
  
 
 
 
 

 
 
 

 
 
This is an ACCEPTED VERSION of the following published document: 
 

 

Bolón-Canedo, V. and Alonso-Betanzos, A. (2019) ‘Ensembles for Feature Selection: 
A Review and Future Trends’, Information Fusion, 52, pp. 1–12. 
doi:10.1016/j.inffus.2018.11.008.  

 
 

 
 
Link to published version:  https://doi.org/10.1016/j.inffus.2018.11.008 

 
 
 
 
 
 

 
General rights: 

 
 

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Bolón-
Canedo, V. and Alonso-Betanzos, A. (2019) ‘Ensembles for Feature Selection: A 
Review and Future Trends’ has been accepted for publication in: Information Fusion, 
52, pp. 1–12.  The Version of Record is available online at 
https://doi.org/10.1016/j.inffus.2018.11.008.  

https://doi.org/10.1016/j.inffus.2018.11.008
https://doi.org/10.1016/j.inffus.2018.11.008


Ensembles for feature selection: A review and future
trends

Verónica Bolón-Canedo and Amparo Alonso-Betanzos

Department of Computer Science - University of A Coruña
Campus de Elviña s/n 15071 - A Coruña, Spain

Abstract

Ensemble learning is a prolific field in Machine Learning since it is based
on the assumption that combining the output of multiple models is better than
using a single model, and it usually provides good results. Normally, it has
been commonly employed for classification, but it can be used to improve other
disciplines such as feature selection. Feature selection consists of selecting the
relevant features for a problem and discard those irrelevant or redundant, with
the main goal of improving classification accuracy. In this work, we provide
the reader with the basic concepts necessary to build an ensemble for feature
selection, as well as reviewing the up-to-date advances and commenting on the
future trends that are still to be faced.
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1. Introduction

Ensemble learning is based on combining multiple models instead of a single
model to solve a particular problem, and it is founded on the old proverb “two
heads are better than one”. The rationale is based upon the idea of building
a set of hypothesis using different methods, and then they are combined trying
to obtain better results than learning only one hypothesis with a single method
[1]. It is the diversity of the approaches and the control of the variance which
make this approach successful, also called as “committees”.

In the field of machine learning, the typical approach consists in using a
single learning model to solve a problem. However, the use of ensemble learning
(i.e. using multiple prediction models for solving the same problem), has proven
its effectiveness over the last years. In particular, ensemble learning has been
very popular for classification; in fact there is a series of workshops on Multiple
Classifier Systems (MCS) run since 2000 by Fabio Roli and Josef Kittler.

The most popular approaches for ensemble learning are bagging and boost-
ing, both of them based on introducing diversity by modifying the training set,
in such a way that the learning algorithm is executed multiple times over dif-
ferent training sets. The main difference between these models is that bagging
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does a random sampling of the data with replacement, whilst boosting performs
a random sampling with replacement on weighted data, in which these weights
are iteratively updated trying to give more importance to the samples that have
been previously misclassified. A very popular ensemble is also Random For-
est, which is a special type of bagging combined with tree models, adding the
particularity that the trees are built from different random subsets of features.

However, the idea of ensemble learning is not only applicable to classification,
but it can can be used to improve other machine learning disciplines such as
feature selection. It is common to have to deal with datasets containing a large
number of features, which is an interesting challenge because classical machine
learning methods cannot deal efficiently with high dimensionality. Therefore, it
is typical to apply a preprocessing step to remove irrelevant features and reduce
the dimensionality of the problem. A correct selection of the features can lead
to an improvement of the inductive learner, either in terms of learning speed,
generalization capacity or simplicity of the induced model. Moreover, there are
some other benefits associated with a smaller number of features: a reduced
measurement cost and hopefully a better understanding of the domain [2].

There are two typical ways of categorizing feature selection methods. On
the one hand, it depends on the outcome of the feature selector: whether it
returns a subset of relevant features or an ordered ranking of all the features ,
according to their relevance (known as feature ranking). In this latter case, it is
necessary to establish a threshold in order to reduce the dimensionality of the
problem, which is not an easy-to-solve question, as we will see in Section 3.3. On
the other hand, feature selection methods are typically divided into three major
approaches according to the relationship between a feature selection algorithm
and the inductive learning method used to infer a model [3]: filters, which
rely on general characteristics of the data and are independent of the induction
algorithm; wrappers, which use the prediction provided by a classifier to evaluate
subsets of features; and embedded methods, which perform FS in the process of
training and are specific to given learning machines.

There exists a vast body of feature selection methods in the literature, in-
cluding filters based on distinct metrics (e.g. entropy, probability distributions
or information theory) and embedded and wrapper methods using different in-
duction algorithms [4]. The proliferation of feature selection algorithms, how-
ever, has not brought about a general methodology that allows for intelligent
selection from existing algorithms. In order to make a correct choice, a user
not only needs to know the domain well, but also is expected to understand
technical details of available algorithms. Ensemble feature selection can be a
solution for the aforementioned problem since, by combining the output of sev-
eral feature selectors, the performance can be usually improved and the user is
released from having to chose a single method. The goal of this paper is to offer
a comprehensive review of ensemble learning in the field of feature selection.

Ensembles for feature selection can be classified into homogeneous (the same
base feature selector) and heterogeneous (different feature selectors). Both ap-
proaches have successful examples in the literature, and this paper will review
the most recent ones. In addition to this, it is important to pay attention to the

2



combination step, in which the joining of the individual outputs produced by
each feature selector should be carried out. These outputs can be in the form
of subsets of features or ranking of features, and specific combination strategies
are needed accordingly. Other aspects that can be also interesting for the reader
are covered in this work, such as how to evaluate the performance of the ensem-
bles in terms of diversity and stability, or a guide with software tools including
implementations of feature selection ensembles.

The remainder of this paper is structured as follows. Section 2 states the
foundations of ensembles for feature selection, commenting on the different types
available. Then, Section 3 delves into the combination step, a crucial part when
having multiple models. After the ensemble is built, it is necessary to evaluate
its performance, which is addressed in Section 4. Section 5 surveys the recent
works using ensembles for feature selection and Section 6 provides the reader
with a review of some popular software tools that include useful implementations
for ensembles for feature selection. Finally, Section 7 closes this work with the
new challenges that researchers need to face in this field.

2. Types of ensembles for feature selection

The motivation under the use of the ensemble approach for learning has been
recently extended to other machine learning fields, such as feature selection.
Thus, the idea is that combining the outputs of several single feature selection
models will obtain better results than using a single feature selection approach.
But this improvement does not come only from having several models, as it is
also the case with classification ensembles, but also from the diversity of the
feature subsets obtained.

