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Combining Switched TMAs and FDAs to
Synthesize Dot-Shaped Beampatterns
Roberto Maneiro-Catoira, Member, IEEE, Julio Brégains, Senior Member, IEEE,

José A. Garcı́a-Naya, Senior Member, IEEE, and Luis Castedo, Senior Member, IEEE

Abstract—The application of frequency offsets to the elements
of a conventional phased array with variable phase shifters
(VPSs) leads to frequency diverse arrays (FDAs) with the ability
to provide range-angle spatial focusing. In this letter, we propose
an innovative approach to FDA using switched time-modulated
arrays (TMAs) instead of VPSs. The time modulation efficiency
of the combined FDA-TMA approach is over 94% when using
Kaiser windows to determine the frequency offsets. Such windows
have the advantage of flexibly handling the trade-off between the
beam collection efficiency and the half power beamwidth without
the need of difficult optimizations.

Index Terms—Frequency Diverse Arrays, Time-modulated ar-
rays.

I. INTRODUCTION

FREQUENCY Diverse Arrays (FDAs) apply frequency
offsets to the elements of an antenna array to generate

radiation patterns which in general depend on the angular
variables ϕ and θ, the distance (range) r, and the time t [1]–
[3]. Progressive incremental frequency offsets cause FDAs to
generate time-variant power radiation patterns with periodic
spatial multiple maxima [2]. This property has the disad-
vantage of radiating signals over non-desired maxima which
interfere with the desired signal. To avoid this range-angle
periodicity, different alternatives have been considered such
as non uniform frequency offsets [4]–[8] or time-modulated
frequency offsets [9]–[12]. These two methods allow for
the synthesis of s- and dot-shaped diagrams with a single
maximum in the range-angle space. To support this feature,
each antenna element in the array uses a variable phase shifter
(VPS) to provide an additional phase term that allows for
the spatial steering of the FDA. Nevertheless, such a single
maximum is not static in time [13], [14].

In this letter, we propose an innovative FDA architecture
that combines non-uniform Kaiser window-based frequency
offsets with efficient and versatile switched time-modulated ar-
rays (TMAs). While the former allows for the selection of the
range-angle coordinates and guarantees a fine focusing without
optimization, the latter exploits the first positive harmonic and
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Fig. 1. The proposed combined FDA-TMA antenna array feeding network.

provides the corresponding adaptive weights to focus on such
coordinates without using VPSs. Additionally, the time-variant
maximum issue is overcome by imposing a restriction involv-
ing the transmitted pulsed signal period and the maximum
frequency offset employed. This allows for the generation of
a quasi-static dot shaped beam pattern. These features make
the proposed FDA approach well suited for those long-range
applications where mitigation of range-dependent interferences
is fundamental (e.g., secure communications).

II. SIGNAL MODEL

Let us consider a uniformly excited N -element antenna
array equipped with the combined FDA-TMA feeding network
shown in Fig. 1. If the array transmits a single-frequency
signal of the form ej2πfct, being fc the carrier frequency,
the FDA part of the feeding network produces the frequency-
shifted signals ej2πfnt, n=0, . . . , N−1, where fn=fc + ∆fn,
being ∆fn the frequency offset applied at the n-th antenna
element. For the sake of simplicity, we assume that ∆f0=0.
Next, signals are time modulated by a set of multilevel
periodic pulsed waveforms hn(t), n=0, . . . , N−1, to produce
the transmitted signals

sn(t) = hn(t)ej2πfnt, n = 0, . . . , N − 1. (1)

All time modulating signals hn(t) have the same fundamental
period Tµ and fundamental frequency fµ=1/Tµ. The con-
straint fµ�fc, is imposed to avoid spectral signal overlap-
ping [16].

