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Abstract. A Finite Element based program has been released to solve the steady 2D Navier-
Stokes eguations. The mixed-variable agorithm is used as a firs agpproach to solve the
differential problem. In order to reduce the number of equations, both a pendty and
segregated formulation are implemented to give solution to the viscous incompressible flow
and thar results are compared with the former formulation. The program makes use of a
SUPG type dgorithm as a dHabilisation procedure, in order to eiminate the numerica
oscillations, which may appear when the boundary conditions force a sudden change in the
solution, without necessarily refining the mesh. The three different agorithms are checked
making use of the benchmark problems of the flow in a square cavity, the backward step and
the flow past a cylinder. Findly the code is used to solve the flow in some practica problems
and their results are commented.
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1 INTRODUCTION

The finite dement method was developed to solve problems of the rigid body, fluids
ingtead, are of an ‘odd’ nature compared to solids and the FEM cannot be applied so
draightforward. In the FE resolution of the sructurd andyss problems the pogtion of the
particles is not consdered to be a function of time. The solution of the rigid body problem is
dated in terms of the nodes displacements and insteed in fluids, we have a mixed formulation
in which both velocity and pressure are needed in order to solve the flow. The resulting
governing equation in fluids is a nonlinear differentid sysem and moreover, the so-caled
‘diffness matrix associated to this system, inherits from dructurd andyss its nomenclature
but not its symmetry.

For many of the linear eadticity problems solved using the FEM, the mere requirement of
the ownership of the functions to a certain set of mathematica paces ensures the obtaining of
a dable and meaningful gpproximation, but this is not agan 0 draightforward in fluids. This
aspect would require a further discusson that is beyond the scope of this paper. Anyway in
what follows, the badc finite dement functions used will lead to meaningful solutions even
for badc dements that do not veify drictly the LBB condition, the man theoreticd
redtriction when referring to viscous flow problems.

The viscous incompressible flow is governed by the Navier-Stokes equations. Although
some other smplified formulae can be adopted to solve flows were the frictiond forces can
be neglected (potentid flow) or ‘cresping’ flows (stokes smplification) for ingance, the
Navier-Stokes equations are the only ones to solve the genera problem. The unknowns for
the N-S eguations are both velocity and pressure and the mogt intuitive way of solving the
problem is smply to transform the conditutive equation into a sysem of equations in which
the unknowns were both variables. This draghtforward procedure dthough intuitive and
ample, is however quite expendve computationdly spesking. In order to improve the
memory requirements, a pendty and segregated dgorithm will be used, and therr results
compared for direct and iterative solvers, which have been implemented on them. The SUPG
(Streamline Upwinding/Petrov-Gaerkin) method has been used as a dtabilisation procedure so
as to being able to solve the flow without usang very refined meshes. Once the dgorithm has
been checked on some benchmark problems with good results, the program is used to solve
some practica problemsin the field of the wastewater treatment.

2 GOVERNING EQUATIONS
The Navier-Stokes equations, can be written as:
u,+uu; =- Tlp’i +ry, ; +
u,=0 in W «y

together with the initia and boundary conditions:
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ul, =b (Dirichlet) SijanGZ:ti (Newman)

u (xj ,0): uio(xj) with u,, =0 2

where u is velocity, p is pressure, f is the body force per unit mass, r isdendty, n isthe
cdnemdic viscodty, G and G, ae two non overlgpping subsets of the piecewise smooth
domain boundary G, b; is the velocity vector prescribed in G, t is the traction vector

prescribed on G,, nj is the outward unit vector normd to G,, and the derivatives are made
with respect to indices after commeas.

3 FINITE ELEMENT FORMULATION

The weighted resduds method is gpplied in order to transform our differentid problem
into an integrd equation over the domain W. The differentid equation is multiplied by a set

of weighting functions w; , g, and integrated over the domain W:
dviéeui,t"'ujui,j +ip,i_mi,jj_ f, ?jiW=O (‘jM;dW:O (©)
w r 1] W

So as to introduce a Gderkin type FE formulation we are going to define some function
speaces in which our variables will be included. Let L2(W) be the space of functions that are
square integrable over the domain W, and the Sovolev space H*(W), the subspace of L2(W),
in which the derivatives of order up to k belong aso to the space L2(W). The subspace L2(W)
is defined as the subspace of L? (V\/) with the condrant of having a zero mean over the
doman W; this subspace could be used in connection with the pressure unknown or be
replaced by the congtraint of fixing the pressure a a point. The subspace H, is formed by
functions that belong to H* and vanish on the boundary G.

