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Abstrat

In this paper we propose a uni�ed formulation to introdue Lagrangian and semi-Lagrangian veloity

and displaement methods for solving the Navier-Stokes equations. This formulation allows us to state

lassial and new numerial methods. Several examples are given. We ombine them with �nite element

methods for spatial disretization. In partiular, we propose two new seond-order harateristis meth-

ods in terms of the displaement, one semi-Lagrangian and the other one pure Lagrangian. The pure

Lagrangian displaement methods are useful for solving free surfae problems and �uid-struture inter-

ation problems beause the omputational domain is independent of the time and �uid-solid oupling at

the interphase is straightforward. However, for moderate to high-Reynolds number �ows, they an lead

to high distortion in the mesh elements. When this happens it is neessary to remesh and reinitialize the

transformation to the identity. In order to assess the performane of the obtained numerial methods, we

solve di�erent problems in two spae dimensions. In partiular, numerial results for a sloshing problem

in a retangular tank and the �ow in a driven avity are presented.

Keywords: Navier-Stokes equations, harateristis methods, Lagrange-Galerkin methods, seond-order

shemes, pure Lagrangian methods

1. Introdution

The main goal of the present paper is to introdue new seond-order pure Lagrangian and semi-

Lagrangian methods for the numerial solution of Navier-Stokes equations. In the salar ase, methods

of harateristis for time disretization of onvetion-di�usion problems are extensively used (see the

review paper [17℄). These methods are based on time disretization of the material time derivative and

were introdued in the beginning of the eighties of the last entury ombined with �nite di�erenes or

�nite elements for spae disretization (see [14℄, [25℄). When ombined with �nite elements they are also

alled Lagrange-Galerkin methods. In partiular, when the harateristis methods are formulated in a

�xed referene domain (respetively, in the urrent domain) they are alled pure Lagrangian methods

(respetively, semi-Lagrangian methods). In partiular, the lassial method of harateristis, as intro-

dued in [14℄ and [25℄, is semi-Lagrangian and �rst order in time. There exists an extensive literature

studying this harateristis method ombined with �nite elements applied to salar onvetion-di�usion

equations. If ∆t denotes the time step, h the mesh-size and k the degree of the �nite element spae,

estimates of the form O(hk)+O(∆t) in the l∞(L2(Rd))-norm are shown in [29℄ (d denotes the dimension

of the spatial domain). Moreover, in [25℄ error estimates of the form O(hk)+O(∆t)+O(hk+1/∆t) in the

l∞(L2(Ω))-norm are obtained under the assumption that the normal veloity vanishes on the boundary

of Ω. All of these estimates involve onstants depending on solution norms. For linear �nite elements and

for a veloity �eld vanishing on the boundary, onvergene of order O(h2) + O(min(h, h2/∆t)) + O(∆t)
in the l∞(L2(Ω))-norm is stated in [1℄, where the onstants only depend on the data. In priniple, the

method of harateristis has been introdued for evolution equations but an adaption to solve stationary

onvetion-di�usion problems has been proposed in [7℄.

Email addresses: marta.benitez�ud.es (M. Benítez), alfredo.bermudez�us.es (A. Bermúdez)

Preprint submitted to Elsevier January 13, 2014



In order to inrease the order of time and spae approximations, higher order shemes for the dis-

retization of the material derivative and higher order �nite element spaes should be used. In [27℄, a

seond-order harateristis method for solving onstant oe�ient onvetion-di�usion equations with

Dirihlet boundary onditions is studied. The Crank-Niholson disretization has been used to approxi-

mate the formulation involving the material time derivative. For a divergene-free veloity �eld vanishing

on the boundary and a smooth enough solution, stability and O(∆t2) + O(hk) error estimates in the

l∞(L2(Ω))-norm are stated (see also [8℄ and [9℄ for further analysis).

Reently, for salar linear onvetion-di�usion problems, we have introdued so-alled pure Lagrangian

methods ombined with �nite elements. In partiular, in [4℄ and [5℄ l∞(H1(Ω)) stability and l∞(H1(Ω))
error estimates of order O(∆t2)+O(hk) were proved for a seond-order pure Lagrange-Galerkin method.

Moreover, in [13℄, semi-Lagrangian and pure Lagrangianmethods are proposed and analyzed for onvetion-

di�usion equations. Error estimates for Galerkin disretization of a pure Lagrangian formulation and for

a disontinuous Galerkin disretization of a semi-Lagrangian formulation are obtained. The estimates

are written in terms of the projetions onstruted in [11℄ and [12℄. In [4℄ and [5℄ a pure Lagrangian

formulation has been used for more general problems. Spei�ally, we have onsidered a (possibly degen-

erate) variable oe�ient di�usive term instead of the simpler Laplaian, general mixed Dirihlet-Robin

boundary onditions, and a time dependent domain. Moreover, we have analyzed a sheme with approx-

imate harateristi urves and presented numerial results for pure Lagrangian and semi-Lagrangian

methods. In [2℄ a uni�ed formulation to introdue Lagrangian and semi-Lagrangian methods for solving

salar linear onvetion-di�usion problems has been proposed and new stability estimates for the pure

Lagrangian method proposed in [4℄ and [5℄ have been obtained. More preisely, an l∞(H1)−stability
estimate independent of the di�usion oe�ient has been proved. Besides, if the given veloity �eld is

inompressible, a stability inequality independent of the �nal time has been shown.

Usually, the unonditional stability of harateristis methods is only proved under the assumption

that the inner produts in the Galerkin formulation are exatly alulated. This is rarely possible so in

pratie they have to be alulated by using numerial quadrature. In general, this adds some terms

to the �nal error estimates and, in some ases, it produes the loss of unonditional stability. There

are several papers in the literature analyzing the e�et of numerial integration in Lagrange-Galerkin

methods (see [24℄, [29℄, [26℄, [19℄, [30℄, [9℄, [3℄).

In this paper, we introdue a uni�ed formulation to state pure Lagrangian and semi-Lagrangian

methods for solving vetor nonlinear onvetion-di�usion equations. More preisely, we are interested in

solving the Navier-Stokes equations. For this purpose, we use the mathematial formalism of ontinuum

mehanis (see for instane [22℄) following the ideas given in [2℄.

The paper is organized as follows. In Setion 2 the initial-boundary value problem to be solved is

posed in a time dependent bounded domain and some hypotheses and notations onerning motions are

stated. In Setion 3, we introdue a quite general hange of variable obtaining a new strong formulation of

the problem. Moreover, the standard assoiated weak problem is obtained. In Setion 4, semi-Lagrangian

shemes in terms of the veloity are proposed. All these methods arise from the formulation obtained

in the previous setion. By using this formulation, in Setion 5, two new Lagrange-Galerkin shemes in

terms of the displaement are proposed, one pure Lagrangian and another one semi-Lagrangian. Finally,

in Setion 6 numerial examples are presented.

2. Statement of the nonlinear onvetion di�usion problem. General assumptions and no-

tations

Let Ω be a bounded domain in R
d
(d = 2, 3) with Lipshitz boundary Γ divided into two parts: Γ =

ΓD ∪ ΓN
, with ΓD ∩ ΓN = ∅. Let t0 and T be two non-negative onstants and X : Ω × [t0, T ] −→ R

d

be a motion in the sense of Gurtin [22℄. In partiular, X ∈ C3(Ω× [t0, T ]) and for eah �xed t ∈ [t0, T ],
X(·, t) is a one-to-one funtion satisfying

detF (p, t) > 0 ∀p ∈ Ω, (1)

being F (·, t) the deformation gradient of X(·, t). We all Ωt = X(Ω, t), Γt = X(Γ, t), ΓD
t = X(ΓD, t) and

ΓN
t = X(ΓN , t), for t ∈ [t0, T ]. We assume that Ωt0 = Ω. Let us introdue the trajetory of the motion

T := {(x, t) : x ∈ Ωt, t ∈ [t0, T ]}.
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For eah t, X(·, t) is a one-to-one mapping from Ω onto Ωt; hene it has an inverse

P (·, t) : Ωt −→ Ω, (2)

suh that

X(P (x, t), t) = x, P (X(p, t), t) = p ∀(x, t) ∈ T ∀(p, t) ∈ Ω× [t0, T ]. (3)

The mapping P : T −→ Ω, so de�ned is alled the referene map of motion X and P ∈ C3(T ) (see [22℄
pp. 65− 66). We denote by p the material points in Ω, by t the urrent time, by x the spatial points in

Ωt with t > t0 and by y the points in Ωτ with τ ≤ T . Besides, �elds de�ned in T are alled spatial �elds.

