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Summary. In this work we present some numerical methods for solving evolutive
convection-diffusion problems. In order to obtain a physically admissible solution
we search for monotone and accurate methods that are also non-linear due to the
Godunov’s theorem. We will center in Fluctuation Splitting methods, [DSBR93], in
particular in PSI scheme, and characteristic type methods, where a new Lagrangian
method is proposed. Finally, a numerical test is presented to assess the performance
of the numerical methods described in the present work.
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1 Introduction

In this work we consider the following evolutive convection-diffusion problem:
∂φ

∂t
+ v · gradφ− ν∆φ = f in Ω × (0, T ),

φ = 0 on Γ × (0, T ),

φ(x, 0) = φ0(x) in Ω,

(1)

where Ω is a bounded domain of Rd, d ≥ 2, with boundary Γ and T > 0.
Also, v : Ω× (0, T ) −→ Rd is the convection vector field, f : Ω× (0, T ) −→ R
is the source term, φ0 : Ω −→ R is the initial data and ν > 0 is the diffusion
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coefficient. For simplicity we assume the transporting fluid to satisfy the no-
slip condition so equivalently, we consider that the velocity field vanishes on
the boundary.

Linear convection-diffusion equations model a variety of important prob-
lems from different fields of engineering and applied sciences. In many cases
the diffusive term is much smaller than the convective one, giving rise to the
so-called convection dominated problems. For convection-diffusion problems
with dominant convection, methods of characteristics and the Fluctuation
Splitting (FS) methods, for convective term discretization, are extensively
used (see [P82], [DSBR93], [CGN07]).
Characteristics methods are based on time discretization of the material time
derivative. For space discretization, they has been combined with finite dif-
ferences [DR82], finite elements ([P82], [BPS83], [BD88], [MPS98]), spectral
finite elements ([BSW99]), discontinuous finite elements ([BM99]), and so on.
When combined with finite elements they are also called Lagrange-Galerkin
methods. In particular, when the characteristic methods are formulated in
Lagrangian coordinates (respectively, Eulerian coordinates) they are called
Lagrangian methods (respectively, semi-Lagrangian methods). In the present
work we will consider the combination of Lagrangian and semi-Lagrangian
methods with a spatial discretization by using finite elements spaces.

One of the most successful nonlinear Fluctuation Splitting schemes is the
PSI method, introduced in [DSBR93]. The PSI method is specifically de-
signed to be exact for linear solutions of the pure transport equation. It is
monotone and is particularly accurate in zones of strong gradients or discon-
tinuities of the solution. In the present case, to approximate the equation in
(1) we discretize the convection operator by the PSI scheme, the time deriva-
tive by a Crank-Nicolson scheme and the diffusion operator by the standard
Galerkin method, using linear finite elements. In order to perform the theo-
retical analysis, the PSI method is formulated as a nonlinear finite element
Petrov-Galerkin (see [CGN07]), so the usual techniques are used to develop
the existence, convergence and error estimates theory.

After the present section we introduce the PSI method applied to prob-
lem (1). In Section 3 a second order full Lagrangian characteristic method
is proposed. Finally, to test the proposed methods, a numerical example is
presented in Section 4 which has a solution developing a steep layer and a
velocity field which is not divergence-free.

2 The PSI method

The PSI method is one of the most advantageous FS schemes. Their main
design idea is to split the element convective residual RT =

∫
T
v · gradφ be-
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tween the nodes of the element that are downstream according to the velocity
v. This distribution is made through coefficients βTi such that βTi R

T is the
residual contribution of the element T to the node xi. For consistency these
coefficients must satisfy: 0 ≤ βTi ≤ 1 and

∑
i β

T
i = 1. The way in which these

constants are defined is what distinguishes the different FS schemes.
For the particular PSI method these coefficients are determined in order to
exactly solve the stationary pure transport equation.

We assume Ω to be a polygonal or polyhedral domain and consider a
triangulation Th of Ω by triangles in 2D and tetrahedra in 3D. We define the
finite-dimensional space of piecewise affine finite elements built on Th:

V 1
h =

{
ϕh ∈ C0(Ω) : ϕh|T ∈ P1 (T ) , ∀T ∈ Th, vh = 0 on Γ

}
.

We use the PSI method just to discretize the convective part. For this aim
the test functions corresponding to this term are taken from a new space
of piecewise constant functions Wh directly related to the flux distribution
coefficients βTi . We introduce an interpolation operator Πφh from V 1

h onto the
space Wh, in particular we have Πφhϕh =

∑
i ϕh(xi)β

T
i (φh) (see [CGN07] for

more details). Notice that it depends on the unknown φh due to the non-linear
nature of the PSI method.