Next we are going to gpply the gauss theorem to find out the weak verson of te former

equations, s0 as to reduce the order of the derivatives involved and together with it, the
derivability requirements of the functions. Our problem is therefore reduced to that of finding

u,pl H?, such that:
N\, \ 1 hY hY — \ —
WONi(ui,t tul; - fi)+nQ,Wi,jui,de' ?Q/\Ni,i pdWV- Qtiwidq =0 V(vﬂui,idw_o
"wi H" "qgl H', with wi]Gl:O ui]q:bi u (x,,0)=uy,(x) (4)
Next sep in the resolution of our patid differentid equation by the FEM will be the

solitting of our arbitrarily shgped doman W, into a set of basc eements goproximating the
shgpe of W. The solution to be obtained afterwards will be an gpproximation to the exact
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solution of the differentid equation that we are not able to solve andyticdly and which will
be given only in a few points of the domain, specificdly in the vertices of the basc dements.

We are going to obtain our approximate solution once we have determined u', ' bdonging

to some subspaces V,'T HX(W) and ST L2(W), where h is a parameter related to the size of

the grid in which the domain W is subdivided.
Vdocity and pressure can then be expressed in terms of this discretization as.

uh = g avl  ad p" :g big’ (5)

j= =

where v and q are known as the trid functions. As a fird guess we are going to use a
Gdekin-type FEM formulation and therefore weghting functions will be eguad to trid
functions. Introducing the approximation into equation (4) the following expresson is
obtained:

C\,Vih (uir,]t +ujuy - f )+n QU dW- %Qwir,]i pdwW- Qtihwihde& =0 G]huir} dW=0
w

j (TR
w

"whT H" " g"T H", with Wi“]q:O ui“JGl:q uih(xj,O)zuiho(xj) (6)

Once the weighted resduads method has been agpplied and the approximation has been
introduced, we should proceed to the integration of the dementary matrices and the resolution
of the sysem of equations that is consequently obtained. Nonetheless the use of a Gaerkin
formulation, that takes weghting functions equa to trid functions may lead to some
problems in the obtaning of the flow solution by the FEM. The finite dement method was
applied when firg relessed to structura problems and this solution thus obtained had the ‘best
goproximation’ property, that is, the difference between the finite dement solution and the
exact solution was reduced with respect to a certain norm. The giffness matrix resulting from
sructurd problems solved by the FEM is symmetric, ingead the ‘diffness matrix obtained
for fluids is only symmetric if we condder the Stokes smplification, thet is if we neglect the

nonlinear convective teem u,u, ;. This smplification can only be made for the so-cdled

creeping flow, or in other words sufficiently dow flows with scant depth. In any other case
the coefficent matrix of the resulting system of equations is going to be non-symmetric and
as a result, the ‘best approximation’ property is lost. The faster the flow turns, the more non
symmetric the coefficient matrix becomes. In practice this is featured by the agppearance of
some spurious node-to-node oscillations dso known as ‘wiggles, when a downstream
boundary condition forces a fast change in the veocity fidd solution. One way of avoiding
these oscillations is a refinement of the mesh such that convection no longer dominates on an
eement levd.

The SUPG (Streamline/Upwinding Petrov-Gaerkin) method succeeds in diminating the
sourious velocity fidd without carying out the refinement of the mesh. The Gaekin FE
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formulation involving piecewise linear interpolations results in a centra-difference type
goproximation of the deriveives. The finite difference solutions of fluid flow problems are
adso affected by these oscillations. In these gpproaches the use of upwinding differencing was
discovered to be useful in the obtaining of sable velocity field solutions

The congderation of an upwind approximation of the derivatives brings about the addition
of the proper amount of artificid diffuson that is needed in order to correct the
underdiffusvity of the centrd difference approaching method. It should not be forgotten that
this coefficient affects the way in which the derivatives are interpolated and not the actud
physica magnitudes involved in the equations.