The scientific literature considers relations between the ensemble paradigm
and feature selection in two different schemes: (1) using a feature selection pre-
processing in order to produce the diversity that will be needed for subsequent
ensemble methods, as in [5, 6]; or (2) using ensembles of feature selectors aiming
to improve the stability of the process, as in [7, 8, 9, 10, 11, 12, 13]. This lat-
ter aspect is specially relevant in knowledge discovery, and even more in those
cases in which data dimensionality is very high, but the number of samples is
not such, as they are more sensible to generalization problems. Thus, several
feature selection processes are carried out (either using different training sets,
different FS methods, or both), and their results are aggregated to obtain a final
subset of features that hopefully will add stability and thus be more transpar-
ent in the process of knowledge discovery. The idea is that a more appropriate
(stable) feature subset is obtained by combining the multiple feature subsets of
the ensemble, as the aggregated result tends to obtain more accurate and stable
results, reducing the risk of choosing an unstable subset.

If several FS methods are used, the individual selectors in an ensemble are
named, by analogy with the base learners, base selectors. Figure 1, shows the
different levels than can be used to construct different types of ensembles for
feature selection, that is, using different combination methods, using different
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base learners, using different feature subsets or using different subsets of the
original dataset.

COMBINATION 
METHOD

LEARNER 
1

FEATURE SET 
1

LEARNER  
2

LEARNER 
M

FEATURE SET 
2

FEATURE SET 
N

DATASUBSET 1 DATASUBSET 2 DATASUBSET k

COMBINATION LEVEL:
Use or design different combination methods

LEARNER METHOD LEVEL:
Use or design different learning algorithms

FEATURE LEVEL:
Use different feature subsets

DATASET LEVEL:
Use different subsets of the dataset

THRESHOLD LEVEL:
In case of using ranker methods, use of different
thresholding methods

THRESHOLD 
METHOD

……….

……….

……….

Figure 1: The different levels than can be varied in an ensemble for feature selection

In general, when aiming at designing a feature selection ensemble several
main decisions are to be taken:

• The individual FS methods to be used. Three types of methods are avail-
able: wrappers, filters and embedded [2, 14, 1, 3]. As using more than
one FS method has inevitably a computational cost, filters and embedded
methods are preferred over wrappers for being included in an ensemble.
Each individual methods has its pro and cons, and the methods employed
should guarantee diversity while increasing the regularity of the FS pro-
cess, so as to take advantage of them to boost performance. In [15, 16],
some metrics for stability are discussed, and in [9] others for diversity are
employed over rankers.

• The number of different FS methods to use. As stated above, there is
a need to balance complexity, diversity and stability of the process. In
the case of ensembles for classification, studies addressing the need of a
priori determination of ensemble size are scarce [17, 18, 19], with results
suggesting that using as many individual methods as class labels is the
best option. However, in the case of feature selection ensembles those
studies have not been addressed as yet, and thus at present statistical
tests are mainly used for determining the best number of components.

• The number and size of the different training sets to use. Regarding
these two parameters, there are some studies in the literature aiming at
determining the optimal size of the training dataset again for ensembles
for classification and prediction purposes [20, 21, 22, 23]. Again, in the
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case of feature selection there are no reported studies on the size of the
optimal training sets for ensembles, although some authors have studied
the consequences of distributing the training set regarding the number of
features and using ranker methods [24].

• The aggregation (also named combination) method to use. Different meth-
ods are available (see Section 3), and the scientific literature have explored
those combination methods [25, 9, 26, 27], and also different strategies im-
plying linear and non linear weighting of the base classifiers [28, 29], using
genetic algorithms [30], their relation with the base classifiers chosen [31],
etc. Most of the previous works have dealed with ensembles for classi-
fication, and only [27, 26, 9] have investigated the behavior of different
aggregation methods for ensembles for feature selection.

• The threshold method to use if the FS methods are rankers, that is, if
the methods return an ordered list of all features involved in the problem.
For most studies, the thresholds chosen are based on a fixed percentage
of retained features, for example 25%, 50%, or a fixed number of top
features [14, 32, 33, 26]. Other authors have tried to derive a threshold
based on different metrics. In [12], in which tree ensembles are used, a
feature importance measure, that is derived as the average information
gain achieved during tree construction, is employed. Other authors have
used thresholds based on data complexity measures [26, 27].

.

.

.

.

TRAINING DATA

SUBSAMPLE 1

SUBSAMPLE 2

SUBSAMPLE K

Feature Selector

Feature Selector

Feature Selector

AGGREGATION
METHOD

Feature
Subset

Figure 2: A scheme of the Homogeneous approach

Ensembles for feature selection might be classified following diverse criteria
regarding any or several of the aspects above, but the most simple division is
regarding the type of base selectors used. If the base selectors are all of the

5



same kind, the ensemble is known as homogeneous ; otherwise the ensemble is
heterogeneous.

In the homogeneous approach, the same feature selection method is used,
but with different training data subsets. These data subsets may be distributed
over several nodes (or several partitions), and thus in this case a reduction
of temporal requirements is also achieved (see a scheme in Figure 2). In this
scheme, the size of the partitions is also a design parameter. These methods
are also named as data variation ensembles. Some examples of homogeneous
approaches, mainly with the aim of being able to manage large scale scenarios,
can be found in [26, 34], and in [35], this latter with the added goal of being
able to deal with imbalanced data sets.

For the heterogeneous approach, a number of different feature selection
methods, but over the same training data, are applied, as can be seen in Figure
3. In this scheme, the number of different feature selectors to be used is also
a design parameter, as stated above. These methods are also called function
variation methods.

.

.

.

.

TRAINING DATA

Feature Selector
#1

Feature Selector
#2

Feature Selector
# M

Features
#1

Features
#2

Features
#M

AGGREGATION
METHOD

Feature
Subset

Figure 3: A scheme of the Heterogeneous approach

Heterogeneous feature selection ensembles are more common than homoge-
neous, and several examples can be found in [36, 32, 26, 9, 27, 37, 30]. In some of
these studies both, homogeneous and heterogeneous approaches are compared,
as in [37, 26, 38].

In both schemes, depending on the type of feature selectors employed, one
can obtain as a result a feature subset or a feature ranking, and in this last
case, an additional threshold step is needed. Finally, and as in all ensembles,
the results of the base selectors are to be combined to obtain a final result, and
thus several aggregation methods (see section 3 for a description of the different
combiners available) can be used. Some recent works [27] have also explored
different designs exchanging the order of the combination and thresholding steps
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when rankers are used as base feature selectors.

3. Combination of outputs

A crucial point in any ensemble scheme is the combination of partial results
to obtain a final output. In the case of feature selection ensembles, the typical
situation is to combine the different features selected by the different selectors
(see Figures 2 and 3, for example). Another possibility is to apply a classifier
after each feature selector, so it is necessary to combine the label predictions of
the classifiers. Both approaches will be discussed in this section.