We introduce the number of time steps, N , the time step ∆t = T/N , and
the mesh-points, tn = n∆t for n = 0, 1/2, 1, . . . , N . Next, we define the form
anh : V 1

h × V 1
h −→ R for 0 ≤ n ≤ N as

anh(φh, ψh) =

∫
Ω

(vn · gradφh)Πφhψh + ν

∫
Ω

gradφh · gradψh (2)

being v|T =
1

|T |

∫
T

v dx, ∀T ∈ Th. Here, the time discretization scheme we

are going to consider is a Crank-Nicholson-like scheme. It arises from approx-
imating the time derivative at t = tn+ 1

2
, for 0 ≤ n ≤ N − 1, by a centered

formula and using a second order interpolation formula involving values at
t = tn and t = tn+1 to approximate the rest of the terms at the same time
t = tn+ 1

2
.

Thus, we have the following discrete variational approximation of (1)
Given φ0∆t,h ∈ V 1

h , find φ̂∆t,h = {φn∆t,h}Nn=1 ∈
[
V 1
h

]N
such that∫

Ω

φn+1
∆t,h − φn∆t,h

∆t
ψh dx+

1

2

(
an+1
h (φn+1

∆t,h, ψh) + anh(φn∆t,h, ψh)
)

=
1

2

∫
Ω

(
fn+1 + fn

)
ψh dx, ∀ψh ∈ V 1

h , for n = 0, . . . , N − 1.

(3)

In practice, to eliminate the nonlinearity of convective term we use the fol-
lowing approximation∫

Ω

(vn+1 · gradφn+1
∆t,h)Πφn+1

∆t,h
ψh '

∫
Ω

(vn+1 · gradφn+1
∆t,h)Πφn∆t,h

ψh.
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Notice that due to the use of the PSI method to discretize the convective
term, the approximate problem (3) is written under a Petrov-Galerkin formu-
lation. Is just this writting what allows us to develop the theoretical analysis
of the discrete problem by using the tools of functional analysis adapted to
this kind of formulation.

In [CGN07] the PSI method combined with piecewise linear finite ele-
ments is presented and analyzed for steady convection-diffusion equations.
The authors perform a convergence, error and maximum principle analysis.
In particular, it is proved that the scheme is first-order accurate in H1 norm
and well-balanced up to second order for convection-dominated flows.

3 Characteristics method

In this section we consider a second order characteristics scheme combined
with quadratic finite elements for discretization of (1). We denote by Xe the
motion corresponding to the velocity v and P its reference map, and define
the material description Ψm of a spatial field Ψ by

Ψm(p, t) = Ψ(Xe(p, t), t). (4)

We recall that, according to the standard formalism of continuum mechanics,
x = X(p, t) is the position at time t of the material point p, while the reference
map P (x, t) yields the material point located at position x at time t. We
assume that Xe(p, 0) = p, ∀p ∈ Ω. We are going to write the problem (1)
in Lagrangian coordinates p. For this, we introduce the change of variable
x = Xe(p, t) and use the chain rule, obtaining (see [Ben09])

φ̇m detF − ν Div
[
F−1F−T∇φm detF

]
= fm detF in Ω × (0, T ),

φm = 0 on Γ × (0, T ),

φm(p, 0) = φ0(p) in Ω,

(5)

being F (·, t) the Jacobian matrix of the deformation Xe(·, t). The time dis-
cretization scheme we are going to consider is a Crank-Nicholson-like scheme.
It arises from approximating the material time derivative at t = tn+ 1

2
, for

0 ≤ n ≤ N − 1, by a centered formula and using a second order interpolation
formula involving values at t = tn and t = tn+1 to approximate the rest of
the terms at the same time t = tn+ 1

2
.

Regarding the space discretization we use the piecewise quadratic finite el-
ements space. We consider the finite-dimensional spaces of piecewise quadratic
finite elements built on Th:

V 2
h =

{
ϕh ∈ C0(Ω) : ϕh|T ∈ P2 (T ) , ∀T ∈ Th, ϕh = 0 on Γ

}
.

Thus, we have the following discrete variational approximation of (5)
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Given φ0m,∆t,h ∈ V 2
h , find φ̂m,∆t,h = {φnm,∆t,h}Nn=1 ∈

[
V 2
h

]N
such that

1

2

∫
Ω

(
detFn+1 + detFn

) φn+1
m,∆t,h − φnm,∆t,h

∆t
ψh

+
ν

4

∫
Ω

([F−1F−T detF ]n+1 + [F−1F−T detF ]n)

(∇φn+1
m,∆t,h +∇φnm,∆t,h) · ∇ψh

=

∫
Ω

detFn+1fn+1
m + detFnfnm

2
ψh, ∀ψh ∈ V 2

h , for n = 0, . . . , N − 1.