If Ψ is a spatial �eld, Ψ̇ denotes the material time derivative, that is Ψ̇(x, t) =
∂

∂t
(Ψ(X(p, t), t))|p=P (x,t).

Let us reall that the spatial desription of the veloity v : T −→ R
d
is de�ned by

v(x, t) := Ẋ(P (x, t), t) ∀(x, t) ∈ T , (4)

being Ẋ the partial derivative of X with respet to the seond argument (time).

Let us onsider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find two funtions v : T −→ R
d
and π : T −→ R suh that

ρ(x, t)
∂v

∂t
(x, t) + ρ(x, t) gradv(x, t)v(x, t)

(5)

− div
{
−π(x, t)I + µ(x, t)( gradv(x, t) + gradvt(x, t))

}
= b(x, t),

div v(x, t) = g(x, t), (6)

for x ∈ Ωt and t ∈ (t0, T ), subjet to the boundary onditions

v(x, t) = vD(x, t) on ΓD
t , (7)(

−π(x, t)I + µ(x, t)( gradv(x, t) + gradvt(x, t))
)
n(x, t) = h(x, t) on ΓN

t , (8)

for t ∈ (t0, T ), and the initial ondition

v(x, t0) = v0(x) in Ω. (9)

In the above equations, ρ : T −→ R, µ : T −→ R, b : T −→ R
d
, g : T −→ R, v0 : Ω −→ R

d
,

vD(·, t) : ΓD
t −→ R

d
and h(·, t) : ΓN

t −→ R
d
, t ∈ (t0, T ), are given spatial �elds, I is the identity seond

order tensor and n(·, t) is the outward unit normal vetor to Γt. Let us notie that for g = 0 the above

equations are the inompressible Navier-Stokes equations. Otherwise, they arise when modelling low-

Mah number �ows as those arising in many gas ombustion problems. In this ase funtion g is obtained
from the mass onservation equation and the state law of the gas mixture as a funtion of temperature

whih, in its turn, is omputed by solving the energy onservation equation.

For given τ ≤ T , motion X an also be de�ned relative to the on�guration at time τ . It is the

mapping

Xτ : Ωτ × [t0, T ] −→ R
d
,

given by

Xτ (y, t) := X(P (y, τ), t) ∀(y, t) ∈ Ωτ × [t0, T ]. (10)

Thus, mapping t ∈ (t0, T ) → Xτ (y, t) represents the trajetory desribed by a material point that is at

position y at time τ . Moreover, we notie that x = Xτ (y, t) if and only if y = Xt(x, τ). If Ψ is a spatial

�eld, we introdue the �eld Ψτ , de�ned in Ωτ × [t0, T ] by

Ψτ (y, t) := Ψ(Xτ (y, t), t) ∀(y, t) ∈ Ωτ × [t0, T ]. (11)

These funtions are depited in Figure 1. Notie that for τ = t

Ψt(x, t) := Ψ(Xt(x, t), t) = Ψ(X(P (x, t), t), t) = Ψ(x, t).
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X(·, t)
X(·, τ)

P (·, τ)

Xτ (·, t)

p

Ω

y

Ωτ

x

Ωt

Ψ(·, t)
R

R
d

Lin

Ψτ (y, t) := Ψ(Xτ (y, t), t)

Figure 1: Funtions referred to on�guration at time τ ≤ T .

Let us introdue the displaement �eld relative to the on�guration at time τ , that is,

uτ (y, t) := Xτ (y, t)− y ∀(y, t) ∈ Ωτ × [t0, T ]. (12)

In the following A denotes a bounded domain in R
d
. Let us reall the de�nition of the Hilbert spaes

H1(A) and L2(A):

L2(A) =

{
f : A −→ R measurable,

∫

Ω

f2dx < ∞

}
, (13)

H1(A) =

{
f : A −→ R measurable, f,

∂f

∂xi
∈ L2(A), i = 1, . . . , d

}
. (14)

We also introdue the notation H1(A) =
(
H1(A)

)d
and denote by H1

ΓP (A) the losed subspae of H1(A)
de�ned by

H1
ΓP (A) :=

{
w ∈ H1(A), w|ΓP ≡ 0

}
, (15)

where ΓP
is a part of the boundary of A of non-null measure.

3. Strong problem and weak formulation in Ωτ × (t0, T )

We are going to develop some formal omputations in order to write the above problem (SP) in

on�guration Ωτ , where τ ≤ T . First, from the de�nition of the material time derivative and by using

the hain rule, we get

v̇(x, t) =
∂v

∂t
(x, t) + grad xv(x, t)v(x, t) =

∂

∂t
vτ (y, t)|y=Xt(x,τ) ∀(x, t) ∈ T . (16)

By using the above de�nitions, we have

vτ (y, t) =
∂Xτ

∂t
(y, t) =

∂uτ

∂t
(y, t). (17)

Then, from (16) and (17), we dedue

∂v

∂t
(x, t) + grad xv(x, t)v(x, t) =

∂2uτ

∂t2
(y, t)|y=Xt(x,τ) ∀(x, t) ∈ T . (18)

Next, by evaluating equations (5) and (6) at point x = Xτ (y, t) and then using (18), we obtain

ρ(Xτ (y, t), t)
∂2uτ

∂t2
(y, t)− div x {−π(Xτ (y, t), t)I

(19)

+µ(Xτ (y, t), t)( grad xv(Xτ (y, t), t) + grad xv
t(Xτ (y, t), t))

}
= b(Xτ (y, t), t),

div xv(Xτ (y, t), t) = g(Xτ (y, t), t), (20)

4



for (y, t) ∈ Ωτ × (t0, T ). Note that in (19) and (20) there are derivatives with respet to the Eulerian

variable x. In order to write a strong formulation of problem (SP) in oordinates (y, t) ∈ Ωτ × (t0, T )
we use the divergene theorem, the hange of variable x = Xτ (y, t) and the hain rule, to obtain the

equalities

− div x {−π(Xτ (y, t), t)I +µ(Xτ (y, t), t)( grad xv(Xτ (y, t), t) + grad xv
t(Xτ (y, t), t))

}

= −
1

detFτ (y, t)
div y {(−πτ (y, t)I (21)

+µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))
detFτ (y, t)F

−t
τ (y, t)

}
,

div xv(Xτ (y, t), t) = tr ( grad xv(Xτ (y, t), t)) = tr

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t)

)

(22)

= grad y
∂uτ

∂t
(y, t)F−1

τ (y, t) · I = grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t),

for (y, t) ∈ Ωτ × (t0, T ) and where we have used equality (17). Here and hereafter, the dot is used to

denote the salar produt either of vetors or of seond order tensors. Moreover, in the above equations,

Fτ denotes the Jaobian matrix of the transformation Xτ . Next, by evaluating equations (7) and (8) at

point x = Xτ (y, t) and equation (9) at point P (y, τ), and using (17), we obtain the following boundary

and initial onditions for

∂uτ

∂t
:

∂uτ

∂t
(y, t) = (vD)τ (y, t) on ΓD

τ × (t0, T ),
(
−πτ (y, t)I + µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))

F−t
τ (y, t)mτ (y) = |F−t

τ (y, t)mτ (y)|hτ (y, t) on ΓN
τ × (t0, T ),

∂uτ

∂t
(y, t0) = v0(P (y, τ)) in Ωτ ,

where mτ is the outward unit normal vetor to ∂Ωτ . The seond ondition has been obtained by using

the hain rule and noting that

n(Xτ (y, t), t) =
F−T
τ (y, t)mτ (y)∣∣F−T
τ (y, t)mτ (y)

∣∣ (y, t) ∈ Γτ × (t0, T ).

