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A B S T R A C T

Study Region: The present study was conducted in 24 watersheds located in the region of Galicia,
in the northwest of Spain, covering an extension of approximately 13,000 km2.

Study focus: This study is focused on the application and evaluation of different schemes
for streamflow Prediction in Ungauged Basins (PUB). The MHIA model (Spanish acronym for
Modelo HIdrológico Agregado), is first used to reproduce the observed time series of discharge
in several gauged basins. Then, six different regionalisation schemes are applied to transfer
the hydrological model parameters to ungauged catchments. For that purpose, we explore and
compare two physical similarity, two spatial proximity and two regression-based regionalisation
schemes. Output averaging (also known as ensemble modelling) as well as parameter averaging
implementations of the physical similarity and spatial proximity methods are analysed.

New hydrological insights: The most efficient methods are those based on output averaging,
with acceptable success rates (SR) in 88% of the cases. On the other hand, the parameter
averaging-based methods have the lowest SR. The methods based on spatial proximity output
averaging provide the best performance when the receptor basin has a sufficient number of
nearby donor basins. On the other hand, the methods based on physical similarity output
averaging show a better performance in areas where there is a low density of donor catchments.
The regression-based methods showed the lowest performance in all cases. The existence of
correlations between the performance of the regionalisation schemes and the area of the
receptor catchments was observed, with higher performances in large basins than in small
basins.

1. Introduction

The successful application of hydrological models as water resources management tools requires accurate and comprehensive
input data, as well as observed discharge series to calibrate the model. However, the availability of streamflow data in some
catchments is very scarce, precluding the calibration of the models and leading to the development of methods for streamflow
prediction in ungauged basins (PUB) (Guo et al., 2021; Tarek et al., 2021).

Different methodologies have been developed over the last two decades to transfer information from gauged (donor) to ungauged
(receptor) basins, which are often referred to as regionalisation methods (Sivapalan et al., 2003; Prieto et al., 2019; Kratzert
et al., 2019; Prieto et al., 2022). Despite the efforts made in previous studies, there is not a unique generally accepted method
for streamflow simulation in ungauged catchments, and several factors are known to affect the performance of the regionalisation
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methods, such as regional climate, the physical characteristics of the basins and the existence of human interventions (Oudin et al.,
2008; Swain and Patra, 2017; Arsenault and Brissette, 2014; Parajka et al., 2013; Razavi and Coulibaly, 2013).

Guo et al. (2021) emphasise that there are different ways of categorising methods for predicting streamflow in ungauged
atchments, with parameter transfer-based and signature transfer-based methods being among these classifications. The methods
ased on parameter transfer implement parameter regionalisation using various catchment similarity measures, which can be
ategorised into three groups: physical similarity methods, spatial proximity methods, and regression-based methods.

Physical similarity methods (Burn and Boorman, 1993; Kay et al., 2007; He et al., 2011) focus on the similarity of catchment
roperties and characteristics, while spatial proximity methods (Cislaghi et al., 2020; Merz and Blöschl, 2004) consider the spatial
elationships between catchments. Regression-based methods (Heuvelmans et al., 2006; Arsenault and Brissette, 2014) use statistical
egression techniques to establish relationships between catchment attributes and model parameters.

Hydrological signature-based methods are commonly used to evaluate the hydrological characteristics of catchments at different
ime scales, and they are categorised into two groups: direct regionalisation of hydrological signatures and constraining model
arameter sets using these signatures (Guo et al., 2021). Typical flow indices used in these methods include monthly and average
lows, runoff coefficients, quantiles, slope of flow duration curves, and the baseflow index, as noted in studies by Guo et al. (2021),
cMillan et al. (2017). While this work focuses on parameter transfer-based methods, readers are referred to the works of Kavetski

t al. (2018), Westerberg et al. (2016), McMillan et al. (2017), Addor et al. (2018), Prieto et al. (2022) for a complete and detailed
escription of signature-based approaches.

Physical similarity methods assume that similar climatic and geomorphological characteristics result in similar hydrological
esponses (Merz and Blöschl, 2004). Spatial proximity methods assume that catchments in close proximity have similar hydrological
ehaviours (Cislaghi et al., 2020; Merz and Blöschl, 2004). Regression-based methods attempt to establish mathematical relationships
etween hydrological model parameters and catchment characteristics (Heuvelmans et al., 2006; Almeida et al., 2016; Guo et al.,
021).

Both physical similarity and regression-based methods require rigorous selection of the most relevant Catchment Descriptors (CD)
catchment geology, soil, land use, topography and climate (Prieto et al., 2022; Almeida et al., 2016; Tarek et al., 2021). These
escriptors are typically defined based on expert knowledge of the study basin and subsequent correlation analysis (Heuvelmans
t al., 2006; Mwakalila, 2003). In contrast, spatial proximity methods do not require CDs since model parameters are transferred
rom nearby basins using spatial interpolation techniques based on basin centroids (Cislaghi et al., 2020). This approach has shown
o provide better results than physical similarity methods in areas with a sufficient number of donor catchments (Oudin et al.,
008; Cislaghi et al., 2020). However, the main limitation of spatial proximity methods is that they require a large number of
auged catchments surrounding the target basin Oudin et al. (2008), Razavi and Coulibaly (2013), Merz and Blöschl (2004), Shepard
1968), Oudin et al. (2008), Merz and Blöschl (2004), Ssegane et al. (2012), Samuel et al. (2011).

Another approach based on physical similarity or spatial proximity involves calculating the average hydrographs obtained from
unning the hydrological model with parameter sets of donor catchments (Oudin et al., 2008; Zhang and Chiew, 2009; Samuel et al.,
011; Arsenault and Brissette, 2014; Poissant et al., 2017). This output-averaging method is commonly referred to as ensemble
odelling and has shown remarkable results in different studies (Viney et al., 2009; Farfán and Cea, 2022a; Najafi and Moradkhani,
016; Arsenault and Brissette, 2014). Ensemble modelling has outperformed parameter-averaging methods in previous studies (Yang
t al., 2020; Arsenault and Brissette, 2014; Poissant et al., 2017). Additionally, combinations of physical similarity and spatial
roximity methods can be performed by incorporating information about the spatial location of the catchments as another Catchment
escriptor (CD) within a physical similarity scheme (e.g., the centroid coordinates of the donor catchments), which in some cases
an enhance the results obtained with output-averaging methods (Arsenault and Brissette, 2014; Poissant et al., 2017).

