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A B S T R A C T

In this article we make some new relevant contributions to the computation of total valuation
adjustments (XVA) for financial derivatives involving several currencies. From the modelling
point of view, for the credit spreads we consider the more realistic exponential Vasicek and CIR
positive mean reversion processes. Moreover, the derivative is partially collateralized in cash
in a foreign currency and the collateral value is a percentage of the derivative prices. Under
this modelling assumptions and using appropriate dynamic hedging methodologies, we obtain
formulations in terms of linear and nonlinear partial differential equations, which are solved
with Lagrange-Galerkin methods in low dimension. For higher dimensions, we use the Monte
Carlo techniques for the equivalent formulations in terms of expectations. These techniques
include a multilevel Picard iteration method for the nonlinear case. Finally, the methodologies
are applied to several European options with different payoffs and the numerical results are
discussed.

1. Introduction

The consideration of the so-called valuation adjustments in the pricing of financial derivatives, motivated by the financial crisis
tarted in 2007, aims to take into account the presence of counterparty risk associated to the different parts in the trade. The set of
ll these adjustments is usually referred to as XVA (X-Valuation Adjustments) or total valuation adjustment, where ‘‘X’’ can represent
ny of the first letters in the value adjustments associated to credit (CVA), debit (DVA), funding (FVA), collateral (CollVA), capital
KVA) or margin (MVA), for example. The initial and more classical adjustments are the CVA, FVA and CollVA, while KVA and
VA have been recently added. Among the classical and more general references in the literature, we address the readers to [1–3].
The research work related to XVA has mainly focused on the single currency setting. A first approach aims to obtain formulations

ased on partial differential equations (PDEs) by means of hedging arguments and the application of Itô’s lemma for jump-diffusion
rocesses (see [4–8], for example). A second approach follows the initial ideas in [9] to obtain the CVA by means of formulations
ased on expectations, next extended to the presence of collateral and funding costs in [10]. This approach has been addressed
n [6,11–13], for example. A third approach based on backward stochastic differential equations has been introduced in [14,15].
As a consequence of a fully interconnected worldwide financial sector, not only specially global financial institutions but

ctually most of them operate in different currencies. For example, in the market they trade on derivatives with underlying assets
enominated in different currencies, although if they are denominated in a domestic currency the funding or posting collateral can
e done in different foreign currencies. All these real market situations motivated the recent interest in modelling and computing
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the XVA in a multi-currency setting. The previously indicated methodologies that have been developed for computing the total
valuation adjustments in the single currency case can be extended to the multi-currency one (see [16], for example).

In the present work, we address European options pricing problems in a multi-currency setting when taking into account the
aluation adjustments associated to counterparty risk. Thus, we consider a derivative written on different underlying assets that are
enominated in different currencies. We consider a zero default intensity for the hedger and a stochastic default intensity (which is
quivalent to stochastic credit spread) for the counterparty.
In some sense, we follow our recent articles [17,18], where we deduced the formulations based on PDEs and expectations, only

sing the second ones for the computation of XVA with Monte Carlo techniques. However, some relevant differences concerning to
everal more realistic modelling assumptions will be considered in the present article. Also, the numerical solution of the formulation
n terms of PDEs for small dimensions will be addressed (see [11], for example) and the use of the much more efficient multilevel
icard iteration technique [19] will be applied for the nonlinear formulations based on expectations. More precisely, note that
n our previous work [17] we have chosen a Gaussian dynamics for the credit spread of the counterparty, but this modelling
ssumption suffers from the possibility of reaching negative credit spread values with positive probability. Unlike this previous
ork, in this article we consider a more realistic assumption on the credit spread dynamics by choosing positive mean-reversion
rocesses, either an exponential Vasicek or a CIR process. Additionally, this choice allows to borrow calibrated parameters from
he literature. Secondly, unlike [17] where the derivative was collateralized partially in bonds and in cash, in the present work we
onsider the more realistic assumption that the derivative is partially collateralized in cash in a foreign currency and the collateral
ccount value is equal to a percentage of the derivative value. Following the ideas in [18], in a future work we will extend the
resent article to stochastic foreign exchange (FX) rates.
In the present article, following some ideas in [16], we start building a multi-currency framework where the joint consideration of

VA, FVA, and CollVA are taken into account. Next, we consider suitable hedging arguments and, by applying Itô’s formula for jump
iffusion processes, we obtain formulations of the derivative pricing problem in terms of PDEs. In order to pose the PDEs formulations
or the XVA price, we note that the risky derivative value is obtained by summing the total value adjustment to the derivative
isk-free value, i.e., the value that the derivative would have in absence of counterparty risk. Therefore, the XVA can be seen as
he difference between the risky derivative value and the risk-free derivative value, that satisfies the classical multidimensional
lack–Scholes equation. This allows to obtain a PDE problem for the total value adjustment. Depending on the choice of the mark-
o-market value of the derivative at default, different kinds of XVA pricing PDEs arise: if the mark-to-market value is equal to the
isky derivative value, then a nonlinear PDE is obtained; if the mark-to-market value is equal to the risk-free derivative value, then
linear PDE that involves the risk-free value of the derivative is deduced.
As the presence of many stochastic factors makes the classical deterministic numerical methods for solving PDEs to be affected

y the curse of dimensionality, we address the solution of the pricing PDEs using a Lagrange-Galerkin deterministic method just when
he derivative only depends on two underlying assets and the counterparty’s credit spread is a deterministic function of time.
In order to avoid the curse of dimensionality when considering the general case with more than two underlying assets and

with stochastic counterparty’s credit spread, the Feynman–Kac formula can be applied to formulate the XVA problems in terms
of expectations, so that Monte Carlo method can be employed. In particular, in the nonlinear case Picard iteration methods are
needed to compute the value adjustment. We use both the simple fixed-point method already used in [17] and the multilevel Picard
iteration method proposed in [19]. The results obtained with the formulation in terms of expectations are compared with those with
a Lagrange-Galerkin method for the PDEs discretization.

All in all, from the modelling point of view we rigorously establish with detailed financial arguments the models for pricing the
XVA associated to European derivatives in a multicurrency setting, with a realistic dynamics for credit spreads that incorporates
mean reversion properties. Models are mainly based on detailed replicating portfolio arguments. Either based on expectations or
PDEs, these complex (and in many cases high dimension) models require the use of appropriate numerical methods. In the presence
of two stochastic factors, we propose the use of PDEs formulations and solve them with Lagrange-Galerkin methods. In the case of
a larger number of factors, we propose appropriate Monte Carlo techniques, as for example the multilevel Picard iteration to cope
with nonlinear models, to avoid the curse of dimensionality associated to deterministic methods for solving PDEs formulations. By
using these combination of realistic models and efficient numerical techniques we are able to compute the XVA of European options
in the presence of counterparty risk in a multicurrency setting.

Although the previous achievements are relevant, some limitations can be pointed out for a better approach to the market
practice and will require further developments. Starting from the setting of this article, we plan to add the consideration of additional
valuation adjustments, such as capital value adjustment (KVA) and margin value adjustment (MVA), which are included in market
practice. From the modelling point of view, the consideration of stochastic of FX rates instead of constant ones is a work in
progress by the authors. Actually, as an example of the increasing use of stochastic dynamics for the different involved factors
in a multi-currency setting we refer to [20]. Moreover, the dynamics assumed for the different factors may involve local, stochastic
or local-stochastic volatility models or jump-diffusion models instead of constant ones. Also related to the case treated in [20],
we note that our article addresses the computation of the XVA for each single financial derivative, while in practice a portfolio of
derivative trades is considered and also the different netting sets and credit support agreements must be taken into account.

The article is organized as follows. In Section 2 we deduce the mathematical model for pricing XVA based either on nonlinear or
linear PDEs. The equivalent model formulated in terms of expectations is also posed. In Section 3, the proposed numerical methods
to solve the previous models are developed. First, we describe the proposed Lagrange-Galerkin method to solve both the nonlinear
and the linear PDEs when the counterparty’s credit spread is a deterministic function of time. Next, we describe the Monte Carlo
2

method and the quadrature formulae to approximate the integral in the XVA formulae. Moreover, we also describe the multilevel
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Picard iteration method, as an alternative to solve the formulation based on expectations. In Section 4 we present and analyse the
numerical results related to some examples for different choices of the derivative payoff. More precisely, we consider a spread option,
an exchange option and a sum of call options. Finally, in Section 5 we point out our main conclusions.

2. Mathematical models for total value adjustment

2.1. Formulation in terms of partial differential equations

In this section, following [6,16] the value of a derivative is modelled by taking into account the valuation adjustments that have
to be considered in case of a possible default of the counterparties involved in the deal.

We consider a trade between a non-defaultable hedger and a defaultable counterparty in a multi-currency framework, where a
domestic currency 𝐷 and foreign currencies 𝐶0,… , 𝐶𝑁 are involved. For 𝑗 = 0,… , 𝑁 , let 𝑋𝐷,𝐶𝑗

𝑡 be the FX rate between currencies
𝐷 and 𝐶𝑗 at time 𝑡, namely the domestic price at time 𝑡 of one unit of the foreign currency 𝐶𝑗 .

Concerning FX rates, in the present article we assume that they are time dependent and deterministic, satisfying the following
ifferential equation:

𝑑𝑋
𝐷,𝐶𝑗
𝑡 = (𝑟𝐷 − 𝑟𝐶𝑗 )𝑋

𝐷,𝐶𝑗
𝑡 𝑑𝑡, 𝑗 = 0,… , 𝑁 .

here 𝑟𝐷 and 𝑟𝐶𝑗 are the short-term rates in the domestic market and in the 𝑗−foreign market, respectively. Furthermore, in the
numerical examples we consider constant values for 𝑋

𝐷,𝐶𝑗
𝑡 , so that subindex 𝑡 will be removed in that section. The extension to

stochastic FX rates will be addressed in future work.
We denote by 𝑆𝑡 = (𝑆1

𝑡 ,… , 𝑆𝑁
𝑡 ) the vector of the prices of the underlying assets 𝑆𝑖 at time 𝑡, each one of them being denominated

in its corresponding currency 𝐶𝑖, and by ℎ𝑡 the counterparty’s credit spread at time 𝑡. The credit spread of an entity is typically
calculated as the difference between the rate of return on a bond issued by the risky entity and the risk-free rate. Therefore, the
credit spread gives an indication of the market’s view of the riskiness of that bond and of the probability of default of an entity. In
fact, the intensity of default 𝜆 can be modelled [6] as

𝜆 ≈ ℎ
1 − 𝑅𝐶

,

where 𝑅𝐶 is the entity’s recovery rate.
We assume that under the real world measure 𝑃 the evolution of the prices of the underlying assets in each currency and of the

counterparty’s credit spread are governed by the following SDEs:

𝑑𝑆 𝑖
𝑡 =𝜇

𝑆𝑖
𝑆𝑖
𝑡 𝑑𝑡 + 𝜎𝑆

𝑖
𝑆 𝑖
𝑡 𝑑𝑊

𝑆𝑖 ,𝑃
𝑡 , for 𝑖 = 1,… , 𝑁 , (1)

𝑑ℎ𝑡 =𝜇ℎ,𝑃 (𝑡, ℎ𝑡) 𝑑𝑡 + 𝜎ℎ,𝑃 (𝑡, ℎ𝑡) 𝑑𝑊
ℎ,𝑃
𝑡 , (2)

here 𝜇𝑆𝑖 and 𝜇ℎ,𝑃 are the real world drifts of the processes 𝑆 𝑖
𝑡 and ℎ𝑡, respectively. Moreover, 𝜎𝑆

𝑖 and 𝜎ℎ,𝑃 are their respective
olatility functions, while 𝑊 𝑆𝑖 ,𝑃 and 𝑊 ℎ,𝑃 are Brownian motions under the real world measure 𝑃 . Moreover, we assume that the
ssets prices and spread processes in (1) and (2) are correlated. For this purpose, we denote the correlation 𝜌𝑆𝑖𝑆𝑗 between 𝑆 𝑖 and
𝑗 , while the correlation between 𝑆𝑖 and ℎ is denoted by 𝜌𝑆𝑖ℎ. In this work, we consider constant values for correlations.
By changing the probability measure from 𝑃 to the risk-neutral measure in the domestic currency, 𝑄𝐷, in (1) we have that the

dynamics of 𝑆 𝑖, for 𝑖 = 1,… , 𝑁 , is given by

𝑑𝑆 𝑖
𝑡 = (𝑟𝑖 − 𝑞𝑖)𝑆𝑖

𝑡 𝑑𝑡 + 𝜎𝑆
𝑖
𝑆 𝑖
𝑡 𝑑𝑊

𝑆𝑖 ,𝑄𝐷

𝑡 ,

where 𝑟𝑖 and 𝑞𝑖 are the short-term rate in currency 𝐶𝑖 and the dividend paid by 𝑆 𝑖, respectively, while𝑊 𝑆𝑖 ,𝑄𝐷 is a standard Brownian
motion under 𝑄𝐷.

Note that the drift of the dynamics of 𝑆 𝑖
𝑡 under 𝑄𝐷 can be obtained from the following arguments.

Let 𝜇𝑆𝑖 ,𝑄𝐷 be the drift of 𝑆𝑖 under 𝑄𝐷, so that the dynamics of 𝑆𝑖 under 𝑄𝐷 is given by the SDE:

𝑑𝑆 𝑖
𝑡 = 𝜇𝑆𝑖 ,𝑄𝐷

𝑆𝑖
𝑡𝑑𝑡 + 𝜎𝑆

𝑖
𝑆𝑖
𝑡𝑑𝑊

𝑆𝑖 ,𝑄𝐷

𝑡 ,

so that

𝑆 𝑖
𝑡 = 𝑆 𝑖

0 exp
((

𝜇𝑆𝑖 ,𝑄𝐷
−

(𝜎𝑆𝑖 )2

2

)

𝑡 + 𝜎𝑆
𝑖
𝑊 𝑆𝑖 ,𝑄𝐷

𝑡

)

.

herefore, the value of the underlying asset 𝑆 𝑖 in the domestic currency 𝐷, denoted by 𝑆𝑖,𝐷, is given by

𝑆 𝑖,𝐷
𝑡 = 𝑆 𝑖

𝑡𝑋
𝐷,𝐶𝑖
𝑡 = 𝑆𝑖,𝐷

0 exp
((

𝜇𝑆𝑖 ,𝑄𝐷
−

(𝜎𝑆𝑖 )2

2
+ 𝑟𝐷 − 𝑟𝑖

)

𝑡 + 𝜎𝑆
𝑖
𝑊 𝑆𝑖 ,𝑄𝐷

𝑡

)

.

inally, we obtain

𝑑𝑆 𝑖,𝐷
𝑡 =

(

𝜇𝑆𝑖 ,𝑄𝐷
+ 𝑟𝐷 − 𝑟𝑖

)

𝑆 𝑖,𝐷
𝑡 𝑑𝑡 + 𝜎𝑆

𝑖
𝑆𝑖,𝐷
𝑡 𝑑𝑊 𝑆𝑖 ,𝑄𝐷

𝑡 .

ince the drift of 𝑆𝑖,𝐷 under 𝑄𝐷 is given by 𝑟𝐷 − 𝑞𝑖, we get 𝜇𝑆𝑖 ,𝑄𝐷 = 𝑟𝑖 − 𝑞𝑖.
3
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Although in the numerical examples we consider constant values for 𝑟𝑖, 𝑞𝑖 and for the volatility 𝜎𝑖, time dependent functions can
be assumed in all the developments. Moreover, by changing from 𝑃 to 𝑄𝐷 in (2), the drift of ℎ is given by 𝜇ℎ,𝑃 −𝑀ℎ𝜎ℎ,𝑃 , where
𝑀ℎ is the counterparty’s market price of credit risk.

As indicated in [21], the study of historical credit spreads time series suggests that credit spreads exhibit mean reverting and fat
tails properties. Therefore, under the risk-neutral measure 𝑄𝐷, we model the counterparty’s credit spread by an exponential Vasicek
process, i.e., we assume that the logarithm of ℎ follows a Vasicek dynamics. Thus, we denote by ℎ̃ the logarithm of ℎ and assume

𝑑ℎ̃𝑡 = 𝛼 (𝜃 − ℎ̃𝑡) 𝑑𝑡 + 𝜎ℎ 𝑑𝑊 ℎ,𝑄𝐷
,

where 𝛼, 𝜃 and 𝜎ℎ are positive constant and 𝑊 ℎ,𝑄𝐷 is a Brownian motion under the risk-neutral measure 𝑄𝐷. In particular, 𝛼 is the
mean reversion rate, 𝜃 is the mean reversion level and 𝜎ℎ is the volatility of the mean reversion process. Then, by applying Itô’s
formula (see, for example, [22]) to ℎ𝑡 = exp(ℎ̃), we get

𝑑ℎ𝑡 = 𝛼 ℎ𝑡 (𝑚 − log(ℎ𝑡)) 𝑑𝑡 + 𝜎ℎ ℎ𝑡 𝑑𝑊
ℎ,𝑄 , with 𝑚 = 𝜃 +

(𝜎ℎ)2

2𝛼
. (3)

The exponential transformation ensures the positivity of ℎ.
However, in the literature the credit spread is often assumed to follow a Cox–Ingersoll–Ross (CIR) process, so that the dynamics

of ℎ is given by the following mean reverting SDE:

𝑑ℎ𝑡 = 𝛼 (𝜃 − ℎ𝑡) 𝑑𝑡 + 𝜎ℎ
√

ℎ𝑡 𝑑𝑊
ℎ,𝑄𝐷

, (4)

where 𝛼, 𝜃 and 𝜎ℎ are positive constants and if the Feller condition is fulfilled, i.e., 2 𝛼 𝜃 > (𝜎ℎ)2, then ℎ remains strictly positive.
In Section 4, where numerical results are presented, we also report results with CIR dynamics for the credit spread. However, in
the development of the mathematical models we only show those obtained with exponential Vasicek dynamics, since it would be
redundant to repeat the same steps with only a different dynamics for the credit spread. Note that in [17] we have considered a
Normal dynamics for the counterparty’s credit spread, and we now consider a more realistic hypothesis by assuming it is modelled
by a positive mean-reversion process.

Next, we denote by 𝐽𝑡 the counterparty’s default state at time 𝑡, defined as 𝐽𝑡 = 1 if the counterparty defaults before or at time
𝑡, while 𝐽𝑡 = 0 otherwise.

