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ABSTRACT

In some problems in engineering applications, the mesh generation process represents
one of the big challenges when numerical methods such as finite elements, finite differ-
ences or boundary elements are applied. For this reason, several numerical techniques
(“meshless methods”) have been recently proposed to overcome the problems related
with the discretization of the domain. These methods can represent an important im-
provement in Computational Mechanics, and among others in the electrical engineering
field. In this paper, we present a meshless technique based on the Moving Least Square
method with a point collocation approach for solving problems in Potential Theory
in electrical engineering applications. Furthermore we propose the use of enrichment
numerical approaches applied to these meshless procedures.

KEYWORDS
Meshless Methods, Enrichment functions, Moving Least Square Methods, Earthing
INTRODUCTION

Advances in numerical methods, together with the development of computer sciences,
have represented a significant improvement in the treatment of some engineering prob-
lems. However, in some practical applications (e.g., problems with moving boundaries
and discontinuities or in cases of domains with very complicated geometry) difficulties



arise when standard numerical techniques which require the discretization of the whole
domain are applied (Belytschko et al., 1998; Onate et al., 1996-b). In fact, when an
efficient grid is needed, the mesh generation process frequently becomes the bottle neck.

To overcome these problems, in recent years some different numerical techniques have
been proposed, such as numerical methods where explicit element meshes are unnec-
essary ("meshless methods”) (Belytschko et al., 1996) and numerical methods where
approximations are enriched by using functions of the same type that the solution (Be-
lytschko et al., 1998; Taylor et al., 1997).

In meshless methods, the solution domain is formed by a set of nodal points. Every point
has an associated subdomain including its closest points and therefore, a local approxi-
mation can be achieved in each node. Thus, for every central node or ”star node” this
approximation is built with the information provided by its subdomain points. Within
the limits of these techniques several methods have appeared in last years. One of them
is based on least squares formulations combined with Point Collocation approaches to
compute the integral terms, therefore no auxiliary grid is required. Furthermore, in this
method, different interpolants can be derived depending on the weighting function: it
can be fixed within each subdomain, as in the Diffuse Least Square Method (DLS), or it
can depend on the point where the approximated value is to be computed, as in Moving
Least Square Method (MLS) (Chao, 1997).

On the other hand, the essential idea of the use of ”"enrichment functions” is to im-
prove the results obtained with other numerical methods by adding functions to base
approximations which are a partition of unity. This last property corresponds to the
ability of the shape functions to reproduce a constant, being crucial for convergence
(Belytschko et al., 1998) . Two kinds of enrichment have been proposed: the first one
employs functions involved in the solution of the problem (Belytschko et al., 1998), and
the other one proposes to enrich with polynomial functions (Taylor et al., 1995).

In this paper a moving least square approach using base interpolating functions normal-
ized within domain, with a point collocation scheme it is proposed for solving potential
problems in electrical engineering applications. Furthermore, the performance of this
method combinated with enrichment functions is analyzed in some numerical tests.

MOVING LEAST SQUARE APPROXIMATION

Moving Least Square approximations lie in a local weighted least square fitting, valid on
each collocation point subdomain formed by its n closest nodal points (subdomain €2;.).
The local character of the approximation comes from a moving weighting function which
takes its maximum value at this collocation point and vanishes outside a surrounding
region (Onate et al., 1996-a).

The proper definition of the approximation at any point implies that all subdomains
(). cover all the interpolation domain. Hereby, these subdomains must overlap and the
common areas have to include enough nodal points in order to ensure the convergence
of the method. Thus, for a given collocation point the selection of the nodal points
belonging to its subdomain has been performed according to an effective technique
based on the “four quadrants” criterium (Onate et al., 1996-a).