3.1. Combination of label predictions

Combining the outputs of the individual classifiers has been broadly studied
since it is necessary when designing an ensemble of classifiers [39]. The output
produced by a classifier can be just a class label (without information about the
certainty of the guessed labels) or a degree of certainty of the prediction (e.g.
probability of belonging to a given class).

Depending on the type of classifier outputs, different methods for combining
the outputs can be used. When having classifiers that only return the class la-
bels, the most popular technique is majority vote, which consists of establishing
the final output as the option that has been predicted by the majority of the
classifiers. Although widely used, it has some limitations, as for example how
to deal with ties, which are usually resolved arbitrarily.

If the classifiers used return also a degree of certainty, there are more so-
phisticated decision rules that can be applied [40]. Let us suppose that we have
a classification problem in which instance x is to be assigned to one of the C
different classes of the problem c1, c2, ..., cC . Consider that we have N classifiers
which will lead to N outputs yi, i = 1, ..., N to make the decision. When the
classifiers provide a degree of certainty, the posterior probability can be esti-
mated as P (cj |x) = yi, where yi is computed as the response of a classifier i.
Now, let us denote yij(x) as the output of the classifier i in the class j for the
instance x and assuming that the outputs yi are normalized. Some popular
decision rules can be defined as follows:

• Product rule, x→ cj if

N∏
i=1

yij(x) =
C

max
k=1

N∏
i=1

yik(x)

• Sum rule, x→ cj if

N∑
i=1

yij(x) =
C

max
k=1

N∑
i=1

yik(x)
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• Max rule, x→ cj if

N
max
i=1

yij(x) =
C

max
k=1

N
max
i=1

yik(x)

This rule approximates the sum rule assuming that the output classes are
a priori equiprobable. The sum will be dominated by the prediction which
lends the maximum support for a particular hypothesis.

• Min rule, x→ cj if

N
min
i=1

yij(x) =
C

max
k=1

N
min
i=1

yik(x)

This rule approximates the product rule assuming that the output classes
are a priori equiprobable. The product will be dominated by the prediction
which have the minimum support for a particular hypothesis.

• Median rule, x→ cj if

1

N

N∑
i=1

yij(x) =
C

max
k=1

1

N

N∑
i=1

yik(x)

3.2. Combination of subsets of features

As mentioned in the Introduction, feature selection methods can be classified
based on if their output is a subset of features or an ordered ranking of all the
features. This subsection will be focused on the case of having different feature
selectors that return subsets of features and we need to combine them before
classification (given that classification is the final goal of our system).

The most typical way to combine subsets of selected features is to compute
the intersection and the union of them. The intersection consists in selecting
only those features which are selected by all the feature selectors. Although
this approach might seem very logical (if a feature is selected by all selectors,
it must be highly relevant), it can lead to very restrictive sets of features (the
empty set, in the worst case scenario) and in practice it does not produce good
results [41].

The union consists in combining all the features which have been selected
by at least one of the feature selectors. Contrary to the intersection, it can lead
to select even the whole set of features. This approach tends to produce better
results than the intersection [41], but at the expense of a lower reduction in the
number of the features.

A more sophisticated technique is to use the classification accuracy to com-
bine the subsets of features returned by the different selectors. A simple ap-
proach is to include a subset of features into the final selection only if it con-
tributes to improve classification performance [42]. The first subset of features
S1 is arbitrarily taken to calculate the classification accuracy, which will be the
baseline, and the features in S1 will always become part of the final selection

8



S. For the remaining selections, the features in Si, i = 2...n will become part of
the final selection S if they improve the baseline accuracy. The authors expect
that combining the features in this manner can help reduce redundancy, since
a redundant feature will not improve the accuracy and hence will not be added
to the final selection.

The main problem of using classification performance to combine subsets of
features is that it requires a high computational cost, which in some cases can be
even higher than the time necessary for the feature selection process. Trying to
solve this issue, Morán-Fernández et al. [43] proposed to combine the subsets of
features using data complexity measures instead of classification performance.
The reason for this decision was that they assume that good candidate features
would contribute to decrease the theoretical complexity of the data and must
be maintained.

3.3. Combination of rankings of features

In the previous subsection, we have seen how to combine the results ob-
tained by the weak selectors when their output is a subset of features. But,
as seen in the Introduction, there are feature selection methods that return an
ordered ranking of all the features, according to their relevance. In this case,
it is necessary to find methods that can receive as an input several ranking
obtained by the different feature selectors and combine them into a single final
ranking, trying not to incur in an important loss of information. Depending on
the ensemble approach, it is possible that all the feature selectors rank all the
features, or only a subset of them.

The easiest way to combine rankings of features is to apply simple operations
through them, such as the median or the mean. Some popular methods are
defined in the following:

• min: assigning to each element to be ranked the minimum (best) position
that it has achieved among all rankings.

• median: assigning to each element to be ranked the median of all the
positions that it has achieved among all rankings.

• arith.mean: assigning to each element to be ranked the mean of all the
positions that it has achieved among all rankings.

• geom.mean: assigning to each element to be ranked the geometric mean
of all the positions that it has achieved among all rankings.

More sophisticated methods can be found in the literature. For example,
Stuart et al. [44] introduced the first attempt to use order statistics in the
combination of rankings, although the computational scheme for their method
was further optimized by Aerts et al. [45]. This method works by comparing
the actual rankings with the expected behavior of uncorrelated rankings, and
then re-ranks the features and assigns significance scores. Despite being robust
to noise, this method requires simulations to define significance thresholds and
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does not support partial rankings (i.e. rankings which do not contain all the
features).

Robust Rank Aggregation [46] was then proposed to improve the limitations
of Stuart and other classical methods. In this case, the combination is based on
the comparison of the actual ranking with a null model that assumes random
order of the different obtained rankings. A P -value assigned to each feature in
the aggregated ranking described how much better it was ranked than expected.
This provides basis for reordering and identifies significant features. As the P -
value calculation procedure takes into account only the best ranks for each
feature, the method is said to be very robust. Finally, we can also find SVM-
Rank [47], which is a SVM -based method that can be trained to learn ranking
functions.

4. Evaluation of ensembles

Performance is the universal measure to evaluate a learning system, which
in the case of classification is usually measured as accuracy in the prediction.
However, in the case of ensembles, there are other factors that have relevance
in this process, such as diversity and stability. On the one hand, we need to
use in the ensemble single methods that produce diverse results. But, on the
other hand, we need ensembles that are robust. So far, and although measures
for diversity and stability in classifier ensembles have been devised, the subjects
are still rare for the case of feature selection ensembles.

4.1. Diversity

Diversity is one of the main reasons to use an ensemble method, as in the
case of classification the examples that are misclassified by some members of the
ensemble have the chance to be correctly classified by other, so that the final
accuracy is improved. This is the reason why diversity among the members of
the ensemble is a key issue–it makes no sense to build an ensemble in which all
the single methods offer the same result.