The multi-dimensona generdisation of the upwind trestment of the advection diffuson
equation brings an additiond problem and this is the gppearance of an excessve diffuson
norma to the flow. The dreamline upwind method diminates this spurious crosswind
diffuson by consdeing and ‘atificid’ diffusvity that acts only in the direction of the flow
(see Brooks' for details).

The streamline upwind Petrov-Gderkin weighting functions to be consdered are of the
form:

=W +P, (7
and therefore an extraterm should be included in the equation (6) to yield:

(\jvih (uir,]t + uTuirji B fi )+nvithul ]dW- _QWII de chthG& +

w

N ..
+é C‘p gu +ullul - m.“"‘—p. - f%dwzo OJ”q hgW=0
e We

wW'T H" "g"T H", with vvihlqzo UthGl:b. uih(xj,o):ui*;(xj) (9)
where p', is the discretized sreamline upwind contribution to the weighting function
defined as.

h — IZl'Ithir,]i
P = ©)
o]

where the multi-dimensiond definition of k is

k= xu/h +hy'h,
- 2

= _ 1 _&® 1 €
—écotha - h-écothah —
a, a,

QI'IO
QI'-IO
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u” u,”
ax — xh< ah — hhn
n n
U =gUs Uy =6Ug (10)

where h,, h and e,, e, ae the characterigic basc dement lengths and unit vectors in
the direction of X and h (see figure 1), a, and a, are the directiond Reynolds numbers

of the basic dement, u] is the velocity in the interior of the dement and n is the
cinematic viscosty of thefluid.

Fig. 1 Basic element.

The implementation of an SUPG-type dabilisation dgorithm on the convective terms
dlows for good results on not very refined meshes and flows festured by high Reynolds
numbers. The use of a vey dense mesh involves high compuationa costs and
consequently large amounts of memory requirements and vast CPU times. Consequently
the SUPG formulation yields as aresult, a better computationd efficiency.

3.1 Mixed formulation.

Once the modified weighting functions have been introduced and after interpolating u;, p
and w; let’s go on with the resolution of the steady Navier- Stokes equations:

c‘yvih(uhuh‘ - fi)+n AW u”. dw- %lehl pdW- Qtthithz =0 C\}Jirjiqhdwzo ,
w

i 1,0
w

"w'T H" "qg"T H", with Wthq:0 uthGl:b' uih(xj’o):uir:)(xi) (11)

The mog intuitive way of solving the aove equaions is smply to transform the integrd
equation into a sysem of eguations in which the unknowns were both velocity and pressure.
This draightforward procedure dthough intuitive and smple is however quite expensve
computetionaly spesking. The associated coefficient matrix of the resulting sysem for a
QL/P0O basic dement, is 2M+N dimensiond, where M and N are the number of velocity and
pressure unknowns respectively, and therefore for refined meshes the memory requirements
for the computationa resolution may became very large.
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The matrix notation for the steedy problem could be:

C(u)u +Au- Bp=f
B'u=0 (12)

Where the matrices involved result from the assembling of the dementary matrices which
can be written as:

Fr=qQwfdw F’=qwf,dw (13)

The connective term C(u)u is not a product of matrices but a non-linear velocity
dependent function. This term should be avoided in order to transform the system into a linear
sysdem of egquaions. The method used for this linearization will be the, so-called, successve
goproximation method, because of its amplicity and the good results achieved for problems
with Reynolds numbers of moderate order up to 10°. In this method the convective term is
iteratively obtained as a function of the previoudy determined vaues of the veocity fied.
The nontlinear velocity dependent function for the n-th iteration C(u”)is taken as the product
of the congtant coefficient matrix C, times the column vector u, unknown of the problem at
the present iteration.

C(u”)» C”(u "'1)u" withn=1,2,...
Cj = (fyvI %Ef\lku;‘lﬁ + NkvL”M(:g)dW (24)
w ix Ty g

The marix C is not anymore a function of the present unknowns but depends on the
previous vaues of the vector fidd, and is taken as zero as a fird-iteration guess. The solution
is usualy achieved within some tens of iterations and depends on the Reynolds number of the
flow, or in other words on the amount of convection we have to ded with. The compressed
and expanded matrix forms can be expressed as.