In regression-based methods, a regression model is derived between the value of each model parameter and the CDs (Almeida
t al., 2016; Heuvelmans et al., 2006; Arsenault and Brissette, 2014; Tarek et al., 2021; Swain and Patra, 2017). The regression is
sed to predict the model parameters in the ungauged basin, which are then used to run the hydrological model in the ungauged
asin Tarek et al. (2021), Wang et al. (2014). To apply these methods, it is recommended to consider as many donor basins
s possible to establish a robust regression (He et al., 2011). The most commonly applied techniques in this methodology are
ultiple linear regression and artificial neural networks (ANNs), with ANNs having the best results (Heuvelmans et al., 2006;
okkonen et al., 2003; Post, 2009). It is important to note that the main assumption of physical similarity-based and regression-
ased methods, that catchments with similar CDs exhibit similar hydrological responses, may be compromised due to the effects
f equifinality. Equifinality means that there are different parameter sets that produce equally acceptable results during model
alibration processes (Beven, 2006; Arsenault and Brissette, 2014).

Given the challenge of characterising the influence of equifinality on the predictions obtained with regionalisation schemes,
mploying a bootstrapping method provides a valuable approach for evaluating the uncertainty related to this particular prob-
em (Heuvelmans et al., 2006; Arsenault and Brissette, 2014; Poissant et al., 2017). Bootstrapping allows the evaluation of
egionalisation schemes using a sample of behavioural parameter sets, aiding in the quantification of the range of possible outcomes
nd their associated uncertainties, thereby enhancing the reliability of the regionalisation process. Behavioural parameter sets
re typically identified as those that produce model performance where the likelihood function value exceeds a pre-established
cceptable threshold (Beven and Freer, 2001; Yin et al., 2020). For streamflow predictions in ungauged catchments, behavioural
arameter sets are also obtained by selecting a fixed number of top-performing simulations from the entire sample of parameter
ets of each donor basin Arsenault and Brissette (2014), Poissant et al. (2017).

This study aims to apply, evaluate, and compare different schemes for streamflow prediction in ungauged basins in northwest
2
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Fig. 1. Location of the 24 study catchments.

Descriptors (CDs) that are subsequently used in the regionalisation schemes. To this end, the methodologies that have provided
the best results in previous studies are selected and applied to the regionalisation of streamflow series in the 24 basins of the
study region (Arsenault and Brissette, 2014; Poissant et al., 2017; Cislaghi et al., 2020; Heuvelmans et al., 2006). A total of six
regionalisation schemes are evaluated and organised as follows: two schemes based on spatial proximity, with an average of model
parameters and an average of model output, two schemes based on physical similarity with an average of model parameters and an
average of model output, and two regression-based methods, Multiple Linear Regression and Artificial Neural Networks. In order to
characterise the uncertainty in the streamflow predictions, the transfer of parameters is carried out using a bootstrapping technique
over a sample of model behavioural parameters. The validation of the schemes is developed using a leave-one-out process. The results
are analysed in terms of the probability distribution of the goodness-of-fit, the Success Rate (SR) of the regionalisation schemes, and
the spatial distribution of the results over the study region.

2. Study area and data

This section describes the data sources and the characteristics of the 24 basins included in this study. The catchments are located
in Galicia, in the northwest of Spain. The available information was used to evaluate 25 potential CDs for each watershed, which
were classified as: (1) morphological, (2) hydro-climatic and (3) lithological (Heuvelmans et al., 2006). The meteorological and
discharge data used in this study were obtained from the agencies Meteo Galicia (https://www.meteogalicia.gal/) and Augas de
Galicia (https://augasdegalicia.xunta.gal/), respectively. The data are pre-processed and undergoes filtering procedures by these
agencies to ensure reliability before being made publicly available.

The 24 catchments cover a total area of approximately 13,000 km2 (Fig. 1). The area of each individual catchment varies
between 17 and 542 km2, with elevations ranges from 16 to 406 meters above sea level (m.a.s.l). The minimum average slope
of the catchments is 7% and the maximum 28.3%. The length of the main river channel varies between 9 and 62 km, and the
drainage density from 0.57 to 1.72 km/km2 (Table 1).

The coordinates of the basin centroids have also been incorporated as basin descriptors since, as reported in previous studies,
they can enhance the application of methods based on physical similarity (Oudin et al., 2008; Arsenault and Brissette, 2014; Poissant
et al., 2017).

There are 101 meteorological stations distributed over the study area that were used to calculate basin-averaged time series
of precipitation and air temperature at 10-minute resolution. The time series of temperature and precipitation were aggregated at
hourly scale, from 2008 to 2018 (10 years). The mean annual precipitation in the region varies from 1224 to 2115 mm, while the
mean annual temperature ranks between 10.9 and 13.6 ◦C. The catchments with the highest mean annual precipitation are located
in the western region, with values around 2000 mm, while in those located towards the east the annual precipitation varies between
3
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Table 1
Catchment descriptors.