Let €, be the interpolation domain of a function u(z). A local approximation to u(z)



can be derived in the form,
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where @ = [a1,a9,...,a,]" is a set of unknown coefficients and p(z) contains a base
of interpolating functions (monomial terms, generally) which order is m (Ofate et al.,
1996-b). These base interpolating functions can be normalized within each subdomain
;. dividing by the maximum distance d between the collocation point i and the most
distant point of its subdomain. The normalized coordinates are:

ToTp Y-y 2%

o) = | =0~ 3 @)

On the other hand, function u(z) can be sampled in the n nodal points belonging to
2. in the form,
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being ué." the values of unknown function evaluated in nodal points of subdomain (2,

(u;? =u(zj), j =1,...,n), 4; = u(z;) their approximated values, and p; contains the

normalized base interpolating functions evaluated in §; (where §; = &(z;)).

In general, the number of nodal points n is greater than the order m of the polinomials
base, so § is a rectangular matrix and the approximation cannot fit all the uf values.

However, approximated values 4 (z) can be determined by minimizing the weighted sum
h

of the square differences between the exact value u”’ and the approximation «(z;) at each

nodal point z; belonging to the domain of the arbitrary collocation point x; (Onate et

al., 1996-b). The weighting function in moving least square approximation computed in
zj, wi(x;,zy), is usually built in such a way that it equals unity in collocation point x;,
and vanishes outside domain €2;,. In the examples presented in this paper, the truncated
gaussian distribution has been used.

In general, the definition of a different weighting function for every interpolating point z;,
is very difficult, presenting an infinite number of posibilities. To overcome this problem,
we can define the weighting functions at nodal points z;, and use them evaluated in the
arbitrary point ;. Therefore, wi(x;, ;) may be substituted by w;(z;, ;). To simplify
the notation z; is replaced by the global coordinate z.

Thus, the functional to be minimized with respect to e results in

(@) =3 wia,0) (! — a(z;))? (4)
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The performance of this process yields to (Chao, 1997),

o=AYz)B(z)u" A(z) = PW (z)P' B(z) = PW (z) (5)



being auxiliary matrices P and W (z):
P=[p&) - p&,) W (z) = diag |w(zj. )], j=1..n (6)
Substitution of (5) in (1) allows to obtain an approximation to function u(z) in €,

u(z) = i(z) = p'(§)A™ (z)B(=z)u". (7)

Therefore, one can define the shape functions in z as [4],

N'(z) =p'(§)A" ' (2)B() (8)

and consequently,

i(e) = 3N (@) (9)
j=1

It must be taken into account that the local values of the approximating function do
not fit the nodal unknown values, u(z;) # u;’, due to the least square character of the

approximation. It must also be pointed out that if n = m, the FEM type approximation
is recovered and no effect of weighting is presented (Onate et al., 1996-a). Besides, if the
weighting function is constant and equals the unity, the standard least square method
is reproduced.

MLS APPROXIMATIONS WITH ENRICHMENT FUNCTIONS

The introduction of enrichment functions to moving least square approachs consists of
adding to the approximation function (9) new terms which contain information about
the solution, in order to decrease the global computacional cost. Thus, when the kind
of functions in the solution is known, the application of this idea can be very useful. In
this case, the approximation takes the form of an extrinsic enrichment (Belystchko et
al., 1998) and can be written as:
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where 4 is the approximation to the exact solution u in the domain €2, n is the total
number of enrichment functions Fj,, and n is the total number of nodal points. The
approximation to the solution requires to know in every one of the n nodal points the

value of ny + 1 coefficients: u; and ay, ;. For this reason when the MLS approximation

is combined with a point collocation approach, it requires (nf + 1)n collocation points.

One important property, in order to study the convergence of this method, is that
as Nj(x) is obtained in the same way as in MLS formulation, the partition of unity is
satisfied. Therefore, a hierarchical enrichment may be added using any type of functions
(Taylor et al., 1997).

This idea of the enrichment has been successfully applied in Finite Elements and El-
ement Free Galerkin Methods in elasticity problems and fracture mechanics problems
(Belystchko et al., 1998; Taylor et al., 1997). In the same way, in this paper we pro-
pose the use of enriched meshless formulations (EMF) in some applications in electrical
engineering.



A BOUNDARY PROBLEM DISCRETIZED EQUATIONS

In order to study applications of preceding methods, in this section are stated the
discretized equations for a boundary problem.