(6)
Since usually the characteristic curves cannot be exactly computed, in prac-
tice, we replace in (6) the exact characteristic curves and gradient tensors by
accurate enough approximations. More precisely, we use a second order Runge-
Kutta approximation of Xe. Moreover, in order to obtain an approximate
solution of φn in Eulerian coordinates, we are going to calculate the spatial

description of material field φnm,∆t,h. More precisely, we calculate φ̂∆t,h ∼ φ̂
as follows

φn∆t,h(x) := φnm,∆t,h(PnRK(x)) ∀x ∈ Ω, 0 ≤ n ≤ N, (7)

being PnRK the second order Kunge-Kutta approximation of Pn.
Thus, we shall denote this Lagrangian method by (LG)2. Furthermore, we

shall denote by (SLG)12 the semi-Lagrangian scheme analogous to (LG)2, but
re-initializing the transformation to the identity at the beginning of each time
step (see [Ben09] for more details).

In [Ben09] the Lagrange Galerkin method (6) with a second order Runge-
Kutta approximation of Xe is analyzed for a more general problem. A l∞(L2)
stability inequality is stated and l∞(L2) error estimates of order O(∆t2) +
O(h2) are obtained; these estimates are uniform in the hyperbolic limit. More
precisely, for ∆t small enough, the following estimate is obtained:∣∣∣∣∣∣ ̂φm − φm,∆t,h

∣∣∣∣∣∣
l∞(L2(Ω))

+
√
ν
∣∣∣∣∣∣ ̂S[∇φm −∇φm,∆t,h]

∣∣∣∣∣∣
l2(L2(Ω))

≤ J1(∆t2 + h2),
(8)

where Ŝ[ψ] := {ψn+1 + ψn}N−1n=0 for a sequence ψ̂ = {ψ}Nn=0. Here, J1 is
bounded in the hyperbolic limit. In particular, this result is also valid when
ν = 0. Furthermore, stability and error estimates of order O(∆t2)+O(h2) are
proved in the l∞(H1)-norm. More precisely, the following estimate is obtained:∣∣∣∣∣∣ ̂R∆t[φm − φm,∆t,h]

∣∣∣∣∣∣
l2(L2(Ω))

+
√
ν
∣∣∣∣∣∣ ̂∇φm −∇φm,∆t,h

∣∣∣∣∣∣
l∞(L2(Ω))

≤ J2(∆t2 + h2),
(9)

where R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1
n=0

for a sequence ψ̂ = {ψ}Nn=0. Here, J2

does not depend on ν. From these estimates and by using appropiate changes
of variable, analogous estimates in Eulerian coordinates are deduced.
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4 Numerical results

We consider the following example to compare the numerical results obtained
with semi-Lagrangian, (full) Lagrangian methods and the PSI method.
The spatial domain is Ω = (0, 1)×(0, 1), T = 1, and v = ∇ψ, ν = σ1, f =
0, being ψ = (1 − cos(2πx1))(1 − cos(2πx2)) and σ1 = 0.001. The initial
data varies between φ0(0, 0) = 0 and φ0(1, 1) = 1 according to the following
expression:

φ0(x1, x2) =

 0 if ξ < 0,
1
2 (1− cos(πξ)) if 0 ≤ ξ ≤ 1,

1 if 1 < ξ,
(10)

where ξ = x1 + x2 − 1/2. We impose Dirichlet boundary conditions given
by the initial data. In Figure 1 we plot the velocity field and the initial data.
This example has been solved in [CW08] with a semi-Lagrangian method com-
bined with a discontinuous Galerkin discretization, and also with a standard
Galerkin scheme. The Gibbs phenomena is observed for both methods. The
oscillations produced by the standard Galerkin scheme are observed even far
from the transition layer.

Fig. 1. Velocity field (left) and initial date (right).

Here we solve this problem with the Lagrangian method (LG)2, the semi-
Lagrangian scheme (SLG)12 and with the PSI scheme given by (3).

In Fig. 2, 3 and 4 we represent the numerical solution contours at final time
T = 1 and the section x1 −→ φN∆t,h(x1, 1/2), computed by using the (SLG)12,
(LG)2 and PSI methods, respectively. The semi-Lagrangian method presents
oscillations near the transition layer, so Gibbs phenomena is observed, while
the Lagrangian method and the PSI scheme are accurate even in the steep
layer around the diagonal. These features can be observed on the plots of the
sections.

So we can conclude that for obtaining a physically acceptable solution,
both (LG)2 and PSI can be used. In order to compare them, we can say that
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Fig. 2. Numerical solution contours at T = 1 (left) and the section x1 −→
φN∆t,h(x1, 1/2) (right) for the (SLG)12 scheme, h = 1/16, ∆t = 1/60.

Fig. 3. Numerical solution contours at T = 1 (left) and the section x1 −→
φN∆t,h(x1, 1/2) (right) for the (LG)2 scheme, h = 1/16, ∆t = 1/60.

although (LG)2 is less diffusive than PSI, it is also computationally more
expensive (see [Ben09]).



8 Authors Suppressed Due to Excessive Length

Fig. 4. Numerical solution contours at T = 1 (left) and the section x1 −→
φN∆t,h(x1, 1/2) (right) for the (PSI) scheme, h = 1/32, ∆t = 1/60.

Acknowledgements

The research of T. Chacón Rebollo, M. Gómez Mármol y M. Beńıtez Garćıa
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