
  
 
 
 
 

 
 
 

 
 
This is an ACCEPTED VERSION of the following published document: 

 
 

Nematchoua, M. K., Orosa, J. A., & Afaifia, M. (2022). Prediction of daily global solar radiation 
and air temperature using six machine learning algorithms; a case of 27 European countries. 
Ecological Informatics, 69, 101643. https://doi.org/10.1016/j.ecoinf.2022.101643 
 
Link to published version: https://doi.org/10.1016/j.ecoinf.2022.101643 
 
 
 

 
 
 
 
 
 
 
 

 
 
General rights: 

 

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 

https://doi.org/10.1016/j.ecoinf.2022.101643
https://doi.org/10.1016/j.ecoinf.2022.101643


Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 
European countries 
Modeste  Kameni  Nematchoua a,*,  Jos´e  A.  Orosa b,  Marwa  Afaifia c 
a Mathematics Department, Universite Libre de Bruxelles (ULB), Belgium 
b  Department of N.S. and M.E. ETSNyM, University of A Corun˜a, Paseo de Ronda 51, 15011A Corun˜a, Spain 
c  Ecole Polytechnique d’Architecture et d’Urbanisme (EPAU), Laboratoire Ville, Urbanisme et D´eveloppement Durable 
(VUDD), Route de Beaulieu, El-Harrach - BP N◦ 177, 16200, Algiers, Algeria 

 
 

A R T I C L E  I 
N F O   

 
Keywords: 
Solar radiation 
Europe, 
machine-
learning 
Prediction 

A B S T R A C T   

 
The prediction of global solar radiation in a region is of great importance as it 
provides investors and politicians with more detailed knowledge about the solar 
resource of that region, which can be very beneficial for large- scale solar energy 
development. In this sense, the main objective of this study is to predict the 
daily global solar radiation data of 27 cities (Brussels, Paris, Lisbon, Madrid…), 
located in 27 countries, which have mostly different solar radiation distributions in 
Europe. In this research, siX different machine-learning algorithms (Linear model 
(LM), Decision Tree (DT), Support Vector Machine (SVM), Deep Learning  (DL), 
Random Forest (RF) and Gradient Boosted Trees (GBT)) are used. In the training of 
these algorithms, daily air temperature(Ta), wind speed(Va), relative humidity(RH) 
and solar radiation of these cities are used. The data is supplied from the Meteonorm 
tool and cover the last years grouped in two periods (1960–1990; 2000–2019). To 
decide on the 
success of these algorithms, four different statistical metrics (Average Relative Error 
(ARE), Average absolute Error (AAE), Root Mean Squared Error (RMSE), and R2 
(R-Squared)) are discussed in the study. In addition, the forecasting of air 
temperature and global solar radiation of these cities in 2050 and 2100 were made 
using three of the most recent Intergovernmental Panel on Climate Change (IPCC) 
scenarios (RCP2.6; RCP 4.5, and RCP 8.5). The results show that ARE, R,2 and 
RMSE values of all algorithms are ranging from 0.114 to 6.321, from 0.382 to 
0.985, from 0.145 to 2.126 MJ/m2, respectively. By analysing all the algorithms, 
it is noticed that the Decision tree exhibited the worst result in terms of R,2 and 
RMSE metrics. Among the siX prediction algorithms, the DL was recognized as 
the only algorithm that exceeded the t-critical value (The t-critical value is the cutoff 
between retaining or rejecting the null hypothesis). Globally, all the siX machine 
learning algorithms used in this research can be applied to predict the daily global 
solar radiation data with good accuracy. Despite this, the SVM model is the best 
model among all the siX models used. It is followed by the DL, LM, GB, RF and 
DT, respectively. 

 
 

 
1. Introduction 

The Sun, like the wind, the sea, and biomass, are free and sustainable 
energy resources. The impacts of the sun can be positive (favourable to 
fauna, flora and human health), or negative, because a high density of 
the sun can cause famine, drought, and certain diseases harmful to 
human health. Solar radiation is considered one of the most important 
sources of energy on Earth. Indeed, it plays a very significant role in the 
surface radiative balance, meteorological and climatic extremes, and the 
photosynthesis of vegetation (Huang et al., 2001). 