Thus, from these results, we dedue the following formulation in Ωτ ×(t0, T ) of the initial-boundary value
problem (SP):

(SP)τ STRONG PROBLEM IN Ωτ × (t0, T ). Find two funtions uτ : Ωτ × [t0, T ] −→ R
d
and

πτ : Ωτ × [t0, T ] −→ R suh that

ρτ (y, t)
∂2uτ

∂t2
(y, t)−

1

detFτ (y, t)
div y

{
(−πτ (y, t)I

+µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))
detFτ (y, t)F

−t
τ (y, t)

}
(23)

= bτ (y, t),

grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t) = gτ (y, t), (24)
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for (y, t) ∈ Ωτ × (t0, T ), subjeted to the boundary onditions

∂uτ

∂t
(y, t) = (vD)τ (y, t) on ΓD

τ × (t0, T ), (25)

(
−πτ (y, t)I + µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))

(26)

F−t
τ (y, t)mτ (y) = |F−t

τ (y, t)mτ (y)|hτ (y, t) on ΓN
τ × (t0, T ),

and the initial ondition

∂uτ

∂t
(y, t0) = v0(P (y, τ)) in Ωτ . (27)

Depending of the hoie of τ , we an obtain di�erent Lagrangian and semi-Lagrangian methods. More

preisely, the pure Lagrangian methods (respetively, the semi-Lagrangian methods) are obtained when

τ is �xed along the time integration, that is, it is independent of the urrent time t (respetively, when
τ hanges along the time integration, that is, it hanges with t). Among semi-Lagrangian methods we

an distinguish forward semi-Lagrangian (if τ < t) and bakward semi-Lagrangian (if τ > t). Now, we

are going to obtain a weak formulation of (SP)τ . Let us multiply (23) by detFτ and by a test funtion

z ∈ H1
ΓD
τ
(Ωτ ), integrate in Ωτ , and apply the usual Green's formula and (26). Similarly, let us multiply

(24) by detFτ and by a test funtion q ∈ L2(Ωτ ), and integrate in Ωτ . We get

∫

Ωτ

ρτ (y, t) detFτ (y, t)
∂2uτ

∂t2
(y, t) · z(y) dy −

∫

Ωτ

πτ (y, t) detFτ (y, t)F
−t
τ (y, t) · gradz(y) dy

+

∫

Ωτ

µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

)

(28)

detFτ (y, t)F
−t
τ (y, t) · grad z(y) dy =

∫

Ωτ

bτ (y, t) · z(y) detFτ (y, t) dy

+

∫

ΓN
τ

|F−t
τ (y, t)mτ (y)| detFτ (y, t)hτ (y, t) · z(y) dAy ,

∫

Ωτ

detFτ (y, t) grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t)q(y) dy =

∫

Ωτ

detFτ (y, t)gτ (y, t)q(y) dy, (29)

∀z ∈ H1
ΓD
τ
(Ωτ ), ∀q ∈ L2(Ωτ ) and t ∈ (t0, T ). These are formal omputations, i.e., we have assumed

appropriate regularity of the involved data and solution.

Remark 3.1. Notie that equations (28)-(29) an also be written in terms of the veloity instead of the

displaement, by replaing

∂uτ

∂t
(y, t) with vτ (y, t). Thus, from (28)-(29) we an obtain Lagrangian and

semi-Lagrangian methods in terms of either the veloity or the displaement. We will all veloity meth-

ods (respetively, displaement methods) to those written in terms of the veloity (respetively, of the

displaement). The lassial harateristis methods for Navier-Stokes equations are semi-Lagrangian

veloity shemes. In the next setions, we are going to obtain, from (28)-(29), di�erent harateristis

methods, in partiular the lassial ones.

4. Time disretization: harateristis methods in terms of veloity

In this setion, we present semi-Lagrangian veloity methods. They are obtained by introduing

di�erent time semi-disretizations of problem (SP)τ written in terms of vτ (y, t) instead of

∂uτ

∂t
(y, t).

Remark 4.1. Notie that Xτ (y, t) and Fτ (y, t) appearing in (28)-(29) are unknown; but they an be

approximated by using an approximation of either the veloity or the displaement.

• Displaement methods. For these methods, approximations of Xτ and Fτ an be easily obtained by

using the following equalities:

Xτ (y, t) = y + uτ (y, t),

Fτ (y, t) = gradXτ (y, t) = I + graduτ (y, t).
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• Veloity methods. For these methods, we an observe that Xτ and Fτ are the solutions to the

following initial-value problems of ordinary di�erential equations (y is arbitrarily taken but �xed):

∂Xτ

∂t
(y, t) = vτ (y, t) Xτ (y, τ) = y,

∂Fτ

∂t
(y, t) = grad yvτ (y, t) Fτ (y, τ) = I,

being y ∈ Ωτ . Then, approximations of Xτ and Fτ an be obtained by using numerial methods to

solve these initial-value problems.

The following notations will be used in the rest of the paper. Let us introdue the number of time

steps, N , the time step ∆t = (T − t0)/N , and the mesh-points tn = t0 + n∆t.
Depending on the values of τ and t, on the di�erentiation formulas used to approximate the time

derivatives and on the numerial formulas used to approximate the other terms, we an obtain di�erent

harateritis methods. Let Ψ be a spatial �eld. We will use the following notation:

Ψl
j(y) := Ψtj(y, tl) ∀y ∈ Ωtj , ∀j, l. (30)

In partiular, for j = l we will simply write Ψl
instead of Ψl

l. Let us notie that F
l
l = I ∀ l.

Similarly, in what follows we will denote byΨl
j,∆t (respetively, Ψ

l
j,∆t,h) approximations of Ψl

j obtained

with a time semidisretized sheme (respetively, a fully disretized sheme).

• One-step semi-Lagrangian shemes: This one-parameter family of methods arises from �xing τ =

tn+1, t = tn+θ in (23) and t = tn+1 in (24), and using a two-point formula to approximate

∂vτ

∂t
and

a onvex linear ombination involving the values at t = tn and t = tn+1 to approximate the rest of

the terms at time tn+θ. More preisely:

(θρn+1(x) + (1− θ)ρnn+1,∆t(x))
vn+1
∆t (x) − vn

n+1,∆t(x)

∆t

−θ div
{(

−πn+1
∆t (x)I + µn+1(x)

(
gradvn+1

∆t (x) +
(
gradvn+1

∆t (x)
)t
(x)
))}

−(1− θ)
1

detFn
n+1,∆t(x)

div
{(

−πn
n+1,∆t(x)I + µn

n+1,∆t(x)
(
gradvn

n+1,∆t(x) (31)

(Fn
n+1,∆t)

−1(x) + (Fn
n+1,∆t)

−t(x)
(
gradvn

n+1,∆t

)t
(x)
))

detFn
n+1,∆t(x)(F

n
n+1,∆t)

−t(x)
}

= θbn+1(x) + (1− θ)bn
n+1,∆t(x), x ∈ Ωtn+1

,

div vn+1
∆t (x) = gn+1(x), x ∈ Ωtn+1

, (32)

for 0 ≤ n ≤ N − 1.

Partiular ases:

1. When θ = 1, we obtain the lassial �rst order semi-Lagrangian sheme proposed in [25℄.

2. When θ = 1/2, we obtain a new seond-order semi-Lagrangian sheme similar to the one

analyzed in [8℄ and [9℄ for linear salar onvetion-di�usion problems.

