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New results on egalitarian values for games
with a priori unions

J.C. Gonçalves-Dosantos1, J.M. Alonso-Meijide2

Abstract

Several extensions of the equal division value and the equal surplus
division value to the family of games with a priori unions have been
proposed by Alonso-Meijide et al. (2020) in “On egalitarian values
for cooperative games with a priori unions” TOP 28: 672-688. In
this study, we provide new axiomatic characterizations of these val-
ues. Furthermore, using the equal surplus division value in two steps,
we propose a new coalitional value. The balanced contributions and
quotient game properties generate a different modification of the equal
surplus division value.

Keywords: cooperative games, coalitional values, equal division value, equal
surplus division value.

1 Introduction

One of the main subjects of study in the cooperative game theory is how to
divide an existing amount among a set of agents. The Shapley value (Shapley,
1953) is arguably the most successful answer to this problem. In this study,
we analyze two different alternatives to the Shapley value: the egalitarian
solution (where the worth of the grand coalition is divided equally among the
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players), and the equal surplus division value (Driessen and Funaki, 1991),
which first allocates individual payoffs to each agent and subsequently divides
the remaining amount equally among them. These values satisfy several good
properties; van den Brink and Funaki (2009), Chun and Park (2012), van den
Brink et al. (2016), Ferrières (2017), and Bèal et al. (2019), among others,
provide many axiomatic characterizations.

Players with similar interests are more likely to act together, giving rise
to games where cooperation is restricted by an a priori system of unions.
Different coalitional values have been analyzed for this type of game. The
first one, proposed by Aumann and Drèze (1974), considers that every player
receives the Shapley value of the game played within his union. Owen (1977)
defined a different coalitional value (Owen value) based on the following
process. First, the unions play a game among themselves (quotient game),
and each union receives a payoff that is shared among its players in a second
(internal) game. In both cases, the Shapley value is used to compute the
corresponding payoffs. The Owen value coincides with the Shapley value
when all unions are singletons; that is, it is a coalitional Shapley value. The
Owen value satisfies several good properties, such as the quotient game and
balanced contribution properties. The quotient game property states that
the players of an a priori union receive the amount that this union receives
in the quotient game. The balanced contributions property compares the
amount obtained by two players of the same union in the original situation
where one of them leaves this union. In Vázquez-Brage et al. (1997), the
Owen value is characterized as the unique coalitional Shapley value satisfying
the quotient game and balanced contributions properties.

Other values are extended to cooperative games with a priori unions.
In the context that concerns us, Alonso-Meijide et al. (2020) extend and
characterize the equal division value and the equal surplus division value.
For the second value, three alternative ways to adapt it to a priori unions
are proposed.

This study aims to provide a new axiomatic characterization for the values
proposed by Alonso-Meijide et al. (2020), which can be compared with the
characterization of the Owen value proposed by Vázquez-Brage et al. (1997).
However, none of the extensions of the equal surplus division value satisfy
both properties (quotient game and balanced contributions). Therefore, we
propose variants of the properties that allow us to characterize the extensions
proposed by Alonso-Meijide et al. (2020).

Further, we obtain a new modification of the equal surplus division value
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following the Owen process using the equal surplus division value (instead
of the Shapley value) in two steps. Finally, we provide the expression of the
coalitional extension of the equal surplus division value satisfying the same
properties as those used by Vzquez-Brage et al. (1997) to characterize the
Owen value.

2 Preliminaries

2.1 TU-games and values

A transferable utility cooperative game (from now on a TU-game) is a pair
(N, v), where N is a finite set of n players, and v is a map from 2N to R
with v(∅) = 0, called the games characteristic function. In the sequel, GN
denotes the family of all TU-games with player set N and G the family of all
TU-games. A value for TU-games is a map f that assigns to every TU-game
(N, v) ∈ G a vector f(N, v) = (fi(N, v))i∈N ∈ RN .

Well-known TU-game values are egalitarian values. The equal division
value ED distributes v(N) equally among the players in N . Formally, the
equal division value ED is defined for every (N, v) ∈ G, and every i ∈ N is
defined by

EDi(N, v) =
v(N)

n
.

The equal surplus division value ESD is defined for every (N, v) ∈ G,
and every i ∈ N by

ESDi(N, v) = v(i) +
v0(N)

n

where v0(N) = v(N)−
∑

i∈N v(i). Notice that ESD is a variant of ED, where
we first allocate v(i) to each player i and then distribute v0(N) among the
players using ED. ESD is a reasonable alternative to ED when individual
benefits and joint benefits are neatly separable.

Alternative values for TU-games are the Shapley (Shapley 1953) and
Banzhaf values (Banzhaf 1964).

2.2 Games with a priori unions

We denote the set of all partitions of N by P (N). Then, a TU-game with
a priori unions is a triplet (N, v, P ), where (N, v) ∈ G, P = {P1, . . . , Pm} ∈
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P (N), and Pk ∈ P is called a priori union for all k ∈M with M = {1, ...,m}.
The set of TU-games with a priori unions and a player set N is denoted by
GUN , and the set of all TU-games with a priori unions is denoted by GU . A
value for TU-games with a priori unions is a map g that assigns to every
(N, v, P ) ∈ GU a vector g(N, v, P ) = (gi(N, v, P ))i∈N ∈ RN .