Solar radiation is the set of electromagnetic waves emitted by the Sun 
(Sullivan et al., 2017). It is made up of the full range of radiation, from 

far-ultraviolet such as gamma rays to radio waves via visible light 
(Sullivan et al., 2017). The solar radiation received on the ground varies 
over time, on the one hand as a function of variations in solar activity, 
and the other hand as a function of the seasons (according to the incli- 
nation of the Earth) and within each season according to the natural and 
anthropogenic variations in cloudiness (CNRS, 2020). To evaluate the 
solar deposit of a city, it is necessary to have data relating to the solar 
radiation and other climatic parameters of this city (Yadav et al., 2014; 
Yıldırım et al., 2018). For good planning of the investments in the 
production of solar energy, it is important to evaluate and predict the 
amount of solar radiation arriving over the entire energy production 
area (Balog et al., 2019). 
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It is very important to make careful forecasting of solar radiation, 
long and short term if the energy is produced following an investment 
intended for marketing. Making precise predictions has a very signifi- 
cant impact on energy beneficiaries and suppliers (Gürel et al., 2020; 
Jiang et al., 2017). In addition, the accurate prediction of daily global 
solar radiation is also very relevant both in climate research and in the 
solar industry. According to Beer et al. (Beer et al., 2010), solar radiation 
has an important role in the global climate. Indeed, a few small changes 
in the energy production of the Sun cause considerable changes in the 
climate of the Earth. According to Garland et al. (Garland et al., 1990), 
analyses and observations of the variability of solar radiation are 
important in the research of building materials and extreme weather 
events. 

Solar radiation is studied using sophisticated and expensive in- 
struments, regularly demanding maintenance and calibration. There- 
fore, very few weather stations in the world measure this climatic 
parameter. In general, measuring global solar radiation everywhere is 
often not possible, as it requires expensive, time-consuming and precise 
processes. In addition, radiation values cannot be accurately measured 
in most countries because measurements can only be made in certain 
areas. For this reason, it is easier to use meteorological data to calculate 
the different values of global radiation (Garland et al., 1990). Some 
parameters (air temperature, relative humidity, wind speed etc.), have a 
significant effect on the global solar radiation in a region. Nowadays, 
accounting for over 10,221 meteorological stations in Europe and 
neighboring countries, very few of them can measure solar radiation 
(Meteorological data from ground stations, n.d.). EXamples, for a total of 
1798 meteorological stations identified in Turkey in 2020, only 129 of 
them are known to measure the values of solar radiation (TSMS, 2020). 
On 112 meteorological stations identified in Belgium, only 12 measure 
solar   radiation   data   (Station   météo,   n.d.;   Meteo   Belgium,   n.d.).   In 
addition, in another country as in China, until 2012, 122 stations were 
capable to save the solar radiation data on a total of 756 inventories 
(Zang et al., 2012). Given these data, it is important to predict solar 
radiation data under basic of other climatic data regularly measured in 
most weather stations such as; wind speed, relative humidity, air tem- 
perature etc. 

In the literature, several models are proposed to predict solar radi- 
ation. The empirical models are derived from mathematical formulas 
(Fan et al., 2018a). Indeed, they are easy to use. However, these models 
are unable to predict with good precision the various data of solar ra- 
diation in the short term because of the regular changes of the meteo- 
rological conditions (Jahani and Mohammadi, 2019). Nowadays, with 
the evolution of technology, artificial intelligence (AI) has gained mo- 
mentum. It is applicable in most fields of engineering (Long et al., 2014). 
In addition to empirical models, various artificial intelligence models 
such as Linear model (LM), Decision Tree (DT), Support Vector Machine 
(SVM), Deep Learning (DL), Random Forest (RF), and Gradient Boosted 
Trees etc. are models regularly applied for forecasting solar radiation 
data. Several results from many previous studies show that AI algo- 
rithms give more reliable results than those of empirical models for 
predicting solar radiation (Bayrakçı et al., 2018; Liu et al., 2020). 

For example, in 2021, Huang et al. (Huang et al., 2021) used 12 
machine learning models (random forest, Gaussian process regression 
(GPR), gradient boosting regression tree (GBRT) etc.), to predict daily 
and values of solar radiation. The results showed that climatic param- 
eters such as visibility, sunshine duration, and surface temperature are 
very significant in the machine learning algorithms. In their research, 
Chen et al. (Chen et al., 2011) explained that AI algorithms showed more 
accurate results than those of the empirical models for the prediction of 
solar radiation. Sun et al.(Sun et al., 2016) in 2016; Persson et al. 
(Persson et al., 2017) in 2017, Fan et al.(Fan et al., 2018b) in 2018; Zeng 
et al.(Zeng et al., 2020) in 2020; used tree machine learning algorithms 
such as the gradient boosting regression tree and the random forest al- 
gorithm to predict solar radiation in many regions. The results showed a 
strong dependence of solar radiation from the meteorological data. In 