Catchment descriptors Abbreviation Unit Min Max

1 Longitude of the basin centroid (UTM H29) Xc m 502921 628069
2 Latitude of the basin centroid (UTM H29) Yc m 4658071 4832820
3 Area A km2 17.05 542.39
4 Perimeter Pr km 24.70 157.93
5 Main stream length SL km 9.10 62.20
6 Drainage network length DNL km 24.89 613.68
7 Drainage density DD km/km2 0.57 1.72
8 Minimum elevation MinE m 16.52 404.95
9 Maximum elevation MaxE m 395.15 943.05

10 Average slope Slp % 7.70 28.30
11 Curve Number CN – 60.00 78.00
12 Clay percentage at depth 1 (0–5 cm) Cl1 % 12.77 18.73
13 Silt percentage at depth 1 (0–5 cm) Si1 % 26.59 44.77
14 Sand percentage at depth 1 (0–5 cm) Sa1 % 37.98 59.62
15 Clay percentage at depth 2 (30–60 cm) Cl2 % 16.21 27.09
16 Silt percentage at depth 2 (30–60 cm) Si2 % 23.58 40.34
17 Sand percentage at depth 2 (30–60 cm) Sa2 % 38.89 52.82
18 Clay percentage at depth 3 (100–200 cm) Cl3 % 17.12 25.11
19 Silt percentage at depth 3 (100–200 cm) Si3 % 22.06 37.94
20 Sand percentage at depth 3 (100–200 cm) Sa3 % 39.49 53.78
21 Agriculture land use AgrUse % 8.00 48.00
22 Non economic land use NAgrUse % 47.00 89.00
23 Remaining land uses RLandUse % 1.00 18.00
24 Mean annual precipitation P𝑚𝑒𝑎𝑛 mm 1224.46 2115.03
25 Mean temperature T𝑚𝑒𝑎𝑛 C 10.86 13.57

1200 and 1500 mm. The highest mean annual temperature occurs in the Southwest of the study region, and it gradually decreases
towards the Northeast.

The Curve Number (CN) is commonly employed in hydrological modelling to represent soil infiltration capacity and its impact
n runoff generation processes (Boughton, 1989). Despite not being a direct physical property of the basin, it is derived from three
hysical conditions: soil type, land cover, and terrain slope, which are the most influential factors on soil infiltration capacity.
herefore, it was decided to include it as a potential CD as it can synthesise this information for application in regionalisation
chemes. The CN values are calculated using the methodology developed by Ferrer (2003) and described in the technical report
y Álvarez (2010). The pixel resolution is 500 m 𝑥 500 m. The CN values were averaged within each catchment and ranged from
0 to 78, with the highest values located in the central part of the study area where agricultural land is concentrated (Fig. 2).

Land use data was obtained from the Spanish Land Occupation Information System (SIOSE), and land use categories were assigned
ased on the Hierarchical INSPIRE Land Use Classification System (HILUCS) developed by the Infrastructure for Spatial Information
n Europe (INSPIRE) (https://inspire.ec.europa.eu/). The land use data layer is stored in GPKG format and contains 191,047 polygon
patial objects, each representing a specific land use type. The areas of these polygons were summed within each catchment to
etermine the percentages of each land use type.

The majority of land uses in the study catchments are classified as Agriculture and Not in Economic Uses (natural areas not
dedicated to any economic use), which can occupy up to 48% and 89% of the land, respectively. Other HILUCS categories, such
as Residential Use or Transportation Networks, only occupy small areas of the catchments. Therefore, for simplicity, the sum of these
land uses was categorised as Remaining Uses (Fig. 2).

Soil types were obtained from the SoilGrids platform, which provides global predictions of soil classes and properties. Readers
can refer to the website https://soilgrids.org/ and to Hengl et al. (2017) for further details on these data. The SoilGrids platform
includes soil type information at three different depths: depth 1 (0–5 cm), depth 2 (30–60 cm), and depth 3 (100–200 cm). The
downloaded data consist of GeoTIFF files with a pixel resolution of approximately 200 m x 200 m, which were then integrated into
each basin.

The soil texture diagram shown in Fig. 3 was used to characterise the soil types. The diagram indicates that most of the soils are
classified as loam and sandy loam, without significant variations in depth.

3. Methods

3.1. Hydrological model

The hydrological model used in this study is the MHIA (acronym for Lumped Hydrological Model in Spanish). The model performs
a balance of the water volume in the soil, considering processes such as precipitation, infiltration, percolation, evapotranspiration,
and exfiltration, to estimate the hydrograph at the basin outlet. The calculation and concepts of these processes are explained in
4

detail in Farfán and Cea (2022b).
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Fig. 2. (a) Curve Number distribution in the study region (b) Land uses in the study region. The map legend indicates uniquely Agriculture and Not in economic
use. The non-listened uses are categorised in Table 1 as Remaining uses.

Table 2
Calibration parameters of the MHIA model (Farfán and Cea, 2022b).
Parameter Symbol Unit Lower limit Upper limit

Ratio between CNdry and CN 𝜙 0.1 1
Exponent of percolation 𝑚1 5 60
Percolation permeability 𝐾𝑠 mm/h 0.1 20
Exponent of exfiltration 𝑚2 15 75
Exfiltration permeability 𝐾𝑏 mm/h 0.1 20
Coefficient lag-time relationship for surface runoff 𝑘1 0.1 6.5
Parameter for scaling gamma function for surface runoff 𝑛1 1 10
Coefficient lag-time relationship for groundwater flow 𝑘2 0.1 6.5
Parameter for scaling gamma function for groundwater flow 𝑛2 1 10
Parameter for potential evapotranspiration b 0.4 2
Initial abstraction coefficient 𝛼 0.0 0.2
Decaying coefficient for Pacum 𝑑 0.01 1
Correction coefficient for S 𝑎 1 4

The model requires input data such as time series of precipitation and temperature (averaged over the entire basin), as well
as basin-specific parameters that need to be calibrated from observed discharge time series (Table 2). The study adopted a time
resolution of 1 h.

The MHIA model represents the basin as a reservoir with a variable volume of water and a maximum storage capacity, and
computes the hydrological processes at each computational time step. The code for the MHIA model is provided in Farfán and Cea
(2022b), and the model parameters are summarised in Table 2. The MHIA model has been previously used in the study region and
produced satisfactory results as demonstrated in Farfán and Cea (2022a).

The available precipitation, temperature, and discharge time series, aggregated at an hourly time scale, were split into two
non-overlapping periods for model calibration and validation, spanning from 2008 to 2013 (calibration) and from 2013 to 2018
(validation). The model calibration was done independently for each catchment using a Monte Carlo approach with 5000 parameter
sets. The parameters were sampled in their feasible space using a quasi-random method. The 25 best parameter sets (behavioural
parameters) in each catchment, in terms of goodness of fit, were used to validate the model and perform the transfer to the receptor
catchments.