Two examples of values for TU-games with a priori unions are the Owen
value (Owen 1977) and the Banzhaf-Owen value (Owen 1981).

Given (N, v, P ) ∈ GU with P = {P1, . . . , Pm} ∈ P (N), the quotient game
of (N, v, P ) is the TU-game (M, v/P ), where

(v/P )(R) = v (∪r∈RPr) for all R ⊆M.

We say that a value for TU-games with a priori unions g is a coalitional
equal division value (CED) if, for any TU-game (N, v) ∈ G, it holds that

g(N, v, P n) = ED(N, v),

where

P n = {{1}, . . . , {n}}.

Using similar concepts, the Owen value is a coalitional Shapley value, and
Banzhaf-Owen value is a coalitional Banzhaf value.

2.3 Coalitional values in two steps

Given (N, v, P ) ∈ GUN with P = {P1, . . . , Pm} and a coalition S ⊆ Pr, the
modified game of (N, v, P ) is defined as (M,ur,S), where

ur,S (H) =

{
v (∪k∈HPk) if r /∈ H

v
(
∪k∈H\rPk ∪ S

)
if r ∈ H

(1)

For all H ⊆M. That is, the modified game (M,ur,S), is defined based on the
game (N, v, P ), where each player k with k 6= r is the union Pk, and player
r is the coalition S.

Using the modified game (M,ur,S) and a value f for TU-games, the re-
duced game (Pr, wr) is a TU-game with a set of players Pr and characteristic
function

wr (S) = fr (M,ur,S) (2)
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for any S ⊆ Pr.
Finally, a value g for TU-games with a priori unions is obtained by reap-

plying the value f over (Pr, wr). That is

gi (N, v, P ) = fi (Pr, wr) (3)

for all i ∈ Pr.
We call the Owen procedure to that described in equations (2) and (3) to

obtain a coalitional value g for TU-games with a priori unions using a value
f for TU-games.

The Owen value and the Banzhaf-Owen value are the result of applying
the Owen procedure using the Shapley value (Owen 1977) and the Banzhaf
value (Owen 1981), respectively.

A similar approach to obtain coalitional values in two steps is presented
in Gómez-Rúa and Vidal-Puga (2010). They propose different coalitional
values; in one of them, the payoffs obtained by the unions are given using a
weighted Shapley value, with weights given by the union sizes.

3 The equal division value for TU-games with

a priori unions

Alonso-Meijide et al. (2020) define the equal division value for TU-games
with a priori unions as the natural extension of the equal division value to
the set GU .

Definition 3.1 (Alonso-Meijide et al. 2020) The equal division value for
TU-games with a priori unions EDU is defined as

EDU
i (N, v, P ) =

v(N)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk where pk denotes
the cardinal of Pk.

Alonso-Meijide et al. (2020) characterize the equal division value for TU-
games with a priori unions using, among others, symmetry and additivity
properties. In this section, we provide a second axiomatic characterization
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of the equal division value for TU-games with a priori unions using the con-
cept of CED value and two additional properties: the quotient game prop-
erty (Winter, 1992) and the balanced contributions in the unions’ property
(Vázquez-Brage et al., 1996). First, we consider these two properties.

Quotient Game Property (QGP). A value g for TU-games with a priori
unions satisfies the QGP if, for all (N, v, P ) ∈ GUN with P = {P1, . . . , Pm}, it
holds that ∑

i∈Pk

gi (N, v, P ) = gk (M, v/P, Pm)

for all Pk ∈ P , where (M, v/P ) is the quotient game of (N, v, P ).

Balanced Contributions in the Unions (BCU). A value g for TU-games
with a priori unions satisfies balanced contributions in the unions if, for all
(N, v, P ) ∈ GUN and all i, j ∈ Pk with Pk ∈ P , it holds that

gi (N, v, P )− gi (N, v, P−j) = gj (N, v, P )− gj (N, v, P−i)

where P−l denotes the partition {P1, . . . , Pk−1, Pk \{l}, {l}, Pk+1, . . . , Pm} for
all l ∈ Pk.

If a value satisfies the QGP, then the total amount received by the union
players coincides with the amount obtained by the union in the game played
by the unions (the quotient game). For example, the Owen value satisfies this
property but the Banzhaf-Owen value does not. The balanced contributions
in the unions property compare the payoff obtained by player i in the original
game (N, v, P ) and the game when player j of the same union decides to
leave the union and stay alone (N, v, P−j). This property establishes that
the difference between the payoffs obtained by player i in the two previous
games coincides with the same difference for player j when player i leaves the
union. This property is a particular case of the splitting property (Casajus,
2009), in which this difference is the same considering any game (N, v, P ′),
where the partition P ′ is finer than P .

Vázquez-Brage et al. (1997) prove that the Owen value is the unique
coalitional Shapley value that satisfies the properties of the quotient game
and BCU. Similarly, Alonso-Meijide and Fiestras-Janeiro (2002) characterize
the coalitional Banzhaf value as a unique coalitional Banzhaf value satisfying
the properties of quotient games and BCU. In the same spirit, we present
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a characterization of the equal division value for TU-games with a priori
unions.