The derivative value in the domestic currency 𝐷 at time 𝑡 is given by 𝑉 𝐷
𝑡 = 𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 𝐽𝑡). We will refer to this derivative that

nvolves counterparty risk as risky derivative. The price in currency 𝐷 of the same derivative traded between two non-defaultable
ounterparties is denoted by 𝑊 𝐷

𝑡 = 𝑊 𝐷(𝑡, 𝑆𝑡). This derivative will be referred to as risk-free derivative price. Note that both
erivatives are affected by market risk, so we will use the term ‘‘risky’’ and ‘‘risk-free’’ in terms of credit risk.
We assume the derivative is partially collateralized in cash in the foreign currency 𝐶0. We denote by 𝐶𝐶0

𝑡 the collateral account
alue at time 𝑡 in currency 𝐶0.
The close-out procedure in case of default event is described in ISDA (International Swaps and Derivatives Association)

ocumentation: if the surviving party is a net debtor, then she must pay the whole close-out value to the defaulting party; if
he surviving party is a net creditor, then she is able to recover only a fraction of her credits. We assume that the derivative is
raded under the presence of a collateral account. Collateralized contracts are regulated by the Credit Support Annex (CSA) to the
SDA Master Agreement. Therefore, taking into account the presence of the collateral, that has the role to reduce the exposure, the
xpression of the risky derivative value at default is given by:

𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 1) = 𝐶𝐷(𝑡) + 𝑅𝐶
(

𝑀𝐷(𝑡, 𝑆𝑡, ℎ𝑡) − 𝐶𝐷(𝑡)
)+ +

(

𝑀𝐷(𝑡, 𝑆𝑡, ℎ𝑡) − 𝐶𝐷(𝑡)
)− , (5)

ith 𝑀𝐷(𝑡, 𝑆𝑡, ℎ𝑡) representing the mark-to-market derivative price and 𝐶𝐷(𝑡) denoting the collateral account value in domestic
urrency 𝐷. Moreover, we have used the notation 𝑥+ = max(𝑥, 0) and 𝑥− = min(𝑥, 0). Eq. (5) means that, in case of counterparty’s
efault:

• if the hedger is a net debtor, i.e., 𝑀𝐷 −𝐶𝐷 ≤ 0, then the hedger has to pay the whole mark-to-market derivative value to the
counterparty;

• if the hedger is a net creditor, i.e., 𝑀𝐷 − 𝐶𝐷 > 0, then the hedger is able to recover a fraction of her credits, given by
𝐶𝐷 + 𝑅𝐶 (𝑀𝐷 − 𝐶𝐷).

ote that, since the recovery rate 𝑅𝐶 is between 0 and 1, the default payment 𝐶𝐷 +𝑅𝐶 (𝑀𝐷 −𝐶𝐷) is always greater than the default
ayment it would happen in absence of collateral, that is just given by 𝑅𝐶𝑀𝐷. Therefore, the collateralization improves the recovery
n case of counterparty’s default.
By using (5), we can define the variation of 𝑉 𝐷 at default as:

𝛥𝑉 𝐷 = 𝐶𝐷 + 𝑅𝐶 (𝑀𝐷 − 𝐶𝐷)+ + (𝑀𝐷 − 𝐶𝐷)− − 𝑉 𝐷 , (6)

here we have suppressed the dependence on time 𝑡, on the underlying assets 𝑆𝑡 and on the counterparty’s credit spread ℎ𝑡 to ease
4

he notation.
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Fig. 1. Transactions occurring with the treasury and the FX market to fund the trade. Straight lines refer to initial transactions, that take place at time 𝑡,
while curved lines to final transactions taking place at time 𝑡 + 𝑑𝑡. Blue lines indicate amounts denominated in currency 𝐷, whereas red ones represent cash
denominated in currency 𝐶0.

2.2. Replicating portfolio

In order to price the derivative, we consider a self-financing portfolio 𝛱 that hedges all the risk factors, which are:

• the market risk due to changes in 𝑆1, 𝑆2,… , 𝑆𝑁 ;
• the counterparty’s spread risk due to changes in ℎ;
• the counterparty’s default risk.

More precisely:

• the market risk due to changes in 𝑆 𝑖, for 𝑖 = 1,… , 𝑁 , is hedged by trading in fully cash collateralized derivatives on the same
underlying assets. For 𝑖 = 1,… , 𝑁 , the net present value in currency 𝐶𝑖 of the derivative written on the underlying asset 𝑆 𝑖 is
denoted by 𝐻 𝑖, so that 𝐻 𝑖,𝐷 = 𝐻 𝑖𝑋𝐷,𝐶𝑖 represents the net present value of 𝐻 𝑖 in the currency 𝐷;

• in order to hedge the spread risk due to changes in counterparty’s credit spread ℎ and the counterparty’s default risk, the
hedger has to trade in two credit default swaps with different maturities written on the counterparty:

– a short term credit default swap, 𝐶𝐷𝑆𝐷(𝑡, 𝑡+𝑑𝑡), that is an overnight credit default swap with unit notional. The protection
buyer pays a premium at time 𝑡 equal to ℎ𝑡𝑑𝑡 and receives (1 −𝑅𝐶 ) at time 𝑡 + 𝑑𝑡 if the counterparty defaults between 𝑡
and 𝑡 + 𝑑𝑡. We assume that ℎ𝑡𝑑𝑡 is such that 𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡) = 0;

– a long term credit default swap, 𝐶𝐷𝑆𝐷(𝑡, 𝑇 ), that is a cash collateralized credit default swap maturing on 𝑇 . In general,
𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) is not null.

We now assume that the hedger buys the derivative from the counterparty, with 𝑉 𝐷
𝑡 > 0, and we describe the operations she

ould enact in a generic small time interval [𝑡, 𝑡 + 𝑑𝑡] with the treasury and the FX market to fund the trade. The transactions are
epresented in Fig. 1.

• At time 𝑡, the hedger borrows 𝑉 𝐷
𝑡 cash from her bank treasury to buy the derivative from the counterparty and receives the

collateral amount 𝐶𝐶0
𝑡 in currency 𝐶0.

• The hedger exchanges the cash 𝐶𝐶0
𝑡 in the FX spot market, obtaining 𝐶𝐷

𝑡 = 𝐶𝐶0
𝑡 𝑋𝐷,𝐶0

𝑡 , that she gives to the treasury. Therefore,
the outstanding debt to the treasury is 𝑉 𝐷

𝑡 − 𝐶𝐷
𝑡 , that will grow at the borrowing rate in currency 𝐷, denoted by 𝑓𝐵,𝐷

𝑡 .
• At time 𝑡 + 𝑑𝑡, the hedger has to pay back the collateral plus interest, given by the OIS rate in currency 𝐶0, denoted by 𝑟𝐶0

𝑡 .
Thus, according to a forward contract agreed at time 𝑡, she sells forward the amount 𝐶𝐶0

𝑡 (1+𝑟𝐶0𝑑𝑡) in currency 𝐶0 multiplied by
the forward FX rate 𝑋𝐷,𝐶0

𝑡
1+𝑟𝐷𝑑𝑡

1+(𝑟𝐶0+𝑏𝐶0 ,𝐷)𝑑𝑡
and receives 𝐶𝐶0

𝑡 (1+ 𝑟𝐶0𝑑𝑡) in currency 𝐶0. The rate 𝑟𝐷 is the OIS rate in the domestic
currency 𝐷, whereas 𝑏𝐶0 ,𝐷 denotes the short term cross-currency basis between currencies 𝐶0 and 𝐷, which is an adjustment
that needs to be made in the 𝐶0 rate. The hedger pays the amount 𝐶

𝐶0
𝑡 (1 + 𝑟𝐶0𝑑𝑡) to the counterparty.

• At time 𝑡 + 𝑑𝑡 the debt to treasury is
(

𝑉 𝐷
𝑡 − 𝐶𝐷

𝑡
) (

1 + 𝑓𝐷
𝑡 𝑑𝑡

)

+ 𝐶𝐷
𝑡
(

1 + (𝑟𝐷 + 𝑏𝐷,𝐶0 )𝑑𝑡
)

.

ote that in the case 𝑉𝑡 < 0, the trades would be right the opposite.
We denote by 𝐵𝐷

𝑡 the value of the funding account in the domestic currency 𝐷 at time 𝑡 and by 𝛺𝑡 the number of shares of the
unding account at time 𝑡. Thus, in order to ensure that the self financing condition holds, we have the following funding constraint
5
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condition:

𝛺𝑡𝐵
𝐷
𝑡 = −

(

𝑉 𝐷
𝑡 − 𝐶𝐶0

𝑡 𝑋𝐷,𝐶0
𝑡

)

. (7)

Note that if 𝛺𝑡 > 0, then the hedger has to finance her position by borrowing from the treasury and she will pay an interest rate
𝑓𝐷,𝐶
𝑡 , where 𝐶 stands for cost. Vice versa, if the hedger’s position is positive, she will invest money by lending to the treasury and
earning at the rate 𝑓𝐷,𝐵

𝑡 , where 𝐵 stands for benefit. Therefore, if we define the funding rate in currency 𝐷 as

𝑓𝐷
𝑡 = 𝑓𝐷,𝐶

𝑡 1𝛺𝑡>0 + 𝑓𝐷,𝐵
𝑡 1𝛺𝑡<0 , (8)

we have that

𝐵𝐷
𝑡 = exp

(

∫

𝑡

0
𝑓𝐷
𝑡 𝑑𝑠

)

. (9)

Hence, we consider a replicating portfolio 𝛱 that is an extension to the multi-currency framework of the portfolio in [8] and
such that:

• 𝛼𝑖𝑡 is the weight of the fully collateralized derivative 𝐻 𝑖
𝑡 , for 𝑖 = 1,… , 𝑁 , in the portfolio composition at time 𝑡;

• 𝛾𝑡 and 𝜖𝑡 are the weights of the long term CDS and short term CDS, respectively, in the portfolio composition at time 𝑡;
• 𝛺𝑡 represents the number of shares of the funding account at time 𝑡;
• 𝛽𝐷𝑡 denotes the cash in the collateral accounts of the portfolio at time 𝑡.

Thus, the portfolio at time 𝑡 is given by:

𝛱𝑡 =
𝑁
∑

𝑖=1
𝛼𝑖𝑡𝐻

𝑖,𝐷
𝑡 + 𝛾𝑡𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) + 𝜖𝑡𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡) +𝛺𝑡𝐵

𝐷
𝑡 + 𝛽𝐷𝑡 . (10)

The composition of the collateral account 𝛽𝐷 is given by

𝛽𝐷𝑡 = −
𝑁
∑

𝑖=1
𝛼𝑖𝑡𝐻

𝑖,𝐷
𝑡 − 𝛾𝑡𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) − 𝐶𝐶0

𝑡 𝑋𝐷,𝐶0
𝑡 .

In order to infer the variation of the collateral account in the time interval [𝑡, 𝑡+𝑑𝑡], we analyse the transactions occurring when
trading a generic fully collateralized derivative in a foreign currency 𝐹 . We denote the value of the foreign derivative by 𝐻𝐹 and
we again assume the hedger buys the derivative, with 𝐻𝐹

𝑡 > 0.

• At time 𝑡, the hedger borrows 𝐻𝐷
𝑡 = 𝐻𝐹

𝑡 𝑋𝐷,𝐹 cash from her bank treasury, that exchanges in the FX market receiving 𝐻𝐹
𝑡 in

currency 𝐹 . Thus, the hedger buys the derivative.
• The hedger receives the collateral with value 𝐻𝐹

𝑡 and exchanges this amount in the FX market, getting 𝐻𝐷
𝑡 , that she gives

back to the treasury.
• At time 𝑡 + 𝑑𝑡 the hedger has to give back the collateral plus interest, given by the OIS rate in currency 𝐹 , 𝑟𝐹𝑡 . Therefore, at
time 𝑡 the hedger agrees to exchange forward in the FX market the amount 𝐻𝐹

𝑡 (1 + 𝑟𝐹 𝑑𝑡) in currency 𝐹 multiplied by the
forward FX rate 𝑋𝐷,𝐹

𝑡
1+𝑟𝐷𝑑𝑡

1+(𝑟𝐹+𝑏𝐹 ,𝐷)𝑑𝑡 , where 𝑏𝐹 ,𝐷 is the cross-currency basis between currency 𝐹 and currency 𝐷, and receives
𝐻𝐹

𝑡 (1 + 𝑟𝐹 𝑑𝑡) in currency 𝐹 . The hedger pays this amount to the counterparty. The variation in the collateral account is given
by

𝐻𝐷
𝑡
(

1 + (𝑟𝐷 + 𝑏𝐷,𝐹 )𝑑𝑡
)

.

Therefore, from Figs. 1 and 2 we infer that the variation of the collateral account in the time interval [𝑡, 𝑡 + 𝑑𝑡] is given by:

𝑑𝛽𝐷𝑡 =

[

−
𝑁
∑

𝑖=1
𝛼𝑖𝑡 (𝑟

𝐷 + 𝑏𝐷,𝐶𝑖 )𝐻 𝑖,𝐷
𝑡 − 𝛾𝑡𝑟

𝐷𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) −
(

𝑟𝐷 + 𝑏𝐷,𝐶0
)

𝐶𝐶0
𝑡 𝑋𝐷,𝐶0

𝑡

]

𝑑𝑡 ,

here 𝑏𝐷,𝐶𝑗 , for 𝑗 = 0,… , 𝑁 , is the cross-currency basis between the domestic currency 𝐷 and the foreign currency 𝐶𝑗 .

.3. Pricing partial differential equations

Once we have built our replicating portfolio, we consider the no arbitrage and the self-financing conditions to infer the pricing
DEs. Therefore, we have

𝛱(𝑡) + 𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 𝐽𝑡) = 0,

hus:

−𝑑𝑉 𝐷
𝑡 = 𝑑𝛱𝑡

=
𝑁
∑

𝑖=1
𝛼𝑖𝑡𝑑𝐻

𝑖,𝐷
𝑡 + 𝛾𝑡𝑑𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) + 𝜖𝑡𝑑𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡) +𝛺𝑡𝑑𝐵

𝐷 + 𝑑𝛽𝐷𝑡 . (11)
6
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Fig. 2. Transactions occurring when trading a fully collateralized foreign derivative. Straight lines refer to initial transactions, that take place at time 𝑡, while
curved lines to final transactions taking place at time 𝑡 + 𝑑𝑡. Blue lines indicate amounts denominated in the domestic currency 𝐷, whereas red ones represent
cash denominated in the foreign currency 𝐹 .

As 𝑉 𝐷
𝑡 = 𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 𝐽𝑡) depends on diffusion and jump processes, we apply Itô’s formula for jump-diffusion processes [22] to

obtain that the variation of 𝑉 𝐷 in the time interval [𝑡, 𝑡 + 𝑑𝑡] is given by:

𝑑𝑉 𝐷
𝑡 = 𝜕𝑉 𝐷

𝜕𝑡
𝑑𝑡 +

𝑁
∑

𝑖=1

𝜕𝑉 𝐷

𝜕𝑆 𝑖 𝑑𝑆
𝑖
𝑡 +

𝜕𝑉 𝐷

𝜕ℎ
𝑑ℎ𝑡 + 𝛥𝑉 𝐷

𝑡 𝑑𝐽𝑡

+
[

1
2

𝑁
∑

𝑖,𝑘=1
𝜌𝑆

𝑖𝑆𝑘
𝜎𝑆

𝑖
𝜎𝑆

𝑘
𝑆𝑖
𝑡𝑆

𝑘
𝑡

𝜕2𝑉 𝐷

𝜕𝑆 𝑖𝜕𝑆𝑘

+ 1
2
(𝜎ℎℎ𝑡)2

𝜕2𝑉 𝐷

𝜕ℎ
+

𝑁
∑

𝑖=1
𝜌𝑆

𝑖ℎ𝜎𝑆
𝑖
𝜎ℎ𝑆𝑖

𝑡ℎ𝑡
𝜕2𝑉 𝐷

𝜕𝑆 𝑖𝜕ℎ

]

𝑑𝑡 ,

here 𝛥𝑉 𝐷
𝑡 = 𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 1) − 𝑉 𝐷(𝑡, 𝑆𝑡, ℎ𝑡, 0) represents the jump of 𝑉 𝐷

𝑡 in case of default at time 𝑡, which is given by (6).
The dynamics of the short term credit default swap, 𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡), and of the funding account, 𝐵𝐷

𝑡 , are respectively given by:

𝑑𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡) = ℎ𝑡 𝑑𝑡 − (1 − 𝑅𝐶 ) 𝑑𝐽𝑡 , (12)

𝑑𝐵𝐷
𝑡 = 𝑓𝐷𝐵𝐷

𝑡 𝑑𝑡 . (13)

From the funding condition on our strategy, stated in (7), we obtain

𝛺𝑡 = −
𝑉 𝐷
𝑡 − 𝐶𝐷

𝑡

𝐵𝐷
𝑡

.

hus, the change in 𝛱𝑡 from 𝑡 to 𝑡 + 𝑑𝑡 is given by:

𝑑𝛱𝑡 =
𝑁
∑

𝑖=1
𝛼𝑖𝑡𝑑𝐻

𝑖,𝐷
𝑡 + 𝛾𝑡𝑑𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) + 𝜖𝑡𝑑𝐶𝐷𝑆𝐷(𝑡, 𝑡 + 𝑑𝑡)

−
𝑉 𝐷
𝑡 − 𝐶𝐶0

𝑡 𝑋𝐷,𝐶0
𝑡

𝐵𝐷
𝑡

𝑑𝐵𝐷
𝑡 + 𝑑𝛽𝐷𝑡

=
𝑁
∑

𝑖=1
𝛼𝑖𝑡

(

𝜕𝐻 𝑖,𝐷

𝜕𝑡
𝑑𝑡 + 𝜕𝐻 𝑖,𝐷

𝜕𝑆 𝑖 𝑑𝑆 𝑖
𝑡 +

1
2
(𝜎𝑆

𝑖
𝑆 𝑖
𝑡 )
2 𝜕2𝐻 𝑖,𝐷

𝜕(𝑆𝑖)2
𝑑𝑡
)

+ 𝛾𝑡

[

𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )
𝜕𝑡

𝑑𝑡 +
𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )

𝜕ℎ
𝑑ℎ𝑡 +

1
2
(𝜎ℎℎ)2

𝜕2𝐶𝐷𝑆𝐷(𝑡, 𝑇 )
𝜕ℎ2

𝑑𝑡
]

+ 𝛾𝑡𝛥𝐶𝐷𝑆𝐷(𝑡, 𝑇 )𝑑𝐽𝑡 + 𝜖𝑡
[

ℎ𝑡𝑑𝑡 − (1 − 𝑅𝐶 )𝑑𝐽𝑡
]

− (𝑉 𝐷 − 𝐶𝐶0
𝑡 𝑋𝐷,𝐶0

𝑡 )𝑓𝐷𝑑𝑡

−
𝑁
∑

𝑖=1
𝛼𝑖𝑡 (𝑟

𝐷 + 𝑏𝐷,𝐶𝑖 )𝐻 𝑖,𝐷
𝑡 𝑑𝑡 − 𝛾𝑡𝑟

𝐷𝐶𝐷𝑆𝐷(𝑡, 𝑇 )𝑑𝑡 − (𝑟𝐷 + 𝑏𝐷,𝐶0 )𝐶𝐶0
𝑡 𝑋𝐷,𝐶0

𝑡 𝑑𝑡 .

In order to hedge the risk of the portfolio 𝛱 , we choose:

𝛼𝑖𝑡 = −
𝜕𝑉 𝐷∕𝜕𝑆𝑖

, for 𝑖 = 1,… , 𝑁,
7
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𝛾𝑡 = −
𝜕𝑉 𝐷∕𝜕ℎ

𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )∕𝜕ℎ
, 𝜖𝑡 =

1
1 − 𝑅𝐶

(

𝛾𝑡𝛥𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) + 𝛥𝑉 𝐷) .

Next, we take into account the Black–Scholes equations that model 𝐻 𝑖,𝐷 and 𝐶𝐷𝑆𝐷(𝑡, 𝑇 ), namely

𝜕𝐻 𝑖,𝐷

𝜕𝑡
+ 1

2
(𝜎𝑆

𝑖
𝑆𝑖)2 𝜕

2𝐻 𝑖,𝐷

𝜕(𝑆 𝑖)2
+ (𝑟𝑖 − 𝑞𝑖)𝑆𝑖 𝜕𝐻 𝑖,𝐷

𝜕𝑆 𝑖 = (𝑟𝐷 + 𝑏𝐷,𝐶𝑖 )𝐻 𝑖,𝐷,

𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )
𝜕𝑡

+ 1
2
(𝜎ℎℎ)2

𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )
𝜕ℎ2

+ (𝜇ℎ,𝑃 −𝑀ℎ𝜎ℎ,𝑃 )
𝜕𝐶𝐷𝑆𝐷(𝑡, 𝑇 )

𝜕ℎ

+ ℎ
1 − 𝑅𝐶

𝛥𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) = 𝑟𝐷𝐶𝐷𝑆𝐷(𝑡, 𝑇 ) .