In this study, the Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is used as a metric to evaluate the goodness of fit in
each catchment. NSE is a commonly used metric in similar research and facilitates comparisons with other studies (e.g., Arsenault
and Brissette, Cislaghi et al., Razavi and Coulibaly, Guo et al.). However, variations in the number of catchments and research
periods among comparable studies can introduce bias when comparing NSE results (Guo et al., 2021). Therefore, it is important to
consider this potential bias when interpreting and comparing the results. The NSE coefficient is calculated as follows:

NSE = 1 −
∑𝑛

𝑖=1 (𝑄𝑜𝑏𝑠,𝑖 −𝑄𝑠𝑖𝑚,𝑖)2
∑𝑛 2

(1)
5
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Fig. 3. Soil types in the study region at depth 1. (a) Clay content, (b) Silt content, (c) Sand content, (d) Texture Diagram for soil classification (Science and
Administration, 1975).

where 𝑄𝑜𝑏𝑠,𝑖 and 𝑄𝑠𝑖𝑚,𝑖 are the 𝑖th observed and simulated discharge value, respectively, and 𝑄𝑜𝑏𝑠 is the mean value of the observed
discharge series.

3.2. Regionalisation schemes

The regionalisation schemes analysed are summarised in Table 5, and their mathematical formulation is provided in the
Appendix.

3.2.1. Physical similarity methods
Physical similarity methods assume that model parameters from one basin can be transferred to another basin with similar

physical and climatic attributes (Oudin et al., 2008; Cislaghi et al., 2020). In this study, we applied a physical similarity method
using two different approaches. The first approach used Inverse Distance Weight (IDW) interpolation (Shepard, 1968) to estimate
a set of model parameters in the receptor basin based on those of the donor basins. The second approach used IDW interpolation
on the outlet hydrographs computed in the receptor basin using the parameter sets of the donor basins. This second approach, also
known as ensemble modelling, has been applied in different studies with acceptable results (Oudin et al., 2008; Merz and Blöschl,
6
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Fig. 4. Correlations between catchment descriptors.

Table 3
Groups of catchment descriptors. The descriptor selected as representative of each correlated
group is indicated with the superscript ∗.

Group Catchment descriptors

Correlated CDs

1 Y∗
c , Cl1, Si1, Sa1, Si3, Sa3

2 A∗, Pr, SL, DNL
3 DD∗, SLP, AgrUse, NagrUse, CN
4 Si∗2 , Sa2

Non-correlated CDs 5 Xc, MinE, MaxE , Cl2, Cl3, RLandUse, Pmean, Tmean

2004; Razavi and Coulibaly, 2016; Arsenault and Brissette, 2014). Between 5 and 10 donor basins were evaluated to determine the
number of donors that provide the most reliable results, and after initial evaluation, the number of donor catchments was set to 10,
following the procedures of previous studies (Arsenault et al., 2019; Poissant et al., 2017; Arsenault and Brissette, 2014). Further
details on the mathematical formulations used in each approach can be found in Appendix.

A preliminary analysis of the correlations between the 25 catchment descriptors (CD) included in Table 1 was done in order to
identify strong correlations. Four groups of strongly correlated CDs (|𝑟| > 0.7) (Cislaghi et al., 2020; Goswami et al., 2007; Wagener
et al., 2007) were identified, while those CDs that are not correlated with any other were included in a fifth group (Table 3). For
each correlated group only one CD was used as representative of the whole group in order to avoid redundancies (Cislaghi et al.,
2020; Wagener et al., 2007).

Group 1 contains the following CDs: Yc, Cl1, Si1, Sa1, Si3, Sa3. These CDs show positive correlations between 0.84 and 0.96,
and negative correlations between −0.95 and −0.96. Considering the strong correlations between these CDs, we have only used the
Latitude of the basin centroid (Yc) to characterise (Table 3) this group (Cislaghi et al., 2020).

The second group includes the following CDs: A, Pr, SL and DNL. These CDs show strong positive correlations ranging from
0.78 to 0.95 (Fig. 4). The area of the catchment (A) was selected as the representative descriptor of this group.

Group 3 includes: AgrUse, Slp, DD, NAgrUse and CN, with positive correlations ranging from 0.78 to 0.80 and negative
correlations ranging from −0.79 to −0.89. The representative CD selected in this group was the Drainage Density (DD).

In the case of group 4, which includes only the soil types for depth 2 (30–60 cm), the selected CD was Si2.
Finally, group 5 includes the CDs that do not have any significant correlation with any other CD and therefore, all of them have

been considered for the application of the regionalisation methods. The values of the considered CDs are shown in Table 4

3.2.2. Spatial proximity method
Spatial proximity methods assume that catchments that are close to each other have a similar hydrological behaviour, assuming

that climatic, lithological and morphological conditions do not vary significantly in space (Merz and Blöschl, 2004; Cislaghi et al.,
2020).

The current methodology employs an approach similar to the physical similarity scheme, utilising both parameter-averaging and
output-averaging techniques. The difference lies in the use of IDW interpolation, which in this case calculates weights based on the
7
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Table 4
Values of the selected catchment descriptors for each basin in the study area.

ID Basin Xc Yc A DD MinE MaxE Si2 Cl2 Cl3 RLandUse P T
m m km2 km∕km2 m m % % % % mm C◦