The mathematical arguments of some of the proofs presented in this pa-
per are similar to those in previous studies and they are relegated to the
Appendix. They share the quotient games ideas and balanced contribution
properties joint to the coalitional value concept to show the unicity of the
solutions.

Theorem 3.2 EDU is the unique CED value that satisfies the QGP and
BCU.

In the previous theorem, the CED value can be stated as a third property.
Moreover, the CED value could be replaced by any set of properties that
characterizes the equal division value in the family of TU-games by adding
the mention of the trivial coalition structure.

The EDU value is an extension of ED for TU-games with a priori unions
that are intuitive and natural. Moreover, let us check if it is the value ob-
tained by the procedure to obtain coalitional values in the two steps proposed
by Owen (1977) described in Subsection 2.3.

Theorem 3.3 The equal division value with a priori unions EDU is the
result of applying the Owen procedure using the equal division value ED.

4 Three equal surplus division values for TU-

games with a priori unions

Alonso-Meijide et al. (2020) proposed three alternative ways to extend the
equal surplus division value to TU-games with a priori unions. In this section,
we provide new characterizations of these coalitional values.

4.1 The equal surplus division value 1

The equal surplus division value 1 divides the grand coalition value in the
quotient game using the equal surplus division value and then equally divides
the amount assigned to each union among its members.
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Definition 4.1 (Alonso-Meijide et al. 2020) The equal surplus division
value (one) for TU-games with a priori unions ESD1U is defined by

ESD1U
i (N, v, P ) =

(v/P )(k)

pk
+

(v/P )0(M)

mpk
=

v(Pk)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it can be easily checked that ESD1U is a coalitional equal
surplus division value (CESD), as

ESD1U(N, v, P n) = ESD(N, v)

for all (N, v) ∈ G.
We use this feature to provide a new characterization of ESD1U in the

remainder of this subsection. First, we define a new property.

Equality Inside Unions (EIU). Value g for TU-games with a priori unions
satisfies EIU if, for all (N, v, P ) ∈ GU , all Pk ∈ P , and i, j ∈ Pk, it holds that
gi(N, v, P )− gj(N, v, P ) = 0.

The previous property takes up the egalitarianism idea inside unions.
This property considers that players within a union are willing to show strict
equality. It can be seen as a stronger symmetry property version, as all play-
ers belonging to the same union obtain the same payoff without considering
the characteristic function of the game.

Theorem 4.2 ESD1U is the unique CESD value for TU-games with a priori
unions satisfying QGP and EIU.

It can be easily proved that the equal division value for TU-games with
a priori unions satisfies EIU. Moreover, EIU could replace BCU in Theorem
3.2 to obtain a new characterization of the equal division value for TU-games
with a priori unions.
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4.2 The equal surplus division value 2

The equal surplus division value 2 again divides the value of the grand coali-
tion in the quotient game using the equal surplus division value; then, it
distributes the amount v(Pk) assigned to each union Pk giving v(i) to each
player i ∈ Pk and dividing v(Pk)−

∑
j∈Pk

v(j) equally among the players in
Pk.

Definition 4.3 (Alonso-Meijide et al. 2020) The equal surplus division
value (two) for TU-games with a priori unions ESD2U is defined by

ESD2U
i (N, v, P ) = v(i) +

v(Pk)−
∑

j∈Pk
v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

for all (N, v, P ) ∈ GU , with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it can be easily checked that ESD2U is a CESD, as

ESD2U(N, v, P n) = ESD(N, v)

for all (N, v) ∈ G.
We use this feature to provide a new ESD2U characterization in the

remainder of this subsection. First, we define a new property.

Difference Maintenance of Individual Values Inside Unions (DMIVIU).
A value g for TU-games with a priori unions satisfies DMIVIU if, for all
(N, v, P ) ∈ GU , all Pk ∈ P , and i, j ∈ Pk, it holds that gi(N, v, P ) −
gj(N, v, P ) = v(i)− v(j).

This property is similar to EIU, as DMIVIU is a stronger version of the
symmetry property, but it is not as strong as EIU. In this case, the difference
between the payoffs of two players of the same union coincides with the dif-
ference between the amounts given by the characteristic function of the game
to individual coalitions, without considering the amounts given to coalitions
with two or more players. It is evident that in the case of zero-normalized
games, DMIVIU is equivalent to EIU.

Theorem 4.4 ESD2U is the unique CESD value for TU-games with a priori
unions satisfying QGP and DMIVIU.
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4.3 The equal surplus division value 3

Finally, the equal surplus division value 3 assigns v(i) to each player i and
then divides v0(N) among the players using EDU .

Definition 4.5 (Alonso-Meijide et al. 2020) The equal surplus division
value (three) for TU-games with a priori unions ESD3U is defined by

ESD3U
i (N, v, P ) = v(i) + EDU(N, v0, P ) = v(i) +

v(N)−
∑

j∈N v(j)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it can be easily checked that ESD3U is a CESD, as

ESD3U(N, v, P n) = ESD(N, v)

for all (N, v) ∈ G.
We use this feature to provide a new characterization of ESD3U in the

remainder of this section. Nevertheless, ESD3U does not satisfy QGP; there-
fore, we introduce a newly modified quotient game.