But, how can we be sure that we are using diverse methods? There are
several statistics that can be used as a measure of diversity. Kuncheva and
Whitaker [48] recommended the pair-wise Q statistics [49], as it is simple to
understand and to implement. Although there are several works regarding di-
versity in ensembles for classification [50, 48, 51], there is a necessity for the
establishment of novel diversity measures for ensembles for other machine learn-
ing algorithms, as feature selection [8]. And not only diversity is important, but
also the function that combines the results of the different components of the
ensemble (see Section 3). Brodley et al. [52] showed that diversity in the feature
subsets created alone is not enough for increasing the accuracy of the machine
learning process, as the combination method should also make proper use of the
diversity obtained in order to maintain the benefit.
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4.2. Stability

As mentioned above, it is desirable that the methods conforming the ensem-
ble are diverse, i.e. they provide different enough outputs on the same sample
of data. However, when the sample of data changes, it is also desirable that
these methods return similar outputs, a property which is known as stability.

As pointed out by Nogueira & Brown [15], in ensemble-based feature selec-
tion, the goal must be to use diverse feature selection methods within the en-
semble, as well as obtaining robustness of the final feature selection made by the
ensemble (corresponding to high stability). Therefore, the stability of ensembles
for feature selection has been gaining attention in recent years [53, 54, 55, 7].

There are plenty of measures in the literature to compute stability. If our
goal is to measure stability among methods that return a subset of features,
probably the two most famous metrics are Jaccard index [56] (also referred as
Tanimoto distance) or the relative Hamming distance [57]:

Jac(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B|+ |A ∩B|
. (1)

Ham(A,B) = 1− |A \B|+ |B \A|
n

. (2)

However, both these measures are subset-size-biased, which means that they
provide different results depending on the number of features selected so they
cannot be considered consistent. For this reason, Kuncheva [16] proposed a
consistency index to measure stability that solves this problem:

Kun(A,B) =
f − k2

n

k − k2

n

=
rn− k2

k(n− k)
, (3)

such that |A| = |B| = k and where 0 < k < |X| = n.
The problem with this stability measure is that it requires that subset sizes

are the same, which in practice does not always happen, and new variants of
Kuncheva’s similarity measure for feature sets of varying cardinalities have been
appearing in the last few years. For more information about stability measures,
please refer to the work by Nogueira & Brown [15].

Among the most popular measures to compute the similarity between rank-
ings of features we can find the Kendall Tau [58], the Canberra Distance [59]
and the Spearman’s ρ [56]. Let R1 and R2 be two rankings and f the number
of features in the dataset, these measures can be defined as follows:

Spear(R1, R2) = 1− 6
∑
d2

f(f2 − 1)
, (4)

where d is the distance between the same feature in both rankings.

Cam(R1, R2) =

f∑
i=1

|R1i −R2i |
|R1i |+ |R2i |

(5)
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Kend(R1, R2) =
∑
{i,j}∈P

K̄i,j(R1, R2) (6)

where

P is the set of unordered pairs of distinct elements in R1 and R2

K̄i,j(R1, R2) = 0 if i and j are in the same order in R1 and R2

K̄i,j(R1, R2) = 1 if i and j are in the opposite order in R1 and R2

4.3. Performance

After making sure that we have an ensemble of feature selectors that are
diverse among them and stable to variations in the data, we need to check if the
final selection of features is relevant. In an ideal situation, a feature selection
system should be evaluated based only on the quality of the features selected,
without involving any classifier. But, in practice, the set of relevant features are
not known a priori unless we are using artificial data. In fact, several authors
choose to use artificial data stating that although the final goal of a feature
selection method is to test its effectiveness over a real dataset, the first step
should be on synthetic data.

If we use artificial data and then we know the relevant features, there are
several measures we can use to evaluate the performance of the ensemble, de-
pending on if the ensemble returns a subset of features or a ranking of features.

In the case of subsets of features, we proposed several measures in a previous
work, provided that we know a priori the relevant ones [60]. For the description
of the methods, note that feat sel stands for the subset of selected features,
feats is the total set of features, feat rel is the subset of relevant features,
and feat irr represents the subset of irrelevant features (the last two known a
priori).

• The Hamming loss (H) measure evaluates how many times a feature is
misclassified (selected when is irrelevant or not selected when is relevant)

H = #(feat sel ∩ feat irr) + #(feat not sel ∩ feat rel)
#(feat rel ∪ feat irr)

• The F1-score is defined as the harmonic mean between precision and re-
call. Precision is computed as the number of relevant features selected
divided by the number of features selected; and recall is the number of
relevant features selected divided by the total number of relevant features.
Therefore, the F1-score can be interpreted as a weighted average of the
precision and recall. Considered 1 − F1-score, it reaches its best value at
0 and worst score at 1.

F1 = 2× precision × recall
precision + recall
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In the case of ensembles that return a ranking of all the features, the mea-
sures described above are not useful because all the features are present in the
ranking. A possible solution is to establish a threshold and transform the rank-
ing in a subset of features. But there are also methods specifically defined to
evaluate rankings, which in essence check if the relevant features are ranked
above the irrelevant ones. Below we describe some popular ones [60]:

• The ranking loss (R) evaluates the number of irrelevant features that are
better ranked than the relevant ones. The fewer irrelevant features are on
the top of the ranking, the best classified are the relevant ones. Notice
that pos stands for the position of the last relevant feature in the ranking.

R = pos − #feat rel
#feats − #feat rel

• The average error (E) evaluates the mean of Ei, in which i ∈ feats sel
and Ei is the average fraction of relevant features ranked above a particular
feature i.

Ei =
∑

j feat sel(j) ∈ feat rel ∩ j<i − #feat rel × (#feat rel − 1)
2

#feat irr × #feat rel

5. Recent advances on ensembles for feature selection

The crescent digital transformation of our society has originated a explosion
of data that increases in both size and dimension. Machine learning is one of
the techniques that is being used for obtaining information and knowledge from
Big Data. A large number of features (dimension) usually implies that a certain
amount of them are redundant or irrelevant, and their presence increases the
error of the learning algorithms. Thus, feature selection is almost a mandatory
preprocessing step in order to reduce the data dimensionality.