• Two-step seond-order semi-Lagrangian sheme: This method has been proposed in [10℄ for the

inompressible Navier-Stokes equations. It an be introdued in our framework by taking τ = tn+1,

t = tn+1, and using the following seond-order bakward formula to approximate

∂vτ

∂t
:

∂vτ

∂t
(y, t) =

1

2∆t
(3vτ (y, t)− 4vτ (y, t−∆t) + vτ (y, t− 2∆t)) +O(∆t2). (33)
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More preisely:

ρn+1(x)
3vn+1

∆t (x)− 4vn
n+1,∆t(x) + vn−1

n+1,∆t(x)

2∆t

− div
{(

−πn+1
∆t (x)I + µn+1(x)

(
gradvn+1

∆t (x) +
(
gradvn+1

∆t (x)
)t
(x)
))}

(34)

= bn+1(x), x ∈ Ωtn+1
,

div vn+1
∆t (x) = gn+1(x), x ∈ Ωtn+1

, (35)

where 1 ≤ n ≤ N − 1. In [3℄ this method has been applied to solve natural onvetion problems.

Remark 4.2. In the above methods, the harateristis urves and their gradients are approximated by

using the proedures given in Remark 4.1. Notie that F does not appear either in the lassial �rst order

semi-Lagrangian sheme or in the two-step seond-order semi-Lagrangian sheme. However, for both

methods, in order to alulate vl
n+1,∆t, it is neessary to obtain an approximation of the harateristis

urves X l
n+1, being l = n for the lassial method and l = n, n− 1 for the seond-order one (see [3℄ for

further details).

5. New harateristis methods in terms of the displaement

In order to obtain harateristis methods in terms of the displaement, we onsider the following

formulas to approximate the time derivatives

∂2uτ

∂t2
(y, t) and

∂uτ

∂t
(y, t):

• Three-point seond-order entered formula:

∂2uτ

∂t2
(y, t) =

uτ (y, t+∆t)− 2uτ (y, t) + uτ (y, t−∆t)

∆t2
+O(∆t2). (36)

• Two-point seond-order entered formula:

∂uτ

∂t
(y, t) =

uτ (y, t+∆t)− uτ (y, t−∆t)

2∆t
+O(∆t2). (37)

5.1. Pure Lagrangian sheme

In this setion we introdue a pure Lagrange-Galerkin sheme for fully disretization of (28)-(29).

Firstly, we propose a seond order pure Lagrangian sheme for time semi-disretization of (28)-(29).

Next, we propose a spae disretization of the time semidisretized problem by using �nite elements

spaes.

5.1.1. Time disretization

By taking τ = t0 −
∆t

2
and t = tn+1/2 in (28)-(29), and using the seond-order formulas (36) and

(37), we obtain the time-disretized sheme

∫

Ωt0−∆t/2

ρn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t

u
n+3/2
−1/2,∆t − 2u

n+1/2
−1/2,∆t + u

n−1/2
−1/2,∆t

∆t2
· z dy

−

∫

Ωt0−∆t/2

π
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t(F

n+1/2
−1/2,∆t)

−t · gradz dy

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t

gradu
n+3/2
−1/2,∆t − gradu

n−1/2
−1/2,∆t

2∆t

(F
n+1/2
−1/2,∆t)

−1(F
n+1/2
−1/2,∆t)

−t · grad z dy +

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t(F

n+1/2
−1/2,∆t)

−t
(38)

( gradu
n+3/2
−1/2,∆t)

t − ( gradu
n−1/2
−1/2,∆t)

t

2∆t
(F

n+1/2
−1/2,∆t)

−t · gradz dy

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆tb

n+1/2 ◦X
n+1/2
−1/2,∆t · z dy
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+

∫

ΓN
t0−∆t/2

|(F
n+1/2
−1/2,∆t)

−tmt0−∆t/2| detF
n+1/2
−1/2,∆th

n+1/2 ◦X
n+1/2
−1/2,∆t · z dAy ,

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t

gradu
n+3/2
−1/2,∆t − gradu

n−1/2
−1/2,∆t

2∆t
· (F

n+1/2
−1/2,∆t)

−tq dy

(39)

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆tg

n+1/2 ◦X
n+1/2
−1/2,∆tq dy,

∀z ∈ H1
ΓD
t0−∆t/2

(Ωt0−∆t/2), ∀q ∈ L2(Ωt0−∆t/2) and 0 ≤ n ≤ N−1. In the above pure Lagrangian problem,

we have used the following notations

X
n+1/2
−1/2,∆t(y) := y + u

n+1/2
−1/2,∆t(y),

F
n+1/2
−1/2,∆t(y) := I + gradu

n+1/2
−1/2,∆t(y),

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1. Notie that problem (38)-(39) is linear in the unknowns u
n+3/2
−1/2,∆t

and π
n+1/2
−1/2,∆t.

In general, Ωt0−∆t/2 is unknown; instead we alulate an approximation by using the following seond

order approximation of the motion:

X∆t(p, t0−∆t/2) = p− v0(p)
∆t

2
,

for p ∈ Ω.

Remark 5.1. In order to obtain the initial onditions for the pure Lagrangian method (38)-(39), we observe

that u
−1/2
−1/2(y) := u−1/2(y, t0−∆t/2) = 0 ∀y ∈ Ωt0−∆t/2. Moreover, a third order approximation of u

1/2
−1/2

an be obtained by using (27), namely

u
1/2
−1/2(y) = ∆tv0

(
y + v0(y)

∆t

2

)
+O(∆t3) ≃ ∆tv0

(
y + v0(y)

∆t

2

)
,

where we have used that u−1/2(y, t0 −∆t/2) = 0. Then we take

u
1/2
−1/2,∆t(y) := ∆tv0

(
y + v0(y)

∆t

2

)
.

In the aademi test examples, we have observed that for the above method to be seond-order in time for

the veloity it is neessary to start with a third order approximation of u
1/2
−1/2 as the previous one.

Remark 5.2. By using analogous proedures to the ones in Remark 5.1, we an obtain approximate Dirih-

let boundary onditions for the displaement. More preisely, by using that

u
n+3/2
−1/2 (y) = u

n+1/2
−1/2 (y) + ∆tvn+1

(
X−1/2(y, tn−1/2) + vn−1/2(X−1/2(y, tn−1/2))

3

2
∆t

)
+O(∆t3),

we dedue the following Dirihlet boundary ondition for u
n+3/2
−1/2 :

u
n+3/2
−1/2,∆t(y) = u

n+1/2
−1/2,∆t(y) + ∆tvn+1

D

(
X

n−1/2
−1/2,∆t(y) + v

n−1/2
D (X

n−1/2
−1/2,∆t(y))

3

2
∆t

)
on ΓD

t0−∆t/2.

5.1.2. Spae disretization. Finite element method

We propose a spae disretization of the above problem by using ontinuous pieewise-linear+bubble

�nite element for eah displaement omponent and ontinuous pieewise-linear for pressure.

Let us suppose Ωt0−∆t/2 is a bounded domain in R
d
with a Lipshitz polygonal boundary. Let us

onsider a suitable family of regular triangulations of Ωt0−∆t/2 to be denoted by Th, onsisting of elements
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K of diameter≤ h. Moreover, we assume it is ompatible with the partition of the boundary into ΓD
t0−∆t/2

and ΓN
t0−∆t/2.

We de�ne the following polynomial spaes:

P1 (K) =
{
q|K : q : Rd −→ R polynomial of degree ≤ 1

}
,

Pb (K) =
{
q + αλK

b : q ∈ P1 (K) , α ∈ R
}
,

where λK
b is the bubble funtion of element K.

We onsider the following spaes of �nite elements:

Xh =
{
wh ∈

(
C0(Ωt0−∆t/2)

)d
: wh|K ∈ (Pb (K))d , ∀K ∈ Th

}
, (40)

X0h =
{
wh ∈ Xh : wh = 0 on ΓD

t0−∆t/2

}
, (41)

Vh =
{
ϕh ∈ C0(Ωt0−∆t/2) : ϕh|K ∈ P1 (K) , ∀K ∈ Th

}
. (42)

In order to obtain fully disrete sheme of the time semidisretizated problem (38)-(39) we use the ap-

proximations of funtion spaes H1(Ωt0−∆t/2), H
1
ΓD
t0−∆t/2

(Ωt0−∆t/2) and L2(Ωt0−∆t/2) given by (40), (41)

and (42), respetively.