1 Anllons 526420 4783068 433.53 1.03 59.43 473.43 41 20 22 7 1403 12.5
2 Anllons Carballo 535304 4787157 120.17 1.09 114.27 470.62 44 21 21 11 1224 12.9
3 Arnego Ulla 581745 4726991 330.09 0.82 404.95 943.05 53 22 20 3 1343 10.9
4 Barcala Tambre 517816 4756248 91.35 1.06 167.18 472.77 42 19 20 8 2115 12.6
5 Belelle 575228 4812210 55.42 1.02 57.47 561.86 45 16 20 3 1358 13.6
6 Covo 623969 4832821 42.35 1.44 44.29 623.8 49 19 22 1 1226 11.5
7 Deza 565856 4723404 542.39 0.98 205.53 831.99 39 21 20 5 1289 12.3
8 Dubra Tambre 527832 4764897 92.67 0.99 197.03 494.79 50 21 17 3 1909 12.4
9 Furelos 583169 4755852 151.02 0.97 365.02 747.25 40 20 20 2 1399 12.1
10 Grande Camarinas 502921 4773477 251.74 0.85 80.56 453.46 46 19 23 5 1639 12.7
11 Grova 515605 4658071 17.05 1.46 34.72 626.61 39 21 25 17 1297 13.2
12 Lerez 545408 4707565 412.07 1.49 70.84 861.62 49 21 21 6 1818 12.9
13 Mandeo 581149 4779205 247.67 1.04 328.62 709.75 41 22 17 4 1394 11.8
14 Masma 628069 4810607 144.46 1.29 75.31 888.87 52 22 20 7 1554 11.5
15 Mendo 568519 4782179 83.34 1.1 71.31 538.22 39 21 20 6 1393 12.3
16 Mera 591187 4825020 109.38 1.52 77.81 612.79 49 27 22 11 1472 12
17 Minor 522746 4663003 62.55 1.44 16.52 578.37 42 19 25 18 1592 13.5
18 Ouro 624219 4819497 161.99 1.42 45.96 861.28 48 27 22 5 1591 10.9
19 Rego das Mestas 582296 4830510 71.55 1.19 74.93 478.48 43 20 23 6 1406 12.5
20 Sar 532072 4747463 138.94 0.57 33.64 395.15 46 16 21 14 1730 13.2
21 Sor Baixo 602577 4826713 182.63 1.72 159.97 683.24 45 22 21 7 1538 10.9
22 Verdugo 548414 4697721 102.18 1.7 324.25 939.3 45 18 21 4 2081 13
23 Xallas1 516840 4766828 202.58 0.98 313.25 472.95 49 22 20 5 2028 12.1
24 Xubia 582604 4819666 99.75 1.22 47.32 515.1 40 22 22 7 1489 12.3

Table 5
Schemes used for the regionalisation of the streamflow time series.
Regionalisation scheme Approach Description Abbreviation

Physical similarity Parameter estimation IDW from catchment descriptors 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟
Ensemble modelling Weighted average with IDW from catchment descriptors 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠

Spatial proximity Parameter estimation IDW from centroids of the catchments 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟
Ensemble modelling Weighted average with IDW from centroids 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠

Regression-based Parameter estimation Multiple linear regression 𝐿𝑖𝑛𝑅𝑒𝑔
Parameter estimation Artificial Neural Networks 𝐴𝑁𝑁

distances between the centroids of the catchments. In this type of scheme, the IDW interpolation aims to enhance the influence of
nearby basins while reducing the impact of more distant ones on the final averaging process. The detailed mathematical formulations
of each method can be found in Appendix.

3.2.3. Regression-based methods
Regression-based methods relate a dependent variable (in our case each model parameter) to a set of independent variables

in our case the CDs) (Oudin et al., 2008; Razavi and Coulibaly, 2013). The CDs used in the regression must be selected taking
nto account their influence on the hydrological response of the catchment. Different combinations of CDs have been used in
revious studies (Merz and Blöschl, 2004; Cislaghi et al., 2020; Post, 2009; Heuvelmans et al., 2006), including meteorological
nd geomorphological variables as those included in Table 1.

We applied a feed forward back propagation Artificial Neural Network (𝐴𝑁𝑁) of three layers (an input layer, a hidden layer and
an output layer) and a Multiple Linear Regression (𝐿𝑖𝑛𝑅𝑒𝑔). The predictors used for each model parameter were the CDs that have a
Spearman’s correlation coefficient with that model parameter higher than 0.25 (Fig. 5). In the same way as in the physical similarity
schemes, only one CD from each highly correlated group (Table 3) was used in the regression, in order to avoid redundancies.

Both regression-based methods were trained using a leave-one-out-cross-validation scheme (Oudin et al., 2008; Merz and Blöschl,
2004).

3.3. Characterisation of uncertainty on the streamflow predictions and success rate (SR)

A bootstrapping technique was used to estimate the uncertainty on the streamflow predictions obtained from the different
regionalisation schemes (Efron, 1992; Heuvelmans et al., 2006; Arsenault and Brissette, 2014; Poissant et al., 2017). As mentioned in
Section 3.1, the hydrological model was calibrated in each basin following a Monte Carlo approach, and the parameters of the 25 best
simulations were retained as the behavioural parameter sets for each donor basin. In order to obtain the streamflow prediction in a
receptor catchment, the regionalisation schemes were applied 250 times, each time using a random behavioural parameter set from
each donor basin. In this manner, 250 streamflow predictions were obtained for each regionalisation scheme in each receptor basin.
8
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Fig. 5. Spearman’s correlation coefficient between CDs (horizontal axis) and model parameters (vertical axis). The black squares indicate the CDs used as
independent variables to predict the respective model parameters in the vertical axis.

From these, the performance of each regionalisation scheme was evaluated in terms of the Success Rate (SR) proposed by Arsenault
and Brissette (2014). The SR is defined as the total number of acceptable predictions divided by the total number of predictions
and is calculated using the following equation:

SR =
Number of acceptable predictions

Total number of predictions (2)

A SR of 0.6 indicates that the regionalisation scheme was successful on 60% of the 250 bootstrapped predictions. The threshold
established to consider a prediction as successful was that its NSE was larger than 75% of the average NSE derived from the 25
behavioural parameter sets obtained in calibration (Section 3.1). This threshold is slightly lower than the one used by Arsenault
and Brissette (2014) because the number of basins included in our study is smaller and thus, the performance of the regionalisation
scheme is expected to be to some degree lower.

This allows the estimation of the SR of each of the methods, the distribution of the expected regionalised NSE values and the
calculation of the mean and standard deviation of the distribution.

4. Results

4.1. Calibration and validation of the hydrological model

The MHIA hydrological model was independently calibrated in each basin, using 5000 quasi-random parameter sets and retaining
the 25 best simulations in terms of NSE during the calibration period (2008–2013), as described in Section 3.1. After identify the
25 behavioural parameter sets for each basin, these sets were used to run the model during the validation period (2013–2018) and
the entire period (2008–2018). In the appendix section, we provide plots related to the calibrated model for some of the study
catchments using the behavioural sets and the Generalised Likelihood Uncertainty Estimation methodology (GLUE) (Beven and
Freer, 2001; Beven, 2006).