Thus, (11) turns into:

𝜕𝑉 𝐷

𝜕𝑡
+

𝑁
∑

𝑖=1

𝜕𝑉 𝐷

𝜕𝑆 𝑖 (𝑟
𝑖 − 𝑞𝑖)𝑆 𝑖 + 𝜕𝑉 𝐷

𝜕ℎ
(𝜇ℎ −𝑀ℎ𝜎ℎ)

+ 1
2

𝑁
∑

𝑖,𝑘=1
𝜌𝑆

𝑖𝑆𝑘
𝜎𝑆

𝑖
𝜎𝑆

𝑘
𝑆𝑖𝑆𝑘 𝜕2𝑉 𝐷

𝜕𝑆 𝑖𝜕𝑆𝑘 + 1
2
(𝜎ℎℎ)2 𝜕

2𝑉 𝐷

𝜕ℎ2
+

𝑁
∑

𝑖=1
𝜌𝑆

𝑖ℎ𝜎𝑆
𝑖
𝜎ℎ𝑆𝑖 𝜕2𝑉 𝐷

𝜕𝑆 𝑖𝜕ℎ

= − ℎ
1 − 𝑅𝐶

𝛥𝑉 𝐷 + 𝑓𝐷𝑉 𝐷 + (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐶0𝑋𝐷,𝐶0 .

herefore, we obtain the following pricing PDE:

𝜕𝑉 𝐷

𝜕𝑡
+ 𝑆ℎ𝑉

𝐷 − 𝑓𝐷𝑉 𝐷 + ℎ
1 − 𝑅𝐶

𝛥𝑉 𝐷 = (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐶0𝑋𝐷,𝐶0 , (14)

here the second order differential operator 𝑆ℎ is given by

𝑆ℎ = 1
2

𝑁
∑

𝑖,𝑘=1
𝜌𝑆

𝑖𝑆𝑘
𝜎𝑆

𝑖
𝜎𝑆

𝑘
𝑆 𝑖𝑆𝑘 𝜕2

𝜕𝑆 𝑖𝜕𝑆𝑘 + 1
2
(𝜎ℎℎ)2 𝜕2

𝜕ℎ2

+
𝑁
∑

𝑖=1
𝜌𝑆

𝑖ℎ𝜎𝑆
𝑖
𝜎ℎ𝑆𝑖 𝜕2

𝜕𝑆 𝑖𝜕ℎ
+

𝑁
∑

𝑖=1
(𝑟𝑖 − 𝑞𝑖)𝑆𝑖 𝜕

𝜕𝑆 𝑖 + (𝜇ℎ −𝑀ℎ𝜎ℎ) 𝜕
𝜕ℎ

.

(15)

Finally, we use the 𝑄-drift of ℎ given in (3) to write the differential operator (15) as follows:

𝑆ℎ = 1
2

𝑁
∑

𝑖,𝑘=1
𝜌𝑆

𝑖𝑆𝑘
𝜎𝑆

𝑖
𝜎𝑆

𝑘
𝑆 𝑖𝑆𝑘 𝜕2

𝜕𝑆 𝑖𝜕𝑆𝑘 + 1
2
(𝜎ℎℎ)2 𝜕2

𝜕ℎ2

+
𝑁
∑

𝑖=1
𝜌𝑆

𝑖ℎ𝜎𝑆
𝑖
𝜎ℎ𝑆𝑖 𝜕2

𝜕𝑆 𝑖𝜕ℎ
+

𝑁
∑

𝑖=1
(𝑟𝑖 − 𝑞𝑖)𝑆𝑖 𝜕

𝜕𝑆 𝑖 + 𝛼ℎ(𝑚 − log(ℎ)) 𝜕
𝜕ℎ

.

(16)

In the pricing equation (14) the variation of 𝑉 𝐷 upon default is involved and is given by (see (6)):

𝛥𝑉 𝐷
𝑡 = 𝐶𝐷

𝑡 + 𝑅𝐶 (𝑀𝐷
𝑡 − 𝐶𝐷

𝑡 )+ + (𝑀𝐷
𝑡 − 𝐶𝐷

𝑡 )− − 𝑉 𝐷
𝑡 .

Following the seminal article [5], in the literature two possible values for the mark-to-market at default, 𝑀𝐷, can be chosen:
either equal to the risky value or to the risk-free value of the derivative. Thus, we derive the following PDEs for both cases.

• If 𝑀𝐷 = 𝑉 𝐷, the variation of 𝑉 𝐷 upon default is given by:

𝛥𝑉 𝐷 = 𝐶𝐷 + 𝑅𝐶 (𝑉 𝐷 − 𝐶𝐷)+ + (𝑉 𝐷 − 𝐶𝐷)− − 𝑉 𝐷

= −(1 − 𝑅𝐶 )(𝑉 𝐷
𝑡 − 𝐶𝐷

𝑡 )+ ,

so that (14) turns into

𝜕𝑉 𝐷

𝜕𝑡
+ 𝑆ℎ𝑉

𝐷 − 𝑓𝐷𝑉 𝐷 = ℎ(𝑉 𝐷 − 𝐶𝐷)+ + (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 . (17)

• If 𝑀𝐷 = 𝑊 𝐷, the variation of 𝑉 𝐷 upon default is given by:

𝛥𝑉 𝐷 = 𝐶𝐷 + 𝑅𝐶 (𝑊 𝐷 − 𝐶𝐷)+ + (𝑊 𝐷 − 𝐶𝐷)− − 𝑉 𝐷

= 𝑊 𝐷 − 𝑉 𝐷 − (1 − 𝑅𝐶 )(𝑊 𝐷 − 𝐶𝐷)+ ,

so that (14) becomes

𝜕𝑉 𝐷

𝜕𝑡
+ 𝑆ℎ𝑉

𝐷 −
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑉 𝐷

=ℎ(𝑊 𝐷 − 𝐶𝐷)+ − ℎ 𝑊 𝐷 + (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 .
(18)
8
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Next, in order to pose the PDEs formulation for the XVA price, the risky derivative value can be split up into 𝑉 𝐷 = 𝑊 𝐷 + 𝑈 ,
here 𝑊 𝐷 and 𝑈 represent the risk-free derivative price and the XVA price, respectively.
Note that the risk-free derivative price 𝑊 𝐷 satisfies the classical Black–Scholes equation:

{

𝜕𝑡𝑊 𝐷 + 𝑆𝑊 𝐷 − 𝑓𝐷𝑊 𝐷 = 0 ,
𝑊 𝐷(𝑇 , 𝑆) = 𝐺(𝑆) ,

(19)

here 𝐺 = 𝐺(𝑆) is the payoff function and

𝑆 = 1
2

𝑁
∑

𝑖,𝑘=1
𝜌𝑆

𝑖𝑆𝑘
𝜎𝑆

𝑖
𝜎𝑆

𝑘
𝑆 𝑖𝑆𝑘 𝜕2

𝜕𝑆 𝑖𝜕𝑆𝑘 +
𝑁
∑

𝑖=1
(𝑟𝑖 − 𝑞𝑖)𝑆 𝑖 𝜕

𝜕𝑆 𝑖 . (20)

Moreover, since the final conditions for 𝑉 𝐷 and for 𝑊 𝐷 coincide, i.e.,

𝑊 𝐷(𝑇 , 𝑆) = 𝑉 𝐷(𝑇 , 𝑆, ℎ) = 𝐺(𝑆) ,

he final condition for 𝑈 is given by 𝑈 (𝑇 , 𝑆, ℎ) = 0.
Therefore, depending on the choice of the mark-to-market value at default we obtain two possible PDE problems satisfied by the

VA.

• Nonlinear final value problem (case 𝑀 = 𝑉 𝐷):

⎧

⎪

⎨

⎪

⎩

𝜕𝑈
𝜕𝑡

+ 𝑆ℎ𝑈 − 𝑓𝐷𝑈 = ℎ(𝑊 𝐷 + 𝑈 − 𝐶𝐷)+ + (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 ,

𝑈 (𝑇 , 𝑆, ℎ) = 0 .
(21)

• Linear final value problem (case 𝑀 = 𝑊 𝐷):

⎧

⎪

⎨

⎪

⎩

𝜕𝑈
𝜕𝑡

+ 𝑆ℎ𝑈 −
(

ℎ
1−𝑅𝐶

+ 𝑓𝐷
)

𝑈 = ℎ(𝑊 𝐷 − 𝐶𝐷)+ + (𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 ,

𝑈 (𝑇 , 𝑆, ℎ) = 0 .
(22)

n both cases, (𝑡, 𝑆, ℎ) ∈ [0, 𝑇 ) × (0,+∞)𝑁 × (0,+∞).
Note that the spatial dimension of problems (21) and (22) depends on the number of underlying assets, so that the PDE easily

ecomes high dimensional in space and the numerical solution requires specific discretization techniques to overcome the curse of
imensionality (see [23] or [24], as examples using sparse grids with recombination technique for solving high-dimensional PDEs for
erivatives pricing). Therefore, alternative formulations in terms of expectations are obtained in the next section, so that appropriate
umerical Monte Carlo techniques could be efficiently applied.

.4. Formulation in terms of expectations

In order to compute the total value adjustment when more than two stochastic factors are involved, a first approach could
e made by using the Monte Carlo method, which is suitable to approximate expectations in a multidimensional framework, thus
llowing to deal with problems that involve more than two stochastic factors.
First, in order to compute the values of 𝑈 by using the Monte Carlo method in the nonlinear model (21), we apply the nonlinear

eynman–Kac theorem, that relates the solution of nonlinear PDEs with the solution of backward stochastic differential equations
BSDEs). The statement of the nonlinear Feynman–Kac theorem dates back from the seminal paper [25]. As the nonlinear term
n (21) appears in the unknown 𝑈 and not in the first order derivatives, Theorem 1.1 in the recent work by Beck et al. [26] can
e applied to formulate the nonlinear problem (21) in terms of a nonlinear integral equation. Note that in [26] a large number of
revious references on the nonlinear Feynman–Kac theorem are indicated, probably the here treated nonlinear PDE could be framed
n many of them. Secondly, the linear Feynman–Kac theorem (see [22], for example) can be applied to the linear problem (22).

• If 𝑀𝐷 = 𝑉 𝐷, the total value adjustment at time 𝑡 satisfies the equation

𝑈 (𝑡, 𝑆𝑡, ℎ𝑡) = 𝐸𝑄𝐷

𝑡

[

− ∫

𝑇

𝑡
𝑒−𝑓

𝐷(𝑢−𝑡)
(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) + 𝑈 (𝑢, 𝑆𝑢, ℎ𝑢) − 𝐶𝐷(𝑢)
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢

]

. (23)

Note that (23) is an integral equation as the unknown 𝑈 appears also at the right hand side in the integral. We are interested
in the XVA at the current time 𝑡 = 0, when the derivative is priced, that is to say

𝑈 (0, 𝑆0, ℎ0) = 𝐸𝑄𝐷

0

[

− ∫

𝑇

0
𝑒−𝑓

𝐷𝑢
(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) + 𝑈 (𝑢, 𝑆𝑢, ℎ𝑢) − 𝐶𝐷(𝑢)
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢

]

. (24)
9
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• If 𝑀𝐷 = 𝑊 𝐷, the total value adjustment at time 𝑡 is given by

𝑈 (𝑡, 𝑆𝑡, ℎ𝑡) = 𝐸𝑄𝐷

𝑡

[

−∫

𝑇

𝑡
exp

(

−∫

𝑢

𝑡

(

ℎ𝑟
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑑𝑟
)

(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) − 𝐶𝐷(𝑢)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢

]

.

(25)

Note that (25) gives an explicit formula for XVA. In particular, at time 𝑡 = 0 we have

𝑈 (0, 𝑆0, ℎ0) = 𝐸𝑄𝐷

0

[

−∫

𝑇

0
exp

(

−∫

𝑢

0

(

ℎ𝑟
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑑𝑟
)

(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) − 𝐶𝐷(𝑢)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢

]

.

(26)

. Numerical methods

In the previous section, two problems for pricing the XVA have been posed, either in the event that 𝑀𝐷 = 𝑊 𝐷 (linear case) or
n the event that 𝑀𝐷 = 𝑉 𝐷 (nonlinear case). In this section, we propose different numerical methods to compute the total value
djustment in both cases.

.1. A Lagrange-Galerkin method

Problems governed by PDEs can be numerically solved by classical finite difference [27] or finite element methods [28]
hen the number of spatial-like variables is less or equal to three. Otherwise, these deterministic numerical methods based on
eometrical discretizations become highly computational demanding to solve the problems and we have to make use of alternative
ethodologies.
In this section we will consider the solution of PDEs problems for obtaining the XVA where only two spatial-like variables are

nvolved. We will compare the results obtained with the proposed methods to solve these PDEs problems with alternative techniques
e propose for the case of a higher number of stochastic factors. Therefore, we first assume that the derivative is written on two
nderlying assets and the credit spread is a time dependent deterministic function. Moreover, we build this deterministic function as
n approximation of the case with stochastic credit spread. Indeed it results to be a particular limit of the corresponding stochastic
odels.
Thus, we set 𝜎ℎ = 0 both in the case of the exponential Vasicek dynamics (3) and of the CIR dynamics (4). In the first case, the

credit spread is the solution of the following deterministic Initial Value Problem (IVP)
{

𝑑ℎ(𝑡) = 𝛼ℎ(𝑡) (𝜃 − log (ℎ(𝑡))) 𝑑𝑡 ,
ℎ(0) = ℎ0 ,

so that

ℎ(𝑡) = exp
(

𝜃 − 𝑒−𝛼𝑡+log(𝜃−log(ℎ0))
)

. (27)

In the case of CIR dynamics, the deterministic credit spread ℎ is the solution of the following IVP
{

𝑑ℎ(𝑡) = 𝛼ℎ(𝑡) (𝜃 − ℎ(𝑡)) 𝑑𝑡 ,
ℎ(0) = ℎ0 ,

so that

ℎ(𝑡) = 𝜃 −
(

𝜃 − ℎ0
)

𝑒𝛼𝑡 . (28)

In this framework, we propose a semi-Lagrangian time discretization technique combined with a finite element method for the
spatial-like variables. This combination is usually referred to as Lagrange-Galerkin (LG) technique. For example, the semi-Lagrangian
technique (also known as the method of characteristics) has been introduced in [29] for Navier–Stokes and transport equations and
already used in [30] in combination with finite differences for option pricing. Recently, also in the context of the numerical solution
of XVA models and combined with finite element method, i.e., Lagrange-Galerkin method, it has been used in [8,31].

As most of the numerical methods, this discretization technique needs the truncation of the initial unbounded spatial domain to
a bounded one and the imposition of appropriate boundary conditions at certain boundaries of the bounded domain.

First, in order to pose more classical in terms of initial value problems instead of final value problems, we introduce the
time-to-maturity, 𝜏 = 𝑇 − 𝑡. In this way, the problem (19) satisfied by the risk-free derivative can be written as

{

𝜕𝜏𝑊 𝐷 − 𝑆𝑊 𝐷 + 𝑓𝐷𝑊 𝐷 = 0 ,
𝐷

(29)
10

𝑊 (0, 𝑆) = 𝐺(𝑆) .
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Moreover, the nonlinear XVA problem (21) can be written as the following initial value problem:
{

𝜕𝜏𝑈 − 𝑆𝑈 + 𝑓𝐷𝑈 = −ℎ
(

𝑊 𝐷 + 𝑈 − 𝐶𝐷)+ −
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 ,
𝑈 (0, 𝑆1, 𝑆2) = 0 ,

(30)

hereas the linear problem (22) is given by

⎧

⎪

⎨

⎪

⎩

𝜕𝜏𝑈 − 𝑆𝑈 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑈 = −ℎ
(

𝑊 𝐷 − 𝐶𝐷)+ −
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷 ,

𝑈 (0, 𝑆1, 𝑆2) = 0 ,
(31)

where 𝜏 ∈ (0, 𝑇 ) and (𝑆1, 𝑆2) ∈ 𝛺 = (0, 𝑆1
∞) × (0, 𝑆2

∞).
Moreover, 𝑆1

∞ and 𝑆2
∞ are large enough numbers so that the value at the financial region of interest is not affected by the choice

of the boundary conditions on the boundaries of the truncated domain 𝛺. Typically, this truncation argument is used in most PDEs
models arising in financial problems.

Taking into account that the problem (29) for the risk free derivative price, the nonlinear problem (30) for the XVA and the
linear problem (31) for the XVA involve the same differential operator 𝑆 , the partial differential equations of the three problems
can be equivalently written as:

𝜕𝜏𝑊
𝐷 − div (𝐴∇𝑊 𝐷) + 𝐛 ⋅ ∇𝑊 𝐷 + 𝑓𝐷𝑊 𝐷 = 0 , (32)

𝜕𝜏𝑈
𝐷 − div (𝐴∇𝑈𝐷) + 𝐛 ⋅ ∇𝑈𝐷 + 𝑓𝐷𝑈 = 𝑔1(𝑈𝐷,𝑊 𝐷) , (33)

𝜕𝜏𝑈
𝐷 − div (𝐴∇𝑈𝐷) + 𝐛 ⋅ ∇𝑈𝐷 +

(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑈 = 𝑔2(𝑊 𝐷) , (34)

espectively, where the matrix 𝐴 and the vector 𝐛 are given by

𝐴 = 1
2

(

(𝜎𝑆1 )2(𝑆1)2 𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2𝑆1𝑆2

𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2𝑆1𝑆2 (𝜎𝑆2 )2(𝑆2)2

)

,

𝐛 =

⎛

⎜

⎜

⎜

⎝

(

(𝜎𝑆1 )2 + 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟1 + 𝑞1

)

𝑆1

(

(𝜎𝑆2 )2 + 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟2 + 𝑞2

)

𝑆2

⎞

⎟

⎟

⎟

⎠

, (35)

while 𝑔1 and 𝑔2 denote the right hand side term of the nonlinear and the linear problems for the XVA, respectively.
In the following, we will focus on the linear risky problem, since the risk-free and nonlinear risky problems can be treated in a

imilar way. We will also omit the superscript 𝐷 in the variables, as all of them are always written in the domestic currency.