Thus, we obtain the following fully disrete problem:

(LG).− Find two sequenes of funtions û−1/2,∆t,h = {u
n+3/2
−1/2,∆t,h}

N−1
n=0 ∈ [Xh]

N
and π̂−1/2,∆t,h =

{π
n+1/2
−1/2,∆t,h}

N−1
n=0 ∈ [Vh]

N
suh that

∫

Ωt0−∆t/2

ρn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h

u
n+3/2
−1/2,∆t,h − 2u

n+1/2
−1/2,∆t,h + u

n−1/2
−1/2,∆t,h

∆t2
· zh dy

−

∫

Ωt0−∆t/2

π
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h(F

n+1/2
−1/2,∆t,h)

−t · grad zh dy

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h

gradu
n+3/2
−1/2,∆t,h − gradu

n−1/2
−1/2,∆t,h

2∆t

(F
n+1/2
−1/2,∆t,h)

−1(F
n+1/2
−1/2,∆t,h)

−t · grad zh dy
(43)

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h(F

n+1/2
−1/2,∆t,h)

−t

( gradu
n+3/2
−1/2,∆t,h)

t − ( gradu
n−1/2
−1/2,∆t,h)

t

2∆t
(F

n+1/2
−1/2,∆t,h)

−t · grad zh dy

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,hb

n+1/2 ◦X
n+1/2
−1/2,∆t,h · zh dy

+

∫

ΓN
t0−∆t/2

|(F
n+1/2
−1/2,∆t,h)

−tmt0−∆t/2| detF
n+1/2
−1/2,∆t,hh

n+1/2 ◦X
n+1/2
−1/2,∆t,h · zh dAy , ∀zh ∈ X0h

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,h

gradu
n+3/2
−1/2,∆t,h − gradu

n−1/2
−1/2,∆t,h

2∆t
· (F

n+1/2
−1/2,∆t,h)

−tqh dy

(44)

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,hg

n+1/2 ◦X
n+1/2
−1/2,∆t,hqh dy, ∀qh ∈ Vh,
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for 0 ≤ n ≤ N − 1, with

u
−1/2
−1/2,∆t,h(y) = 0, for all node y of mesh Th, (45)

u
1/2
−1/2,∆t,h(y) = ∆tv0

(
y + v0(y)

∆t

2

)
, for all node y of mesh Th, (46)

u
n+3/2
−1/2,∆t,h(y) = u

n+1/2
−1/2,∆t,h(y) + ∆tvn+1

D

(
X

n−1/2
−1/2,∆t,h(y) + v

n−1/2
D (X

n−1/2
−1/2,∆t,h(y))

3

2
∆t

)

(47)

for all node y on ΓD
t0−∆t/2,

and where X
n+1/2
−1/2,∆t,h(y) = y + u

n+1/2
−1/2,∆t,h(y), F

n+1/2
−1/2,∆t,h|K = I + gradu

n+1/2
−1/2,∆t,h|K for y ∈ Ωt0−∆t/2,

K ∈ Th and 0 ≤ n ≤ N − 1.

By using the solution of problem (LG), we an obtain approximations of the followings �elds: the ve-

loity relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 , the veloity in Eulerian oordinates at times {tn+1}

N−1
n=0 ,

the motion relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 and the pressure in Eulerian oordinates at times

{tn+1/2}
N−1
n=0 . These approximations will be denoted respetively by {vn+1

−1/2,∆t,h}
N−1
n=0 , {vn+1

∆t,h}
N−1
n=0 ,

{Xn+1
−1/2,∆t,h}

N−1
n=0 and {π

n+1/2
∆t,h }N−1

n=0 .

• Approximate veloity relative to Ωt0−∆t/2. It an be easily obtained by using (17) and a

seond-order entered formula to approximate

∂u−1/2

∂t
. More preisely, sine

vn+1
−1/2(y) =

(
∂u−1/2

∂t

)
(y, tn+1) =

u
n+3/2
−1/2 (y)− u

n+1/2
−1/2 (y)

∆t
+O(∆t2)

we de�ne

vn+1
−1/2,∆t,h(y) :=

u
n+3/2
−1/2,∆t,h(y)− u

n+1/2
−1/2,∆t,h(y)

∆t
,

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1.

• Motion approximation relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 . Noting that u−1/2(y, t) =

X−1/2(y, t)− y and using a seond-order entered formula, we obtain

Xn+1
−1/2(y) = y +

u
n+3/2
−1/2 (y) + u

n+1/2
−1/2 (y)

2
+O(∆t2).

Then we de�ne the approximation

Xn+1
−1/2,∆t,h(y) := y +

u
n+3/2
−1/2,∆t,h(y) + u

n+1/2
−1/2,∆t,h(y)

2
,

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1.

• Approximate veloity in Eulerian oordinates. Let us denote by {yhi }
Nh

v
i=1 the verties of

mesh Th. In order to obtain an approximate veloity in Eulerian oordinates, we onsider this as a

pieewise linear funtion on the moved mesh T̃
n+1
h , being {Xn+1

−1/2,∆t,h(y
h
i )}

Nh
v

i=1 the verties of this

mesh. The values of vn+1
∆t,h at verties {Xn+1

−1/2,∆t,h(y
h
i )}

Nh
v

i=1, an be obtained by using vn+1
−1/2,∆t,h.

Sine we have

vn+1(Xn+1
−1/2,∆t,h(y

h
i )) ≃ vn+1(Xn+1

−1/2(y
h
i )) = vn+1

−1/2(y
h
i ) ≃ vn+1

−1/2,∆t,h(y
h
i ),

we take the approximation

vn+1
∆t,h(X

n+1
−1/2,∆t,h(y

h
i )) := vn+1

−1/2,∆t,h(y
h
i ), (48)

for 0 ≤ n ≤ N − 1. Notie that
⋃

K∈T̃
n+1

h

K ∼ Ωtn+1
.
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• Approximate pressure in Eulerian oordinates. In order to obtain this we use proedures

analogous to the ones in the previous point. That is, we onsider approximate pressure as a pieewise

linear funtion on the moved mesh T̃
n+1/2
h , being {X

n+1/2
−1/2,∆t,h(y

h
i )}

Nh
v

i=1 the verties of this mesh. The

values of the approximate pressure at verties {X
n+1/2
−1/2,∆t,h(y

h
i )}

Nh
v

i=1, are obtained as follows: �rstly,

πn+1/2(X
n+1/2
−1/2,∆t,h(y

h
i )) ≃ πn+1/2(X

n+1/2
−1/2 (yhi )) = π

n+1/2
−1/2 (yhi ) ≃ π

n+1/2
−1/2,∆t,h(y

h
i ),

and then we take

π
n+1/2
∆t,h (X

n+1/2
−1/2,∆t,h(y

h
i )) := π

n+1/2
−1/2,∆t,h(y

h
i ),

for 0 ≤ n ≤ N − 1. Notie that
⋃

K∈T̃
n+1/2
h

K ∼ Ωtn+1/2
.

Notie that for the Lagrangian shemes the omputational domain is the same for all time steps. However,

in order to alulate the veloity or the pressure in Eulerian oordinates, the moved mesh is used. For real

�uid mehanis problems, this mesh an present large deformations. For this reason, when this happens

it is neessary to remesh and reinitialize the transformation to the identity. Let us assume that we have

deided to reinitialize the problem at time tr−1/2, thus the new referene domain is

⋃

K∈T̃
r−1/2
h

K ∼ Ωtr−1/2
.

In order to solve the problem (LG) in the new referene domain, we remesh this domain and alulate

the new initial onditions as follows:

utr−1/2
(y, tr−1/2) = 0, (49)

utr−1/2
(y, tr+1/2) = ∆tv

(
y + v(y, tr)

∆t

2
, tr

)
+O(∆t3) ≃ ∆tvr

∆t,h

(
y + vr

∆t,h(y)
∆t

2

)
. (50)

In order to obtain an approximate initial ondition of utr−1/2
(y, tr+1/2) we need vr

∆t,h that is alulated

by using (48).