Fig. 2 explains how hn(t) are readily synthesized from
SPDT switches. The starting point is the construction of
the four-level basic periodic pulsed waveform p(t) shown in
Fig. 2a as the sum of three periodic bipolar square pulses
that have a certain fixed time delay between them [15]. Time
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Fig. 2. (a) Synthesis of the stair-step approximation of a sine function p(t) as the sum of delayed bipolar squared sequences; (b) SPDT switches connection
to time modulate with p(t) and its simplified representation termed SPDT module. The unipolar signal that controls the switches is g(t) = 1 if a(t) ≥ 0 and
g(t) = 0 if a(t) < 0; (c) SSB TMA feeding network built with two SPDT modules and its corresponding block representation. Although it shows higher
complexity than standard phased arrays, it exhibits a higher phase resolution response and an excellent competitive advantage in cost [15].
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Fig. 3. Normalized Fourier series spectrum (in dB) of hn(t) (see (3)). The
largest secondary component is q= − 7 and its relative level −16.9 dB is
emphasized with a dashed line.

modulating with p(t) is efficiently implemented with the SPDT
switches connection shown in Fig. 2b where the switches are
controlled by delayed versions of the same unipolar squared
pulse g(t). At the output of the SPDT module in Fig. 2b we
have the signal x(t)=kpp(t)s(t), with s(t) being the input
signal and k2

p = 1/5 a normalizing constant resulting from
matching the powers of s(t) and x(t) because ideal SPDT
switches do not waste power since they have no off-state [15].

Finally, two SPDT modules are connected as in Fig. 2c
to produce the n-th element TMA part of the proposed
feeding network. This latter connection aims at removing the
frequency-mirrored harmonics arising in conventional TMAs.
The resulting time modulating signals are thus given by

hn(t) =
kp√

2
[p(t−Dn) + jp(t−Dn − τ)] , (2)

where Dn and τ=1/(4fµ) are a variable and a fixed time
delay, respectively [17]. Hence, identical signals with different
delays govern the array elements.

Recall that hn(t) are periodic signals with fundamental
period fµ=1/Tµ. Therefore, they can be represented by their
exponential Fourier series expansions which, considering that

e−jq2πfµτ=(−j)q , are readily obtained as

hn(t) =
kp√

2

∑
q odd

[
1− (−j)q+1

]
Pqe
−jq2πfµDnejq2πfµt =

=
√

2kp
∑
q∈Ξ

Pqe
−jq2πfµDnejq2πfµt, (3)

where

Pq =
1

jπq

[
2− 2

√
2 · (−1)

(q+3)(q+5)
8

]
(4)

are the Fourier series coefficients of p(t) and Ξ={q=4k −
3; k ∈ Z}={. . . ,−7,−3, 1, 5, . . . } is the set of indexes of the
non-zero harmonics [15]. We now introduce the TMA dynamic
excitations as

Inq =
√

2kpPqe
−jq2πfµDn (5)

which allows us to rewrite equation (3) as

hn(t) =
∑

q∈Ξ
Inqe

jq2πfµt. (6)

In view of (5), the moduli of the dynamic excitations
|Inq|=

√
2kpPq do not depend on n, whereas the phases

φnq depend on qDn. Hence, the power radiation pattern of
any harmonic corresponds to that of a uniform linear array
and can be readily steered by properly adapting the phase
terms qDn. Fig. 3 shows the normalized Fourier series mean
square spectrum of hn(t) where we can observe that the most
meaningful harmonic is q=1 with a relative peak level of
at least 16.9 dB above the remaining ones. Hence, such a
harmonic, located at fc + fµ, will be the exploited one.
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Fig. 4. Projection of the transmit quasi-static spatial focusing beampatterns of the proposed FDA-TMA approach on the range-angle dimensions, angle
dimension and range dimension, and r0-plane and θ0-plane cuts (in grey), for three different spatial locations of the target and considering different
number of antenna elements N : (a)(b)(c) N=19, (r0, θ0)=(25 km, 10◦), α = 1.08; ∆f=150 kHz; HPBWr=4.1 km; HPBWθ=5.5◦; (d)(e)(f) N=29,
(r0, θ0)=(25 km, 60◦), α=1.52; ∆f=150 kHz; HPBWr=1.76 km; HPBWθ=3.0◦ (g)(h)(i) N=49, (r0, θ0)=(40 km, 10◦), α=1.64; ∆f=150 kHz;
HPBWr=1.30 ; HPBWθ=1.25◦. Notice that the Kaiser windows (11) provide dot-shaped patterns with SLL values equal to 0.05 in the r0-plane cut,
0.13 in the θ0-plane cuts, and 0.26 in the whole range-angle sector Ω={r ∈ (0 km, 50 km); θ ∈ (−90◦, 90◦)}.