Let A and B be two differential operators, {2 the domain of our problem and I' its
boundary (I' = Ty UT,). In these terms, a scalar boundary value problem can be
written as,

A(u)=b in Q (11)

with boundary conditions,
B(u) =1 in I

12
u—up =0 in I'y (12)

where u is the solution, b and ¢ represent the actions over {2 and along the boundary
I't, and uy is the prescribed value of u along I',.

Application of weighted residual method allows to obtain a variational form of the above
problem, in terms of the trial approximation function @ of the unknown wu, as

/Qq;j [A(zl)—b]dQ—ir/Ft T, [B(&)—t}dl“+/u\117; [0 —upldl = 0 (13)

which must hold for all members W,, @7 and @7 of suitable classes of test functions
defined on €2, I't and I',. The selection of test functions in the general varational form
(13) allows to derive different formulations. In the examples presented in this paper
a point collocation method has been implemented, in order to take advantage of the
meshless character of the approximation (Chao, 1997). Other approaches based on
integral methods have been proposed (Onate et al., 1996-a; Taylor et al., 1997), but
require some kind of auxiliar grid to evaluate the resulting integrals.

~

The point collocation scheme (¥; = ¥; = \/I\/, = §; in expression (13), where §; is the
Dirac delta) leads to the set of equations,

[A(@)]; —b;=0 in Q
[B(a)]; —t; =0 in Iy (14)
’11, — Up = 0 in Fu

If function u is approximated by linear combination of the shape functions (9,10) the
previous system of equations may be written in the standard form as,

Ku' =7 (15)
where coefficient matrix K is banded (but not necessary symmetric), f is also known

(contains the contributions from terms b and ¢ and prescribed values u,), and u” contains
the unknown values of the function evaluated in nodal points (Chao, 1997).



NUMERICAL TESTS

In this section we present two numerical tests of the MLS approach applied to the
solution of a 1D boundary value problem. Thus, it will be compared results obtained
by using a standard MLS and an enrichment MLS approach.

Example 1
As a first example we consider the following BVP (Carey et al., 1997):
2
d
—d—Z—I—u:_(ac), 0<z<1, w0)=0, u(l)=1 (16)
x

being

2p[14 p*(1— B)(z — B)]
f(z) = + (1 —z)latan(p(z — B)) + atan(p3) (17)
The analytical solution is given by

u(z) = (1 —z)|atan(p(z — B)) + atan(ps3)] (18)

Depending on the election of parameters p and 8 in (17), we can control the shape of
the solution. In this case p = 50.0, 8 = 0.4 produce a sharp function, that it is very
difficult to approximate, being a good test for the performance of the method. Thus,
we can approximate the solution to (16) and (17) with a meshless method for a given
set of n, trial functions N; defined on the domain, by using one enrichment function
(Fi(z) = atan(x)) in (10). In Figure 1 it is shown a comparison between the analytical
solution and the MLS approximations with and without enrichment.

Example 2

As a second example, we consider the BVP that represents a string on an elastic foun-
dation (Taylor et al., 1995):

2
d
ety teu=f, 0<z<1, u(0)=0, u(l)=1 (19)

dx

The analytical solution is given by:

() =1 [1 ~ cosh(z/v/a) — (1 - cosh<1/ﬁ))wl (20)

= sinh(1/v/a)

Parameters in (19) are given by a = 0.01 and ¢ = f = 1. In this case, the enrichment
meshless approximation to this problem has been obtained by using two enrichment
functions Fy(z) = cosh(z) and Fy(z) = sinh(z) in (10). In Figure 2 it is shown a
comparison between the analytical solution and the approximations obtained.

In the light of these 1D test examples it can be noticed that results obtained by using
meshless methods can improve if enrichment functions are used. At present, we are
working in this way in order to introduce enrichment functions in meshless approxima-
tions in 2D and 3D problems. In the following section we present an application to
grounding analysis of the MLS method.