Fig. 6 shows the average Nash–Sutcliffe Efficiency (NSE) coefficient computed at an hourly scale for the 25 behavioural
simulations in each basin. The results are presented for the calibration period (2008–2013), the validation period (2013–2018),
and the entire period (2008–2018). The Grova basin (basin 11 in Fig. 1 and Table 4) has the lowest NSE value, around 0.5. This
catchment is very small, covering only 17 km2, and is located in the southwestern limit of the study region. About one-third of the
basins exhibit mean NSE values between 0.50 and 0.65, while the other two-thirds show mean NSE values between 0.65 and 0.80.

In the following sections, the regionalisation schemes are evaluated only in the entire period (2008–2018) and at an hourly
scale. The NSE values corresponding to the entire period in Fig. 6 can be considered as a reference value for the evaluation of the
regionalisation schemes.

4.2. Physical similarity methods

Fig. 7 shows the probability distribution of the NSE coefficients obtained from the 250 bootstrapped parameter sets (Section 3.3)
in each basin for the period 2008–2018, using the two physical similarity methods (𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 and 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 in Table 5). The
histograms of the NSE coefficients corresponding to the 25 behavioural simulations in each basin (Section 4.1) are also shown in
red for reference and comparison purposes.

The global average of the NSE obtained with the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 and 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 methods is 0.68 and 0.56 respectively, with
a standard deviation of 0.13 in both cases. In overall terms, the distributions of the results present similar amplitudes with the
9
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Fig. 6. NSE coefficients in the calibration, validation and total periods. The values shown in figures (a), (b) and (c) correspond to the average NSE of the 25
behavioural simulations.

exception of the Miñor (17) and Ouro (18) rivers in the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 method, where a wider dispersion is observed. The results of
the ensemble-based physical similarity method (𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠) far outperformed the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 in most cases. Exceptions are the
basins Belelle (5), Grova (11) and Verdugo (22). In some basins the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 method reached higher NSE coefficients than those
obtained in the calibration of the hydrological model (Fig. 7). This is a well-known characteristic of ensemble modelling methods,
and it is explained by the error compensation between simulations, leading to predictions with better fits than those obtained with
a single parameter set. The reader is referred to Kumar et al. (2015), Farfán et al. (2020), Farfán and Cea (2022a) for more details
on ensemble modelling.

4.3. Spatial proximity methods

Fig. 8 shows the probability distribution of the NSE coefficients obtained with the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟 methods in the
24 basins. Overall, the results are similar to those obtained with the physical similarity methods. The average NSE obtained with
𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 (0.65) is significantly better than the average NSE obtained with 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟 (0.56), with standard deviations of the NSE
values of 0.13 and 0.15 respectively. In no case the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟 scheme outperformed the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 method. There are also a few
catchments (e.g. Ouro and Miñor basins) in which there is a high dispersion in the NSE distribution of the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟
results, which indicates a high uncertainty in the results given by this type regionalisation method (Fig. 7). The possible causes of
this behaviour are analysed in Section 4.5 in terms of the location of the watersheds in the study area and the density of nearby
watersheds.

4.4. Regression-based methods

The results obtained with the regression-based schemes are shown in Fig. 9. The global average NSE obtained with the 𝐴𝑁𝑁
scheme was 0.59 with a standard deviation of 0.10, while the global average NSE obtained with the 𝐿𝑖𝑛𝑅𝑒𝑔 scheme was 0.57, with
10
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Fig. 7. Probability distribution of the NSE coefficients for the physical similarity regionalisation schemes.

Table 6
Global performance of the regionalisation schemes.

Ranking Scheme 𝑁𝑆𝐸 𝜎𝑁𝑆𝐸 SR > 0.75

1 PhysicalEns 0.68 0.13 21/24
2 SpatialEns 0.65 0.13 21/24
3 ANN 0.58 0.12 16/24
4 LinReg 0.57 0.12 17/24
5 SpatialPar 0.56 0.15 16/24
6 PhysicalPar 0.56 0.13 13/24

a standard deviation of 0.11. The 𝐴𝑁𝑁 scheme has shown marginally better results than the 𝐿𝑖𝑛𝑅𝑒𝑔 scheme, but the difference in
performance is not relevant. The distribution of the NSE obtained shows that there is a large uncertainty related to the performance
of these methods in the study basins.

4.5. Discussion

The success rate (SR) obtained in each catchment with each regionalisation scheme is shown in Fig. 11.
11
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Fig. 8. Probability distribution of the NSE coefficients for the spatial proximity regionalisation schemes.

The two schemes based on ensemble modelling are clearly those with the best performance. In the case of catchments 4, 8,
14, 15, 16 and 18, the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 scheme has a SR close to 0, while the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 scheme has SRs greater than 0.75 in the
same catchments. Something similar occurs with catchments 15, 18 and 19, where the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟 scheme has low SR, while the
𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 method produces satisfactory SR in all of them. Additionally, there are no cases where the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 or 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟
methods produce higher SRs than the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 or 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 schemes.

Regarding regression-based schemes, poor streamflow reproduction (SR) persists for catchments 4, 8, 14, and 18. The reason
why ensemble-based methods provide the best results is that these schemes transfer the full set of parameters from the donor to the
receptor catchments, preserving the interaction and potential equifinality between hydrologic model parameters. These interactions
are lost when parameters are averaged or estimated individually, as occurs in parameter interpolation and regression-based methods.
This is in line with the works of Oudin et al. (2008), Arsenault and Brissette (2014), Poissant et al. (2017), which show the
12
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Fig. 9. Probability distribution of the NSE coefficients for the 𝐴𝑁𝑁 and 𝐿𝑖𝑛𝑅𝑒𝑔 regionalisation schemes.

to another. This drawback may be enhanced due to the hourly time scale of the modelling process in the present study, as parameter
uncertainty tends to dominate at finer temporal scales (Li et al., 2016; Farfán and Cea, 2022a).