According to (1) and (6), the signal radiated at an arbitrary
probe point having spatial coordinates (r, θ) is

S(t, r, θ) =
N−1∑
n=0

1

rn
sn

(
t− rn

c

)
=

=
N−1∑
n=0

1

rn

∑
q∈Ξ

Inqe
jq2πfµ(t− rnc )ej2πfn(t− rnc )

=
∑
q∈Ξ

N−1∑
n=0

1

rn
|Inq|ej[2π(fn+qfµ)(t− rnc )+φnq] (7)

where c is the speed of light and rn≈r − nd sin θ the
distance between the nth element and the probe point. Finally,
considering fn=fc + ∆fn and 1/rn≈1/r, we arrive at

S(t, r, θ) =
1

r

∑
q∈Ξ

ej2π(fc+qfµ)(t− rc )·

·
N−1∑
n=0

|Inq|ejφnqej2π[∆fn(t− rc )+nfcd sin θ
c +n∆fnd sin θ

c ]. (8)

III. BEAMPATTERN SYNTHESIS

Assuming |∆fn|<fµ�fc, the term n∆fnd sin θ/c in (8)
can be neglected [9], [10] and, hence, (8) can be rewritten as

S(t, r, θ) =
1

r

∑
q∈Ξ

ej2π(fc+qfµ)(t− rc )Fq(t, r, θ) (9)

where

Fq(t, r, θ) =
N−1∑
n=0

|Inq|ejφnqej2π[∆fn(t− rc )+nfcd sin θ
c ] (10)

is the array factor corresponding to the q-th harmonic.
We now consider that the FDA frequency offsets have the form
∆fn = ∆f ·Υ(n) where ∆f is a fixed offset and

Υ(n) =
β0

β0[α]

α
√√√√1−

(
2(n− N−1

2 )

N − 1

)2
 (11)

are the weights of a Kaiser window which, besides being
a near-optimal window [18, Chapter 4], allows for readily
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adjusting the trade-off between the spatial SLL and the half
power beamwidth (HPBW) by means of the parameter α, with
β0[.] being the modified Bessel function of the first kind and
zero order. We will assume that N is odd so that the Kaiser
window is symmetrical.

According to (10), steering the useful harmonic (q=1)
beampattern towards a target point with spatial coordinates (r0,
θ0) is feasible if φn1=2π/c[∆fnr0 − ndfc sin θ0] or, equiva-
lently, if the time delays in (5) are set to Dn=−φn1/(2πfµ).
In such a case, the array factor for q=1 takes the form

F1(t, r, θ)=
N−1∑
n=0

|In1|ej2π[∆fn(t− r−r0c )+nfcd
sin θ−sin θ0

c ]. (12)

which has a single maximum in (r0, θ0). Additionally, by
considering the time-dependent phase Φn(t)=2π[∆fn(t−(r−
r0)/c)+nfcd(sin θ−sin θ0)/c], we observe that its maximum
variation for t ∈ [0, Tµ] is 2π(N − 1)(∆fn)maxTµ (see [19]).
Hence, imposing the constraint