C'(u™ " +Au"- Bp"=f B'u"=0

>

éA +C™* 0 B*U&u"U éf 0

e n- XL'e nU_A l:l f—

& OT A+CTl B L:@v a=d v n=12,.... (25
¢ () ofgod gog
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st of iterdive condant-coeficient liner system of equations, which gives solution to the
viscous incompressible flow for given boundary conditions,

This formulation not only results in a large dimensoned sysem but adso generaes a
diffness matrix radicdly different to the narrow-band type of matrix, which is required for the
direct resolution of the system of equations. To overcome these shortcomings, some way of
avoiding the resolution of these large dimensoned systems is to be developed and following,
the penalty and segregated methods are presented. The basic dement used for these
cdculations will be the QLPO (bilinear veocity-constant pressure), that, athough does not
verify the LBB conditions, achieves a good approximétion for the problems considered.

3.2 Penalty formulation

This dtenaive formulation gives the posshility of imposng the incompresshility
condraint without solving an auxiliary pressure eguation by replacing the continuity equation
by

U icC eP (16)

where the so-caled pendty parameter e is a number that tends to zero. This equation is
incorporated into the dynamic equation and therefore a system of equations that depends on
both velocity and pressure is transformed into a velocity-dependant single equation that
converges to the fully incompressible problem as e approaches to zero.

The vaiaiond Lagrange multipliers technique gives solution to the problem of finding the
dationary vaues of an integrd expresson I(u) (the dynamic eguation), condrained by an
additiond equdity J(u) = 0 (the incompressibility condition), transforming the problem into
the obtaining of the stationary vaues of the modified expresson

I(u,I ):I(u)+é\](u). (17)

It may be proved that as e gpproaches to zero, the solution given by the minimisation of
(17) converges to the solution of the problem posed in (1). For practica purposes the vaue of
e must be baanced between a sufficiently smal vaue in order to achieve a solution closer to
the red one and a vaue large enough so0 as not to promote the ill conditioning of the diffness
matrix. By applying this method, we have achieved the splitting of the unknowns involved
and therefore the velocities can be obtained in advance for a sufficently samdl vdue of e by
solving the discrete system of equations

GuhAWh. - fiv\/ih +£uh.wh4dW: 0
e

ii (IR I
w

the pressure field can be post- processed using
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The solution to these equations will approximate to that of the initid problem as e tends to
zero, provided that a consstency condition anaogous to that of the mixed problem hold now
for the pendty formulation, this agpproach may lead to the obtaining of a sngular coefficient
matrix associated to the penaty term

[N N
w

e(‘y“ wWh dw (20)

As e tends to zero, this term happens to dominate the system of equations and therefore the
problem is over-condrained and the only posshle solution may be the trivid one. This is a
problem totaly anaogous to the one obtained when an equa order interpolation for both
velocity and pressure is chosen in the mixed formulaion. This problem can be avoided by
making a so-cdled sdective reduced integration of the eementary matrices involved in the
resolution of the problem. A reduced numerica integration conssts in using a quadrature rule
that is not exact for the polynomids congdered. The use of this reduced integration rule for
the pendty term trandforms the associated ‘pendty’ matrix into a rank deficient matrix and
consequently  ‘unlocks the obtaining of a nonttrivid solution. For ingance, if a hbilinear
interpolation of the veocity fidd is used, a NewtonCotes interpolation that can integrate only
constant functions exactly may be used.

The full seedy convective-term-including pendised equations would be now

"W +1uiﬁiv_vP,i dw= ¢, wi'dw (21)
W, e Wh
Once the basic dement has been chosen and the gpproximeation for u;
N
u'=q u'N' (22)
j=1

is introduced, we can cary out the integration and assembling of the dementary matrices to
obtain the ‘single matrix equation

Clulu+Au +éBp=f (23)
Where
A an N Tle+T"\IiT|deW =} ﬁT DyO
efx X 1y Ty D' B
‘HN, L IN; €
U +N,Vv 'de
Uvé v 5
x X\ ﬂﬁdw By :i Y TIN ﬂNj dW DX :1 ~ mmd\/\/
Qeww Ty QW