Let (N, v, P ) ∈ GU with P = {P1, ..., Pm} and denote M = {1, ...,m}.
The quotient* game of (N, v, P ) is the TU-game (M, v̄/P ), where

(v̄/P )(R) =


∑
k∈R

∑
i∈Pk

v(i) if R ⊂M

v(N) if R = M

Quotient* Game Property (Q*GP). A value g for TU-games with a pri-
ori unions satisfies the Q*GP if for all (N, v, P ) ∈ GU with P = {P1, ..., Pm},
it holds that ∑

i∈Pk

gi (N, v, P ) = gk (M, v̄/P, Pm)

for all Pk ∈ P , where (M, v̄/P ) is the quotient* game of (N, v, P ).

Theorem 4.6 ESD3U is the unique CESD value for TU-games with a priori
unions satisfying Q*GP and BCU.
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5 Two new extensions of the equal surplus

division value

In this section, we introduce two new extensions of the equal surplus division
value for TU-games with a priori unions. First is the value obtained by
applying the Owen procedure using the equal surplus division value. The
other is an extension of the equal surplus division value that satisfies the
quotient game and BCU properties.

5.1 Coalitional value using equal surplus division value
in two steps

The first new extension is obtained by applying the procedure in two steps
using an equal surplus division value. The first part of the value coincides
with ESD2U , as mentioned later. In the second part, it allocates the differ-
ence between the average value of the players in the union and the value of
the player, then the difference between the value of the player’s contribution
to the grand coalition minus the union and the average contribution of the
players in the union to the grand coalition minus the union, all divided by
the unions total.

Definition 5.1 The equal surplus division value (four) for TU-games with
a priori unions ESD4U is defined by

ESD4U
i (N, v, P ) = v(i) +

v(Pk)−
∑

j∈Pk
v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk
+

1

m

(∑
t∈Pk

v (t)

pk
− v (i)

)
+

1

m

(
v
(
∪r∈M\kPr ∪ i

)
−
∑
t∈Pk

v
(
∪r∈M\kPr ∪ t

)
pk

)

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Using the procedure proposed by Owen (1977) shown in Section 2.3, where
ESD is now used in games (2) and (3), we can obtain the solution g =
ESD4U . Let us consider this in the following theorem.
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Theorem 5.2 The equal surplus division value with a priori unions ESD4U

is the result of applying the Owen procedure using the equal surplus division
value ESD.

Remark 5.3 Note that ESD4 can be written in terms of ESD2

ESD4U
i (N, v, P ) = ESD2U

i (N, v, P ) +
1

m

(∑
t∈Pr

v (t)

pr
− v (i)

)
+

1

m

(
v
(
∪k∈M\rPk ∪ i

)
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
pr

)

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

It can be easily checked that

ESD4U
i (N, v, P n) = ESDi(N, v)

and ∑
i∈Pr

ESD4U
i (N, v, P ) = ESDr(M, v/P ),

that is, ESD4U is a CESD value that satisfies the QGP.
The value ESD4 is a CESD value that satisfies the quotient game. To

characterize ESD4U in the proposed context, we define the following prop-
erty:

Balanced contributions because of the players abandonment in
the union (BCPA). A value g for TU-games with a priori unions satisfies
BCPA if, for all (N, v, P ) ∈ GU and all i, j ∈ Pk with Pk ∈ P , it holds that

gi (N, v, P )− gi
(
N\Pk ∪ i, vN\Pk∪i, P\Pk ∪ {i}

)
=

gj (N, v, P )− gj
(
N\Pk ∪ j, vN\Pk∪j, P\Pk ∪ {j}

)
where the game

(
N\Pk ∪ i, vN\Pk∪i, P\Pk ∪ {i}

)
is defined as vN\Pk∪i(S) =

v(S) for all S ⊆ N\Pk ∪ i.
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This new property states that given two players in the same union, they
get the same difference between the payoff of the original game and the payoff
of the game where all the players of the union leave. This property has a
similar interpretation to the balanced contributions property.

Theorem 5.4 ESD4U is the unique CESD value for TU-games with a priori
unions satisfying QGP and BCPA.

5.2 Coalitional equal surplus division value satisfying
balanced contributions and quotient game

In this section, we define a value for TU-games with a priori unions that
extends the equal surplus division value and satisfies the QGP and BCU.
The first part of the value coincides with the ESD1U , as mentioned later,
and a weighted difference between the value of the subsets of the union that
contain the player minus the subsets that do not.

Definition 5.5 The equal surplus division value (five) for TU-games with a
priori unions ESD5U is defined by

ESD5U
i (N, v, P ) =

v(Pk)

pk
+
v (N)−

∑
l∈M v (Pl)

mpk
+
∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T )

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk; where t = |T | and

Pm,pk,t =
1

2
if pk = 2 and t = 1,

Pm,pk,t =
1

pk

(
1 +

pk−2∑
j=1

1

m + j

)
if pk > 2 and t = 1,

Pm,pk,t =
m

(m + 1)pk
if pk > 2 and t = pk − 1,

Pm,pk,t =
m + (z − 1)

(pk − (z − 1))(m + z)

(
z−2∑
j=0

pk − j − t

pk − j

)
if pk > 3 and t = (pk − z) such that z ∈ {2, ..., pk − 2}.
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Remark 5.6 Note that ESD5 can be written in terms of ESD1

ESD5U
i (N, v, P ) = ESD1U

i (N, v, P ) +
∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T ) .