There are different feature selection algorithms available [3], but as they
rely on different metrics and approaches, the feature subsets obtained are also
different, configuring different local optima in the space of feature subsets. The
rationale for the use of ensembles in the feature selection process is thus clear [7],
as by generating many predictors, the solution space can be massively explored
and by later combining all individual results, the ensemble is able to reflect
this exploration, so as to obtain a more robust final feature subset regarding
not only performance but also stability. There are two schemes that can be
find in the literature aiming at using the idea of ensembles in feature selection:
some authors have used a previous feature selection step in order to obtain the
diversity needed for using posterior ensemble classification methods, such as in
[5, 6]; the other, and the one in which this review is centered, is using ensembles
of feature selectors for improving accuracy, diversity and stability of the feature
selection process [7, 8, 9, 10, 11, 12, 26]. This last scheme is of special interest
in knowledge discovery scenarios, and mainly in high dimensional cases (a much
larger number of characteristics than samples), due to overfitting of machine
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learning algorithms. In [8], five different pairwise measures of diversity were
compared over 21 datasetss regarding their use for ensemble feature selection
for ensembles of fixed sizes. The study employed as search strategies forward
and backward sequential selection, genetic search and the classical hill-climbing.
The main idea was to design a fitness function that could reflect both accuracy
and diversity. The results obtained showed that there is a close relation between
the functions employed and the number of ensemble members needed to achieve
the highest accuracy. Finally, a detailed analysis of the optimal ensemble size for
the different diversities and search strategies in ensemble feature selection was
proposed for future research. Other works, as [32] proposed an ensemble formed
by a fixed number of filters for being employed in high dimensional scenarios,
such as microarrays. Two studies were carried out in order to select the specific
base selectors that were employed, as well as their number. First, synthetic
data were used to check whether the individual feature selection methods were
able to select adequately the relevant features and discarding the irrelevant ones
in complex scenarios. Once a set of base selectors was pre-defined, the second
study assessed their stability, defined as the sensitivity of a method to variations
in the training set. Two different basic schemes are proposed in [36], both of the
heterogeneous type. The first one uses 5 filters that fed five classifiers followed
by the aggregation step, while the second proposal uses the same filters followed
by the aggregation step, that is previous to classification.

Other works address specifically the use of ensembles to improve not only
accuracy, but also stability of the results obtained. In [61], the authors develop
a new algorithm named Multicriterion Fusion-based Recursive Feature Elimi-
nation aimed at increasing robustness of feature selection algorithms by using
multiple feature selection evaluation criteria. The idea was to be able to work
in high-dimensional scenarios, but with low number of samples, as it happens in
the case of microarray datasets. These same dataset types were confronted in
[36]. Another study restricted the study to a type of ensembles, those using as
base selectors Multi-layer perceptrons [62]. In this case, the proposal employed a
feature ranking scheme, with a stopping criterion based on the Out-of-Bootstrap
(OOB) estimate [63].

As stated before, ensembles can be composed by different base selectors. As
diversity is one of the important characteristics to emphasize, some ensembles
use feature selectors of several types [2](rankers and subset methods; filters,
wrappers and embedded methods; and among them also univariate and multi-
variate methods), as in [36, 9]. However, another set of works achieved as well
diversity but employing only one of the types of feature selection methods, in
this case rankers. Three filter rankers with simple combining methods (lowest,
highest, and average rank), were used in [64]. In [65, 66] several ensembles
of filter rankers, employing a variety of thresholds to select the final subset of
features, were applied to the area of software quality. Other studies describe dif-
ferent methods for combining individually generated rankings, with the aim of
obtaining an adequate final ensemble. The combination of individual rankings
covers from simple methods, based on computing the mean, median, minimum,
etc., to more complex methods like Complete Linear Aggregation [67, 9] (CLA),
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Robust Ensemble Feature Selection (Rob-EFS) [68], SVM-Rank [9, 26], or the 
use of data complexity measures [27].

The works above focus on the increase of stability, but although ensembles 
have shown to be able to address this problem, they usually achieved it with the 
common drawback of also increasing the running times of the procedure, and 
thus limiting their application due to scalability issues, mainly in the sample 
size. In [69], two methods which enhance correlation-based feature selection such 
that the stability of feature selection comes with little or even no extra runtime 
were devised. Another idea exploits the heterogeneous type of ensemble with a 
parallel application of the multiple feature selection methods.

Although there are available several parallel and distributed implementation 
of individual feature selection methods [70, 71, 72, 73], only a few research works 
developed ensembles making use of distributed or parallel schemes. An hetero-
geneous approach is proposed in [9], with the idea of distributing the dataset 
in several nodes, and then apply the same feature selection method in each of 
them, aggregating later the results. Similar ideas, making use of distributing 
the datasets, are proposed in [42, 43], analyzing different partitioning strategies 
(vertical–by features–, and horizontal–by samples). The combination of partial 
outputs is also analyzed to achieve a final recommendation in terms of selected 
features, accuracy and running times. While the more common combination 
strategies on these type of ensembles are based on classifier accuracy, as in [42], 
or in combinations of classification performance and reliability assessment as in 
[38], also some new proposals based on data complexity are explored in [43, 27], 
achieving high accuracies while reducing considerably the computational time.

Usually, feature selection is performed in a supervised manner (i.e. all the 
training samples are labeled), and so are the ensembles revised in this sec-tion. 
However, there are cases in which the samples could not be labeled, a case known 
as unsupervised learning. Some typical algorithms that deal with unsupervised 
learning are clustering and anomaly detection methods, among others. Although 
not very common, there are also feature selection methods that can work with 
unsupervised data and also some ensembles. Related to clustering, we can find a 
work [74] in which the authors show that the way that internal estimates are used 
to measure the variable importance in Ran-dom Forests are also applicable to 
feature selection in unsupervised learning, and they proposed a new method 
called Random Cluster Ensemble that esti-mates the out-of-bag feature 
importance from an ensemble of partitions. Hong et al. [75] also presented a novel 
feature selection algorithm for unsupervised clustering, which combines the 
clustering ensembles method and the population based incremental learning 
algorithm. The same authors also addressed the challenging task of feature 
ranking for unsupervised clustering [76] for guiding the computations of the 
relevances of features. They proposed a novel consen-sus unsupervised feature 
ranking approach which obtains multiple rankings of all features from different 
views of the same data and then aggregates all the obtained feature rankings into 
a single consensus one. A different approach is followed in the work by Morita et 
al. [77], in which they proposed an ensemble of classifiers based on unsupervised 
feature selection. It takes into account a
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hierarchical multi-objective genetic algorithm that generates a set of classifiers by 
performing feature selection and then combines them to provide a set of powerful 
ensembles.

Semi-supervised learning falls between unsupervised learning and supervised 
learning, since a small amount of data is labeled but the training set contains a 
large amount of unlabeled data. A few ensemble methods try to deal with this 
situation. Grabner et al. [78] presented a novel online boosting method which 
formulated the updated process in a semi-supervised fashion as combined 
decision of a given prior and an online classifier. Later on, Bellal et al. [79] 
proposed a new method called semi-supervised ensemble learning guided fea-ture 
ranking method (SEFR) that combined a bagged ensemble of standard semi-
supervised approaches with a permutation-based out-of-bag feature im-portance 
measure taking into account both labeled and unlabeled data. A new wrapper-
type semi-supervised feature selection framework that can select the relevant 
features using confident unlabeled data has been proposed by Han et al. [80]. 
They employ an ensemble classifier that supports the estimation of the 
confidence of the unlabeled data. Finally, in [13], the authors propose a new semi-
supervised feature evaluation method named OFFS (Optimized co-Forest for 
Feature Selection) combining ideas from co-forest and from the embedded 
principle of selecting in Random Forest based on the permutation of out-of-bag 
set.