Time discretization with semi-Lagrangian method
For the time discretization we use the semi-Lagrangian method. For this purpose, we introduce the material derivative of 𝑈

given by
𝐷𝑈
𝐷𝜏

= 𝜕𝑈
𝜕𝜏

+ 𝐛 ⋅ ∇𝑈 = 𝜕𝑈
𝜕𝜏

+ 𝑏1
𝜕𝑈
𝜕𝑆1

+ 𝑏2
𝜕𝑈
𝜕𝑆2

,

which represents the derivative along the characteristic curves associated to the vector field 𝐛. In terms of the material derivative,
the XVA linear equation in (34) turns into

𝐷𝑈
𝐷𝜏

− div (𝐴∇𝑈 ) +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑈 = 𝑔2(𝑊 𝐷) . (36)

or the time discretization we consider a uniform mesh with a constant time step, 𝛥𝜏 = 𝑇 ∕𝑁𝑇 > 0, and the time mesh points
𝑛 = 𝑛𝛥𝜏, for 𝑛 = 0, 1,… , 𝑁𝑇 , with 𝑁𝑇 > 1 being a natural number, so that we have 𝑁𝑇 + 1 time mesh points in the time interval
0, 𝑇 ].
At each time mesh point 𝜏𝑛+1, we approximate the material derivative by the upwinded finite differences scheme along the

haracteristics:
𝐷𝑈
𝐷𝜏

(𝜏𝑛+1, .) ≈
𝑈𝑛+1 − 𝑈𝑛◦𝜒𝑛

𝛥𝜏
, (37)

where 𝜒𝑛(𝑆1, 𝑆2) = 𝜒((𝑆1, 𝑆2), 𝜏𝑛+1; 𝜏𝑛), with 𝜒 being the solution of the ODE problem associated to the characteristic curve:

⎧

⎪

⎨

⎪

⎩

𝑑𝜒1
𝑑𝜏

= 𝑏1(𝜒1) =
(

(𝜎𝑆1 )2 + 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟1 + 𝑞1

)

𝜒1 ,

𝜒1(𝜏𝑛+1) = 𝑆1 ,

⎧

⎪

⎨

⎪

⎩

𝑑𝜒2
𝑑𝜏

= 𝑏2(𝜒2) =
(

(𝜎𝑆2 )2 + 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟2 + 𝑞2

)

𝜒2 ,

𝜒2(𝜏𝑛+1) = 𝑆2 .
11
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Note that 𝜒(𝜏) = 𝜒((𝑆1, 𝑆2), 𝜏𝑛+1; 𝜏) represents the characteristic curve associated to the velocity field 𝐛 passing through (𝑆1, 𝑆2) at
nstant 𝜏𝑛+1.
In the method of characteristics (also known as semi-Lagrangian method) that we propose for the time discretization, we

pproximate the material derivative by expression (37) and replace it in (36) to pose the semi-discretized in time problem:

⎧

⎪

⎨

⎪

⎩

𝑈𝑛+1 − 𝑈𝑛◦𝜒𝑛

𝛥𝜏
− div (𝐴∇𝑈𝑛+1) +

(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑈𝑛+1 = 𝑔2(𝑊 𝑛+1)

𝑈0(𝑆1, 𝑆2) = 0 ,

here 𝑈𝑛 ≈ 𝑈 (𝜏𝑛, ⋅). It is easy to check that the components of 𝜒𝑛 are given by:

𝜒𝑛
1 = 𝑆1 exp

(

−
(

(𝜎𝑆
1
)2 + 1

2
𝜎𝑆

1
𝜎𝑆

2
𝜌𝑆

1𝑆2
− 𝑟1 + 𝑞1

)

𝛥𝜏
)

,

𝜒𝑛
2 = 𝑆2 exp

(

−
(

(𝜎𝑆
2
)2 + 1

2
𝜎𝑆

1
𝜎𝑆

2
𝜌𝑆

1𝑆2
− 𝑟2 + 𝑞2

)

𝛥𝜏
)

.

Analysis of boundary conditions
In order to apply the finite element method to approximate the XVA, we need to truncate the unbounded domain and we consider

the bounded domain 𝛺∗ = (0, 𝑇 )×(0, 𝑆1
∞)×(0, 𝑆2

∞). We follow Fichera’s theory [32,33] to determine which boundaries of the domain
need an imposed condition.

Let us introduce the notation (𝑥0, 𝑥1, 𝑥2) = (𝜏, 𝑆1, 𝑆2) ∈ 𝛺∗ = (0, 𝑇 ) × (0, 𝑆1
∞) × (0, 𝑆2

∞), and

𝛤 ∗,−
𝑖 =

{

(𝑥0, 𝑥1, 𝑥2) ∈ 𝜕𝛺∗ ∕ 𝑥𝑖 = 0
}

, 𝛤 ∗,+
𝑖 =

{

(𝑥0, 𝑥1, 𝑥2) ∈ 𝜕𝛺∗ ∕ 𝑥𝑖 = 𝑥∞𝑖
}

, 𝑖 = 0, 1, 2.

ext, we define the matrix function 𝐴∗ and the vector function 𝐛∗ as

𝐴∗ = 1
2

⎛

⎜

⎜

⎜

⎝

0 0 0

0 (𝜎𝑆1 )2𝑥21 𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1𝑥2
0 𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1𝑥2 (𝜎𝑆2 )2𝑥22

⎞

⎟

⎟

⎟

⎠

, 𝐛∗ =

⎛

⎜

⎜

⎜

⎝

−1

(𝑟1 − 𝑞1)𝑥1
(𝑟2 − 𝑞2)𝑥2

⎞

⎟

⎟

⎟

⎠

,

nd the scalar function 𝑐∗ = −𝑓𝐷, so that Eq. (31) can be written as:
2
∑

𝑖,𝑗=0
𝑎∗𝑖𝑗

𝜕2𝑈
𝜕𝑥𝑖𝜕𝑥𝑗

+
2
∑

𝑖=0
𝑏∗𝑖

𝜕𝑈
𝜕𝑥𝑖

+ 𝑐∗𝑈 = 0 .

Following [33], we deduce that we need to impose boundary conditions on 𝛤 ∗,+
1 (𝑆1 = 𝑆1

∞) and 𝛤 ∗,+
2 (𝑆2 = 𝑆2

∞) boundaries of
∗ (see the Appendix for the details). Analogously to the boundaries of 𝛺∗, we introduce the notation for the boundaries of the
patial-like domain 𝛺 as follows:

𝛤−
𝑖 =

{

(𝑆1, 𝑆2) ∈ 𝜕𝛺 ∕𝑆𝑖 = 0
}

, 𝛤+
𝑖 =

{

(𝑆1, 𝑆2) ∈ 𝜕𝛺 ∕𝑆𝑖 = 𝑆𝑖
∞
}

, 𝑖 = 0, 1, 2.

In view of the previous arguments, we just need to impose boundary conditions on 𝛤+
1 and 𝛤+

2 for the PDEs formulations posed in
the domain 𝛺.

Proposed boundary conditions on 𝛤+
1 (𝑆1 = 𝑆1

∞). In order to deduce the conditions to impose on the right boundary of the domain, we
make use of a previous methodology [8,34,35]. We consider Eq. (31), divide by (𝑆1)2 and make 𝑆1 tend to infinity, thus obtaining

1
2
(𝜎𝑆

1
)2 𝜕2𝑈
𝜕(𝑆1)2

= 0 ,

o that we can write 𝑈 as:

𝑈 (𝜏, 𝑆1, 𝑆2) = 𝐻0(𝜏) +𝐻1(𝜏)𝑆1 +𝐻2(𝜏)𝑆2 +𝐻3(𝜏)𝑆1𝑆2 +𝐻4(𝜏)(𝑆2)2 .

Eq. (31) can be written, in this particular case, as

𝜕𝜏𝑈 − div (𝐴∇𝑈 ) + �̂� ⋅ ∇𝑈 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑈 = 𝑔2(𝑊 ) ,

here

𝐴 = 1
2

(

0 𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2𝑆1𝑆2

𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2𝑆1𝑆2 (𝜎𝑆2 )2(𝑆2)2

)

,

and the time discretization by the characteristics method leads to

𝑈𝑛+1 − 𝛥𝜏 div (𝐴∇𝑈𝑛+1) +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝛥𝜏 𝑈𝑛+1 = 𝛥𝜏 𝑔2(𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛 ,

where 𝜒𝑛 (related to the velocity field �̂�) is given by

⎧

⎪

⎨

⎪

𝜒𝑛
1 (𝑆

1, 𝑆2) = 𝑆1 exp
(

−
( 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟1 + 𝑞1

)

𝛥𝜏
)

,

𝜒𝑛(𝑆1, 𝑆2) = 𝑆2 exp
(

−
(

(𝜎𝑆2 )2 + 1𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟2 + 𝑞2
)

𝛥𝜏
)

.

12
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Thus,
(

1 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝛥𝜏
)

𝑈𝑛+1 − 𝛥𝜏 div (𝐴∇𝑈𝑛+1) = 𝛥𝜏 𝑔2(𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛

or, equivalently,
(

1 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝛥𝜏
)

[

𝐻0(𝜏) +𝐻1(𝜏)𝑆1 +𝐻2(𝜏)𝑆2 +𝐻3(𝜏)𝑆1𝑆2 +𝐻4(𝜏)(𝑆2)2
]

− 𝛥𝜏
2

𝜕
𝜕𝑆1

[

0 + 𝜎𝑆
1
𝜎𝑆

2
𝜌𝑆

1𝑆2
𝑆1𝑆2

(

𝐻2(𝜏) +𝐻3(𝜏)𝑆1 + 2𝐻4(𝜏)𝑆2
)]

− 𝛥𝜏
2

𝜕
𝜕𝑆2

[

𝜎𝑆
1
𝜎𝑆

2
𝜌𝑆

1𝑆2
𝑆1𝑆2

(

𝐻1(𝜏) +𝐻3(𝜏)𝑆2
)

+ (𝜎𝑆
2
)2(𝑆2)2

(

𝐻2(𝜏) +𝐻3(𝜏)𝑆1 + 2𝐻4(𝜏)𝑆2)
]

= 𝛥𝜏 𝑔2(𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛 .

f we choose 𝐻1(𝜏) = 𝐻2(𝜏) = 𝐻3(𝜏) = 𝐻4(𝜏) = 0, then

𝑈𝑛+1(𝑆1
∞, 𝑆2) = 𝐻𝑛+1

0 =
𝛥𝜏 𝑔2(𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛

1 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝛥𝜏
.

Thus, a non homogeneous Dirichlet boundary condition is derived on the right boundary of the truncated domain.
In the risk-free problem, the Dirichlet boundary condition is given by:

𝑈𝑛+1(𝑆1
∞, 𝑆2) =

𝑈𝑛◦𝜒𝑛

1 + 𝑓𝐷𝛥𝜏
,

hile the analogous condition in the nonlinear risky problem is

𝑈𝑛+1(𝑆1
∞, 𝑆2) =

𝛥𝜏 𝑔1(𝑈𝑛,𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛

1 + 𝑓𝐷𝛥𝜏
.

Proposed boundary conditions on 𝛤+
2 (𝑆2 = 𝑆2

∞). Similarly to what we did in the previous paragraph, on the upper boundary we can
deduce an analogous Dirichlet boundary condition:

𝑈𝑛+1(𝑆1, 𝑆2
∞) = 𝐻0

𝑛+1
=

𝛥𝜏 𝑔2(𝑊 𝑛+1) + 𝑈𝑛◦𝜉𝑛

1 +
(

ℎ
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝛥𝜏
,

here 𝜉𝑛 is given by:

⎧

⎪

⎨

⎪

⎩

𝜉𝑛1 (𝑆
1, 𝑆2) = 𝑆1 exp

(

−
(

(𝜎𝑆1 )2 + 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟1 + 𝑞1

)

𝛥𝜏
)

𝜉𝑛2 (𝑆
1, 𝑆2) = 𝑆2 exp

(

−
( 1
2
𝜎𝑆1𝜎𝑆2𝜌𝑆1𝑆2 − 𝑟2 + 𝑞2

)

𝛥𝜏
)

.

In the risk-free problem, the Dirichlet boundary condition is

𝑈𝑛+1(𝑆1, 𝑆2
∞) =

𝑈𝑛◦𝜉𝑛

1 + 𝑓𝐷𝛥𝜏
,

hile in the nonlinear problem it is given by

𝑈𝑛+1(𝑆1, 𝑆2
∞) =

𝛥𝜏 𝑔1(𝑈𝑛,𝑊 𝑛+1) + 𝑈𝑛◦𝜉𝑛

1 + 𝑓𝐷𝛥𝜏
.

Finite element method
As we propose to use a finite element method for the discretization in space, we first pose the variational formulation for the

time discretized problem. At each time step, 𝜏𝑛, we can use Green’s formula and pose the variational formulation corresponding to
the risky linear problem:

Find 𝑈𝑛+1 ∈
{

𝜑 ∈ 𝐻1(𝛺)∕𝜑 = 𝐻𝑛+1
5 on 𝛤+

1 , 𝜑 = 𝐻5
𝑛+1

on 𝛤+
2

}

such that

∫ 𝛺
𝑈𝑛+1𝜑𝑑𝑆1 𝑑𝑆2 + 𝛥𝜏∫ 𝛺

𝐴∇𝑈𝑛+1∇𝜑𝑑𝑆1 𝑑𝑆2 + 𝛥𝜏
(

ℎ(𝑇 − 𝜏𝑛+1)
1 − 𝑅𝐶

+ 𝑓𝐷
)

∫ 𝛺
𝑈𝑛+1𝜑𝑑𝑆1 𝑑𝑆2

= ∫ 𝛺
(𝑈𝑛◦𝜒𝑛)𝜑𝑑𝑆1 𝑑𝑆2 + 𝛥𝜏∫ 𝛺

𝑔2(𝑊 𝑛+1)𝜑𝑑𝑆1 𝑑𝑆2 , ∀𝜑 ∈ 𝐻1
∗ (𝛺) ,

1 { 1 + −} 1
13

here 𝐻∗ (𝛺) = 𝜑 ∈ 𝐻 (𝛺) ∕𝜑 = 0 on 𝛤1 ∪ 𝛤2 and 𝐻 (𝛺) is a classical Sobolev space in the weak formulations of PDEs.
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Next, we consider a triangular mesh of the domain and the finite element space of piecewise linear Lagrange polynomials [28].
ore precisely, for fixed natural numbers 𝑀 > 0 and 𝐿 > 0, we consider a uniform triangulation,  , of the computational domain

𝛺, the nodes of which are (𝑆1
𝑖 , 𝑆

2
𝑗 ), with:

𝑆1
𝑖 = 𝑖𝛥𝑆1 (𝑖 = 0, 1,… ,𝑀 + 1) , 𝛥𝑆1 =

𝑆1
∞

𝑀 + 1
,

𝑆2
𝑗 = 𝑗𝛥𝑆2 (𝑗 = 0, 1,… , 𝐿 + 1) , 𝛥𝑆2 =

𝑆2
∞

𝐿 + 1
.

Let us remark that a non uniform mesh can also be considered. We introduce the finite element spaces

𝑌ℎ =
{

𝜑ℎ ∈ (𝛺) ∕𝜑ℎ|𝑇𝑘 ∈ 1 ,∀𝑇𝑘 ∈ 
}

𝑌 ∗
ℎ =

{

𝜑ℎ ∈ 𝑌ℎ ∕𝜑ℎ = 0 on 𝛤1 ∪ 𝛤2
}

here 𝑇𝑘 denotes a triangular element of the mesh for 𝑘 = 1,… , 𝐾, the index ℎ denotes a characteristic mesh size and 1 is the
space of polynomials of degree less or equal than one. Then, we search 𝑈𝑛+1

ℎ satisfying the boundary conditions and such that

∫ 𝛺
𝑈𝑛+1
ℎ 𝜑ℎ 𝑑𝑆

1 𝑑𝑆2 + 𝛥𝜏∫ 𝛺
𝐴∇𝑈𝑛+1

ℎ ∇𝜑ℎ 𝑑𝑆
1 𝑑𝑆2 + 𝛥𝜏

(

ℎ(𝑇 − 𝜏𝑛+1)
1 − 𝑅𝐶

+ 𝑓𝐷
)

∫ 𝛺
𝑈𝑛+1
ℎ 𝜑ℎ 𝑑𝑆

1 𝑑𝑆2

= ∫ 𝛺
(𝑈𝑛

ℎ◦𝜒
𝑛)𝜑𝑑𝑆1 𝑑𝑆2 + 𝛥𝜏∫ 𝛺

𝑔2(𝑈𝑛
ℎ )𝜑ℎ 𝑑𝑆

1 𝑑𝑆2 , ∀𝜑ℎ ∈ 𝑌 ∗
ℎ . (38)

he different integrals in (38) are approximated by adequate quadrature formulae, and the system of linear equations is solved by
he 𝐿𝑈 method.
The risk-free problem is solved in a similar way; the differences with respect to the described risky linear problem concern the

ight hand side member and the coefficient of the unknown, 𝑊 , in the PDE. Thus, the risk-free price is the solution of the following
variational problem:

Find 𝑊 𝑛+1
ℎ such that:

(

1 + 𝛥𝜏 𝑓𝐷)

∫ 𝛺
𝑊 𝑛+1

ℎ 𝜑ℎ 𝑑𝑆
1 𝑑𝑆2 + 𝛥𝜏∫ 𝛺

𝐴∇𝑊 𝑛+1
ℎ ∇𝜑ℎ 𝑑𝑆

1 𝑑𝑆2 = ∫ 𝛺
(𝑊 𝑛

ℎ ◦𝜒
𝑛)𝜑𝑑𝑆1 𝑑𝑆2 , ∀𝜑ℎ ∈ 𝑌 ∗

ℎ .

ixed point iteration
In the nonlinear problem (30), an additional fixed point iteration method is implemented to approximate the solution. At each

ime step, 𝜏𝑛+1, the scheme can be simply described, in terms of the strong formulation, as:

Let 𝑈𝑛+1,0 = 𝑈𝑛, 𝓁 = 0

For 𝓁 = 0, 1,…

Solve 𝑈𝑛+1,𝓁+1 − 𝛥𝜏 div (𝐴∇𝑈𝑛+1,𝓁+1) + 𝑓𝐷𝛥𝜏 𝑈𝑛+1,𝓁+1 = 𝛥𝜏 𝑔1(𝑈𝑛+1,𝓁 ,𝑊 𝑛+1) + 𝑈𝑛◦𝜒𝑛

ntil convergence: ‖𝑈𝑛+1,𝓁+1 − 𝑈𝑛+1,𝓁
‖∕‖𝑈𝑛+1,𝓁+1

‖ < 𝜀.

.2. A Monte Carlo strategy

In the numerical examples in Section 4 we assume constant FX rates. We need a time discretization in order to discretize the
dynamics of the underlying assets 𝑆𝑖 (𝑖 = 1,… , 𝑁) and of the credit spread ℎ by using Euler–Maruyama scheme [36]. Thus, we
choose a uniform mesh with 𝑍 nodes 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑍−1 = 𝑇 , and we denote by 𝛥𝑡 = 𝑡𝑧 − 𝑡𝑧−1 the distance between two
consecutive nodes. Hence, we denote by 𝑆𝑖

𝑧 = 𝑆𝑖(𝑡𝑧), ℎ̃𝑧 = ℎ̃(𝑡𝑧) = log(ℎ(𝑡𝑧)) and ℎ𝑧 = ℎ(𝑡𝑧), and by 𝛥𝑊 𝑆𝑖
𝑧 = 𝑊 𝑆𝑖

𝑧 − 𝑊 𝑆𝑖

𝑧−1, for
𝑖 = 1,… , 𝑁 , and 𝛥𝑊 ℎ

𝑧 = 𝑊 ℎ
𝑧 −𝑊 ℎ

𝑧−1 correlated Brownian increments to incorporate correlations between assets and between assets
and credit spread. Therefore, for the underlying assets 𝑆1,… , 𝑆𝑁 we have

𝑆 𝑖
𝑧+1 = 𝑆 𝑖

𝑧 + (𝑟𝑖 − 𝑞𝑖)𝑆𝑖
𝑧 𝛥𝑡 + 𝜎𝑆

𝑖
𝑆 𝑖
𝑧 𝛥𝑊

𝑆𝑖
𝑧

and for the credit spread with the exponential Vasicek dynamics we have

ℎ𝑧+1 = 𝑒ℎ̃𝑧+1 , with ℎ̃𝑧+1 = ℎ̃𝑧 + 𝛼(𝜃 − ℎ̃𝑧)𝛥𝑡 + 𝜎ℎ𝛥𝑊 ℎ
𝑧 .