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

In the last result of this study, we characterized the ESD5 value in
the same spirit as an axiomatic characterization of the Owen value given
in Vázquez-Brage et al. (1997).

Theorem 5.7 ESD5U is the unique CESD value that satisfies the QGP and
BCU.

Table 1 shows the summary of the properties fulfilled by all the values.
Note that all theorems are based on independent properties. The logical
demonstration of the independence of the axioms is provided as an online
supplement to readers wishing to request them.

CED CESD QGP Q∗GP BCU EIU DMIV IU BCPA
EDU X − X − X − − −

ESD1U − X X − − X − −
ESD2U − X X − − − X −
ESD3U − X − X X − − −
ESD4U − X X − − − − X
ESD5U − X X − X − − −

Table 1: Properties satisfied by all the values

Acknowledgments

This work has been supported by the ERDF, the MINECO/AEI grants
MTM2017-87197-C3-1-P, MTM2017-87197-C3-3-P, and by the Xunta de Gali-
cia (Grupos de Referencia Competitiva ED431C-2016-015 and ED431C-2017/38).

14



CITIC as Centro de Investigación do Sistema universitario de Galicia is fi-
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Appendix

Here, the reader can find the proofs of the theorems stated in this study.

Proof of Theorem 3.2.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such that
P = {P1, ..., Pm} and denote M = {1, ...,m}. We check that EDU satisfies
the QGP. For all k ∈M , we have∑

i∈Pk

EDU
i (N, v, P ) =

∑
i∈Pk

v(N)

mpk
=

v(N)

m

and

EDU
k (M, v/P, Pm) =

(v/P )(M)

m
=

v(N)

m
.

Let us check that EDU satisfies BCU. For all i, j ∈ Pk, we have that

EDU
i (N, v, P )− EDU

i (N, v, P−j) =
v(N)

mpk
− v(N)

(m + 1)(pk − 1)

and

EDU
j (N, v, P )− EDU

j (N, v, P−i) =
v(N)

mpk
− v(N)

(m + 1)(pk − 1)
.

Finally, the uniqueness is proven analogously as the uniqueness in Theo-
rem 2 of Vázquez-Brage et al. (1997). Let us suppose that there exist two
different CED values, f 1 and f 2, satisfying the QGP and BCU. We can find
a coalitional game (N, v, P ), where P is the maximal number of unions, such
that f 1(N, v, P ) 6= f 2(N, v, P ). Considering that f 1 and f 2 satisfy the QGP,
∀Pk ∈ P and l ∈ {1, 2}, we have∑

i∈Pk

f l
i (N, v, P ) = f l

k (M, v/P, Pm) .
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But f 1 and f 2 are CED values, then∑
i∈Pk

f 1
i (N, v, P ) =

∑
i∈Pk

f 2
i (N, v, P ) = EDk (M, v/P ) . (4)

If Pk is such that |Pk| = 1, i.e. Pk = {i}, then

f 1
i (N, v, P ) = f 2

i (N, v, P )

However, if |Pk| > 1, for any i, j ∈ Pk, we have by BCU

f l
i (N, v, P )− f l

j (N, v, P ) = f l
i (N, v, P−j)− f l

j (N, v, P−i)

for all l ∈ {1, 2}. Therefore, the maximality of P implies that

f 1
i (N, v, P )− f 1

j (N, v, P ) = f 2
i (N, v, P )− f 2

j (N, v, P )

and we have
f 1
i (N, v, P )− f 2

i (N, v, P ) = Ak

for all i ∈ Pk. By equation 4, we have Ak = 0 and

f 1
i (N, v, P ) = f 2

i (N, v, P )

Thus, f 1 (N, v, P ) = f 2 (N, v, P ), and we have proven this uniqueness. �

Proof of Theorem 3.3.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such that
P = {P1, ..., Pm} and denote M = {1, ...,m}. Given a coalition S ⊆ Pr, we
can obtain the reduced game (2) by applying ED to the modified game (1),

wr (S) = EDr (M,ur,S) =
ur,S (.M)

m
=

v
(
∪k∈H\rPk ∪ S

)
m

.

Again, if we reapply ED to the reduced game (2) as (3), for all players
i ∈ Pr, we obtain

EDi (Pr, wr) =
wr (Pr)

pr
=

v
(
∪k∈H\rPk ∪ Pr

)
/m

pr
=

v (N)

mpr
= EDU

i (N, v, P ) .

�
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Proof of Theorem 4.2.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such
that P = {P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD1U

satisfies the QGP. For all k ∈M , we have

∑
i∈Pk

ESD1U
i (N, v, P ) =

∑
i∈Pk

(
v(Pk)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

)
= v(Pk) +

v(N)−
∑

l∈M v(Pl)

m

and

ESD1U
k (M, v/P, Pm) =

(v/P )(k)

1
+

(v/P )(M)−
∑

l∈M(v/P )(l)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.

Let us check that ESD1U satisfies the EIU. For all i, j ∈ Pk, we have

ESD1U
i (N, v, P )− ESD1U

j (N, v, P ) = 0.