F =g N f.aw F'=Q N f,dw (24)

e
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3.3 Segregated formulation:

The pendty method succeeds in solving the Navier-Stokes equations with a large reduction
in the execution time and grest memory savings, thanks to the smdler number of equations to
be solved. Anyhow, this is an approximate method that depends on the eection of the
parameter e, which for very andl vaues produces an ill conditioning of the giffness matrix
and for too large values, may prevent the sysem from converging. Mo finite difference and
finite volume gpproaches to the problem of viscous incompressble flow employ some form
of segregated method such as the SSMPLE and SIMPLEST dgorithms in which the velocity
and pressure unknowns are not obtained smultaneoudy. The segregated method cdculates
velocities and pressures in an dterndtive iterative sequence, requiring much less soring
requirements than the conventional mixed method. Moreover, achieves a greater reduction in
the number of equations compared to the pendty formulation thet is reduced to the number of
nodes, and avoids the use of the sometimes inconvenient pendty parameter.

Another gain of these segregated dgorithms is that a mixed-order interpolation can be
used. As it has dready been sad, the mixed and pendty methods required a velocity
goproximation different from that of the pressure. The easer-to-implement discretization of
the domain in terms of the same basc functions for both velocity and pressure, leads to
oxillation-free solutions even when the div-dability condition is not verified, and the
tendency to produce the checkerboard pressure distribution is therefore diminated.

The momentum equaions are trested by the weighted resduds finite dement method in

the former cases, but this time the pressure term QWi p, dW is not consdered as an unknown

anymore but included in the right hand of the system. For the first iteration the pressures are
taken as zero as a first guess and for the following, this zero vaue will be properly corrected.
With this, we do not only get rid of the ‘unwanted’ pressure unknown, but aso accomplish
that, due to the independence of the x-component dynamic equation with respect to v and the
y-component with respect to u, the system to be solved is of n dimension. Following Rice® the
dynamic equation can be written:

C(u v)+nAu:K“u=f”- ‘Wﬂp dw
1 Q i ﬂx ]
C(u v)+rAv=KVv:fV- ‘W&p.dw (25)
Q ! ﬂy J
This equation could be rewritten as.
u=a - ?“EQ
e TXxg
v Ipo
v, =7 - gk' P2 (26)
& Ty

where 0 and 7, are termed pseudo-velocities and defined as::

10
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O
g kl] ] i
ﬂ
1 v VQ
[— ku i fi = (27)
ii it %]

and the pressure-ve ocity coupling coefficients K*, K. are equal to:

1
K'=—cwdw
e O

vV — 1 \
K= Quiaw (29)

The approximation (26) will be the required reation between veocity and pressures.
Although it is only comparable to the use of a secant gpproximation in Newton’s method, it is
enough for the agorithm to converge. Since an equd order hilinear gpproximation is used for
the pressure, the continuity resdua is formed by the product of the same weighting functions
as those used in the dynamic equetions:

cyv,u dw=0,

N

using the divergence theorem, the following expression is obtained

G

Wh

where nj is the normal outward vector with respect to the boundary G, or in expanded form

L iw fiw _

QIWWU +‘|1_yWV aw= QW(W]u]nX+W]any) dG (30
Subdtituting (26) into (30) we obtain the discretized integra expresson
KPp=fP (3D
kij:QﬂN'N K”ﬂ ﬂN'NKVﬂ Law (32)
L ix Ty fly
. N, N,

f,P :Qhﬂﬂx N, +'"ﬂy N,7, dW- QN (N,u;n, +Njvn, )dG (33)

As it can be observed, the coefficient matrix for the pressure equation is Smilar to that
obtained for the diffusve term in the conventiond finite dement formulation if the viscosty

1
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is replaced by K. This equation results consequently in a robust sysem with a symmetric and
podtive definite associated matrix. To solve this pressure equation we should take into
account not only the prescribed noda pressure vaues, that usudly are given a the outlets and
a least are given a point, but aso the implicitly prescribed pressures on the nodes where the
veodity is given. For this type of implicitly imposed pressure, the pseudo-veocities are set
equal to the prescribed nodd velocities and therefore the values of K and K. are set equa

to zero.
Once we have solved the pressure system, velocities are updated using

S TN 1IN
kO e fly

=}

u =

p; dw; Vi =Vi- WQ/WI p; dw, (34)
to ensure continuity.