In the case of the CIR model for the credit spread, the Euler–Maruyama scheme

ℎ𝑧+1 = ℎ𝑧 + 𝛼(𝜃 − ℎ𝑧)𝛥𝑡 + 𝜎ℎ
√

ℎ𝑧𝛥𝑊
ℎ
𝑧

can lead to negative values since the Gaussian increment is not bounded from below, even if the Feller condition is satisfied and,
thus, the continuous version of the process is positive. Therefore, we use the ‘‘full truncation’’ scheme proposed in [37], given by

ℎ = ℎ + 𝛼(𝜃 − ℎ+)𝛥𝑡 + 𝜎ℎ
√

ℎ+𝛥𝑊 ℎ .
14

𝑧+1 𝑧 𝑧 𝑧 𝑧
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The nonlinear case (𝑀 = 𝑉 𝐷)
When𝑀 = 𝑉 𝐷, a fixed-point method, or Picard iteration method, is implemented to compute the XVA price, given by the integral

Eq. (24). Thus, we start from 𝑈0 = 0 and recursively compute:

𝑈𝓁+1(0, 𝑆, ℎ) = 𝐸𝑄𝐷

0

[

−∫

𝑇

0
𝑒−𝑓

𝐷𝑢
(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) + 𝑈𝓁(𝑢, 𝑆𝑢, ℎ𝑢) − 𝐶𝐷(𝑢)
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢
|

|

|

|

|

𝑆0 = 𝑆, ℎ0 = ℎ

]

(39)

or 𝓁 = 0, 1, 2,… until convergence is attained.
At each iteration (39) of the fixed-point algorithm of the nonlinear model the computation of an integral term is required. We

onsider either a simple rectangular or simple trapezoidal quadrature formula. Therefore, if we denote by 𝐼𝑁𝐿,𝓁 the integral in the
ight hand side of (39), thus

𝐼𝑁𝐿,𝓁 = ∫

𝑇

0
𝑒−𝑓

𝐷𝑢
(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) + 𝑈𝓁(𝑢, 𝑆𝑢, ℎ𝑢) − 𝐶𝐷(𝑢)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢 ,

hen we approximate the integral as follows:

𝐼𝑁𝐿,𝓁 ≃ 𝑇
[

ℎ𝑢
(

𝑊 𝐷(0, 𝑆0) + 𝑈𝓁(0, 𝑆0, ℎ0) − 𝐶𝐷(0)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(0)
]

(40)

r

𝐼𝑁𝐿,𝓁 ≃ 𝑇
2

[

𝑒−𝑓
𝐷𝑇

(

ℎ𝑇
(

𝑊 𝐷(𝑇 , 𝑆𝑇 ) − 𝐶𝐷(𝑇 )
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑇 )
)

+
(

ℎ0
(

𝑊 𝐷(0, 𝑆0) + 𝑈𝓁(0, 𝑆0, ℎ0) − 𝐶𝐷(0)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(0)
)]

. (41)

n the nonlinear case we use only simple quadrature formulas, because we just know the final value of 𝑈 , that is 𝑈𝑇 = 0, while
omposite formulas require to know the values of 𝑈 at internal nodes of our time discretization. One could approximate the value
f 𝑈 at each node going backwards from the last node, although in this way a nested Monte Carlo problem arises. However, in
rder to improve our estimates we also implement the multilevel Picard iterations method proposed in [19,38], and recalled in
ection 3.3, that allows to consider the values at the internal nodes of the time discretization.

he linear case (𝑀 = 𝑊 𝐷)
When 𝑀 = 𝑊 𝐷, (26) gives an explicit expression for the XVA price that is computed with the help of numerical formulae for

he approximation of the integral that use the time discretization stated above. As in the case of the nonlinear model, we use either
rectangular or a trapezoidal formula, but in the linear case also composite formulae can be implemented. Therefore, if we denote
y 𝐼𝐿 the integral in the right hand side of (26),

𝐼𝐿 = ∫

𝑇

0
exp

(

−∫

𝑢

0

(

ℎ𝑟
1 − 𝑅𝐶

+ 𝑓𝐷
)

𝑑𝑟
)(

ℎ𝑢
(

𝑊 𝐷(𝑢, 𝑆𝑢) − 𝐶𝐷(𝑢)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑢)
)

𝑑𝑢 , (42)

hen we approximate the integral either with a simple rectangular or a simple trapezoidal formula. Moreover, we approximate the
ntegral (42) with the rectangular and the trapezoidal composite formulas given by

𝐼𝐿 ≃ 𝛥𝑡
𝑍−2
∑

𝑧1=0
exp

(

−𝛥𝑡
𝑧1−1
∑

𝑧2=0

( ℎ𝑡𝑧2
1 − 𝑅𝐶

+ 𝑓
))(

ℎ𝑧1
(

𝑊 𝐷(𝑡𝑧1 , 𝑆𝑧1 ) − 𝐶𝐷(𝑡𝑧1 )
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑡𝑧1 )
)

nd

𝐼𝐿 ≃ 𝛥𝑡
2

𝑍−2
∑

𝑧1=0

[

exp
(

−𝛥𝑡
2

𝑧1−1
∑

𝑧2=0

(ℎ𝑡𝑧2 + ℎ𝑡𝑧2+1
1 − 𝑅𝐶

+ 2𝑓𝐷
))

(

ℎ𝑧1
(

𝑊 𝐷(𝑡𝑧1 , 𝑆𝑧1 ) − 𝐶𝐷(𝑡𝑧1 )
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑡𝑧1 )
)

+ exp
(

−𝛥𝑡
2

𝑧1
∑

𝑧2=0

(ℎ𝑡𝑧2 + ℎ𝑡𝑧2+1
1 − 𝑅𝐶

+ 2𝑓𝐷
))(

ℎ𝑧1+1
(

𝑊 𝐷(𝑡𝑧1+1, 𝑆𝑧1+1) − 𝐶𝐷(𝑡𝑧1+1)
)+

+
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑡𝑧1+1)
)]

. (43)

.3. A multilevel Picard iteration scheme

In this subsection we briefly describe the main idea in the Multilevel Picard Iteration (MPI) method. For further details about
he method, we address the reader to [19], for example.
15
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The multilevel Picard iteration method is based in the adaptation of the multilevel Monte Carlo approach of Heinrich [39,40] and
iles [41] to the Picard approximation method. The multilevel Monte Carlo path simulations are based on the multigrid ideas, that
acilitate the reduction of the computational complexity when estimating an expected value derived from a stochastic differential
quation via Monte Carlo path simulations.
In order to apply the multilevel Picard iteration, we define function 𝛷 by

(𝛷(𝚞)) (𝑠, 𝑥) = E𝑄
𝑠

[

−∫

𝑇

𝑠
𝑒−𝑓

𝐷(𝑡−𝑠)

(

ℎ𝑡
(

𝑊 𝐷(𝑡, 𝑆𝑡) + 𝚞 − 𝐶𝐷(𝑡)
)+ +

(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑡)
)

𝑑𝑡 ||
|

𝑥 = (𝑆𝑠, ℎ𝑠)
]

and a sequence of Picard approximations (𝚞𝑛)𝑛∈N0
such that 𝚞𝑛+1 = 𝛷(𝚞𝑛) for all 𝑛 ∈ N0. By using the Banach fixed-point theorem,

it can be proved that the sequence (𝚞𝑛)𝑛∈N0
converges at least exponentially fast to the solution of 𝑢 = 𝛷(𝑢). Therefore, for all

sufficiently large 𝑛 ∈ N, we have

𝑢 ≈ 𝚞𝑛 = 𝚞1 +
𝑛−1
∑

𝑙=1
(𝚞𝑙+1 − 𝚞𝑙) = 𝛷(𝚞0) +

𝑛−1
∑

𝑙=1
(𝛷(𝚞𝑙) −𝛷(𝚞𝑙−1))

≈ 𝛹𝑛,𝜌(𝚞0) +
𝑛−1
∑

𝑙=1
(𝛹𝑛−𝑙,𝜌(𝚞𝑙) − 𝛹𝑛−𝑙,𝜌(𝚞𝑙−1)), (44)

where 𝛹𝑛,𝜌(𝚞𝑙) is a discrete approximation of 𝛷(𝚞𝑙) with 𝑚𝑛,𝑙,𝜌 Monte Carlo paths. More precisely,

(

𝛹𝑛,𝜌
(

𝚞𝑙
))

(𝑠, 𝑥) = − 1
𝑚𝑛,𝑙,𝜌

𝑚𝑛,𝑙,𝜌
∑

𝑖=1

∑

𝑡∈]𝑠,𝑇 ]
𝑞𝑛,𝑙,𝜌𝑠 (𝑡)

𝑒−𝑓
𝐷(𝑡−𝑠)

(

ℎ𝑖,𝑛,𝑥𝑡
(

𝑊 𝐷(𝑡, 𝑆𝑖,𝑛,𝑥
𝑡 ) + 𝚞𝑙 − 𝐶𝐷(𝑡)

)+ +
(

𝑟𝐷 + 𝑏𝐷,𝐶0 − 𝑓𝐷)𝐶𝐷(𝑡)

)

,

here (𝑞𝑛,𝑙,𝜌)𝑛,𝑙,𝜌∈N0 ,𝑙<𝑛 denotes the family of quadrature rules for the approximation of the integral and the superscripts 𝑖, 𝑛, 𝑥 refer
o the 𝑖th Monte Carlo path with initial point 𝑥 in the 𝑛th Picard iteration. In particular, in our numerical examples we have chosen
𝑛,𝑙,𝜌 = 𝜌𝑛−𝑙, as also proposed in [19].
Note that the quadrature rules 𝑞𝑛,𝑙,𝜌 are just functions on [0, 𝑇 ] which have non-zero values only on a finite subset of [0, 𝑇 ]. In

ur numerical examples, we have chosen the left-rectangle rule with 𝜌𝑛−𝑙 rectangles, so that, for 𝑠 ∈]0, 𝑇 ],

𝑞𝑛,𝑙,𝜌𝑠 = 𝑇 − 𝑠
𝜌𝑛−𝑙

1𝑠+𝑖 𝑇−𝑠
𝜌𝑛−𝑙

,𝑖∈N0
(𝑡), 𝑡 ∈]𝑠, 𝑇 ].

Since the XVA price in (24) can be seen as solution of 𝚞 = 𝛷(𝚞), from (44) we obtain our multilevel Picard iteration scheme:

⎧

⎪

⎨

⎪

⎩

𝑈0,𝜌 = 𝑢0,

𝑈𝑛,𝜌 = 𝛹𝑛,𝜌
(

𝑈0,𝜌
)

+
𝑛−1
∑

𝑙=1

(

𝛹𝑛−𝑙,𝜌
(

𝑈𝑙,𝜌
)

− 𝛹𝑛−𝑙,𝜌
(

𝑈𝑙−1,𝜌
))

.
(45)

This recursive approximation scheme keeps the computational cost moderate compared to the desired approximation precision
(see, for example, [19]).

Note that in the original multilevel Monte Carlo approach the different levels correspond to approximations with different step
sizes in time or space, while in the multilevel Picard iterations method different levels correspond to different stages of the Picard
iteration. Therefore, the approximations (45) are ‘‘full history recursive’’ in the sense that for every 𝑛, 𝜌 ∈ N the ‘‘full history’’ of
approximations, i.e., 𝑈0,𝜌, 𝑈1,𝜌,… , 𝑈𝑛−1,𝜌, needs to be computed recursively in order to compute 𝑈𝑛,𝜌.

Relative approximation increments
In Section 4 the empirical convergence of the algorithm is tested. More precisely, we compute

𝑈 𝑖
𝜌,𝜌, for (𝜌, 𝑖) ∈ {1,… , 𝜌𝑚𝑎𝑥} × {1,… , 𝑁𝑟𝑢𝑛𝑠},

for fixed values of maximum 𝜌, 𝜌𝑚𝑎𝑥, and number of runs, 𝑁𝑟𝑢𝑛𝑠. Then, we define the Relative Approximation Increments (RAI) of
parameters 𝜌𝑚𝑎𝑥 and 𝑁𝑟𝑢𝑛𝑠 as

𝑅𝐴𝐼
(

𝜌; 𝜌𝑚𝑎𝑥, 𝑁𝑟𝑢𝑛𝑠
)

=

1
𝑁𝑟𝑢𝑛𝑠

10
∑

𝑖=1

|

|

|

𝑈 𝑖
𝜌+1,𝜌+1 − 𝑈 𝑖

𝜌,𝜌
|

|

|

1
𝑁𝑟𝑢𝑛𝑠

10
∑

𝑖=1

|

|

|

𝑈 𝑖
𝜌𝑚𝑎𝑥 ,𝜌𝑚𝑎𝑥

|

|

|

, (46)

or 𝜌 = 1,… , 𝜌𝑚𝑎𝑥 − 1. The empirical convergence is shown by plotting the Relative Approximation Increments 𝑅𝐴𝐼
(

𝜌; 𝜌𝑚𝑎𝑥, 𝑁𝑟𝑢𝑛𝑠
)

,
for 𝜌 = 1,… , 𝜌𝑚𝑎𝑥 − 1, against 𝜌. In particular, in our numerical tests we have chosen 𝜌𝑚𝑎𝑥 = 5 and 𝑁𝑟𝑢𝑛𝑠 = 10, as in one of the
16

examples proposed in [19].
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Table 1
Financial data.
𝑟 = (0.05, 0.03) 𝑓𝐷 = 0.06 𝑅𝐶 = 0.30
𝑞 = (0.03, 0.02) 𝑟𝐷 = 0.04
𝜎𝑆 = (0.30, 0.20) 𝑏𝐷,𝐶0 = 0.01

Table 2
Counterparty’s credit spread data. Values are in basis points (bps).
Exp Vasicek ℎ0 = 200 𝛼 = 4.97 𝜃 = 3.83 𝜎ℎ = 1.41
CIR ℎ0 = 200 𝛼 = 1.29 𝜃 = 51.79 𝜎ℎ = 4.50

4. Numerical results

In this section we report some tests that illustrate the behaviour of the previously described numerical methods when they are
sed for the evaluation of different multiasset options [42] in the presence of counterparty risk.
Our aim is to analyse how the choice of the mark-to-market, the initial values of the underlying assets and of the counterparty’s

redit spread, as well as its dynamics, affect the total valuation adjustment and, therefore, the price of the financial derivative.
In all examples we consider constant FX rates, so that we have dropped subindex 𝑡 to use the notation 𝑋𝐷,𝐶𝑗 instead of 𝑋𝐷,𝐶𝑗

𝑡
hroughout this section.
The elapsed computational time depends on the number of the underlying assets and on the value assigned to the mark-to-market

alue 𝑀𝐷, as well as on the choice of the parameters associated to the numerical methods (such as, 𝑁𝑃 , 𝑍 and those involved in
he discretization of PDEs).
Unless otherwise stated, we have used data listed in Tables 1 and 2. We have denoted by 𝑟 = (𝑟1, 𝑟2) the vector of the short-term

rates in the foreign markets, 𝑞 = (𝑞1, 𝑞2) the vector of the dividends paid by the corresponding underlying assets and 𝜎𝑆 = (𝜎𝑆1 , 𝜎𝑆2 )
the vector of the assets volatilities.

It is important to point out that the parameters for the dynamics of the credit spread are borrowed from [21], where the credit
spread is calibrated on market data. So, they are calibrated parameters.

Moreover, the maturities of the options are set to 𝑇 = 1 year. Finally, we have chosen the collateral account 𝐶𝐷 to be a percentage
𝐶% = 0.25 of the risk-free derivative value.

Concerning the parameters of the numerical methods, for the Monte Carlo method we have used 𝑁𝑃 = 104 paths and 𝑍 = 252
time nodes. Moreover, different quadrature formulae have been used to approximate the involved integrals; in particular, the
abbreviations SimpR, SimpT, CompR and CompT are used in the following tables to denote the simple and composite rectangular
and trapezoidal formulae. For the Lagrange-Galerkin method, different meshes have been used and the number of nodes in both
directions and the number of time steps are indicated in the different tables containing the results. Moreover, for the fixed point
iteration methods that has been additionally applied in the nonlinear PDEs, the tolerance of the stopping test in the relative error
between two consecutive iterations has been set to 10−16.

In the following, we present and analyse numerical results related to a spread option, an exchange option and a sum of call options.
For each product, we first assume the counterparty credit spread is a time dependent deterministic function and the derivative
is written on two stochastic underlying assets. In this case, we compare the Lagrange-Galerkin results with the Monte Carlo 99%
confidence intervals. In the nonlinear case, we also show that the Multilevel Picard Iteration values are in agreement with the ones
obtained with the Lagrange-Galerkin method. In a more general case, when the credit spread is stochastic and, eventually, the
derivative depends on more than two stochastic underlying assets, we do not address the solution of the PDE formulation.

In all tables we use LG for the results obtained with the proposed Lagrange-Galerkin method for PDEs and MPI for the computed
results with the Multilevel Picard Iteration method.

All tests corresponding to Monte Carlo and MPI methods have been performed by using Matlab on an Intel(R) Core(TM) i7-8550U,
1.99 GHz, 16 GB (RAM), x64-based processor. The tests corresponding to Lagrange-Galerkin method have been developed by using
C++ on an AMD Ryzen7(R) 5700X, 64 GB (RAM) processor.

4.1. Spread option

We first assume the hedger buys from a counterparty a spread option, written on two underlying assets, each of them being
denominated in a different currency. The payoff function is given by

𝐺(𝑡, 𝑆1, 𝑆2) =
(

𝑋𝐷,𝐶2𝑆2 −𝑋𝐷,𝐶1𝑆1 −𝐾
)+ ,

where 𝐾 is the strike value in the domestic currency 𝐷.
In our numerical tests, we have set the value of the strike to 𝐾 = 15 and we have selected nodes that are in the proximity of the

at-the-money line, i.e., 𝑋𝐷,𝐶2𝑆2 −𝑋𝐷,𝐶1𝑆1 −𝐾 = 0.
17



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107725Í. Arregui et al.

C
t

w
w

4

v
r
p

Table 3
Spread option. Comparison of Monte Carlo and Lagrange-Galerkin methods. Risk-free value (Test 1).
Risk-free value

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

21 × 21, 100 41 × 41, 200

(9, 21) [0.7784, 0.8782] 0.7899 0.8122
(9, 24) [2.0457, 2.2119] 2.0893 2.1063
(9, 27) [3.9481, 4.1775] 4.0258 4.0434
(15, 27) [1.3606, 1.5105] 1.4168 1.4214
(15, 30) [2.7155, 2.9316] 2.8016 2.8041
(15, 33) [4.5435, 4.8233] 4.6633 4.6678
(21, 33) [2.0091, 2.2111] 2.0997 2.0933
(21, 36) [3.4188, 3.6868] 3.5380 3.5302
(21, 39) [5.2017, 5.5334] 5.3507 5.3440

Table 4
Spread option, nonlinear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo, multilevel
Picard iteration and Lagrange-Galerkin methods. Total value adjustment (Test 1).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(9, 21) [−0.0109,−0.0097] [−0.0059,−0.0052] −0.0019 −0.0020 −0.0021 −0.0021
(9, 24) [−0.0274,−0.0253] [−0.0148,−0.0137] −0.0049 −0.0053 −0.0054 −0.0053
(9, 27) [−0.0515,−0.0487] [−0.0280,−0.0264] −0.0100 −0.0102 −0.0103 −0.0102
(15, 27) [−0.0188,−0.0169] [−0.0102,−0.0091] −0.0035 −0.0036 −0.0037 −0.0036
(15, 30) [−0.0363,−0.0336] [−0.0197,−0.0182] −0.0069 −0.0070 −0.0072 −0.0071
(15, 33) [−0.0595,−0.0560] [−0.0323,−0.0304] −0.0113 −0.0117 −0.0120 −0.0118
(21, 33) [−0.0274,−0.0249] [−0.0149,−0.0135] −0.0052 −0.0052 −0.0054 −0.0053
(21, 36) [−0.0456,−0.0423] [−0.0247,−0.0229] −0.0087 −0.0088 −0.0091 −0.0090
(21, 39) [−0.0683,−0.0642] [−0.0371,−0.0349] −0.0132 −0.0135 −0.0137 −0.0135

Table 5
Spread option, nonlinear problem and deterministic CIR credit spread. Comparison of Monte Carlo, multilevel Picard iteration
and Lagrange-Galerkin methods. Total value adjustment (Test 1).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(9, 21) [−0.0109,−0.0097] [−0.0074,−0.0066] −0.0057 −0.0062 −0.0061 −0.0062
(9, 24) [−0.0274,−0.0253] [−0.0186,−0.0172] −0.0152 −0.0161 −0.0160 −0.0160
(9, 27) [−0.0515,−0.0487] [−0.0351,−0.0332] −0.0309 −0.0310 −0.0308 −0.0308
(15, 27) [−0.0188,−0.0169] [−0.0127,−0.0115] −0.0107 −0.0108 −0.0109 −0.0108
(15, 30) [−0.0363,−0.0336] [−0.0247,−0.0229] −0.0214 −0.0214 −0.0214 −0.0214
(15, 33) [−0.0595,−0.0560] [−0.0406,−0.0382] −0.0346 −0.0356 −0.0356 −0.0355
(21, 33) [−0.0274,−0.0249] [−0.0187,−0.0169] −0.0161 −0.0158 −0.0161 −0.0160
(21, 36) [−0.0456,−0.0423] [−0.0311,−0.0288] −0.0268 −0.0269 −0.0271 −0.0269
(21, 39) [−0.0683,−0.0642] [−0.0466,−0.0438] −0.0405 −0.0409 −0.0409 −0.0407

4.1.1. Test 1: Risk-free value.
We first compute the risk-free price of the spread option for different initial values of the underlying assets both with the Monte

arlo and the Lagrange-Galerkin methods. Note that the risk-free value obviously depends only on two stochastic factors, that are
he two underlying assets, being independent of the credit spread.
Table 3 shows the computed risk-free prices. The table header indicates the used method and the number of nodes (in both

directions) and the number of time steps in the Lagrange-Galerkin method. We use the notation 𝑆𝑖,𝐷 = 𝑋𝐷,𝐶𝑖𝑆𝑖, for 𝑖 = 1, 2, so that
e can display all the prices in the same currency 𝐷. For each considered initial point (𝑆1,𝐷, 𝑆2,𝐷), the risk-free value computed
ith Lagrange-Galerkin falls inside the Monte Carlo 99% confidence intervals, also in the case of the coarsest mesh.