APPLICATION TO GROUNDING ANALYSIS

Grounding systems in substations has to guarantee the integrity of equipments and the
continuity of the service under fault conditions —providing means to carry and dissipate
electrical currents into the ground—, and to safeguard that persons in the surroundings
of the grounded installation are not exposed to dangerous electrical shocks. To achieve
these goals, the equivalent electrical resistance of the system must be low enough to
assure that fault currents dissipate mainly through the grounding grid into the earth,
while maximum potencial differences between close points on the earth surface must be
kept under certain tolerances (step, touch and mesh voltages).

Physical phenomena underlying fault currents dissipation into the earth can be modelled
by means of Maxwell’s Electromagnetic Theory (Colominas et al., 1997). Constraining
analysis to the obtention of the electrokinetic steady-state response, and neglecting the
inner resistivity of the earthing electrode, the 3D problem associated to an electrical
current derivation to earth can be written as

dive = 0, o =—ygradV in Ej;

. . . (21)
olng=01in T'p; V=Vp inI; V-—0, if |g|— oo;

where FE is the earth, v its conductivity tensor, I' the earth surface, ny its normal

exterior unit field and I' the electrode surface (Belystchko et al., 1996). Thus, when
the electrode attains a voltage Vp (Ground Potential Rise or GPR) relative to a distant
grounding point, the solution to this problem gives the potential V' and the current
density o at an arbitrary point #. Further assumption Vp = 1 is not restrictive at all,
since V' and e are proportional to Vp.

The example presented in this paper consists of a toroidal electrode horizontally buried
to a depth of 7 m. The interior diameter of the ring is 20 m and the electrode diameter is
3 m. The upper layer depth is 14 m. The scalar conductivity associated with the lower
layer ~9, is four times the one corresponding to the upper layer v1 (y9 = 4 v1). Due
to the axial symmetry of the problem, solution can be obtained by using a 2D model.
This case has been solved with 3019 points obtained by means of the program GEN4U
(Sarrate, 1996). The base interpolating functions used are linear and all subdomains
contain at least five points. Figure 3 shows the nodal point distribution, the contour
lines and the potential distribution around the electrode in two cases: assuming the
hypothesis of homegeneous and isotropic soil or considering a two-layer model. These
numerical results agree significantly with those obtained by using a very dense point
distribution and with results of a boundary element program.

CONCLUSIONS

In this paper, a moving least square interpolation method with a point collocation
approach using enrichment functions has been presented. This technique has been
compared for 1D numerical tests with the analytical solution and the MLS method
without enrichment. Results significantly agree and very good results are obtained
when enrichment functions are used.



Furthermore the MLS approach has been applied to the solution of a problem in ground-
ing analysis. First results obtained for different point distributions, even with a two-layer
soil model, are very promising and require a reasonable computational cost. Obviously,
further analysis must be done in both mathematical and numerical aspects in order to
introduce the enrichment procedure to 2D and 3D problems.
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Fig. 1.- Example 1: Comparison of results ob-
tained by using an enriched MLS approach, a stan-
dard MLS approach (both with quadratic interpo-
lation), and the analytical solution: a) 50 nodal
points, subdomains of 3 points; b) 50 nodal points,
subdomains of 5 points; ¢) 50 nodal points, sub-
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Fig. 2.- Example 2: Comparison of results ob-
tained by using an enriched MLS approach, a stan-
dard MLS approach (both with quadratic interpo-
lation), and the analytical solution: a) 3 nodal
points, subdomains of 3 points; b) 5 nodal points,
subdomains of 5 points; ¢) 7 nodal points, subdo-

mains of 7 points
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Figure 3.- Toroidal electrode buried to a depth of 7 m: a) Distribution of nodal points (npoin=3019), b) Domain
solution scheme, c) Contour lines around the electrode, considering the soil homogeneous and isotropic,
d) Potential distribution around the electrode, considering the soil as homogeneous and isotropic,
¢) Contour lines around the electrode assuming a two- layer model (Y, / Y, = 4), f) Potential distribution

around the electrode assuming a two-layer model (Y, / , = 4.