However, we want to emphasize that in the examples inluded in the Setion 6 of the present paper,

reinitialization for the pure Lagrangian method has not been used.

5.2. Semi-Lagrangian sheme

By taking τ = tn−1/2 and t = tn+1/2 in (28)-(29) and using the seond-order formulas (36) and (37),

we obtain

∫

Ωtn−1/2

ρn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t

u
n+3/2
n−1/2,∆t − 2u

n+1/2
n−1/2,∆t

∆t2
· z dy −

∫

Ωtn−1/2

π
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−t · grad z dy

1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t gradu

n+3/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−1

(51)

(F
n+1/2
n−1/2,∆t)

−t · gradz dy +
1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−t

( gradu
n+3/2
n−1/2,∆t)

t(F
n+1/2
n−1/2,∆t)

−t · gradz dy =

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆tb

n+1/2 ◦X
n+1/2
n−1/2,∆t · z dy

+

∫

ΓN
tn−1/2

|(F
n+1/2
n−1/2,∆t)

−tmtn−1/2
| detF

n+1/2
n−1/2,∆th

n+1/2 ◦X
n+1/2
n−1/2,∆t · z dAy ,

1

2∆t

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t gradu

n+3/2
n−1/2,∆t · (F

n+1/2
n−1/2,∆t)

−tq dy

(52)

=

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆tg

n+1/2 ◦X
n+1/2
n−1/2,∆tq dy,
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∀z ∈ H1
ΓD
tn−1/2

(Ωtn−1/2
), ∀q ∈ L2(Ωtn−1/2

) and 0 ≤ n ≤ N − 1. In the above semi-Lagrangian problem,

we have used that u
n−1/2
n−1/2 ≡ 0, and the following notations

X
n+1/2
n−1/2,∆t(y) = y + u

n+1/2
n−1/2,∆t(y),

F
n+1/2
n−1/2,∆t(y) = I + gradu

n+1/2
n−1/2,∆t(y),

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

We propose a spae disretization of the above problem by using ontinuous pieewise-linear+bubble

�nite elements for eah omponent of the displaement and ontinuous pieewise-linear for pressure.

Let us suppose Ωtn−1/2
is a bounded domain in R

d
with a Lipshitz polygonal boundary for 0 ≤ n ≤

N − 1. Let us onsider a suitable family of regular triangulations of Ωtn−1/2
to be denoted by T

n−1/2
h ,

onsisting of elements K of diameter ≤ h. Moreover, we assume it is ompatible with the partition of

the boundary into ΓD
tn−1/2

and ΓN
tn−1/2

.

We onsider the following spaes of �nite elements:

X
n−1/2
h =

{
wh ∈

(
C0(Ωtn−1/2

)
)d

: wh|K ∈ (Pb (K))
d
, ∀K ∈ T

n−1/2
h

}
, (53)

X
n−1/2
0h =

{
wh ∈ X

n−1/2
h : wh = 0 on ΓD

tn−1/2

}
, (54)

V
n−1/2
h =

{
ϕh ∈ C0(Ωtn−1/2

) : ϕh|K ∈ P1 (K) , ∀K ∈ T
n−1/2
h

}
. (55)

In order to obtain fully disrete sheme of the time semidisretizated problem (51)-(52) we use the ap-

proximations of funtion spaes H1(Ωtn−1/2
), H1

ΓD
tn−1/2

(Ωtn−1/2
) and L2(Ωtn−1/2

) given by (53), (54) and

(55), respetively. Moreover, by using proedures analogous to the ones in the previous setion we obtain

the approximate initial and boundary onditions for the displaement.

Thus, we obtain the following fully disrete problem:

(SLG)2.− Find two sequene of funtions {u
n+3/2
n−1/2,∆t,h}

N−1
n=0 ∈

N−1∏

n=0

X
n−1/2
h and {π

n+1/2
n−1/2,∆t,h}

N−1
n=0 ∈

N−1∏

n=0

V
n−1/2
h suh that

∫

Ωtn−1/2

ρn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h

u
n+3/2
n−1/2,∆t,h − 2u

n+1/2
n−1/2,∆t,h

∆t2
· zh dy −

∫

Ωtn−1/2

π
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h(F

n+1/2
n−1/2,∆t,h)

−t · grad zh dy

1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h gradu

n+3/2
n−1/2,∆t,h

(F
n+1/2
n−1/2,∆t,h)

−1(F
n+1/2
n−1/2,∆t,h)

−t · grad zh dy
(56)

+
1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h(F

n+1/2
n−1/2,∆t,h)

−t( gradu
n+3/2
n−1/2,∆t,h)

t

(F
n+1/2
n−1/2,∆t,h)

−t · grad zh dy =

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,hb

n+1/2 ◦X
n+1/2
n−1/2,∆t,h · zh dy

+

∫

ΓN
tn−1/2

|(F
n+1/2
n−1/2,∆t,h)

−tmtn−1/2
| detF

n+1/2
n−1/2,∆t,hh

n+1/2 ◦X
n+1/2
n−1/2,∆t,h · zh dAy ,

∀zh ∈ X
n−1/2
0h ,
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1

2∆t

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,h gradu

n+3/2
n−1/2,∆t,h · (F

n+1/2
n−1/2,∆t,h)

−tqh dy

(57)

=

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,hg

n+1/2 ◦X
n+1/2
n−1/2,∆t,hqh dy, ∀qh ∈ V

n−1/2
h ,

with

u
n+1/2
n−1/2,∆t,h(y) = ∆tvn

∆t,h

(
y + vn

∆t,h(y)
∆t

2

)
, for all node y of mesh T

n−1/2
h , (58)

u
n+3/2
n−1/2,∆t,h(y) = u

n+1/2
n−1/2,∆t,h(y) + ∆tvn+1

D

(
y + v

n−1/2
D (y)

3

2
∆t

)
for all node y on ΓD

tn−1/2
, (59)

for 0 ≤ n ≤ N − 1, where vn
∆t,h is an approximation of the spatial veloity alulated as explained below

and

X
n+1/2
n−1/2,∆t,h(y) = y + u

n+1/2
n−1/2,∆t,h(y), F

n+1/2
n−1/2,∆t,h|K = I + gradu

n+1/2
n−1/2,∆t,h|K,

for y ∈ Ωtn−1/2
, K ∈ T

n−1/2
h and 0 ≤ n ≤ N − 1. Notie that this problem is analogous to the one in the

previous setion but reinitializing the transformation to the identity at eah time step.

By using proedures analogous to the ones in the previous setion, we an obtain approximations of

the pressure in Eulerian oordinates, the veloity and the motion, by using the solution of problem

(SLG)2.

• Approximate veloity relative to Ωtn−1/2
at time tn+1: vn+1

n−1/2,∆t,h. It an be easily obtained

by using (17) and a seond-order entered formula to approximate

∂uτ

∂t
. More preisely, sine

vn+1
n−1/2(y) =

∂un−1/2

∂t
(y, tn+1) =

u
n+3/2
n−1/2(y)− u

n+1/2
n−1/2(y)

∆t
+O(∆t2)

≃
u
n+3/2
n−1/2,∆t,h(y)− u

n+1/2
n−1/2,∆t,h(y)

∆t
,

we take

vn+1
n−1/2,∆t,h(y) :=

u
n+3/2
n−1/2,∆t,h(y)− u

n+1/2
n−1/2,∆t,h(y)

∆t
,

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

• Approximate motion relative to Ωtn−1/2
at time tn+1: Xn+1

n−1/2,∆t,h. Noting that uτ (y, t) =

Xτ (y, t)− y and using a seond-order entred formula, we obtain

Xn+1
n−1/2(y) = y +

u
n+3/2
n−1/2(y) + u

n+1/2
n−1/2(y)

2
+O(∆t2).

