step solutions. For more 
refined meshes and especially when a mixed formulation is implemented, a PBCG-type 
algorithm is used. 

We will assume we have reached convection convergence once  
 

41

1
10−−

=
<− n

i
n
i

Ni
max φφ

,..
           (36) 

for each of the unknowns. 
The problem of the flow in a square cavity has been considered to check the algorithms by 

comparison of their results with those of other authors. The velocity is settled as one on the 
topside and the no-slip condition is considered on the other sides. The pressure is fixed as 
zero in the centre of the lower side of the cavity. The domain has been interpolated in terms of 
a 31x31 node non-regular mesh with Q1/P0 basic elements. 

The results for the penalty algorithm for Reynolds numbers of 100, 1000, 5000 and 10000 
are shown bellow. In all the cases considered, the penalty parameter has been taken as 10-4. 
The solution has been obtained using a PBCG iterative method for solving the system of 
equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. - Horizontal velocities along a central vertical line compared with those of Ghia 2 for a Reynolds number 
of 100. Velocity field and streamlines. 
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Fig 3. - Horizontal velocities along a central vertical line compared with those of Hannani 3 and Ghia 2 for a 
Reynolds number of 1000. Velocity field and streamlines. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. - Horizontal velocities along a central vertical line compared with those of Hannani 3 and Ghia 2 for a 
Reynolds number of 5000. Velocity field and streamlines. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.- Horizontal velocities along a central vertical line compared with those of Kondo 4 Ghia 2 for a Reynolds 
number of 10000. Velocity field and streamlines. 
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For the mixed formulation a PBCG algorithm has been used to solve the system of equations 
with a column profile storing procedure. The results for the pressure and velocity for a 
Reynolds number of 10000, with a 1681-node, 1600-element mesh are shown bellow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5 Vector field and streamlines (41x41 non-regular mesh, mixed). 
 

When the segregated algorithm is used, an under-relaxation of the unknowns has to be 
introduced in order of the algorithm to converge. The relaxation parameters used were taken 
as 70.=uα and 20.=pα . The results for pressures and velocities obtained for the segregated 
formulation when a Reynolds number of 400 is used are shown bellow. 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. - Pressure field, Horizontal velocities along a central vertical line and Pressures along a horizontal central 
line compared with those of Winters and du Toit 5. 

 
The flow over a backward step of width 30 l.u. and length 440 l.u. has been also calculated, 

making use of a mixed formulation with a PBCG solver. The results for a Reynolds number 
of 100 and 1000 and a regular mesh of 3381 nodes and 3150 elements are shown bellow. 
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Fig 6 Streamlines for the backward step problem (Re 100 and 1000). 
 
 The steady flow around a circular cylinder has also been calculated for a Reynolds number 
of 500 on a 732-node mesh, with the expected results. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7 Velocity field and streamlines for the flow around a cylinder problem. 
 
 The program has also been used to calculate the flow in some real cases, helping in the 
obtaining of the optimal shape of some water treatment plants structures. The results for the 
wastewater flow in a biological reactor are presented as an example. A scaled flow of 4 l/h is 
re-circulated on a cavity in which a biological film purifies the water flow with a resulting 
Reynolds number of 100. The domain shown in figure 8 represents the cross section of the 
biological reactor, which has been split into 1916 nodes. The flow has been solved using a 2D 
flat Navier-Stokes flow with mixed formulation and PBCG solver. A spillway boundary 
condition has been considered for the top border. The resulting streamlines and vector field is 
sketched bellow. 
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Fig 8 Streamlines and velocity field for the biological reactor problem. 
 
5 Conclusions 

 
The program seems to achieve good results for the three formulations as can be seen in the 

plots, compared with results from Winters, Hannani, Ghia, Kondo and others. The results 
from the present study seem to adjust to those of the others, with even a less refined mesh. 
When a mixed formulation is used, the matrices involved in the resolution of the Navier-
Stokes equations became large and this implies that very big meshes can not be used, 
therefore small vortices are not detected. However the iteration process is reduced to the 
achievement of the convection effect, so a few iterations are needed, and therefore the CPU 
time involved is less than one hour in a conventional PC. When a mixed or segregated 
algorithm is used, the iterative process becomes much longer. The program has been run in a 
Digital AlphaServer 1000A computer, taking CPU times of one or two hours for the 31x31 
mesh, depending on the Reynolds number. With respect to the basic elements, when a Q1/P0 
quadrilateral is used, the pressure results for the mixed algorithm are polluted by a checker 
board pressure mode that anyway, can be removed by a proper smoothing of the results. This 
unwanted distortion does not appear when an equal order four-node basic element is used for 
the segregated procedure. 
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