.1.2. Test 2: Nonlinear problem, deterministic time dependent credit spread.
We now consider the deterministic exponential Vasicek (27) and CIR (28) dynamics for the credit spread and compute the total

alue adjustment in the nonlinear case, when the PDE formulation is given by (21) and the formulation in terms of expectation is
eported in (24). Note that in the case of deterministic counterparty’s credit spread, only two stochastic factors are considered when
ricing a spread option.
Tables 4 and 5 show the computed total value adjustment. The tables headers indicate the used quadrature formulae in Monte

Carlo simulations, the value of parameter 𝜌 in the multilevel Picard iteration method, and the number of nodes and time steps
18
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Fig. 3. Spread option with deterministic credit spread. Convergence of MPI with exponential Vasicek dynamics for credit spread on the left and CIR dynamics
on the right (Test 2).

Table 6
Spread option, linear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo and
Lagrange-Galerkin methods. Total value adjustment (Test 3).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(9, 21) [−0.0022,−0.0020] [−0.0022,−0.0019] −0.0021 −0.0021
(9, 24) [−0.0055,−0.0051] [−0.0055,−0.0051] −0.0054 −0.0053
(9, 27) [−0.0105,−0.0099] [−0.0104,−0.0098] −0.0103 −0.0102
(15, 27) [−0.0038,−0.0034] [−0.0038,−0.0034] −0.0037 −0.0036
(15, 30) [−0.0074,−0.0068] [−0.0073,−0.0067] −0.0072 −0.0071
(15, 33) [−0.0121,−0.0114] [−0.0120,−0.0113] −0.0120 −0.0118
(21, 33) [−0.0055,−0.0050] [−0.0055,−0.0050] −0.0054 −0.0053
(21, 36) [−0.0092,−0.0086] [−0.0092,−0.0085] −0.0091 −0.0089
(21, 39) [−0.0139,−0.0130] [−0.0137,−0.0129] −0.0137 −0.0135

in the Lagrange-Galerkin method. From both tables we can deduce that the multilevel Picard iteration and the Lagrange-Galerkin
results are in agreement and they are closer to each other when setting 𝜌 = 5 in the MPI method and taking a finer mesh in the
LG one. However, MPI and LG values do not belong to the confidence intervals computed with Monte Carlo method, the results
with trapezoidal formula being the closest ones to the MPI and LG results, especially in the case of CIR dynamics that are shown in
Table 5.

The convergence of the multilevel Picard iteration method has been tested by computing the Relative Approximation Increments
(RAI) defined in Section 3.3. We recall that in (46) we have set 𝜌𝑚𝑎𝑥 = 5, 𝑁𝑟𝑢𝑛𝑠 = 10, and we have computed 𝑅𝐴𝐼(𝜌, 𝜌𝑚𝑎𝑥, 𝑁𝑟𝑢𝑛𝑠) for
𝜌 = 1,… , 4. Fig. 3 shows the empirical convergence of the method.

4.1.3. Test 3: Linear problem, deterministic time dependent credit spread.
Still considering the deterministic exponential Vasicek and CIR dynamics for the credit spread, we compute the XVA in the linear

case, when the PDE formulation is given by (22) and the formulation in terms of expectation is reported in (26).
Tables 6 and 7 show the Monte Carlo confidence intervals computed with the composite rectangular and trapezoidal quadrature

ormulae and the Lagrange-Galerkin method values. The Monte Carlo confidence intervals coincide in the three or four decimal
igures when using both composite formulae. We have also used simple quadrature formulae to deduce the confidence intervals,
lthough we do not report these results, because they do not agree with the confidence intervals computed with the composite
uadrature formulae and the XVA values computed with the Lagrange-Galerkin method. Instead, from Tables 6 and 7 we can see
hat the LG results belong to the reported Monte Carlo confidence intervals.
We also show in Table 8 the risky price of the spread option with an exponential Vasicek credit spread. Again, we can see that the

esults computed with the Lagrange-Galerkin method belong to the Monte Carlo 99% confidence intervals obtained with composite
uadrature formulae.

.1.4. Test 4: Nonlinear problem, stochastic credit spread.
We now consider the more general case when the credit spread is a stochastic process following either an exponential Vasicek

3) or a CIR (4) dynamics and the mark-to-market value is equal to the risky derivative value (nonlinear case). Note that in the case
19

f stochastic credit spread of the counterparty, three stochastic factors are involved in the pricing of the spread option.
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Table 7
Spread option, linear problem and deterministic CIR credit spread. Comparison of Monte Carlo and Lagrange-Galerkin methods.
Total value adjustment (Test 3).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(9, 21) [−0.0066,−0.0059] [−0.0066,−0.0059] −0.0061 −0.0062
(9, 24) [−0.0167,−0.0155] [−0.0167,−0.0154] −0.0160 −0.0160
(9, 27) [−0.0316,−0.0299] [−0.0315,−0.0298] −0.0307 −0.0307
(15, 27) [−0.0114,−0.0103] [−0.0114,−0.0103] −0.0109 −0.0108
(15, 30) [−0.0222,−0.0205] [−0.0221,−0.0205] −0.0214 −0.0213
(15, 33) [−0.0365,−0.0344] [−0.0364,−0.0343] −0.0355 −0.0354
(21, 33) [−0.0167,−0.0152] [−0.0167,−0.0152] −0.0161 −0.0159
(21, 36) [−0.0279,−0.0259] [−0.0278,−0.0258] −0.0270 −0.0268
(21, 39) [−0.0419,−0.0394] [−0.0418,−0.0393] −0.0408 −0.0406

Table 8
Spread option, linear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo and
Lagrange-Galerkin methods. Risky value (Test 3).
Risky value

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(9, 21) [0.7784, 0.8782] [0.7784, 0.8782] 0.7879 0.8101
(9, 24) [2.0457, 2.2119] [2.0457, 2.2119] 2.0839 2.1009
(9, 27) [3.9481, 4.1775] [3.9481, 4.1775] 4.0155 4.0332
(15, 27) [1.3606, 1.5105] [1.3606, 1.5105] 1.4132 1.4178
(15, 30) [2.7155, 2.9316] [2.7155, 2.9316] 2.7944 2.7970
(15, 33) [4.5435, 4.8233] [4.5435, 4.8233] 4.6514 4.6560
(21, 33) [2.0091, 2.2111] [2.0091, 2.2111] 2.0943 2.0880
(21, 36) [3.4188, 3.6868] [3.4188, 3.6868] 3.5289 3.5213
(21, 39) [5.2017, 5.5334] [5.2017, 5.5334] 5.3369 5.3304

Table 9
Spread option, nonlinear problem and stochastic exponential Vasicek credit spread. Comparison of Monte Carlo and multilevel
Picard iteration methods. Total value adjustment (Test 4).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI

SimpR SimpT 𝜌 = 4 𝜌 = 5

(9, 21) [−0.0109,−0.0097] [−0.0058,−0.0051] −0.0018 −0.0019
(9, 24) [−0.0274,−0.0253] [−0.0147,−0.0136] −0.0050 −0.0051
(9, 27) [−0.0515,−0.0487] [−0.0279,−0.0263] −0.0105 −0.0104
(15, 27) [−0.0188,−0.0169] [−0.0099,−0.0089] −0.0035 −0.0033
(15, 30) [−0.0363,−0.0336] [−0.0194,−0.0180] −0.0066 −0.0067
(15, 33) [−0.0595,−0.0560] [−0.0321,−0.0302] −0.0116 −0.0116
(21, 33) [−0.0274,−0.0249] [−0.0145,−0.0132] −0.0046 −0.0048
(21, 36) [−0.0456,−0.0423] [−0.0243,−0.0226] −0.0082 −0.0084
(21, 39) [−0.0683,−0.0642] [−0.0367,−0.0345] −0.0131 −0.0132

Tables 9 and 10 illustrate the computed XVA for some fixed initial values of the underlying assets. For each fixed value of 𝑆1,𝐷

we analyse three different possibilities: out of the money option, at the money option and in the money option, respectively. When
considering a stochastic credit spread, we do not address the solution of the XVA pricing PDE with Lagrange-Galerkin method and
we take MPI values as reference values. Indeed, we have seen in the case of the deterministic time dependent credit spread that
MPI and LG results are very close, but not inside the Monte Carlo confidence intervals. The multilevel Picard iteration method is
tested either with 𝜌 = 4 or with 𝜌 = 5. Moreover, we have tested the convergence of the MPI method for all the initial underlying
assets values considered in the tables by plotting the relative approximation increments in Fig. 4. As for the deterministic credit
spread case, the Monte Carlo confidence intervals, obtained with a simple Picard iteration, do not contain the multilevel Picard
iteration results. As expected, the total value adjustment is negative because, when buying the derivative, the hedger will ask the
counterparty for a reduction in the price due to the possibility of the counterparty’s default. Also, we can see that the total value
adjustment becomes more negative when the option is in the money and less negative when it is out of the money, indeed in the
former case the hedger would be worst affected by the counterparty’s default, because the option is more valuable.

Fig. 5 shows the total value adjustment for different underlying assets initial values computed with the multilevel Picard iteration
method. In particular, each point of the plot shows the average MPI value on 𝑁𝑟𝑢𝑛𝑠 = 10 runs with the parameter 𝜌 fixed to 4. The
choice of the 𝜌 value is due to the fact that from Tables 9 and 10 we infer that results with 𝜌 = 4 and 𝜌 = 5 are very close to each
20
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Table 10
Spread option, nonlinear problem and stochastic CIR credit spread. Comparison of Monte Carlo and multilevel Picard iteration
methods. Total value adjustment (Test 4).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI

SimpR SimpT 𝜌 = 4 𝜌 = 5

(9, 21) [−0.0109,−0.0097] [−0.0069,−0.0061] −0.0055 −0.0055
(9, 24) [−0.0274,−0.0253] [−0.0175,−0.0162] −0.0142 −0.0146
(9, 27) [−0.0515,−0.0487] [−0.0335,−0.0317] −0.0291 −0.0290
(15, 27) [−0.0188,−0.0169] [−0.0118,−0.0106] −0.0102 −0.0197
(15, 30) [−0.0363,−0.0336] [−0.0231,−0.0214] −0.0192 −0.0193
(15, 33) [−0.0595,−0.0560] [−0.0384,−0.0362] −0.0330 −0.0328
(21, 33) [−0.0274,−0.0249] [−0.0172,−0.0157] −0.0137 −0.0141
(21, 36) [−0.0456,−0.0423] [−0.0290,−0.0269] −0.0239 −0.0243
(21, 39) [−0.0683,−0.0642] [−0.0439,−0.0413] −0.0374 −0.0377

Fig. 4. Spread option with stochastic credit spread. Convergence of MPI with exponential Vasicek dynamics for credit spread on the left and CIR dynamics on
the right (Test 4).

Fig. 5. Spread option in the nonlinear case. Total value adjustment with exponential Vasicek credit spread on the left and with CIR credit spread on the right
Test 4).

thers and it is not worth to produce plots by using 𝜌 = 5, that is more time consuming. In fact, one run of MPI with 𝜌 = 4 takes
slightly more than 1 s, but with 𝜌 = 5 it takes about 340 s. From the figure it is evident that the XVA is more negative under the
assumption of CIR credit spread than under the assumption of exponential Vasicek credit spread.

4.1.5. Test 5: Linear problem, stochastic credit spread.
We move to the linear problem with stochastic credit spread. Tables 11 and 12 show the Monte Carlo confidence intervals for

the total value adjustment with exponential Vasicek and CIR credit spread, respectively. The confidence intervals coincide in the
21
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Table 11
Spread option, linear problem and stochastic exponential Vasicek credit spread. Comparison of different quadrature formulae in
Monte Carlo method. Total value adjustment (Test 5).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo

SimpR SimpT CompR CompT

(9, 21) [−0.0007,−0.0006] [−0.0058,−0.0052] [−0.0021,−0.0018] [−0.0021,−0.0018]
(9, 24) [−0.0020,−0.0017] [−0.0148,−0.0137] [−0.0055,−0.0050] [−0.0054,−0.0050]
(9, 27) [−0.0042,−0.0037] [−0.0281,−0.0266] [−0.0108,−0.0101] [−0.0107,−0.0100]
(15, 27) [−0.0012,−0.0010] [−0.0100,−0.0090] [−0.0036,−0.0032] [−0.0035,−0.0031]
(15, 30) [−0.0026,−0.0022] [−0.0195,−0.0181] [−0.0072,−0.0066] [−0.0071,−0.0065]
(15, 33) [−0.0046,−0.0040] [−0.0323,−0.0305] [−0.0122,−0.0114] [−0.0120,−0.0113]
(21, 33) [−0.0018,−0.0014] [−0.0146,−0.0133] [−0.0052,−0.0047] [−0.0051,−0.0046]
(21, 36) [−0.0032,−0.0027] [−0.0246,−0.0228] [−0.0089,−0.0082] [−0.0088,−0.0082]
(21, 39) [−0.0051,−0.0044] [−0.0370,−0.0348] [−0.0138,−0.0129] [−0.0136,−0.0128]

Table 12
Spread option, linear problem and stochastic CIR credit spread. Comparison of different quadrature formulae in Monte Carlo
method. Total value adjustment (Test 5).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo

SimpR SimpT CompR CompT

(9, 21) [−0.0029,−0.0025] [−0.0069,−0.0061] [−0.0060,−0.0053] [−0.0060,−0.0053]
(9, 24) [−0.0077,−0.0071] [−0.0176,−0.0163] [−0.0154,−0.0142] [−0.0154,−0.0142]
(9, 27) [−0.0153,−0.0144] [−0.0337,−0.0318] [−0.0296,−0.0280] [−0.0296,−0.0279]
(15, 27) [−0.0049,−0.0043] [−0.0118,−0.0107] [−0.0103,−0.0092] [−0.0102,−0.0092]
(15, 30) [−0.0100,−0.0092] [−0.0233,−0.0216] [−0.0203,−0.0188] [−0.0202,−0.0187]
(15, 33) [−0.0172,−0.0161] [−0.0386,−0.0364] [−0.0338,−0.0319] [−0.0338,−0.0318]
(21, 33) [−0.0071,−0.0064] [−0.0173,−0.0158] [−0.0150,−0.0136] [−0.0150,−0.0136]
(21, 36) [−0.0124,−0.0114] [−0.0292,−0.0271] [−0.0254,−0.0235] [−0.0253,−0.0235]
(21, 39) [−0.0194,−0.0181] [−0.0442,−0.0415] [−0.0386,−0.0363] [−0.0385,−0.0362]

three or four decimal figures when using both composite formulae, that we take as reference values, while the simple formulae give
results that are a bit far from the composite formulae results.

Fig. 6 shows the risky price and the total value adjustment. For each point of the plots we consider the average Monte Carlo
value obtained by approximating the integral in the XVA formula with composite trapezoidal formula. As for the nonlinear case,
the XVA is more negative when the credit spread is modelled as CIR process. However, the difference between the plotted risky
prices under the two alternative assumptions for the dynamics of the credit spread is not evident, because the difference between
the total value adjustments is negligible with respect to the derivative prices.

From Tables 11 and 12 and from Fig. 6 we can take out the same conclusions to those drawn in the nonlinear case: the XVA
becomes more negative when the price of the asset 𝑆2 increases, namely when the option is in the money and the XVA approaches
to zero when the 𝑆2 price decreases, namely when the option is out of the money.

4.2. Exchange option

In this subsection, we assume that the default-free hedger buys from the defaultable counterparty an exchange option, written on
an underlying asset 𝑆1, denominated in the domestic currency, and an underlying asset 𝑆2, denominated in a foreign currency 𝐶2.
Hence, the payoff function of the option is given by

𝐺(𝑡, 𝑆1, 𝑆2) = (𝑆1 −𝑋𝐷,𝐶2𝑆2)+.

4.2.1. Test 6: Nonlinear problem, deterministic time dependent credit spread.
First, we compare the XVA computed with different numerical methods in the case of the nonlinear problem with a deterministic

credit spread. Note that in the setting of deterministic credit spread of the counterparty, only two stochastic factors are involved in
the pricing of exchange options.

The points where we show the different values are close to the at the money line, 𝑆1 −𝑋𝐷,𝐶2𝑆2 = 0.
Tables 13 and 14 show the results for the XVA. The multilevel Picard iteration and the Lagrange-Galerkin methods values are

quite far from the Monte Carlo confidence intervals obtained with a fixed-point method and simple quadrature formulae for the
approximation of the integral in the XVA expression in (24). The MPI and the LG results are closer to each other if we take 𝜌 = 5 in
the MPI method and a mesh of 41× 41 nodes with 200 time steps in the LG method, except for the last two points when we assume
an exponential Vasicek dynamics for the credit spread and in the last three points under the assumption of a CIR credit spread. This
is due to the fact that the Lagrange-Galerkin results are not reliable near the fixed right and upper boundaries of the computational

1 = 60 and 𝑆2 = 60, respectively.
22

domain, in our case located at 𝑆∞ ∞
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Fig. 6. Spread option in the linear case. Exponential Vasicek credit spread on the top and CIR credit spread on the bottom. Risky value on the left and XVA
on the right (Test 5).

Table 13
Exchange option, nonlinear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo, multilevel
Picard iteration and Lagrange-Galerkin methods. Total value adjustment (Test 6).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0410,−0.0389] [−0.0222,−0.0211] −0.0078 −0.0081 −0.0084 −0.0083
(12, 12) [−0.0200,−0.0184] [−0.0108,−0.0099] −0.0037 −0.0039 −0.0041 −0.0040
(12, 15) [−0.0087,−0.0076] [−0.0047,−0.0041] −0.0015 −0.0016 −0.0017 −0.0017
(30, 27) [−0.0677,−0.0632] [−0.0366,−0.0342] −0.0134 −0.0133 −0.0137 −0.0134
(30, 30) [−0.0500,−0.0460] [−0.0270,−0.0248] −0.0093 −0.0096 −0.0100 −0.0098
(30, 33) [−0.0362,−0.0327] [−0.0195,−0.0176] −0.0067 −0.0069 −0.0072 −0.0070
(42, 39) [−0.0871,−0.0810] [−0.0471,−0.0437] −0.0170 −0.0169 −0.0172 −0.0169
(42, 42) [−0.0700,−0.0644] [−0.0377,−0.0347] −0.0131 −0.0134 −0.0135 −0.0132
(42, 45) [−0.0557,−0.0506] [−0.0300,−0.0273] −0.0103 −0.0107 −0.0103 −0.0101

We show the empirical convergence of the multilevel Picard iteration method by plotting the relative approximations increments
n Fig. 7.