Table 6 shows that, although the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 scheme produces the best results in terms of average NSE, its results are similar
to those of the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 scheme in terms of SR. In both schemes, 21 of the 24 catchments present a SR greater than 0.75. The
difference between these schemes is in the catchments in which the low SR occurs. In this regard, an advantage of the spatial
proximity-based methods over the other schemes applied in the present study is that by observing the spatial distribution of the
results, it is possible to understand in part the cases with low SR, if these correspond to a low concentration of nearby donor
catchments. This explains the SR close to 0 in catchments Miñor (17) and Grova (11), which are too distant from their donor
catchments (3, 4, 7, 8, 9, 10, 12, 20, 22, 23) in comparison with the rest of the rivers that show satisfactory results. The lack of
nearby donor catchments has a clear effect on the performance of spatial proximity methods, as pointed out by Ali et al. (2012),
Beck et al. (2016).

When the 𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑙𝑃 𝑎𝑟 and 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 schemes were applied, this limitation has been partially overcome since, as shown in
Fig. 11, the SR in the Miñor river is greater than 0.75 for the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 scheme, and greater than 0.5 in 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 schemes.
This is because in physical similarity schemes the lack of nearby catchments is not crucial, since it is compensated by other donor
13
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Fig. 10. Area of the basin vs. average NSE for the behavioural simulations (upper row) and different regionalisation schemes (middle and lower rows). 𝜌 is the
Spearman’s coefficient. The Grova and Belelle basins are marked within the black circle.

catchments with similar physical characteristics. However, this does not explain the persistently poor results in the Grova (11),
Belelle (5) and Verdugo (22) catchments, the two last ones with SRs close to 0.

The 𝐿𝑖𝑛𝑅𝑒𝑔 and 𝐴𝑁𝑁 methods applied in the catchments Grova (11) and Belelle (5) present SRs greater than 0.75, which
can be attributed to the fact that in the regression-based schemes, the catchment gap is not a drawback, since in these schemes
all the catchments are incorporated in the regression of the parameters in the remaining receiving catchment. Nevertheless, and
despite the fact that these methods present the best results in catchments 11 and 17, catchments with unsatisfactory SR are also
distributed within the study area, with slightly better results in the case of the 𝐴𝑁𝑁 scheme, probably due to its ability to identify
non-linear relationships between the CDs and the model parameters. The catchments with low SRs are mostly the same as those in
which the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟 methods also fail to produce good predictions. These low SRs can be attributed to the loss
of the interaction between the model parameters. However, the black box nature of the regression-based methods does not allow
detailed analysis of the cases with unsatisfactory results and the processes that may be involved in the relationship between input
and output variables, being this a major drawback in the application of this type of methodologies (Heuvelmans et al., 2006; Razavi
and Coulibaly, 2017; Farfán et al., 2020).

In addition, it is important to take into account that as explained by He et al. (2011) and Guo et al. (2021), when applied in an
area with a reduced number of catchments, regression-based methods may not reach their maximum efficiency. This is because the
main assumption of regression-based schemes states that there is an underlying relationship between CDs and parameters. However,
in practice, this neglects the principle of equifinality (Oudin et al., 2008; Poissant et al., 2017).

Our results are in agreement with studies such as those by Kokkonen et al. (2003), Young (2006) in which regression-based
methods performed better than parameter averaging methods (in our case 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃 𝑎𝑟 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃 𝑎𝑟). Nevertheless, these results
seem to be due to the large uncertainty of these methods resulting from the high variability in the regionalised parameter sets. A
possible approach to overcome these shortcomings could be to calibrate the model by using regionalised flow indices. These types
14
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Fig. 11. Spatial distribution of the mean SR for the regionalisation schemes.
15



Journal of Hydrology: Regional Studies 47 (2023) 101427J.F. Farfán and L. Cea

t
b
b
e
r
b
a

5

G
o
p
a
o

h
r
(
p

n

(

of schemes are constructed by establishing approximations between flow indices (such as mean annual flow) and CDs from donor
catchments. These relationships are then extrapolated to the ungauged catchments. These kinds of schemes have been implemented
in previous studies using machine learning techniques such as random forests or Bayesian frameworks (Almeida et al., 2016; Prieto
et al., 2019, 2022; Westerberg et al., 2016; Kavetski et al., 2018).

Fig. 10 shows that in the calibration, validation and total periods, the basins with smaller area tend to present lower NSE values
han those of larger area. This effect seems to be enhanced in the case of regionalisation schemes, where moderate correlations
etween mean NSE bootstrapped values and the catchment area have been detected. This correlation is more pronounced in methods
ased on spatial proximity and physical similarity. Based on this, the poor results in the Belelle (5) and Grova (11) basins are
xplained by a limitation in the structure of the hydrological model that makes it less accurate in small basins which causes that the
egionalisation schemes tend to lose accuracy in basins with smaller area. This explains the low SR obtained in the Grova (11) river
asin, which has an area of 17.5 km2, being the smallest in our study area and partly those of the Belelle (5) river basin, which has
n area of 55 km2, being the third smallest.

. Conclusions

The objectives of this study were focused on apply and evaluate different schemes for the regionalisation of streamflow series in
alicia, northwestern Spain. To this end, six regionalisation schemes were evaluated and organised as follows, two schemes based
n physical similarity, with average of parameters and average of outputs, two schemes based on spatial proximity with average of
arameters and average of outputs and two regression based methods, multiple linear regression and Artificial Neural Networks. To
ccount for the uncertainty inherent to this type of study a bootstrapping technique was used. The results were analysed in terms
f the probability distribution of the goodness-of-fit and the Success Rate of the regionalisation schemes.

The output-averaging methods provided the best results because they preserve the interaction between the parameters of the
ydrological model. These interactions are lost when the parameters are averaged or estimated individually, as it is the case in the
egression-based methods and in the methods based on parameter interpolation. This is in agreement with the works of Oudin et al.
2008), Arsenault and Brissette (2014), Poissant et al. (2017), which show the importance of transferring a complete set of model
arameters instead of transferring the parameters individually.