2020, Abdurrahman et al. (Guher et al., 2020) evaluated the hourly 
average solar radiation of two geographic locations on the same latitude 
by using several Machine Learning (ML) algorithms such as K-Nearest 
Neighbors (K NN), Support Vector Machines, Multilayer Feed-Forward 
Neural Network (MFFNN) etc. The input variables were applied by using 
6 different feature selection methods with Waikato Environment for 
Knowledge Analysis (WEKA) software. The MFFNN models were found 
as the most successful estimation models regarding the RMSE, MAE 
(mean absolute error), and R,2 which were 0.0508–0.0536, 0.0341–
0.0352, and 0.9488–0.9656, respectively. In 2017, Quej et al. 
(Quej et al., 2017a) used several machine-learning algorithms such as 
SVM, ANN (Artificial Neural Network) for predicting daily global solar 
radiation data in siX regions in Mexico, with input data, extra-terrestrial 
solar radiation, air temperature, rainfall. The best results were obtained 
in SVM with RMSE       2.578, MAE       1.97 and R2          0.689. In another 
research, Meenal and Selvakumar (Meenal and Selvakumar, 2018), 
using the SVM, and ANN models for predicting the daily global solar 
radiation. The best accuracy was obtained by applying SVM (with R2 

around 0.99).On the other hand, Marzo et al. (Marzo et al., 2017) pre- 
dicted the daily global solar radiation of 13 regions using minimum 
temperature, and maximum temperature,  extra-terrestrial  solar radia- 
tion for training the ANN algorithm. The best prediction result was 
obtained whereas R2 was estimated to 0.64, and Relative Mean Bias 
Errors (RMSE) < 4%. Neelamegam and Amirtham (Neelamegam and 
Amirtham, 2016) used two ANN models with four different algorithms 
for predicting the daily global solar radiation of five different locations 
across India, with the meteorological data collected for the last 10 years. 
The results of this research confirmed that the prediction accuracy of the 
ANN model depends on the total dataset used to train the network for 
the new application. 

Several methods are regularly used in the prediction of global solar 
radiation. Most of them give results that are close to each other for the 
study sites having the same climatic variations. However, the different 
results obtained and the data accuracy of prediction vary according to 
the input parameters used and the volume of data used. The purpose of 
this research is to predict daily global solar radiation data for 27 cities, of 
which the majority have a different solar radiation distribution in the 
Europe. In addition, this research assesses the evolution of air temper- 
ature in 2050 and 2100 using three IPCC scenarios (https://en.wikipe- 
dia.org/wiki/Representative_Concentration_Pathway, n.d.). 

We deduce from the previous studies that the applied algorithms 
generally give close results to each other for the different sites analysed. 
Therefore, the implementation of some metrics to discuss the perfor- 
mance of the algorithms may be incomplete. With these different points 
of view, this study contributes to the literature in the following three 
ways: 

- Analysis and comparison of siX frequently and rarely used machine 
learning algorithms on the same dataset: in addition to the frequently 
used Linear model, Decision Tree, and Support Vector Machine algo- 
rithms, Deep Learning, Random Forest and Gradient Boosted Trees are 
also used in the prediction of daily global solar radiation data in this 
study. 

- Prediction of the global solar radiation distribution of 27 cities 
located in 27 countries in Europe, with very low, low, medium and high 
solar radiation potentials. These cities represent the global solar radia- 
tion distribution in Europe. 

- A detailed discussion of all the results: Indeed, unlike other research 
that focuses on the comparison of different prediction successes with 
several metrics, this research presents a complete discussion of the 
success of the algorithm using four metrics together (Average Relative 
Error, Average absolute Error, Root Mean Squared Error, and R- 
Squared). 

The content of this work is spread over four sections. Section 1 
presents a review of the literature on the various studies linked to the 
prediction of solar radiation; Section 2 explains in detail the main 
methodology used in this research; Section 3 presents the results and 
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Geo-localization of some cities in Europe. 

Country Capital Latitude Longitude 

Germany Berlin 52◦ 31 N 13◦ 24E 
Belgium Brussels 50◦ 51 N 4◦ 20E 
Bulgaria Sofia 42◦ 41 N 23◦ 19E 
Croatia Zagreb 45◦ 48 N 15◦ 58E 

Danemark Copenhague 55◦ 40 N 12◦ 33E 
Spain Madrid 40◦ 24 N 3◦ 42O 

Finland Helsinki 60◦ 10 N 24◦ 56E 
France Paris 48◦ 51 N 2◦ 20E 
Greece Athens 37◦ 58 N 23◦ 42E 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Daily global solar radiation of European countries from 1961 to 1990. 

 
analyses the daily global solar radiation in the 27 countries studied; and 
finally, section 4 shows some comparisons and discussions of the results 

Fig. 2.  The core structure of the study. 

 
be considered transition countries in terms of solar radiation. Finally, 
Norway and Ukraine are countries with the highest daily global solar 
radiation. Based on these results, we infer that the study conducted in 
these 27 countries can be easily adopted in most of the cold, slightly 
cold, and warm climate countries of the world. Finally, it must be 
clarified that, in this study, the term “solar radiation” will always refer to 
“global solar radiation at the horizontal surface”. 