6. Software tools

When building an ensemble for feature selection, it is necessary to imple-
ment the feature selectors and also the distribution and combination of the data.
This can be done from scratch or use already implemented methods. There are
plenty of feature selection algorithms available in popular frameworks, which
usually also offer facilities to distribute and combine the data in an ensem-
ble scheme. Although not so common, there are some platforms that provide
implementations for ensembles for feature selection.

Matlab1 provides some methods for feature selection in its Statistics and Ma-
chine Learning toolbox, such as ReliefF or sequential feature selection. More-
over, in the same toolbox, there is a framework for ensemble learning. It provides
a method for classification, fitcensemble, and for regression, fitrensemble.
It allows the user to control parameters such as the aggregation method, the
number of ensemble learning cycles and the weak learners. There is also the
option to use the function predictorImportance which, used together with an
ensemble, computes estimates of predictor importance by summing these esti-
mates over all weak learners in the ensemble, where a higher value means a more
important feature.

In Weka (Waikato Environment for Knowledge Analysis) [81] there is a wide
suite of feature selection algorithms available, including Correlation-Based Fea-

1https://www.mathworks.com/products/matlab.html
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ture Selection, Consistency-based, Information Gain, ReliefF, or SVM-RFE, just
to name a few. Moreover, it provides several methods for ensemble learning,
such as AdaBoost, Bagging, RandomForest, etc.

R is a free programming language and software environment for statistical
computing and graphics. There are several R-packages for feature selection, but
probably the most famous ones are Caret2 and Boruta3. There are also several
packages available for ensemble learning, such as adabag4, randomForest5, or
gbm6. Furthermore, one can find some works providing R packages for ensemble
feature selection, such as that by Neumann et al [82]. They propose a software
called EFS (Ensemble Feature Selection) available as R-package7 and as a web
application8. It makes use of eight feature selection methods and combines their
normalized outputs to a quantitative ensemble importance. Another example, is
mRMRe9, an R package for parallelized mRMR ensemble feature selection. The
two crucial aspects of the implementation they propose are the parallelization of
the key steps of the algorithm and the use of a lazy procedure to compute only
the part of the mutual information minimization (MIM) that is required during
the search for the best set of features (instead of estimating the full MIM).

KEEL (Knowledge Extraction based on Evolutionary Learning) [83] is an
open source Java software tool that provides the implementation of a large
number of feature selection methods, as for example ReliefF, mutual informa-
tion, or those based on genetic algorithms. It also includes several ensemble
methods, as well as specific methods for ensembles for imbalanced data.

RapidMiner [84] is a data science software platform that provides several
feature selection tools, including information gain, Gini index, chi-square, and
others. It also features tools for ensemble learning, including popular methods
such as baggins, boosting, Adaboost, etc. What it is more interesting is the
possibility of obtaining a plugin, called Feature Selection Extension10, which
offers the Ensemble-FS operator for ensembles for feature selection. It loops
several times over subsamples of the input sample. The inner feature selection
operator chosen is performed each time, and the resulting attribute weights are
averaged (or somewhat combined). Then, the robustness of the feature selection
can be estimated by calculating the Jaccard-Index for the different subsets of
selected features.

Scikit-learn [85] is a free software machine learning library for the Python
programming language. It is designed to interoperate with the Python numerical
and scientific libraries NumPy and SciPy, and includes several feature selection

2https://CRAN.R-project.org/package=caret
3https://CRAN.R-project.org/package=Boruta
4https://CRAN.R-project.org/package=adabag
5https://CRAN.R-project.org/package=randomForest
6https://CRAN.R-project.org/package=gbm
7https://CRAN.R-project.org/package=EFS
8http://efs.heiderlab.de
9https://CRAN.R-project.org/package=mRMRe

10https://sourceforge.net/projects/rm-featselext/
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algorithms such as the popular mutual information, chi-square, L1-based feature
selection or Tree-based feature selection. Apart from these algorithms already
included in scikit-learn, there are other feature selection frameworks built upon
it. It is particularly interesting scikit-feature11, which is an open-source fea-
ture selection repository in Python developed at Arizona State University. It
contains around 40 popular feature selection algorithms, including traditional
feature selection algorithms and some structural and streaming feature selection
algorithms. As for ensemble learning, it also offers several options (e.g. bagging,
Random Forest, Adaboost, etc.).

Last but not least, several paradigms for performing parallel learning have
emerged in the last years, such as MapReduce [86], Hadoop12, or Apache Spark13.
Developed within the Apache Spark paradigm was MLlib14, created as a scalable
machine learning library containing algorithms. It is more focused on learning
algorithms, such as SVM and naive Bayes classification, k-means clustering,
etc., but it also includes a few, very simple, feature selection algorithms, such as
chi-square and ensemble methods such as Random Forest and Gradient-boosted
trees. Moreover it is possible to find works in the literature that accelerate more
sophisticated feature selection algorithms using these platforms. For example,
in a previous work we have developed a distributed implementation of a generic
feature selection framework using Apache Spark [72] (available on GitHub15).
This framework includes well-known information theory-based methods such as
mRMR, conditional mutual information maximization, or joint mutual infor-
mation (JMI), that have been designed to be able to be integrated in the Spark
MLlib library. Also, we have also proposed a Spark implementation of other
popular feature selection methods such as ReliefF, SVM-RFE or CFS16.

Apache Flink17 is also an open-source stream processing framework for dis-
tributed, high-performing, always-available, and accurate data streaming appli-
cations with a library for machine learning, called FlinkML. However, as for
now it does not include any feature selection or ensemble learning algorithms.
As happens with Spark, it is possible to find works devoted to feature selection
to work in Flink18. Another solution to make existing algorithms more scalable
is the use of graphics processing units (GPUs) to distribute and thus accelerate
calculations made in feature selection algorithms. In a previous work, we have
redesigned the popular mRMR method to take advantage of GPU capabilities
[73], showing outstanding results (available on GitHub19).