The iterative process is based in assuming a zero velocity as a fird guess for the resolution
of the dynamic equation. Once the pseudo-velocities and the pressure-velocity coefficients
have been cdculated, the pressure continuity system is assembled and solved. Findly the
velocities are updated, making use of the newly determined pressure fidld and with both new
velocities and pressures the dynamic equations are reassembled, the dynamic system is again
solved and the same procedure is repeated until convergence is achieved.

When using a segregated agorithm, the use of uncoupled velocity and pressure fidds may
lead to the divergence of the whole process. To avoid this problem, an under-relaxation of the
unknowns is to be introduced in order of the dgorithm to converge. The linear relaxaion

formulaeto beused is
fr=friealf"-fm), (35)

where f " isthe vaue of the unknowns (either velocity or pressure) at the present iteration.

4 Numerical Results

The FEM reaults in a sysem of linear equations containing a big amount of equations and
unknowns. For instance when a mixed formulation together with a Q1/PO (Bilinear velocity-
Congant pressure) quadrilatera eement the number of equations and unknowns is settled as
twice the number of nodes plus the number of basic dements and the storage of such a big
amount of information requires a clever data-keeping drategy. When using a direct numericdl
method for the resolution of the system of equations, an dternative way of data toring is the
so-cadled skyline or column profile sorage. Indead of doring every single matrix-eement, we
could think of goring only the fird nonzero dement of each column and the following
eements in that column up to the diagond. Due to the fact that we are deding with
convective-term including formulations the coefficent matrix associated to the system is
going to be nonsymmetric, and another vector-vdued variable is required for the lower
triangular matrix. Together with this vector vaued vaiable v, an additiond pointer vector p
has to be defined so as to indicate the postion of the eements. Nevertheess when ether the
mesh is progressively refined or very large domains are going to be consdered, the memory



P. Vellando, J. Puertas, J. Bonillo, and J. Fe

requirements became extraordinarily large, in order to avoid this problem an dternative and
more efficient storing schedule should be used.

The ‘chegpet’ doring mechanism is to kegp excdusvey those dements different from
zero. This is a much better procedure that avoids wasting memory resources in storing mid-
height zeros, which can be more numerous than the number of nonzero dements even when
the mesh is re-numbered so as to reduce the band width to a minimum and specidly when a
mixed method is used. Provided that the sparse storage cannot be used in combination with a
direct solver because some dements could be ‘thrown out’ of the sparse stencil, when this
type of dtorage is used, some other agorithm should be implemented to solve the system of
equations. For the present caculations a Preconditioned Biconjugate Gradient Method
(PBCG) type of solver will be implemented in order to solve the resulting system.

The skyline gtoring together with a Crout solver, will be aso used in those meshes with a
reasonable number of eements, therefore obtaining exact and one-step solutions. For more
refined meshes and epecidly when a mixed formulation is implemented, a PBCG-type
dgorithm is used.

We will assume we have reached convection convergence once

- f <10° (36)

i=1,.
for each of the unknowns.

The problem of the flow in a square cavity has been consdered to check the agorithms by
comparison of ther results with those of other authors. The veocity is settled as one on the
topsde and the no-dip condition is consdered on the other sdes. The pressure is fixed as
zero in the centre of the lower Sde of the cavity. The domain has been interpolated in terms of
a 31x31 node nort+regular mesh with Q1/P0 basic eements.

The results for the pendty agorithm for Reynolds numbers of 100, 1000, 5000 and 10000
are shown bellow. In al the cases considered, the pendty mrameter has been taken as 10
The solution has been obtained usng a PBCG iterative method for solving the system of
equations.
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Fig 2. - Horizontal velocities along acentral vertical line compared with those of Ghia? for a Reynolds number
of 100. Velocity field and streamlines.
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Fig 3. - Horizontal velocities along a central vertical line compared with those of Hannani 2 and Ghia? for a
Reynolds number of 1000. Velocity field and streamlines.
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Fig 4. - Horizontal velocities along acentral vertical line compared with those of Hannani ° and Ghia? for a
Reynolds number of 5000. Velocity field and streamlines.
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Fig 5.- Horizontal velocities along a central vertical line compared with those of Kondo* Ghia? for a Reynolds
number of 10000. Velocity field and streamlines.