The comparison of the performance of the different regionalisation schemes shows that, When a receptor basin has a sufficient
umber of nearby donor basins, the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑠 methods provides the best performance. On the other hand, the 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑛𝑠 method

shows a better performance in areas where there is a low density of donor catchments.
The existence of correlations between the average NSE of the regionalisation schemes and the area of the basins shows that

the applied regionalisation schemes tend to lose accuracy in basins with a small area (NSE > 0.5 when A > 100 km2). This is
probably related to a limitation in the structure of the hydrological model, which causes low NSE values in the basins with smaller
areas. Therefore, in future research, other model structures could be compared and evaluated in terms of their ability to capture
the dominant hydrological processes in different catchments. This would help to identify models that can adequately represent the
‘‘uniqueness-of-the-place" (Prieto et al., 2022).

Regression-based methods can offer better results in watersheds where the other schemes are inefficient as is the case of Grova
and Miñor rivers, although with a wide distribution of the results, which can lead to poor performance in watersheds where the
other schemes perform well, so their application is not recommended in areas with a number of watersheds similar to that of the
present study.
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Appendix

Calibration and validation of the MHIA model

Spatial proximity methods
The weights for the average of the parameters are calculated by means of the 𝐼𝐷𝑊 interpolation (Shepard, 1968)applied as

follows:

𝐔𝑗receptor =
𝑀−1
∑

𝑖=1
𝐖𝑗,𝑖 ⋅ 𝜽𝑖donor (3)

𝐖𝑗,𝑖 =

(

𝑑−2𝑗,𝑖
∑𝑀−1

𝑖=1 𝑑−2𝑗,𝑖

)

(4)

where 𝐔𝑗receptor is the transferred parameter for the 𝑗th ungauged catchment, 𝑀 is the number of nearby catchments used in the
interpolation, 𝜽𝑖donor are the model parameters of the 𝑖th donor catchment, 𝐖𝑗,𝑖 is the vector of weights computed with the 𝐼𝐷𝑊
interpolation. Then, 𝑑𝑗,𝑖 is the distance between the centroids of the receptor (𝑗) and donor (𝑖) catchments (see Fig. 12). In the case
of the output-averaging, the discharge series in the receptor catchments are calculated as:

𝐐𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 =

𝑀
∑

𝑖=1
𝐐(𝜽𝑑𝑜𝑛𝑜𝑟𝑖 ) ⋅𝐖𝑗,𝑖 (5)

where 𝐐𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 is the hydrograph for the receptor 𝑗th catchment, 𝑄(𝑃 𝑑𝑜𝑛𝑜𝑟

𝑖 ) is the hydrograph obtained by averaging the hydrographs
generated by running the model with the parameters of the donor catchments 𝑖 = 1...𝑀 and 𝑊𝑖=1..𝑀 is the vector of weights obtained
from Eq. (4).

Regression-based methods
In the case of ANN, we have used a feed forward back propagation neural network consisting of three layers: an input layer, a

hidden layer and an output layer, which can be represented as:

𝐔𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 = 𝐖1 × 𝑡𝑎𝑛ℎ

(

𝐖2 × 𝐂𝐃 + 𝛽
)

(6)

where the catchment descriptors (𝐂𝐃) are the input of the ANN, 𝐔𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 is the output of the ANN (the 13 parameters of the

hydrological model), 𝛽 is the bias, 𝐖1 is the matrix of the weights between the hidden and the output layer, and 𝐖2 is the matrix
of the weights between the input and the hidden layer.

The Multiple Linear Regression (MLR) model was implemented as:

𝐔𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 =

(

𝐂𝐃 ×𝐖 + 𝜷
)

(7)

where 𝐔𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 is the output of the MLR model (the 13 parameters of the hydrological model), 𝐂𝐃 are the catchment descriptors

and 𝐖 is the matrix of linear regression coefficients and 𝛽 is a bias vector.

Physical similarity methods
In the present work we have applied a physical similarity method using two different approaches. In the first approach a set of

parameters is estimated using the 𝐼𝐷𝑊 interpolation as:

𝐔𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 =

𝑀−1
∑

𝑖=1
𝐖𝑗,𝑖 ⋅ 𝜽𝑑𝑜𝑛𝑜𝑟𝑖 (8)

𝐖𝑗,𝑖 =

(

𝐩𝐝−2𝑗,𝑖
∑𝑀−1

𝑖=1 𝐩𝐝−2𝑗,𝑖

)

(9)

where 𝑈 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
𝑗 is the predicted parameter for the 𝑗th catchment, 𝑀 is the number of catchments, 𝜃𝑑𝑜𝑛𝑜𝑟𝑖 are the model parameters

of the 𝑖th donor catchment, 𝑊𝑗,𝑖 is the vector of weights to transfer the model parameters from the basin 𝑖 to the basin 𝑗, and 𝑝𝑑𝑗,𝑖
is the euclidean distance between the CDs of the receptor and donor catchments, calculated as:

𝐩𝐝𝑗,𝑖 =

√

√

√

√

𝑁
∑

𝑘=1
⋅(𝐂𝐃𝑘,𝑗 − 𝐂𝐃𝑘,𝑖)2 (10)

where 𝐂𝐃𝑘,𝑗 is the 𝑘th catchment descriptor of the 𝑗th catchment, 𝑁 is the number of catchment descriptors. In order to apply
Eq. (10), the descriptors are normalised to [−1; +1] (Garambois et al., 2015; Cislaghi et al., 2020; Zhang and Chiew, 2009; Oudin
et al., 2008).

The output-averaging is calculated as follows:

𝐐𝑗 =
𝑀
∑

𝐐(𝜽𝑖) ⋅𝐖𝑗,𝑖 (11)
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Fig. 12. Calibration and validation of the MHIA model using the GLUE methodology for some basins in the study region (Beven and Freer, 2001; Beven, 2006).

where 𝐐𝑗 is the hydrograph for the receptor 𝑗th catchment, 𝐐(𝜽𝑖=1..𝑀 ) are the hydrographs obtained form the model run with the
parameters of the donor catchments 𝑖 = 1...𝑀 and 𝐖𝑖=1..𝑀 is the vector of weights obtained from Eq. (9) used for the averaging of
the hydrographs.
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