(N − 1)(∆fn)max � fµ (13)

leads the beampattern to exhibit a quasi-static behavior and
thus to be approximated as F1(r, θ) ≈ F1(t = 0, r, θ). Notice
that since fµ is limited by the maximum speed of the switches,
(13) imposes an upper limit on ∆fn and, hence the technique
is restricted, at present, to long-range applications. On the
other hand, if we define the whole range-angle operating area
as Ω = {(r, θ)/r ∈ (rmin, rmax); θ ∈ (−90◦, 90◦)}, the time
modulation radiation efficiency, ηTM, when d = 0.5c/fc turns
out to be (see a similar derivation in [15, Section II-D])

ηTM =

∫∫
(r,θ)∈Ω

|F1(r, θ)|2 sin θ dθ dr

∑
q∈Ξ

∫∫
(r,θ)∈Ω

|Fq(r, θ)|2 sin θ dθ dr

=
1

N

N−1∑
n=0

|In1|2

=
1

N
N

2

5

(
2 + 2

√
2

π

)2

= 0.945. (14)

IV. NUMERICAL RESULTS

Fig. 4 plots the resulting beam patterns obtained with the
proposed FDA-TMA approach for three different target posi-
tions and number of antenna elements in order to illustrate its
spatial focusing capabilities. We considered fc=10 GHz and
fµ=200 MHz for which the 2-5 ns RF switches in [20, Table
III] can be used. By properly adjusting the switch-on delays
Dn, the Kaiser window parameter α, and the FDA parameter
∆f , dot-shaped beam patterns pointing towards the target
coordinates (r0, θ0) were obtained. Such patterns have a SLL
value equal to 0.05 in the r0-plane cut, equal to 0.13 in the θ0-
plane cut, and equal to 0.26 in the whole area Ω. The caption
of Fig. 4 also provides the resulting values of HPBWr and
HPBWθ in each scenario. It is apparent that the larger the N ,
the narrower the beamwidth in both dimensions.

Fig. 5. BCE of the proposed FDA-TMA approach. The parameter
α is set to ensure the BCE values to be below 10% outside the
dot shaped beampatterns. For N=19 the accomplished target area is
Ψ(∆r=35%,∆θ=2.8%), for N=29 is Ψ(∆r=20%,∆θ=2%) and for
N=49, Ψ(∆r=15%,∆θ=1.1%). The comparison with conventional phased
arrays, which exhibit a constant BCE value, is also shown.

The beam collection efficiency (BCE) is a helpful metric to
assess the performance of FDAs [21] and is defined as

BCE(r) = 100 ·

∫
(r,θ)∈Ψ(∆r,∆θ)

|F1(r, θ)|2 sin θ dθ∫
(r,θ)∈Ω

|F1(r, θ)|2 sin θ dθ

(15)

where Ψ(∆r,∆θ) is the target area which is the following
range-angle sector

Ψ(∆r,∆θ)=
{

(r, θ)/
∣∣∣ r−r0RT

∣∣∣ ≤ ∆r
100 ;

∣∣ θ−θ0
90◦

∣∣ ≤ ∆θ
100

}
(16)

where RT=(rmax − rmin)/2, ∆r is the percentage in range
with reference distance RT , and ∆θ is the percentage in angle
with reference angle 90◦. Fig. 5 shows the resulting BCE
values for the same three previous scenarios. Note that the
larger the N , the smaller the obtained target area. However,
the proposed FDA-TMA approach achieves BCE values below
10% outside the target areas in all cases. Fig. 5 also plots
the BCE obtained with conventional phased arrays, which is
constant with respect to the range because conventional phased
arrays do not have range focusing capabilities. Notice that the
impact of ∆fn on the dot-shaped pattern is on the trade-off
BCE versus HPBW, whereas that of Dn is on the range-angle
beamsteering.

V. CONCLUSIONS

We have presented a combined TMA-FDA innovative
method for antenna array beamforming. Without using VPSs,
our approach provides quasi-static spatial focusing under cer-
tain conditions with a TMA efficiency over 94% and a flexible
FDA design employing Kaiser windows to handle the trade-off
between BCE and HPBW without any further optimization.
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