Then we de�ne the approximation

Xn+1
n−1/2,∆t,h(y) := y +

u
n+3/2
n−1/2,∆t,h(y) + u

n+1/2
n−1/2,∆t,h(y)

2
,

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

• Approximate veloity in Eulerian oordinates at time tn+1: vn+1
∆t,h. Let us denote by {yhi }

Nh
v

i=1

the verties of mesh T
n−1/2
h . Notie that these verties an depend on time instant. For simpliity,

we do not expliit this dependene. In order to obtain an approximate veloity in Eulerian oor-

dinates, we onsider this is pieewise linear on the moved mesh T̃
n+1
h , being {Xn+1

n−1/2,∆t,h(y
h
i )}

Nh
v

i=1

14



the verties of this mesh. The values of the approximate veloity at verties {Xn+1
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1,

an be obtained by using vn+1
n−1/2,∆t,h. Sine we have

vn+1(Xn+1
n−1/2,∆t,h(y

h
i )) ≃ vn+1(Xn+1

n−1/2(y
h
i )) = vn+1

n−1/2(y
h
i ) ≃ vn+1

n−1/2,∆t,h(y
h
i ),

we take the approximation

vn+1
∆t,h(X

n+1
n−1/2,∆t,h(y

h
i )) := vn+1

n−1/2,∆t,h(y
h
i ),

for 0 ≤ n ≤ N − 1. Notie that
⋃

K∈T̃
n+1

h

K ∼ Ωtn+1
.

• Approximate pressure in Eulerian oordinates at time tn+1/2: π
n+1/2
∆t,h . In order to obtain

the pressure values in Eulerian oordinates, we onsider the approximate pressure as a pieewise

linear funtion on the moved mesh T̃
n+1/2
h , being {X

n+1/2
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1 the verties of this mesh.

The values of the approximate pressure at verties {X
n+1/2
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1, are obtained as follows:

�rstly,

πn+1/2(X
n+1/2
n−1/2,∆t,h(y

h
i )) ≃ πn+1/2(X

n+1/2
n−1/2 (y

h
i )) = π

n+1/2
n−1/2(y

h
i ) ≃ π

n+1/2
n−1/2,∆t,h(y

h
i ),

and then we take

π
n+1/2
∆t,h (X

n+1/2
n−1/2,∆t,h(y

h
i )) := π

n+1/2
n−1/2,∆t,h(y

h
i ),

for 0 ≤ n ≤ N − 1. Notie that
⋃

K∈T̃
n+1/2
h

K ∼ Ωtn+1/2
.

We also reall that, when we are alulating u
n+3/2
n−1/2,∆t,h, v

n
∆t,h is known.

For the semi-Lagrangian shemes the omputational domain hanges at eah time step. In general,

Ωtn−1/2
is unknown; instead we alulate an approximation by using the approximate motion.

Remark 5.3. If we approximate X
n+1/2
n−1/2,∆t,h(y) by y and F

n+1/2
n−1/2,∆t,h(y) by I in problem (SLG)2, then

a new semi-Lagrangian problem is obtained. Notie that these approximations are of �rst order in time.

This �rst order semi-Lagrangian method will be denoted by (SLG)1. If Ωt = Ω for all t and the oe�ients

ρ and η are time independent, then the matrix assoiated with this method is independent of time.

6. Numerial results

In order to assess the performane of the above numerial methods, analyze their rates of onvergene

and ompare them, we solve three test problems in two spae dimensions. The �rst one is an aademi

problem, for whih we verify rates of onvergene for the pure Lagrangian and the semi-Lagrangian

methods desribed in the present paper. The seond one is the lid driven avity problem. It models

the �ow in a square box driven by the motion of the lid of the box. This problem has been solved with

the semi-Lagrangian methods presented in this paper and the obtained numerial results are ompared

with a referene solution. Finally, the third example is a free surfae problem. More preisely, we

onsider a lassial example of sloshing numerial simulation. This problem has been solved with the

pure Lagrangian method proposed in this paper.

In Example 1, we alulate the error between disrete solutions v∆t,h and π∆t,h, and exat solutions v
and π. For this, we approximate the theoretial L2(Ωtn+1

) and L2(Ωtn−1/2
) norms by using a quadrature

formula exat for polynomials of degree 2. Moreover, domains Ωtn+1
and Ωtn−1/2

are alulated by using

the approximate motion. The funtion spaes endowed with these norms are denoted by L2
h(Ωtn+1

) and
L2
h(Ωtn−1/2

), respetively. Thus, we denote by l∞(An), being An = L2
h(Ωtn+1

), L2
h(Ωtn−1/2

), the spae of

sequenes in {An}N−1
n=0 equipped with the norm

∣∣∣
∣∣∣Ψ̂
∣∣∣
∣∣∣
l∞(An)

:=
N−1
max
n=0

||Ψn||An .

Moreover, shemes (LG), (SLG)2 and (SLG)1 were ombined with an exat quadrature formula for

polynomials of degree 5 in all of the terms.

15



Example 1

This is a problem aiming to hek the rates of onvergene of the shemes proposed in this paper.
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Figure 2: Example 1: omputed l∞(L2

h
(Ωtn+1

)) veloity error (left) and l∞(L2

h
(Ωtn−1/2

)) pressure error (right) versus the

number of time steps in log-log sale, for a �xed spatial mesh of 125× 125 verties.
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Figure 3: Example 1: omputed l∞(L2

h
(Ωtn+1

)) veloity error (left) and l∞(L2

h
(Ωtn−1/2

)) pressure error (right) versus 1/h
in log-log sale, for ∆t = 0.01.

The spatial domain is Ω = (0, 1)× (0, 1), t0 = 0 and T = 1. The di�usion tensor is A = 0.001I and ρ = 1.
Funtions b and g and Dirihlet boundary and initial onditions are taken suh that the exat solution is

π(x, y) = 10(2x− 1)(2y − 1),
v1(x, y, t) = 10tetx2(x − 1)2y(y − 1)(2y − 1),
v2(x, y, t) = −10tetx(x − 1)(2x− 1)y2(y − 1)2.

We solve this problem by using methods (LG), (SLG)2 and (SLG)1. In Figure 2, we have �xed a uniform
spatial mesh of 125×125 verties and shown the l∞

(
L2
h(Ωtn+1

)
)
veloity error (left) and l∞

(
L2
h(Ωtn−1/2

)
)

pressure error (right) versus the number of time steps. These results show that shemes (LG) and

(SLG)2 possess seond-order auray in time and sheme (SLG)1 possess �rst-order auray in time.

Conerning the semi-Lagrangian shemes, for �xed h, we an observe an inreasing error as the time step

dereases below a threshold. This is due to the presene of terms added by the quadrature formula to

the error. In Figure 3 we represent the l∞
(
L2
h(Ωtn+1

)
)
veloity error and the l∞

(
L2
h(Ωtn−1/2

)
)
pressure

error versus 1/h for a �xed small time step, namely ∆t = 0.01. We an observe that shemes (LG),
(SLG)2 possess seond-order auray in spae in the l∞(L2)-norm. Moreover, with the sheme (SLG)1
we observe �rst-order auray in spae for veloity and seond-order auray in spae for pressure.
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v1 = 0, v2 = 0

v1 = 1, v2 = 0

v1 = 0

v2 = 0

v1 = 0

v2 = 0

t = 0

v1 = v2 = 0

Figure 4: Driven avity: initial and boundary onditions.

Remark 6.1. In the aademi tests, we have observed that the order of the error of the methods is main-

tained if we alulate F without onsidering the bubble term. In some ases, in order to not to have

negative values of detF it is onvenient to do this.

Example 2

We onsider a driven avity �ow governed by the inompressible Navier-Stokes equations to ompare

the numerial results obtained with the lassial semi-Lagrangian methods and the new ones presented

in this paper. The driven avity problem has long been used as a test ase for Navier-Stokes solvers,

thanks to it has simple geometry and boundary onditions. Although the problem looks simple in many

ways, the �ow in a avity retains all the �ow physis with ounter rotating vorties appearing at the

orners of the avity. In some papers in the literature, a steady solution is sought and therefore the

numerial solution of steady inompressible Navier-Stokes equations are presented at various Reynolds

numbers (see, for instane, [21℄, [15℄, [16℄, [6℄). However, in other papers the bifuration of the �ow

in a driven avity from a steady regime to an unsteady regime is studied (see, for instane, [18℄, [20℄).