11http://featureselection.asu.edu/index.php
12http://hadoop.apache.org/
13https://spark.apache.org
14https://spark.apache.org/mllib
15https://github.com/sramirez/spark-infotheoretic-feature-selection
16http://www.lidiagroup.org/index.php/en/materials-en.html
17https://flink.apache.org/
18https://github.com/sramirez/flink-infotheoretic-feature-selection
19https://github.com/sramirez/fast-mRMR
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7. Future trends

Ensembles for feature selection are relatively recent, appearing for the need of
more accurate, robust and stable feature selection, a step that, if before Big data
was already relevant, nowadays has converted in essential for Machine Learning
pipelines. Feature selection has been applied successfully in different scenar-
ios in which high dimensional datasets are present, such as DNA microarray
analysis, image classification, face recognition, text classification, the so-called
“-omics” sciences, etc. Ensembles of feature selection have been tried with the
aim of achieving more accurate, robust and stable results in some of these areas,
showing better results than individual FS methods [26, 32]. However, ensembles
are also a hot line of research in other fields of Machine Learning:

7.1. Ensembles in other areas of Machine Learning

Ensembles in Machine Learning were first applied for classification and re-
gression at the end of the 70s [87, 88]. Since then, ensemble learning has
been a prolific field for researchers, that have investigated in many alterna-
tives that have been proposed in classification, regression, preprocessing and
other fields[89, 39, 90, 91, 92, 93], although there is not a clear and definite
winner method, as in many other areas of Machine Learning. During the last
years, ensembles have been extended beyond “classic” classification, regression
and clustering to problems related to quantification [94, 95] or anomaly detec-
tion [96, 97, 98]. At the same time, in those initial classical fields, they have
been applied to the new problems that arise, mostly, derived from the Big data
phenomenon, such as streaming processing , supporting incremental learning
[99, 100, 101, 102, 103], the problem of imbalanced data [104, 105], missing data
[10, 106] or the need for distributed and parallel learning [107, 108, 109]. As it
can be seen, all these publications are recent, paving the way for new research
lines in the field of ensemble learning for the following years.

7.2. Fields of application

Regarding the areas of application of ensembles for feature selection men-
tioned above , the most recent trends are the following:

• Microarray datasets: In [110] an exhaustive review of the most recent
feature selection algorithms that have been developed in the area of mi-
croarrays is presented. Due to the high demand of computational resources
of the wrapper methods, those are the least employed, while filters based
on information theory have been the preferred. The present tendency is
towards algorithm combination in ensemble or hybrid schemes. Examples
of this trend can be found in [111, 112, 113]. In [113], first a filter that
is employed to reduce the number of genes, followed by a wrapper that
works over an already reduced search space are employed. The features
selected are evaluated using ROC curves and finally the most effective
and smallest one is the one remaining. In [112], the authors propose an
Ensemble Gene Selection by Grouping (EGSG), that employs Information
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Theory and approximate Markov blankets, instead of a random selection,
obtaining thus not only better accuracies, but also improving stability.
An ensemble of four filter rankers is proposed in [111], and their results
are aggregated with different combination methods. An interesting point
of this proposal is the use of an automatic threshold based on dataset
complexity measures.

• Image classification, in which feature selection has become a popular pre-
processing step, as there is a call for efficient methods [114]. During the
last years, classification ensembles have been increasingly used after a
previous feature selection [115, 116, 117, 118, 119]. More recently, feature
extraction ensembles, that aim at reducing dimensionality but not using
a reduced set of the original features, have been applied by means of Deep
Networks, as in the works described in [120, 121]. However, as feature
selection aims at explanation and transparency by selecting those features
relevant from the initial set of features, it constitutes an interesting line
of open research.

• Face recognition, which specifically has attracted a lot of attention from
the research community, due to its important commercial and legal appli-
cations. The task of selecting the features that are relevant for recognition
purposes is far from trivial, as facial images datasets are scarce in sam-
ples, abundant in features, and redundancy is commonplace. As in the
case of microarrays, filter feature selection methods have been the most
popular, followed by classification ensembles, as in the works carried out
in [122, 123, 124]. Feature selection ensembles have also been proposed
in this area, as in [125, 126]. The “International Conference for Machine
Learning” launched in 2012 a competition called “Ensemble Feature Selec-
tion in Face Recognition” , in which the winner [127] applied an ensemble
that employed only around 1% of the features of the images, obtaining
impressive accurate results. As in the general case of image classification,
Deep Neural networks have improved performances, but explainability and
transparency is lost, and thus ensemble feature selection for face recogni-
tion might be also an interesting open line of research.

• Text classification, another high dimensional problem area, as it aims to
categorize documents into a fixed number of predefined categories, usually
considering each word as a feature, and thus using more than an order of
magnitude of features more than samples. For this reason, even a pre-
processing that eliminates rare words and merges some word forms (verbs
conjugations, plurals, etc) needs to be applied before feature selection
[128, 129]. Recently, ensembles for feature selection have been also ap-
plied, as in [130, 131], obtaining better results in performance than those
of the individual filter methods employed in the experiments.

As can be seen, several fields might benefit from the use of feature selection
ensembles for preprocessing purposes, since they usually improve accuracy, while
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boosting stability and reducing the computational costs of pattern recognition.
The areas mentioned above have covered some of the more popular applications
for feature selection, but the literature describes many more application areas, as
diverse as intrusion detection [132, 133, 134, 135, 136], machinery fault diagnosis,
[137, 138, 139, 140, 141, 142, 143], or automatic evaluation of open response
assignments [144].

7.3. Open topics for ensemble design

Beyond the areas of application in which ensembles could make a statement,
there are various general aspects related with the subject that are in need for
further research:

• In-depth analysis of the optimal number of components in ensembles for
FS. The large dimension, the need for better accuracies and the restric-
tions for computer time and memory call for approaches that can deter-
mine appropriate ensemble sizes. Such studies are relatively recent for
classification ensembles [17, 145, 146], while in feature selection ensembles
the size of the ensemble has been approached theoretically only in specific
high dimensional domains as in [24], and most times empirically, as in
[9, 26]. The relation between diversity and number of components might
be also an interesting line of exploration.

• Stability, that for a FS algorithm defines the robustness of its feature pref-
erences, with respect to data sampling and to its stochastic nature[15, 147];
that is, it quantifies the difference in the feature preferences obtained with
different training sets derived from the same generating distribution [56].
Thus, if small changes in data produce large changes in the resulting fea-
tures, the method is deemed as unstable. The development of stability
measures has become a bountiful area of research, with several propos-
als along the years [57, 56, 16, 148, 149, 150, 151, 152, 153], but without
any work that permits a comparison among them. The proposed mea-
sures comply with a certain number of properties, in some cases defined
only for certain measurement categories, increasing the diversity on cross-
comparisons and thus the difficulty on reaching stability conclusions. In
[147] five properties that are applicable to any stability measure are pro-
posed for the case of algorithms which output are feature subsets, allowing
the analysis and comparison of all existing measures in terms of properties.
However, the study of similar approaches for feature rankers still remains
an open issue.