.2.2. Test 7: Linear problem, deterministic time dependent credit spread.
The results in the linear case with deterministic credit spread are reported in Table 15 and in Table 16.
The Lagrange-Galerkin method values with the finer mesh of 41 × 41 nodes and 200 time steps are not inside the Monte Carlo

onfidence intervals obtained with simple formulae, that are not reported, but are inside the confidence intervals obtained with
omposite formulae, except for the last considered point. In particular, the LG value in the last point, i.e., when 𝑆1,𝐷 = 42 and
2,𝐷 = 45, is slightly outside the Monte Carlo confidence interval with composite rectangular quadrature formula in the case of the
23

xponential Vasicek credit spread, and is not in both confidence intervals in the case of the CIR credit spread. As pointed out when
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Fig. 7. Exchange option with deterministic credit spread. Convergence of the MPI with exponential Vasicek dynamics for credit spread on the left and CIR
dynamics on the right.

Table 14
Exchange option, nonlinear problem and deterministic CIR credit spread. Comparison of Monte Carlo, multilevel Picard iteration
and Lagrange-Galerkin methods. Total value adjustment (Test 6).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0410,−0.0389] [−0.0279,−0.0265] −0.0241 −0.0247 −0.0250 −0.0248
(12, 12) [−0.0200,−0.0184] [−0.0135,−0.0125] −0.0115 −0.0118 −0.0121 −0.0119
(12, 15) [−0.0087,−0.0076] [−0.0058,−0.0051] −0.0045 −0.0048 −0.0051 −0.0051
(30, 27) [−0.0677,−0.0632] [−0.0460,−0.0429] −0.0411 −0.0405 −0.0407 −0.0403
(30, 30) [−0.0500,−0.0460] [−0.0338,−0.0311] −0.0288 −0.0292 −0.0299 −0.0295
(30, 33) [−0.0362,−0.0327] [−0.0245,−0.0221] −0.0206 −0.0209 −0.0215 −0.0212
(42, 39) [−0.0871,−0.0810] [−0.0591,−0.0549] −0.0525 −0.0515 −0.0512 −0.0506
(42, 42) [−0.0700,−0.0644] [−0.0474,−0.0436] −0.0404 −0.0407 −0.0401 −0.0397
(42, 45) [−0.0557,−0.0506] [−0.0376,−0.0342] −0.0317 −0.0324 −0.0307 −0.0303

Table 15
Exchange option, linear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo and
Lagrange-Galerkin methods. Total value adjustment (Test 7).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0084,−0.0079] [−0.0083,−0.0079] −0.0084 −0.0083
(12, 12) [−0.0040,−0.0037] [−0.0040,−0.0037] −0.0041 −0.0040
(12, 15) [−0.0017,−0.0015] [−0.0017,−0.0015] −0.0017 −0.0017
(30, 27) [−0.0137,−0.0128] [−0.0136,−0.0127] −0.0137 −0.0134
(30, 30) [−0.0101,−0.0093] [−0.0100,−0.0092] −0.0100 −0.0098
(30, 33) [−0.0073,−0.0066] [−0.0072,−0.0066] −0.0072 −0.0070
(42, 39) [−0.0177,−0.0164] [−0.0175,−0.0163] −0.0172 −0.0168
(42, 42) [−0.0142,−0.0130] [−0.0140,−0.0129] −0.0135 −0.0132
(42, 45) [−0.0113,−0.0102] [−0.0112,−0.0101] −0.0103 −0.0101

discussing about the results in the nonlinear case, this is due to the fact that the last point is too close to the spatial boundaries
chosen in the LG method. Also, we can observe that each LG value is very close to the lower bound of the corresponding Monte Carlo
confidence interval and that by refining the spatial and time meshes in the LG method the values become less negative. Therefore,
we can expect that by using a finer mesh in the Lagrange-Galerkin method we can obtain values that are closer to the centres of
the Monte Carlo confidence intervals.

4.2.3. Test 8: Nonlinear problem, stochastic credit spread.
We now consider the nonlinear case with stochastic credit spread and analyse how different initial values of the counterparty’s

redit spread affect the total value adjustment. In the case of stochastic spread of the counterparty, three stochastic factors are
24

nvolved in the pricing of exchange options.
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Table 16
Exchange option, linear problem and deterministic CIR credit spread. Comparison of Monte Carlo and Lagrange-Galerkin methods.
Total value adjustment (Test 7).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0252,−0.0239] [−0.0252,−0.0239] −0.0249 −0.0248
(12, 12) [−0.0122,−0.0112] [−0.0122,−0.0112] −0.0121 −0.0119
(12, 15) [−0.0053,−0.0046] [−0.0053,−0.0046] −0.0051 −0.0051
(30, 27) [−0.0415,−0.0387] [−0.0414,−0.0386] −0.0406 −0.0402
(30, 30) [−0.0305,−0.0281] [−0.0305,−0.0280] −0.0298 −0.0294
(30, 33) [−0.0221,−0.0200] [−0.0220,−0.0199] −0.0214 −0.0211
(42, 39) [−0.0533,−0.0496] [−0.0532,−0.0495] −0.0510 −0.0505
(42, 42) [−0.0428,−0.0393] [−0.0427,−0.0393] −0.0400 −0.0396
(42, 45) [−0.0340,−0.0309] [−0.0339,−0.0308] −0.0306 −0.0302

Table 17
Exchange option, nonlinear problem and stochastic exponential Vasicek credit spread. Comparison of Monte Carlo and multilevel
Picard iteration methods. Total value adjustment (Test 8).
Total value adjustment

(𝑆2,𝐷 , ℎ) Monte Carlo MPI

SimpR SimpT 𝜌 = 4 𝜌 = 5

(27, 0.010) [−0.0273,−0.0254] [−0.0191,−0.0176] −0.0130 −0.0133
(27, 0.015) [−0.0476,−0.0444] [−0.0292,−0.0272] −0.0160 −0.0166
(27, 0.020) [−0.0677,−0.0632] [−0.0393,−0.0366] −0.0183 −0.0185
(27, 0.025) [−0.0878,−0.0819] [−0.0494,−0.0460] −0.0222 −0.0209
(30, 0.010) [−0.0201,−0.0185] [−0.0142,−0.0130] −0.0103 −0.0103
(30, 0.015) [−0.0351,−0.0323] [−0.0217,−0.0199] −0.0113 −0.0123
(30, 0.020) [−0.0500,−0.0460] [−0.0292,−0.0268] −0.0141 −0.0142
(30, 0.025) [−0.0648,−0.0596] [−0.0366,−0.0336] −0.0155 −0.0156
(33, 0.010) [−0.0145,−0.0131] [−0.0104,−0.0094] −0.0072 −0.0075
(33, 0.015) [−0.0254,−0.0230] [−0.0159,−0.0143] −0.0090 −0.0090
(33, 0.020) [−0.0362,−0.0327] [−0.0212,−0.0191] −0.0101 −0.0102
(33, 0.025) [−0.0470,−0.0425] [−0.0266,−0.0240] −0.0117 −0.0116

Table 18
Exchange option, nonlinear problem and stochastic CIR credit spread. Comparison of Monte Carlo and multilevel Picard iteration
methods. Total value adjustment (Test 8).
Total value adjustment

(𝑆2,𝐷 , ℎ) Monte Carlo MPI

SimpR SimpT 𝜌 = 4 𝜌 = 5

(27, 0.010) [−0.0273,−0.0254] [−0.0227,−0.0211] −0.0206 −0.0210
(27, 0.015) [−0.0476,−0.0444] [−0.0361,−0.0335] −0.0324 −0.0332
(27, 0.020) [−0.0677,−0.0632] [−0.0493,−0.0458] −0.0439 −0.0439
(27, 0.025) [−0.0878,−0.0819] [−0.0624,−0.0581] −0.0584 −0.0558
(30, 0.010) [−0.0201,−0.0185] [−0.0170,−0.0156] −0.0160 −0.0160
(30, 0.015) [−0.0351,−0.0323] [−0.0269,−0.0246] −0.0227 −0.0245
(30, 0.020) [−0.0500,−0.0460] [−0.0366,−0.0336] −0.0333 −0.0331
(30, 0.025) [−0.0648,−0.0596] [−0.0463,−0.0425] −0.0410 −0.0411
(33, 0.010) [−0.0145,−0.0131] [−0.0125,−0.0112] −0.0112 −0.0115
(33, 0.015) [−0.0254,−0.0230] [−0.0197,−0.0177] −0.0176 −0.0177
(33, 0.020) [−0.0362,−0.0327] [−0.0267,−0.0241] −0.0234 −0.0236
(33, 0.025) [−0.0470,−0.0425] [−0.0338,−0.0304] −0.0303 −0.0301

We fix the initial value of the first underlying asset to 𝑆1,𝐷 = 30 and choose the values of 𝑆2,𝐷 equal to 27, 30, 33, so that
to consider the in the money, at the money and out of the money cases, respectively. The results are shown in Table 17 for the
exponential Vasicek credit spread and in Table 18 for the CIR credit spread. The Monte Carlo method with simple quadrature
formulae does not approximate well enough the total value adjustment, overestimating, in absolute terms, the XVA with respect
the multilevel Picard iterations results, that we take as reference values. As expected, the XVA is affected by the increasing of the
probability of the counterparty’s default: it becomes more negative when it is more likely that the counterparty defaults. Also, we
can see that the total value adjustment is more negative under the assumption of a CIR credit spread. This is evident also in Fig. 8
especially for low initial values of 𝑆2,𝐷 and large values of the counterparty’s intensity of default.
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Fig. 8. Exchange option in the nonlinear case. Total value adjustment with both exponential Vasicek credit spread (on the left) and CIR credit spread (on the
ight) (Test 8).

Table 19
Exchange option, linear problem and stochastic exponential Vasicek credit spread. Comparison of different quadrature formulae
in Monte Carlo method. Total value adjustment (Test 9).
Total value adjustment

(𝑆2,𝐷 , ℎ) Monte Carlo

SimpR SimpT CompR CompT

(27, 0.010) [−0.0109,−0.0096] [−0.0191,−0.0177] [−0.0140,−0.0129] [−0.0140,−0.0128]
(27, 0.015) [−0.0109,−0.0097] [−0.0294,−0.0273] [−0.0170,−0.0156] [−0.0169,−0.0156]
(27, 0.020) [−0.0110,−0.0097] [−0.0396,−0.0369] [−0.0196,−0.0180] [−0.0195,−0.0179]
(27, 0.025) [−0.0110,−0.0097] [−0.0499,−0.0465] [−0.0219,−0.0202] [−0.0217,−0.0201]
(30, 0.010) [−0.0084,−0.0073] [−0.0142,−0.0130] [−0.0107,−0.0096] [−0.0107,−0.0096]
(30, 0.015) [−0.0085,−0.0074] [−0.0218,−0.0200] [−0.0129,−0.0117] [−0.0128,−0.0116]
(30, 0.020) [−0.0085,−0.0074] [−0.0294,−0.0269] [−0.0148,−0.0134] [−0.0147,−0.0133]
(30, 0.025) [−0.0085,−0.0074] [−0.0369,−0.0339] [−0.0165,−0.0150] [−0.0164,−0.0149]
(33, 0.010) [−0.0064,−0.0054] [−0.0104,−0.0094] [−0.0080,−0.0071] [−0.0079,−0.0070]
(33, 0.015) [−0.0064,−0.0055] [−0.0159,−0.0143] [−0.0096,−0.0085] [−0.0095,−0.0085]
(33, 0.020) [−0.0065,−0.0055] [−0.0214,−0.0193] [−0.0110,−0.0098] [−0.0109,−0.0097]
(33, 0.025) [−0.0065,−0.0055] [−0.0269,−0.0242] [−0.0122,−0.0109] [−0.0121,−0.0108]

Table 20
Exchange option, linear problem and stochastic CIR credit spread. Comparison of different quadrature formulae in Monte Carlo
method. Total value adjustment (Test 9).
Total value adjustment

(𝑆2,𝐷 , ℎ) Monte Carlo

SimpR SimpT CompR CompT

(27, 0.010) [−0.0181,−0.0165] [−0.0227,−0.0211] [−0.0220,−0.0203] [−0.0220,−0.0203]
(27, 0.015) [−0.0244,−0.0224] [−0.0361,−0.0336] [−0.0340,−0.0315] [−0.0339,−0.0315]
(27, 0.020) [−0.0306,−0.0281] [−0.0494,−0.0460] [−0.0459,−0.0426] [−0.0458,−0.0425]
(27, 0.025) [−0.0366,−0.0337] [−0.0627,−0.0583] [−0.0576,−0.0536] [−0.0575,−0.0535]
(30, 0.010) [−0.0139,−0.0125] [−0.0170,−0.0155] [−0.0165,−0.0151] [−0.0165,−0.0150]
(30, 0.015) [−0.0186,−0.0168] [−0.0269,−0.0246] [−0.0254,−0.0232] [−0.0254,−0.0232]
(30, 0.020) [−0.0232,−0.0210] [−0.0367,−0.0337] [−0.0342,−0.0313] [−0.0342,−0.0313]
(30, 0.025) [−0.0277,−0.0252] [−0.0465,−0.0427] [−0.0429,−0.0393] [−0.0429,−0.0392]
(33, 0.010) [−0.0105,−0.0092] [−0.0125,−0.0112] [−0.0122,−0.0109] [−0.0122,−0.0109]
(33, 0.015) [−0.0139,−0.0123] [−0.0197,−0.0177] [−0.0187,−0.0168] [−0.0186,−0.0167]
(33, 0.020) [−0.0173,−0.0154] [−0.0268,−0.0242] [−0.0251,−0.0225] [−0.0250,−0.0225]
(33, 0.025) [−0.0206,−0.0184] [−0.0339,−0.0306] [−0.0314,−0.0282] [−0.0313,−0.0282]

4.2.4. Test 9: Linear problem, stochastic credit spread.
When considering the linear problem (results in Table 19 for the exponential Vasicek credit spread and in Table 20 for the CIR

redit spread) we can draw the same conclusions as for the nonlinear problem.
Fig. 9 shows the risky price and the XVA. Under the assumption of a CIR credit spread, it can be seen that when the option is

ut of the money the total value adjustment remains small, even increasing the probability of the counterparty’s default, although
hen the option is in the money the total value adjustment decays quickly when increasing the counterparty’s credit spread ℎ. This
s less clear in the case of an exponential Vasicek credit spread, because XVA is smaller, in absolute terms.
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Fig. 9. Exchange option in the linear case. Exponential Vasicek credit spread on the top and CIR credit spread on the bottom. Risky value on the left and XVA
n the right (Test 9).

.3. Sum of call options

Finally, we assume the hedger buys from the counterparty a portfolio of European call options in different currencies, so that
he portfolio payoff function is the sum of the payoff functions of the involved call options, i.e.

𝐺(𝑡, 𝑆1,… , 𝑆𝑁 ) =
𝑁
∑

𝑖=1
(𝑋𝐷,𝐶𝑖𝑆 𝑖 −𝐾 𝑖)+ ,

where 𝑆1,… , 𝑆𝑁 are the 𝑁 assets respectively denominated in currencies 𝐶1,… , 𝐶𝑁 , and 𝐾1,… , 𝐾𝑁 are the strike values given in
the domestic currency 𝐷.

In our numerical tests we first assume the derivative is written on two underlying assets, i.e. 𝑁 = 2, and we use data reported
listed in Table 1. The strike values are set to 𝐾1 = 15 and 𝐾2 = 12. When considering more than two underlying assets, the values
of 𝑆 𝑖

0, 𝑟
𝑖, 𝑞𝑖, 𝜎𝑆𝑖 , 𝐾 𝑖, for 𝑖 = 1,… , 𝑁 , are taken form Table 25.

As in the previous examples, we assume that the counterparty is defaultable, while the hedger is default-free. Hence, only the
hedger will charge the counterparty an adjustment on the trade, thus reducing the value of the derivative with respect to the risk-free
setting.

4.3.1. Test 10: Nonlinear problem, deterministic time dependent credit spread.
We first consider a sum of two call options in the nonlinear case with the deterministic time dependent credit spread and show

the numerical results in Table 21 and in Table 22, whereas the convergence of the multilevel Picard iteration method is shown
n Fig. 10. We have chosen the initial value of the underlying assets so that for each of the two call options we consider the in
the money, the at the money and the out of the money cases and test all the possible combinations. As in the previously analysed
products, we can see that multilevel Picard iteration method results are close to the ones obtained with Lagrange-Galerkin method,
especially when taking 𝜌 = 5 in the MPI and a finer mesh in the LG.
27



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107725Í. Arregui et al.
Table 21
Sum of call options, nonlinear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo, multilevel
Picard iteration and Lagrange-Galerkin methods. Total value adjustment (Test 10).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0087,−0.0076] [−0.0047,−0.0041] −0.0015 −0.0016 −0.0016 −0.0017
(12, 12) [−0.0206,−0.0191] [−0.0111,−0.0103] −0.0037 −0.0040 −0.0042 −0.0042
(12, 15) [−0.0480,−0.0459] [−0.0261,−0.0250] −0.0095 −0.0095 −0.0099 −0.0098
(15, 9) [−0.0251,−0.0231] [−0.0135,−0.0125] −0.0050 −0.0048 −0.0050 −0.0050
(15, 12) [−0.0368,−0.0345] [−0.0200,−0.0187] −0.0071 −0.0073 −0.0077 −0.0075
(15, 15) [−0.0642,−0.0614] [−0.0349,−0.0334] −0.0125 −0.0128 −0.0134 −0.0131
(18, 9) [−0.0503,−0.0474] [−0.0273,−0.0257] −0.0098 −0.0099 −0.0102 −0.0101
(18, 12) [−0.0620,−0.0588] [−0.0337,−0.0319] −0.0121 −0.0122 −0.0128 −0.0126
(18, 15) [−0.0893,−0.0857] [−0.0486,−0.0467] −0.0175 −0.0179 −0.0185 −0.0182

Table 22
Sum of call options, nonlinear problem and deterministic CIR credit spread. Comparison of Monte Carlo, multilevel Picard iteration
and Lagrange-Galerkin methods. Total value adjustment (Test 10).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo MPI LG

SimpR SimpT 𝜌 = 4 𝜌 = 5 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0087,−0.0076] [−0.0059,−0.0051] −0.0047 −0.0049 −0.0048 −0.0051
(12, 12) [−0.0206,−0.0191] [−0.0140,−0.0129] −0.0114 −0.0121 −0.0125 −0.0126
(12, 15) [−0.0480,−0.0459] [−0.0328,−0.0314] −0.0292 −0.0290 −0.0295 −0.0294
(15, 9) [−0.0251,−0.0231] [−0.0170,−0.0156] −0.0155 −0.0147 −0.0150 −0.0151
(15, 12) [−0.0368,−0.0345] [−0.0251,−0.0235] −0.0219 −0.0221 −0.0228 −0.0225
(15, 15) [−0.0642,−0.0614] [−0.0438,−0.0419] −0.0385 −0.0390 −0.0398 −0.0393
(18, 9) [−0.0503,−0.0474] [−0.0342,−0.0322] −0.0301 −0.0302 −0.0303 −0.0303
(18, 12) [−0.0620,−0.0588] [−0.0422,−0.0401] −0.0371 −0.0372 −0.0382 −0.0378
(18, 15) [−0.0893,−0.0857] [−0.0610,−0.0586] −0.0540 −0.0544 −0.0551 −0.0546

Fig. 10. Sum of call options with deterministic credit spread. Convergence of the MPI with exponential Vasicek dynamics for credit spread on the left and CIR
dynamics on the right.