Finally, the uniqueness is proven analogously as the uniqueness in Theo-
rem 2 of Vázquez-Brage et al. (1997). �

Proof of Theorem 4.4.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such
that P = {P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD2U

satisfies the QGP. For all k ∈M , we have

∑
i∈Pk

ESD2U
i (N, v, P ) =

∑
i∈Pk

(
v(i) +

v(Pk)−
∑

j∈Pk
v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

)
=
∑
i∈Pk

v(i) + v(Pk)−
∑
j∈Pk

v(j) +
v(N)−

∑
l∈M v(Pl)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m

17



and

ESD2U
k (M, v/P, Pm) = (v/P )(k) +

(v/P )(k)− (v/P )(k)

1
+

(v/P )(M)−
∑

l∈M(v/P )(l)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.

Let us check that ESD2U satisfies DMIVIU. For all i, j ∈ Pk, we have

ESD2U
i (N, v, P )− ESD2U

j (N, v, P ) = v(i)− v(j).

Finally, the uniqueness is proven analogously as the uniqueness in Theo-
rem 2 of Vázquez-Brage et al. (1997). �

Proof of Theorem 4.6.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such
that P = {P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD3U

satisfies Q*GP. For all k ∈M , we have∑
i∈Pk

ESD3U
i (N, v, P ) =

∑
i∈Pk

(
v(i) +

v(N)−
∑

j∈N v(j)

mpk

)

=
∑
i∈Pk

v(i) +
v(N)−

∑
j∈N v(j)

m

and

ESD3U
k (M, v̄/P, Pm) = (v̄/P )(k) +

(v̄/P )(M)−
∑

l∈M(v̄/P )(l)

m

=
∑
i∈Pk

v(i) +
v(N)−

∑
k∈M

∑
j∈Pk

v(j)

m

=
∑
i∈Pk

v(i) +
v(N)−

∑
j∈N v(j)

m
.

Let us check that ESD3U satisfies BCU. For all i, j ∈ Pk, we have

ESD3U
i (N, v, P )−ESD3U

i (N, v, P−j) =
v(N)−

∑
j∈N v(j)

mpk
−
v(N)−

∑
j∈N v(j)

(m + 1)(pk − 1)

18



and

ESD3U
j (N, v, P )−ESD3U

j (N, v, P−i) =
v(N)−

∑
j∈N v(j)

mpk
−
v(N)−

∑
j∈N v(j)

(m + 1)(pk − 1)
.

Finally, the uniqueness is proven in a similar way as the uniqueness in
Theorem 2 of Vázquez-Brage et al. (1997). �

Proof of Theorem 5.2.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such that
P = {P1, ..., Pm} and denote M = {1, ...,m}. First, ESD is applied to the
modified game (1) to obtain the reduced game (2), where only the individual
payoffs ur,S(i) and the total payoff ur,S(M) are necessary. Therefore, for all
unions Pr

wr (S) = ESDr (M,ur,S) = ur,S(r) +
ur,S(M)−

∑
l∈M ur,S(l)

m
=

v (S) +
v
(
∪k∈M\rPk ∪ S

)
−
∑

l∈M\r v (Pl)− v (S)

m
.

Taking again ESD and applying it to the reduced game (2) as (3), for
all players i ∈ Pr,

ESDi (Pr, wr) = wr(i) +
wr(Pr)−

∑
t∈Pr

wr(t)

pr
=

v (i) +
v
(
∪k∈M\rPk ∪ i

)
−
∑

l∈M\r v (Pl)− v (i)

m
+

v (Pr) +
v(∪k∈M\rPk∪Pr)−

∑
l∈M\r v(Pl)−v(Pr)

m
−
∑

t∈Pr
(v (t) +

v(∪k∈M\rPk∪t)−
∑

l∈M\r v(Pl)−v(t)
m

)

pr
.

As

v
(
∪k∈M\rPk ∪ Pr

)
−
∑

l∈M\r

v (Pl)− v (Pr) = v (N)−
∑
l∈M

v (Pl)
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we have

ESDi (Pr, wr) = v (i) +
v
(
∪k∈M\rPk ∪ i

)
m

− v (i)

m
−
∑

l∈M\r v (Pl)

m
+

v (Pr)

pr
+

v (N)

mpr
−
∑

l∈M v (Pl)

mpr
−
∑
t∈Pr

v (t)

pr
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
mpr

+
∑
t∈Pr

∑
l∈M\r

v (Pl)

mpr
+
∑
t∈Pr

v (t)

mpr
.

The second last term can be written as∑
t∈Pr

∑
l∈M\r

v (Pl)

mpr
=
∑

l∈M\r

pr
v (Pl)

mpr
=
∑

l∈M\r

v (Pl)

m

and then, we obtain

ESDi (Pr, wr) = v (i) +
v
(
∪k∈M\rPk ∪ i

)
.

m
− v (i)

m
+

v (Pr)

pr
+

v (N)

mpr
−
∑

l∈M v (Pl)

mpr
−
∑
t∈Pr

v (t)

pr
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
mpr

+
∑
t∈Pr

v (t)

mpr
.