• Scalability measures. As said above, data is becoming larger increasingly,
in both samples and feature dimensions, a fact that at the same time
that makes feature selection desirable, poses a severe challenge to feature
selection algorithms, as most can not confront scalability issues and thus
new methods should be devised[154, 2, 155]. Several more scalable feature
selection algorithms have been developed during the last years, following
online [156, 100], or parallel and distributed strategies [157, 73, 72, 71].
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But unlike stability, scalability studies are not common still in the sci-
entific literature, despite the fact that evaluation of performance should
probably take into account not only accuracy, diversity and stability but
also scalability issues. In [60] some new evaluation measures of the kind
are proposed and tested in several datasets, but future work could advance
on the design of a more theoretical framework that aims to achieve similar
results as for the stability issue.

• Threshold methods for rankers. In those cases in which feature selection
rankers are employed, classically the ensemble approaches have retained
a fixed percentage of the top ranked features [2, 14, 9]. However, this
approach has the problem that the adequate percentage depends on the
specific dataset used. Some authors have evaluated other types of thresh-
olding that could take into account combinations between precision and
recall (F-measure), Area under ROC curve, etc, most of which rely on
the posterior classification of the datasets [158]. Nevertheless, this ap-
proach implies a significant computational burden, undesirable for large
scale datasets, if not impossible, while in any case the threshold remains
highly dependent on the classification algorithm used. Finally and more
recently, some studies have tried to devise methods of thresholding that
do not rely on the posterior classification stage, as in [159, 26, 27].

• Feature aggregation. As detailed in section 3 there are several methods
that can be employed for combining the features obtained by the individual
methods. However, there are some problems that are still under research,
and that constitute interesting lines for the future, as for example the
possibility of using more informed methods that aid to solve the ties that
result from some combiners, or develop new methods that could assist in
eliminating the redundancy that might be introduced when aggregating
the partial feature subsets derived from the individual feature selectors.

• Explainability. During the last years the trade-off between accuracy and
explainability in Machine Learning has been clearly imbalanced towards
the accuracy side. In fact, this is one of the main reasons for the suc-
cess of Deep learning, that has set forth one record after another on most
benchmark datasets since 2006 [160]. In fact, in many competitions the
only algorithm deep learning is up against is itself. However nowadays a
new tendency stands up towards transparency and explainability, as new
laws and regulations concerning Artificial Intelligence (AI) usage have put
them into stage (notably, the new General data Protection Regulation–
GDPR– that will go into effect in May, 2018 in all EU); but also social
interest on AI in general as traceability, governance, compliance, etc need
human-like justification. For that reason, ensemble models of the past
have been revisited [161, 162] due to their explainability properties, and
at the same time Special Sessions, like the “Interpretable Learning Clas-
sifiers” that will be chaired by P.P. Angelov and J.C. Principe in the 2018
IEEE World Congress on Computational Intelligence, in which Ensem-
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bles of Deep Learning Classifiers was an specific subtopic, or the Special
Session “Interpretable ML Symposium” at NIPS 2017, aim at addressing
the bottleneck issue for achieving more interpretable results. In a society
that envisions a future in which algorithms will deal with vast quantities
of data and features in all kinds of disciplines, there is an urgent need
for solutions to the indispensable issue of feature selection, some of which
perhaps could be confronted using an ensemble approach.
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[41] D. Álvarez-Estévez, N. Sánchez-Maroño, A. Alonso-Betanzos, V. Moret-
Bonillo, Reducing dimensionality in a database of sleep eeg arousals, Ex-
pert Systems with Applications 38 (6) (2011) 7746–7754.

[42] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Distributed
feature selection: An application to microarray data classification, Applied
soft computing 30 (2015) 136–150.

[43] L. Morán-Fernández, V. Bolón-Canedo, A. Alonso-Betanzos, Centralized
vs. distributed feature selection methods based on data complexity mea-
sures, Knowledge-Based Systems 117 (2017) 27–45.

[44] J. M. Stuart, E. Segal, D. Koller, S. K. Kim, A gene-coexpression net-
work for global discovery of conserved genetic modules, science 302 (5643)
(2003) 249–255.

26



[45] S. Aerts, D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, F. De Smet,
L.-C. Tranchevent, B. De Moor, P. Marynen, B. Hassan, et al., Gene
prioritization through genomic data fusion, Nature biotechnology 24 (5)
(2006) 537.

[46] R. Kolde, S. Laur, P. Adler, J. Vilo, Robust rank aggregation for gene list
integration and meta-analysis, Bioinformatics 28 (4) (2012) 573–580.

[47] T. Joachims, Optimizing search engines using clickthrough data, in: Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2002, pp. 133–142.

[48] L. I. Kuncheva, C. J. Whitaker, Measures of diversity in classifier ensem-
bles and their relationship with the ensemble accuracy, Machine learning
51 (2) (2003) 181–207.

[49] L. I. Kuncheva, M. Skurichina, R. P. Duin, An experimental study on di-
versity for bagging and boosting with linear classifiers, Information fusion
3 (4) (2002) 245–258.

[50] R. Lysiak, M. Kurzynski, T. Woloszynski, Optimal selection of ensemble
classifiers using measures of competence and diversity of base classifiers,
Neurocomputing 126 (2014) 29–35.

[51] G. D. Cavalcanti, L. S. Oliveira, T. J. Moura, G. V. Carvalho, Combining
diversity measures for ensemble pruning, Pattern Recognition Letters 74
(2016) 38–45.

[52] C. Brodley, T. Lane, Creating and exploiting coverage and diversity, in:
Proc. AAAI-96 Workshop on Integrating Multiple Learned Models, Port-
land, OR, 1996, pp. 8–14.

[53] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust
biomarker identification for cancer diagnosis with ensemble feature selec-
tion methods, Bioinformatics 26 (3) (2009) 392–398.

[54] G. Ditzler, R. Polikar, G. Rosen, A bootstrap based neyman-pearson test
for identifying variable importance, IEEE transactions on neural networks
and learning systems 26 (4) (2015) 880–886.

[55] Z. He, W. Yu, Stable feature selection for biomarker discovery, Computa-
tional biology and chemistry 34 (4) (2010) 215–225.

[56] A. Kalousis, J. Prados, M. Hilario, Stability of feature selection algo-
rithms: a study on high-dimensional spaces, Knowledge and information
systems 12 (1) (2007) 95–116.

[57] K. Dunne, P. Cunningham, F. Azuaje, Solutions to instability problems
with sequential wrapper-based approaches to feature selection, Journal of
Machine Learning Research (2002) 1–22.

27



[58] E. M. Voorhees, Evaluation by highly relevant documents, in: Proceedings
of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, ACM, 2001, pp. 74–82.

[59] G. Jurman, S. Riccadonna, R. Visintainer, C. Furlanello, Canberra dis-
tance on ranked lists, in: Proceedings of Advances in Ranking NIPS 09
Workshop, Citeseer, 2009, pp. 22–27.

[60] V. Bolón-Canedo, D. Rego-Fernández, D. Peteiro-Barral, A. Alonso-
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