14



P. Vellando, J. Puertas, J. Bonillo, and J. Fe

For the mixed formulation a PBCG algorithm has been used to solve the system of equations
with a column profile storing procedure. The results for the pressure and velocity for a
Reynolds number of 10000, with a 1681-node, 1600-element mesh are shown bellow.
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Fig 5 Vector fidld and streamlines (41x41 non-regular mesh, mixed).

When the segregated agorithm is used, an under-relaxation of the unknowns has to be
introduced in order of the agorithm to converge. The relaxation parameters used were taken
as a, =0.7and a, = 0.2. The results for pressures and velocities obtained for the segregated

formulation when a Reynolds number of 400 is used are shown bellow.
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......... 801

A PODUIR < 00 T (K00 0. 21, 23 Ut J- 0 T
00 o1 02 03 04 05 06 07 08 09 10
Horizontal Distance

u Velocity

Fig 6. - Pressure field, Horizontal velocities along a central vertical line and Pressures along a horizontal central
line compared with those of Winters and du Toit°.

The flow over a backward step of width 30 I.u. and length 440 |.u. has been a so calculated,
making use of a mixed formulation with a PBCG solver. The results for a Reynolds number
of 100 and 1000 and aregular mesh of 3381 nodes and 3150 eements are shown bellow.
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Fig 6 Streamlines for the backward step problem (Re 100 and 1000).

The gteady flow around a circular cylinder has dso been caculated for a Reynolds number
of 500 on a 732-node mesh, with the expected reaults.

Frame 0011208 Mar 2000%I TERAC= 2\Misc= 2.0000(000000000E-002 'l_:fan'EOOZ %08 Mar 2000% MERAC= 2Visc= 2.0000000000000D0E-002
11 11
10 10F

ﬁ

Fig 7 Velocity field and streamlines for the flow around a cylinder problem.

The program has dso been used to cdculae the flow in some red cases, heping in the
obtaining of the optima shape of some water trestment plants structures. The results for the
wadtewater flow in a biologica reactor are presented as an example. A scded flow of 4 I/h is
re-circulaed on a cavity in which a biologicd film purifies the water flow with a resulting
Reynolds number of 100. The domain shown in figure 8 represents the cross section of the
biologica reactor, which has been split into 1916 nodes. The flow has been solved using a 2D
fla Navier-Stokes flow with mixed formulation and PBCG solver. A spillway boundary
condition has been consdered for the top border. The resulting streamlines and vector fidd is
sketched bellow.
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Frame 001 %02 Mar 2000 ¥ TERAC = 1Visc= 1.000000000000000E002 [Famec02 %02 Mar 2000 ITERA C= 1Visc= 1.000000000000000E-002

Fig 8 Streamlines and vel ocity field for the biological reactor problem.
5 Conclusons

The program seems to achieve good results for the three formulations as can be seen in the
plots, compared with results from Winters, Hannani, Ghia, Kondo and others. The results
from the present study seem to adjust to those of the others, with even a less refined mesh.
When a mixed formulation is used, the matrices involved in the resolution of the Navier-
Stokes equations became large and this implies that very big meshes can not be used,
therefore small vortices are not detected. However the iteration process is reduced to the
achievement of the convection effect, so a few iterations are needed, and therefore the CPU
time involved is less than one hour in a conventiond PC. When a mixed or segregated
agorithm is used, the iterative process becomes much longer. The program has been run in a
Digitd AlphaServer 1000A computer, taking CPU times of one or two hours for the 31x31
mesh, depending on the Reynolds number. With respect to the basic dements, when a QL1/PO
quadrilaterd is used, the pressure results for the mixed agorithm are polluted by a checker
board pressure mode that anyway, can be removed by a proper smoothing of the results. This
unwanted digtortion does not appear when an equa order four-node basic dement is used for
the segregated procedure.
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