Reordering terms, we have

ESDi (Pr, wr) = v (i) +
1

m

(∑
t∈Pr

v (t) .

pr
− v (i)

)
+

1

pr

v (N)−
∑

l∈M v (Pl)

m
+

1

pr

(
v (Pr)−

∑
t∈Pr

v (t)

)
+

1

m

(
v
(
∪k∈M\rPk ∪ i

)
.−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
pr

)
= ESD4U

i (N, v, P ) .

�

Proof of Theorem 5.4.
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Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such
that P = {P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD4U

satisfies the BCPA. For all l ∈M and all i, j ∈ Pl,

ESD4U
i (N, v, P )− ESD4U

j (N, v, P ) = ESD2U
i (N, v, P ) +

1

m

(∑
t∈Pl

v (t) .

pl
− v (i)

)
+

1

m

(
v
(
∪k∈M\lPk ∪ i

)
−
∑
t∈Pl

v
(
∪k∈M\lPk ∪ t

)
pl

)
− ESD2U

j (N, v, P )−

1

m

(∑
t∈Pl

v (t)

pl
− v (j)

)
− 1

m

(
v
(
∪k∈M\lPk ∪ j

)
−
∑
t∈Pl

v
(
∪k∈M\lPk ∪ t

)
pl

)
.

By the DMIVIU property that satisfies ESD2U , we have ESD2i−ESD2j =
v(i)− v(j). Then we have

ESD4U
i (N, v, P )− ESD4U

j (N, v, P ) =

v(i)− v(j)− v(i)

m
+

v(j)

m
+

v
(
∪k∈M\lPk ∪ i

)
m

−
v
(
∪k∈M\lPk ∪ j

)
m

.

However,

ESD4U
i

(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD4U

j

(
N\Pl ∪ j, vN\Pl∪j, P\Pl ∪ {j}

)
=

ESD2U
i

(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
+

1

m

(
vN\Pl∪i (i)

1
− vN\Pl∪i (i)

)
+

1

m

(
vN\Pl∪i

(
∪Pk∈P\Pl

Pk ∪ i
)
−

vN\Pl∪i
(
∪Pk∈P\Pl

Pk ∪ i
)

1

)
−

ESD2U
j

(
N\Pl ∪ j, vN\Pl∪j, P\Pl ∪ {j}

)
− 1

m

(
vN\Pl∪j (j)

1
− vN\Pl∪j (j)

)
−

1

m

(
vN\Pl∪j

(
∪Pk∈P\Pl

Pk ∪ j
)
−

vN\Pk∪j
(
∪Pk∈P\Pl

Pk ∪ j
)

1

)
.

We have

ESD4U
i

(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD4U

j

(
N\Pl ∪ j, vN\Pl∪j, P\Pl ∪ {j}

)
=

ESD2U
i

(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD2U

j

(
N\Pl ∪ j, vN\Pl∪j, P\Pl ∪ {j}

)
21



and then

ESD2U
i

(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD2U

j

(
N\Pl ∪ j, vN\Pl∪j, P\Pl ∪ {j}

)
=

vN\Pl∪i(i) +
vN\Pl∪i(i)− vN\Pl∪i(i)

1
+

vN\Pl∪i(N\Pl ∪ i)− (
∑

Pk∈P\Pl∪i vN\Pl∪i(Pk))

m
−

vN\Pl∪j(j)−
vN\Pl∪j(j)− vN\Pl∪j(j)

1
−

vN\Pl∪j(N\Pl ∪ j)− (
∑

Pk∈P\Pl∪j vN\Pl∪j(Pk))

m
=

vN\Pl∪i(i)− vN\Pl∪j(j) +
vN\Pl∪i(N\Pl ∪ i)

m
−

vN\Pl∪j(N\Pl ∪ j)

m
−
∑

Pk∈P\Pl∪i vN\Pl∪i(Pk)

m
+∑

Pk∈P\Pl∪j vN\Pl∪j(Pk)

m
= v(i)− v(j) +

v
(
∪k∈M\lPk ∪ i

)
m

−
v
(
∪k∈M\lPk ∪ j

)
m

− v(i)

m
+

v(j)

m
.

Finally, the uniqueness is proven similarly as the uniqueness in Theorem
2 of Vázquez-Brage et al. (1997). �

Proof of Theorem 5.7.

Proof. Consider a TU-game with a priori unions (N, v, P ) ∈ GU such
that P = {P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD5U

satisfies the QGP. For all k ∈M , we have∑
i∈Pk

ESD5U
i (N, v, P ) =

∑
i∈Pk

(
v(Pk)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

)
+
∑
i∈Pk

∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
i∈Pk

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T ) =

v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
+ t

∑
T⊂Pk

Pm,pk,t

t
v (T )− (pk − t)

∑
T⊂Pk

Pm,pk,t

pk − t
v (T ) =

v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.

It is immediate that

ESD5U
k (M, v/P, Pm) = v(Pk) +

v(N)−
∑

l∈M v(Pl)

m
.
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Let us check that ESD5U satisfies BCU. For all k ∈M and all i, j ∈ Pk,

ESD5U
i (N, v, P )− ESD5U

j (N, v, P ) =∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T )−

∑
T⊂Pk
j∈T

Pm,pk,t

t
v (T ) +

∑
T⊂Pk
j /∈T

Pm,pk,t

pk − t
v (T ) ,

∑
T⊆Pk\j

i∈T

Pm,pk,t

t
v (T )−

∑
T⊆Pk\i
j∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T
j∈T

Pm,pk,t

pk − t
v (T ) +

∑
T⊂Pk
j /∈T
i∈T

Pm,pk,t

pk − t
v (T ) =

pk
∑

T⊆Pk\j
i∈T

Pm,pk,t

(pk − t)t
v (T )−

∑
T⊆Pk\i
j∈T

Pm,pk,t

(pk − t)t
v (T ) .