4.3.2. Test 11: Linear problem, deterministic time dependent credit spread.
For the linear case with deterministic credit spread, XVA numerical results are shown in Table 23 for the exponential Vasicek

dynamics and in Table 24 for the CIR dynamics. In the first case, when taking a mesh of 21 × 21 nodes and 100 time steps in
the Lagrange-Galerkin method, there are some values outside the corresponding Monte Carlo confidence intervals. However, when
taking a finer mesh, the resulting XVA values are inside or on the lower bound of Monte Carlo confidence intervals obtained with
the rectangular composite formula. When considering the trapezoidal composite formula, there are some LG values that are slightly
outside the corresponding Monte Carlo confidence intervals. As already pointed out in the case of the exchange option, the use of
an even more refined mesh probably makes the Lagrange-Galerkin values less negative and, therefore, closer to the centres of the
confidence intervals. In the case of the CIR dynamics, the Lagrange-Galerkin results with both the considered discretization meshes
are inside the Monte Carlo confidence intervals, except for the point (𝑆1,𝐷, 𝑆1,𝐷) = (15, 15), where the XVA obtained with the coarser
mesh is slightly outside the confidence intervals.
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Table 23
Sum of call options, linear problem and deterministic exponential Vasicek credit spread. Comparison of Monte Carlo and
Lagrange-Galerkin methods. Total value adjustment (Test 11).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0018,−0.0015] [−0.0017,−0.0015] −0.0016 −0.0017
(12, 12) [−0.0042,−0.0039] [−0.0041,−0.0038] −0.0042 −0.0042
(12, 15) [−0.0098,−0.0094] [−0.0097,−0.0093] −0.0099 −0.0098
(15, 9) [−0.0051,−0.0047] [−0.0050,−0.0046] −0.0050 −0.0050
(15, 12) [−0.0075,−0.0070] [−0.0074,−0.0070] −0.0077 −0.0075
(15, 15) [−0.0131,−0.0125] [−0.0130,−0.0124] −0.0133 −0.0131
(18, 9) [−0.0102,−0.0096] [−0.0101,−0.0096] −0.0102 −0.0101
(18, 12) [−0.0126,−0.0120] [−0.0125,−0.0119] −0.0128 −0.0126
(18, 15) [−0.0182,−0.0175] [−0.0181,−0.0174] −0.0185 −0.0182

Table 24
Sum of call options, linear problem and deterministic CIR credit spread. Comparison of Monte Carlo and Lagrange-Galerkin
methods. Total value adjustment (Test 11).
Total value adjustment

(𝑆1,𝐷 , 𝑆2,𝐷) Monte Carlo LG

CompR CompT 21 × 21, 100 41 × 41, 200

(12, 9) [−0.0053,−0.0046] [−0.0053,−0.0046] −0.0047 −0.0051
(12, 12) [−0.0126,−0.0117] [−0.0126,−0.0117] −0.0125 −0.0125
(12, 15) [−0.0296,−0.0283] [−0.0295,−0.0282] −0.0294 −0.0293
(15, 9) [−0.0153,−0.0141] [−0.0153,−0.0141] −0.0149 −0.0150
(15, 12) [−0.0226,−0.0212] [−0.0226,−0.0212] −0.0227 −0.0225
(15, 15) [−0.0396,−0.0379] [−0.0395,−0.0378] −0.0397 −0.0392
(18, 9) [−0.0309,−0.0291] [−0.0308,−0.0290] −0.0302 −0.0302
(18, 12) [−0.0381,−0.0362] [−0.0381,−0.0361] −0.0380 −0.0377
(18, 15) [−0.0551,−0.0529] [−0.0549,−0.0528] −0.0550 −0.0545

Table 25
Data for the sum of call options. For 𝑁 = 2, 4, 8, 16, 32 we respectively consider the 𝑁 first rows of the table.
i 𝑆 𝑖,𝐷 𝑟𝑖 𝑞𝑖 𝜎𝑆 𝑖 𝐾 𝑖 i 𝑆 𝑖,𝐷 𝑟𝑖 𝑞𝑖 𝜎𝑆 𝑖 𝐾 𝑖

1 11 0.020 0.030 0.300 15 17 11 0.018 0.025 0.324 10
2 13 0.020 0.010 0.200 12 18 13 0.006 0.032 0.288 11
3 13 0.037 0.011 0.289 15 19 15 0.001 0.035 0.306 13
4 14 0.026 0.024 0.299 10 20 14 0.017 0.033 0.277 13
5 14 0.024 0.024 0.277 13 21 10 0.026 0.011 0.325 13
6 11 0.008 0.033 0.271 13 22 13 0.014 0.020 0.308 11
7 10 0.002 0.032 0.201 10 23 12 0.018 0.013 0.330 15
8 13 0.014 0.016 0.210 10 24 10 0.015 0.035 0.230 15
9 10 0.017 0.022 0.265 13 25 15 0.018 0.014 0.245 12
10 14 0.021 0.017 0.265 15 26 15 0.023 0.013 0.271 14
11 13 0.006 0.034 0.228 10 27 11 0.010 0.021 0.274 14
12 15 0.011 0.029 0.279 12 28 13 0.022 0.012 0.291 12
13 15 0.029 0.012 0.290 15 29 12 0.008 0.030 0.323 11
14 11 0.013 0.028 0.308 12 30 12 0.003 0.045 0.279 11
15 15 0.008 0.037 0.246 12 31 13 0.002 0.035 0.341 11
16 14 0.033 0.011 0.261 11 32 13 0.026 0.024 0.309 12

We now consider the sum of call options on different numbers 𝑁 of assets in their corresponding currencies. Table 25 shows data
or the case of 𝑁 = 32 assets. Note that when considering a number of assets lower than 32, we use the data of rows 𝑖 = 1,… , 𝑁
appearing in Table 25 (i.e., for the case of 2 assets we consider the rows 𝑖 = 1, 2, and so on for 4, 8, 16 and 32 assets).

Table 26 shows the risk-free prices, that are obviously independent of the counterparty’s credit spread and of the choice of the
mark-to-market value. With the chosen data, the risk-free price increases by increasing the number of the underlying assets, so we
expect that the XVA becomes more negative. The total value adjustment is analysed in the next two tests both in the nonlinear case
and in the linear case.

4.3.3. Test 12: Nonlinear problem, stochastic credit spread
We assume the counterparty’s credit spread is stochastic and that the mark-to-market value is equal to the risky derivative value

(nonlinear case).
Tables 27 and 28 show the total value adjustment for different numbers of underlying assets. In particular, we show the average

value of XVA on 𝑁 = 10 runs of the multilevel Picard iteration method. Also, the tables report the elapsed computational time
29
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Table 26
Sum of call options. Monte Carlo confidence intervals. Risk-free value.
Risk-free value

𝑁 Monte Carlo

2 [1.9330, 2.0468]
4 [7.1207, 7.3713]
8 [13.5861, 13.9660]
16 [30.8413, 31.4230]
32 [60.2779, 61.1494]

Table 27
Sum of call options, nonlinear problem and stochastic exponential Vasicek credit spread. Multilevel Picard
iteration results. Total value adjustment and elapsed time in seconds (Test 12).
Total value adjustment Elapsed time

𝑁 MPI 𝑁 MPI

𝜌 = 4 𝜌 = 5 𝜌 = 4 𝜌 = 5

2 −0.0057 −0.0058 2 11.1905 3816.6932
4 −0.0216 −0.0215 4 16.7175 4775.5968
8 −0.0400 −0.0409 8 26.4006 7375.3050
16 −0.0912 −0.0913 16 42.3238 12573.8821
32 −0.1778 −0.1795 32 75.8329 22500.3082

Table 28
Sum of call options, nonlinear problem and stochastic CIR credit spread. Multilevel Picard iteration results. Total
value adjustment and elapsed time in seconds (Test 12).
Total value adjustment Elapsed time

𝑁 MPI 𝑁 MPI

𝜌 = 4 𝜌 = 5 𝜌 = 4 𝜌 = 5

2 −0.0150 −0.0151 2 12.1386 3596.6193
4 −0.0561 −0.0556 4 15.8039 4988.5962
8 −0.1048 −0.1059 8 27.1096 7512.3959
16 −0.2391 −0.2379 16 41.6914 12348.0835
32 −0.4649 −0.4661 32 75.2775 21826.0707

for 𝑁𝑟𝑢𝑛𝑠 = 10 runs of the MPI. The elapsed computational time does not depend on the dynamics chosen for the credit spread,
ut increases by increasing the value of the parameter 𝜌. In fact, we recall that the number of simulations is fixed to 𝑚𝑛,𝑙,𝜌 = 𝜌𝑛−𝑙

nd the number of rectangles is chosen to be 𝜌𝑛−𝑙, so that larger values of 𝜌 correspond to larger numbers of simulations and of
iscretization nodes.
Fig. 11 shows that the empirical convergence of the multilevel Picard iteration for different numbers of assets.

.3.4. Test 13: Linear problem, stochastic credit spread
Finally, we consider the sum of up to 𝑁 = 32 call options in the linear case and report the computed total value adjustment and

he elapsed time in Table 29 and in Table 30. Results are obtained by using the Monte Carlo method with composite quadrature
ormulae and the 99% confidence intervals are reported. As in the nonlinear case, the XVA is more negative for larger values of
. The elapsed time does not depend on the choice of the credit spread dynamics and the trapezoidal formula is a little more
ime-consuming than the rectangular formula.

. Conclusions

We have addressed the modelling and the computation of the total value adjustment in a multi-currency setting by considering a
erivative written on assets denominated in foreign currencies. We have assumed that the foreign exchange rates are deterministic,
he derivative is partially collateralized in cash in a foreign currency and the counterparty’s intensity of default follows a mean
eversion process, either an exponential Vasicek or a CIR one. Last two assumptions are new with respect to a previous work of the
uthors.
The portfolio replication and the dynamic hedging methodologies have provided the formulation of XVA pricing problem in

erms of nonlinear and linear PDEs. Moreover, the use of Feynman–Kac formulas has provided the equivalent formulations in terms
f expectations that allow to apply Monte Carlo simulation techniques to the corresponding nonlinear and linear models.
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Fig. 11. Sum of call options with stochastic credit spread. Convergence of the MPI with exponential Vasicek dynamics for credit spread on the left and CIR
dynamics on the right.

Table 29
Sum of call options, linear problem and stochastic exponential Vasicek credit spread. Comparison of different
quadrature formulae in Monte Carlo method. Total value adjustment and elapsed time (Test 13).
Total value adjustment Elapsed time

𝑁 Monte Carlo 𝑁 Monte Carlo

CompR CompT CompR CompT

2 [−0.0061,−0.0057] [−0.0060,−0.0056] 2 0.5384 0.5389
4 [−0.0222,−0.0212] [−0.0220,−0.0211] 4 0.6200 0.6814
8 [−0.0415,−0.0399] [−0.0411,−0.0396] 8 0.8646 0.8936
16 [−0.0922,−0.0896] [−0.0915,−0.0889] 16 2.6761 2.6853
32 [−0.1809,−0.1762] [−0.1796,−0.1748] 32 3.4442 3.5099

Table 30
Sum of call options, linear problem and stochastic CIR credit spread. Comparison of different quadrature formulae
in Monte Carlo method. Total value adjustment and elapsed time (Test 13).
Total value adjustment Elapsed time

𝑁 Monte Carlo 𝑁 Monte Carlo

CompR CompT CompR CompT

2 [−0.0156,−0.0147] [−0.0155,−0.0146] 2 0.5177 0.5528
4 [−0.0564,−0.0544] [−0.0563,−0.0542] 4 0.6640 0.6759
8 [−0.1063,−0.1031] [−0.1061,−0.1029] 8 0.8809 0.9064
16 [−0.2380,−0.2328] [−0.2375,−0.2323] 16 2.5279 2.5478
32 [−0.4647,−0.4562] [−0.4637,−0.4552] 32 3.7823 3.7983

Next, we have numerically solved the total value adjustment pricing PDEs by applying the Lagrange-Galerkin method under the
ssumption that the counterparty’s credit spread is a deterministic function of time and the derivative is written on two underlying
ssets. From the comparison between the results obtained with Lagrange-Galerkin method and those computed with probabilistic
echniques, we have deduced that in the nonlinear case the multilevel Picard iteration method results can be taken as reference
alues, whereas in the linear case we can consider the Monte Carlo confidence intervals obtained by using composite quadrature
ormulae for the approximation of the integral in the total value adjustment formulae.
Finally, as expected we have illustrated that the total value adjustment is more negative when the derivative is more valuable

nd that it becomes more and more negative by increasing the counterparty’s probability of default.
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ppendix. Analysis of boundary conditions

Following [33], we introduce the following subsets of 𝜕𝛺∗ in terms of the vector 𝐦, orthogonal to the boundary and pointing
inwards 𝛺∗:

𝛴0 =

{

𝑥 ∈ 𝜕𝛺∗ ∶
2
∑

𝑖,𝑗=0
𝑎∗𝑖𝑗𝑚𝑖𝑚𝑗 = 0

}

, 𝛴1 = 𝜕𝛺∗ − 𝛴0 ,

𝛴2 =

{

𝑥 ∈ 𝛴0 ∶
2
∑

𝑖=0

(

𝑏∗𝑖 −
2
∑

𝑗=0

𝜕𝑎∗𝑖𝑗
𝜕𝑥𝑗

)

𝑚𝑖 < 0

}

.

and we need to impose boundary conditions on 𝛴1 ∪ 𝛴2.
Tables 31 and 32 summarize the values we need to identify the sets 𝛴0, 𝛴1 and 𝛴2. Note that 𝑦,𝑗 denotes a partial derivative of

𝑦 with respect to 𝑥𝑗 and Euler summation on repeated indices is used. We assume 𝑟𝑖 − 𝑞𝑖 > 0 for 𝑖 = 1, 2. From them, we deduce:

𝛴0 = 𝛤−
0 ∪ 𝛤+

0 ∪ 𝛤−
1 ∪ 𝛤−

2 , 𝛴1 = 𝛤+
1 ∪ 𝛤+

2 , 𝛴2 = 𝛤−
0 ,

nd, following [32,33], we have to impose conditions on 𝛴1 ∪ 𝛴2 = 𝛤−
0 ∪ 𝛤+

1 ∪ 𝛤+
2 .

According to the stated notation, 𝑥0 = 𝜏 and 𝛤−
0 corresponds to the initial condition; thus, we need to impose boundary conditions

on the right (𝑆1 = 𝑆1
∞) and upper (𝑆2 = 𝑆2

∞) boundaries of 𝛺.

Table 31
Analysis of boundary conditions [32].

𝛤 ∗,−
0 𝛤 ∗,+

0

𝐦 (1, 0, 0) (−1, 0, 0)

𝑎∗00𝑚0𝑚0 0 0
𝑎∗01𝑚0𝑚1 0 0
𝑎∗02𝑚0𝑚2 0 0
𝑎∗10𝑚1𝑚0 0 0
𝑎∗11𝑚1𝑚1 0 0
𝑎∗12𝑚1𝑚2 0 0
𝑎∗20𝑚2𝑚0 0 0
𝑎∗21𝑚2𝑚1 0 0
𝑎∗22𝑚2𝑚2 0 0
1
∑

𝑖,𝑗=0
𝑎∗𝑖𝑗𝑚𝑖𝑚𝑗 0 0

𝑎∗00,0 0 0
𝑎∗01,1 0 0
𝑎∗02,2 0 0
𝑎∗10,0 0 0
𝑎∗11,1 (𝜎𝑆1 )2𝑥1 (𝜎𝑆1 )2𝑥1
𝑎∗12,2

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1

𝑎∗20,0 0 0
𝑎∗21,1

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥2

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥2

𝑎∗22,2 (𝜎𝑆2 )2𝑥2 (𝜎𝑆2 )2𝑥2

𝑏∗0 −1 −1
𝑏∗1 (𝑟1 − 𝑞1)𝑥1 (𝑟1 − 𝑞1)𝑥1
𝑏∗2 (𝑟2 − 𝑞2)𝑥2 (𝑟2 − 𝑞2)𝑥2
(𝑏∗0 − 𝑎∗0𝑗,𝑗 )𝑚0 −1 1
(𝑏∗1 − 𝑎∗1𝑗,𝑗 )𝑚1 0 0
(𝑏∗2 − 𝑎∗2𝑗,𝑗 )𝑚2 0 0
2
∑

𝑖=0
(𝑏∗𝑖 − 𝑎∗𝑖𝑗,𝑗 )𝑚𝑖 −1 1
32
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Table 32
Analysis of boundary conditions [32].

𝛤 ∗,−
1 𝛤 ∗,+

1 𝛤 ∗,−
2 𝛤 ∗,+

2

𝐦 (0, 1, 0) (0,−1, 0) (0, 0, 1) (0, 0,−1)

𝑎∗00𝑚0𝑚0 0 0 0 0
𝑎∗01𝑚0𝑚1 0 0 0 0
𝑎∗02𝑚0𝑚2 0 0 0 0
𝑎∗10𝑚1𝑚0 0 0 0 0
𝑎∗11𝑚1𝑚1 0 1

2
(𝜎𝑆1 )2(𝑥∞1 )2 0 0

𝑎∗12𝑚1𝑚2 0 0 0 0
𝑎∗20𝑚2𝑚0 0 0 0 0
𝑎∗21𝑚2𝑚1 0 0 0 0
𝑎∗22𝑚2𝑚2 0 0 0 1

2
(𝜎𝑆2 )2(𝑥∞2 )2

1
∑

𝑖,𝑗=0
𝑎∗𝑖𝑗𝑚𝑖𝑚𝑗 0 1

2
(𝜎𝑆1 )2(𝑥∞1 )2 0 1

2
(𝜎𝑆2 )2(𝑥∞2 )2

𝑎∗00,0 0 0 0 0
𝑎∗01,1 0 0 0 0
𝑎∗02,2 0 0 0 0
𝑎∗10,0 0 0 0 0
𝑎∗11,1 0 (𝜎𝑆1 )2𝑥∞1 (𝜎𝑆1 )2𝑥1 (𝜎𝑆1 )2𝑥1
𝑎∗12,2 0 1

2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥∞1

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥1

𝑎∗20,0 0 0 0 0
𝑎∗21,1

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥2

1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥2 0 1

2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2𝑥∞2

𝑎∗22,2 (𝜎𝑆2 )2𝑥2 (𝜎𝑆2 )2𝑥2 0 (𝜎𝑆2 )2𝑥∞2
𝑏∗0 −1 −1 −1 −1
𝑏∗1 0 (𝑟1 − 𝑞1)𝑥∞1 (𝑟1 − 𝑞1)𝑥1 (𝑟1 − 𝑞1)𝑥1
𝑏∗2 (𝑟2 − 𝑞2)𝑥2 (𝑟2 − 𝑞2)𝑥2 0 (𝑟2 − 𝑞2)𝑥∞2
(𝑏∗0 − 𝑎∗0𝑗,𝑗 )𝑚0 0 0 0 0
(𝑏∗1 − 𝑎∗1𝑗,𝑗 )𝑚1 0 𝑧1 0 0
(𝑏∗2 − 𝑎∗2𝑗,𝑗 )𝑚2 0 0 0 𝑧2
2
∑

𝑖=0
(𝑏∗𝑖 − 𝑎∗𝑖𝑗,𝑗 )𝑚𝑖 0 𝑧1 0 𝑧2

𝑧1 = ((𝜎𝑆1 )2 − 𝑟1 + 𝑞1 + 1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2 )𝑥∞1 .

𝑧2 = ((𝜎𝑆2 )2 − 𝑟2 + 𝑞2 + 1
2
𝜌𝑆1𝑆2𝜎𝑆1𝜎𝑆2 )𝑥∞2 .
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