The dimensionless problem is de�ned in a square domain Ω = (0, 1) × (0, 1) with the upper side of the

avity sliding to the right at unit veloity. The problem is depited in Figure 4. For the urrent study,

the problem was solved for a Reynolds number of 1000 on a series of meshes, the oarsest mesh having

17 × 17 verties, while the �nest one has 70962 verties. We solve this problem with semi-Lagrangian

methods (SLG)1 and (SLG)2 and with the seond-order in time semi-Lagrangian lassial method given

by (34)-(35) ombined with ontinuous pieewise-linear+bubble �nite elements for eah omponent of

the veloity and ontinuous pieewise-linear for pressure for spae disretization. This method will be

denoted by (SLG)22; we use the strategy given in [3℄ to alulate the integrals. We arry the simulations

along the time until onvergene. Results are ompared with the benhmark solutions given in [21℄.

In Figure 5 we have �xed the time step, namely, ∆t = 0.002 and show, for di�erent regular meshes,

the horizontal veloity pro�les along the vertial entreline of the avity (on the left) and the vertial

veloity pro�les along the horizontal entreline of the avity (on the right), omputed by using the

(SLG)2, (SLG)1 and (SLG)22 methods. The benhmark solutions of Ghia is inluded for omparison.

Clearly, (SLG)2 and (SLG)1 ahieve better results than the orresponding lassial seond-order method

(SLG)22. Moreover, under the same parameters, the (SLG)2 and (SLG)1 shemes provide the same

numerial solutions. Besides, for both methods, errors with ∆t in the denominator are observed (see

Figures 5 and 6). However, for this example, the matrix assoiated with the (SLG)1 sheme is time

independent. Moreover, in order to obtain a stationary numerial solution, with the (SLG)2 sheme we

need to use smaller time steps than with the (SLG)1 method. For these reasons, in this ase, the most

onvenient method to solve this problem is the (SLG)1 sheme. In Figure 6 we have shown, for di�erent

regular meshes, the horizontal veloity pro�les along the vertial entreline of the avity (on the left)
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Figure 5: Driven avity: on the left, pro�les of the horizontal veloity along the vertial entreline, alulated using di�erent

shemes for a range of mesh sizes, and ompared with the benhmark solutions given in [21℄. On the right, pro�les of the

vertial veloity along the horizontal entreline, alulated using di�erent shemes for a range of mesh sizes, and ompared

with the benhmark solutions given in [21℄.

and the vertial veloity pro�les along the horizontal entreline of the avity (on the right), omputed

by using the (SLG)1 method. In this �gure, the time step varies with the mesh. More preisely, for

eah mesh, we onsider the largest time step for whih the orientation of the elements of the moved mesh

T̃
n+1
h is the same as the one of the elements of the mesh T

n−1/2
h . In Figure 7 we represent the numerial

solution obtained with the (SLG)1 method for a spatial mesh of 70962 verties and ∆t = 0.0026. More

preisely, the horizontal veloity pro�les along the vertial entreline of the avity, the vertial veloity

pro�les along the horizontal entreline of the avity and the isoveloity and streamfuntion ontours are

plotted. As the referenes in the literature, our numerial solutions exhibits a large primary vortex with

two seondary vorties in the two bottom orners.

18



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Horizontal velocity

y
(SLG)

1
 scheme

 

 

141× 141

125× 125

99× 99

71× 71

51× 51

33× 33

17× 17
Ghia

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

V
er

tic
al

 v
el

oc
ity

(SLG)
1
 scheme

 

 

141× 141

125× 125

99× 99

71× 71

51× 51

33× 33

17× 17
Ghia

Figure 6: Driven avity: on the left, pro�les of the horizontal veloity along the vertial entreline, alulated using the

(SLG)1 sheme for a range of mesh sizes, and ompared with the benhmark solutions given in [21℄. On the right, pro�les

of the vertial veloity along the horizontal entreline, alulated using the (SLG)1 sheme for a range of mesh sizes, and

ompared with the benhmark solutions given in [21℄. For eah mesh, we use the largest possible time step.

Example 3

To show the behaviour of the pure Lagrangian formulation for large mesh distortion, the analysis of

large amplitude sloshing in a retangular tank has been arried out. The width of the tank is 0.8m and

the depth is 0.3m. Inompressible �uid is onsidered. The liquid in the tank is subjet to a sinusoidal

horizontal aeleration. More preisely, the body fore is

b(x, t) = ρ(x, t)(A · g · sin(ωt),−g),

where A is an arbitrary onstant governing the amplitude of the exitation, g is the gravity aeleration

and ω is the exitation frequeny. In this example, A = 0.01, ρ = 1000 kg/m3
, g = 9.8m/s2 and

ω = 5.642 rad/s. Using these parameters, experimental results show that the resonane frequeny of

the tank is 0.898Hz. At the vertial boundaries the horizontal veloity is zero, at the lower horizontal

boundary the vertial veloity is zero and at the upper horizontal boundary we impose null Neumann

ondition (fore-free). Sine it is a free surfae problem we solve it with the pure Lagrangian method

(LG) without reinitializing. Notie that in pure Lagrangian methods the omputational domain is the

referene domain; in this ase it is Ω = (0, 0.8) × (0, 0.3). We solve this problem for di�erent visosity

values, µ = 0.1, 0.01, 0.001. Figure (8) shows the vertial displaement of the upper orner nodes at the

wall tank, as a funtion of time. The results are in good agreement with those given in [23℄ and [28℄. In

Figure 9 we represent an instantaneous on�guration of the domain and the streamlines.

19



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Horizontal velocity

y
Horizontal velocity profile along the vertical centreline of the cavity

 

 

(SLG)
1

Ghia

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

V
er

tic
al

 v
el

oc
ity

Vertical velocity profile along the horizontal centreline of the cavity

 

 
(SLG)

1

Ghia

x

y

Horizontal velocity contours

x

y

Vertical velocity contours

Figure 7: Driven avity: horizontal veloity pro�les along the vertial entreline of the avity, the vertial veloity pro�les

along the horizontal entreline of the avity and the isoveloity and streamfuntion (bottom) ontours, omputed with the

(SLG)1 method, for a spatial mesh of 70962 verties and ∆t = 0.0026.
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Figure 8: Sloshing waves: time history of wave height at the walls for µ = 0.1 (top left), µ = 0.01 (top right) and µ = 0.001
(bottom), and for a spatial mesh of 5743 verties and ∆t = 0.02.

Figure 9: Sloshing waves: instantaneous domain on�guration and streamlines for µ = 0.001 at t = 8.35, and for a spatial

mesh of 5743 verties and ∆t = 0.02.

7. Conlusions

We have obtained a uni�ed formulation with whih lassial and new harateristis methods an be

obtained for solving the Navier-Stokes equations. In partiular, we have proposed two new Lagrange-

Galerkin shemes in terms of the displaement, one pure Lagrangian and another one semi-Lagrangian.

The semi-Lagrangian sheme is analogous to the pure Lagrangian method but reinitializing the transfor-

mation to the identity at eah time step. Numerial tests have been presented to ompare the new and

lassial methods, assess the performane of the new numerial methods and analyze their rates of onver-

gene. We have observed that the new shemes ahieve better results than the lassial ones. Moreover,

we have onsidered a free surfae problem. It has been solved with the pure Lagrangian displaement

method proposed in this paper. These new harateristis methods are useful for solving free surfae

problems beause the omputational domain is time independent. However, when the mesh elements

have high distortions it is neessary to remesh and reinitialize the transformation to the identity. In fat,

for solving some problems with high Reynolds numbers, it is onvenient to use semi-Lagrangian shemes.
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