We have

ESD5Ui (N, v, P−j)− ESD5Uj (N, v, P−i) =

v(Pk\j)
pk − 1

+
v(N)−

∑
Pl∈P−j

v(Pl)

(m + 1)(pk − 1)
− v(Pk\i)

pk − 1
−

v(N)−
∑

Pl∈P−i
v(Pl)

(m + 1)(pk − 1)
+

∑
T⊂Pk\j

i∈T

Pm+1,pk−1,t

t
v (T )

−
∑

T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

v(Pk\j)
pk − 1

− v(Pk\i)
pk − 1

− v(Pk\j) + v(j)

(m + 1)(pk − 1)
+

v(Pk\i) + v(i)

(m + 1)(pk − 1)
+

∑
T⊂Pk\j

i∈T

Pm+1,pk−1,t

t
v (T )

−
∑

T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

m · v(Pk\j)
(m + 1)(pk − 1)

− m · v(Pk\i)
(m + 1)(pk − 1)

+
v(i)

(m + 1)(pk − 1)
− v(j)

(m + 1)(pk − 1)
+

∑
T⊂Pk\j

i∈T

Pm+1,pk−1,t

t
v (T )

−
∑

T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

m · v(Pk\j)
(m + 1)(pk − 1)

− m · v(Pk\i)
(m + 1)(pk − 1)

+
v(i)

(m + 1)(pk − 1)
− v(j)

(m + 1)(pk − 1)
+∑

T⊂Pk\j
i∈T

Pm+1,pk−1,t

t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) .
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Let us see that the two equations are identical. We only need to see that
for player i and any coalition T ⊂ Pk\j such that i ∈ T , the weights coincide.
Consider all the different cases. Note that as i, j ∈ Pk, then pk ≥ 2.

Case i) pk = 2 then

pk
∑

T⊆Pk\j
i∈T

Pm,pk,t

(pk − t)t
v (T ) =

pk
2(pk − 1)

v(i) = v(i)

and on the other side

m · v(Pk\j)
(m + 1)(pk − 1)

+
v(i)

(m + 1)(pk − 1)
=

(m + 1)v(i)

(m + 1)(pk − 1)
= v(i).

Case ii) pk > 2 and |T | = 1 (T = i) then

pk
(pk − t)t

Pm,pk,tv (i) =
pk

(pk − 1)
Pm,pk,1v (i) =

pk
(pk − 1)

1

pk

1 +

pk−2∑
j=1

1

m + j

 v(i)

and on the other side

v(i)

(m + 1)(pk − 1)
+
Pm+1,pk−1,t

t
v (i) =

v(i)

(m + 1)(pk − 1)
+

1

pk − 1

1 +

pk−3∑
j=1

1

m + 1 + j

 v(i)

.

=
1

pk − 1

1 +

pk−3∑
j=0

1

m + 1 + j

 v(i) =
1

pk − 1

1 +

pk−2∑
j=1

1

m + j

 v(i).

Case ii) pk > 2 and |T | = pk − 1 (T = Pk\j) then

pk
Pm,pk,t

(pk − t)t
v (Pk\j) =

pk
pk − 1

m

(m + 1)pk
v (Pk\j) =

m

(m + 1)(pk − 1)
v (Pk\j)

and on the other side
m · v(Pk\j)

(m + 1)(pk − 1)
.

Case iii) pk > 2 and |T | = pk − 2 then

pk
Pm,pk,t

2(pk − 2)
v (T ) =

pk
2(pk − 2)

m + 1

m + 2

1

pk − 1

2

pk
v (T ) =

1

(pk − 2)

m + 1

m + 2

1

pk − 1
v (T )

and on the other side

Pm+1,pk−1,t

t
v (T ) =

1

pk − 2

m + 1

m + 2

1

pk − 1
v (T ) .
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Case iv) pk > 2 and |T | = pk − z where z ∈ {3, ..., pk − 2}

pk
Pm,pk,t

(pk − t)t
v (T ) =

pk
z(pk − z)

m + (z − 1)

(pk − (z − 1))(m + z)

(
z−2∑
l=0

pk − l − t

pk − l

)
v (T )

=
1

(pk − z)

m + (z − 1)

(pk − (z − 1))(m + z)

(
z−2∑
l=1

pk − l − t

pk − l

)
v (T )

and on the other side

Pm+1,pk−1,t

t
v (T ) =

1

pk − z

m + 1 + (z′ − 1)

(pk − 1− (z′ − 1))(m + 1 + z′)

z′−2∑
j=0

pk − 1− j − t

pk − 1− j


where z′ = z − 1 because Pm+1,pk−1,t depends on Pk\j.

Finally, the uniqueness is proven analogously as the uniqueness in Theorem 2

of Vázquez-Brage et al. (1997). �
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