2.2. Data collection 

The data processing includes mapping of different global solar ra- 
diation and air temperature scenarios for 2050 and 2100. These sce- 
narios are developed for comparison at the level of the European 
countries. 

The daily data of air temperature, global solar radiation, wind speed 
and relative humidity from the last years (2000–2019) were applied. 
These data come from 27 meteorological stations located in the 27 
countries studied, and measured at a height of 100 m. These data can be 
easily downloaded with Meteonorm software. In addition to this, the 
daily global solar radiation applied in this research were calculated 
under basic of eqs. (1)–(4) (Bakirci, 2009), following: 

H  Gh = 24
Isc

(
1 + 0.033cos

360D
)

*
(

cos(φ)cos(δ)sin(ws) 2πws
sin(φ)sin(δ) 

)
 

  

 
 

obtained. π 365 360 
(1) 

2. Methodology 
 

2.1. Study sites 

The European covers an area over 4.2 million square kilometers, is 
populated by more than 446 million inhabitants and is the third-largest 
economic power in the world. The global solar radiation potential on the 
European countries is used in spite of some variations in the sunlight 
concentration between each city (CNRS, 2020). Because of the 
geographical location, the solar energy potential of Southern Europe is 
higher than in Northern Europe. The annually sunshine duration is 
estimated around of 2130 h, whereas, the average solar radiation is 
estimated to be between 1080 kWh/m2 and 2200 kWh/m2. 

In this research, the 27 capitals of some countries in Europe were 
analysed. Main details and the view of some countries in the European 
map are given in Table 1 and also in Fig. 1, respectively. 

In Table 1, we have selected at random some countries of the Europe 
that we present their geographic coordinates. We see through Fig. 1 that 
the daily global solar radiation of the last 30 years (from 1961 to 1990), 
of the 27 countries of the European can be represented on different 
scales. It is noticed that solar radiation is a little lower in Belgium, 
Ireland, and Finland. In addition, Portugal, Italy, Greece, and Spain can 

Where Isc is a constant of solar fiXed at 1367 W/m2, while the vari- 
able φ is set as the latitude angle, in addition, δ is considerate as the 
declination angle, ωs is the angle of the sunset times, and D is the 
number of days beginning on 1st January. The eqs. (2,3 and 4) allow to 
calculate the sunset hour angle and declination angle(Bakirci, 2009). 

δ = 23.45sin
[ 

360(D + 284) ] 
(2) 

ws = cos—1[ — tan(δ)tan(φ) ] (3) 

The day length has been calculated according to the formula given in 
(Huang et al., 2001): 

So =
 2 

ws (4) 

2.3. Machine learning algorithms 

Machine learning (ML) gives the systems with the possibility to un- 
derstand by itself and then to evaluate some outputs (Guher et al., 2020; 
Huang et al., 2021). The performance of a machine learning algorithm is 
related to its selection of attributes and also to the success of the learning 
process. In this research, siX ML algorithms were applied. As detailed in 
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Summary of the statistical metrics. 

Metrics Equation  Description and reference 

AAE performance is important of 
Average absolute 
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long-term small. A value nearby 0 is 
an indication of better performance ( 

Fan et al., 2018c) 
RMSE gives news regarding the 

short-term accuracy of prediction 
models. RMSE should be positive and 

error (RMSE) 

 
Coefficient of 

n i=1 nearby 0 for a good accuracy (Fan 
et al., 2018c) 

Value from 0 to 1. A good 2 
determination 

 1     
∑n       xi — yi 

)2
 performance main that R  should be 

(R ) 
∑n     (xi — xi )2 nearby 1 (Rehman, 1998). 

  i=1  

δ = percent error, υA = actual value observed, υE = expected value 

Fig. 2, these are linear model (LM), Decision Tree (DT), Support Vector 
Machine (SVM), and Deep Learning (DL), Random Forest (RF), and 
Gradient Boosted Trees. It is interesting to note that the different algo- 
rithms were executed in R-Studio, software version 4.0.5. The input data 
consisted of daily air temperature, wind speed, relative humidity and 
global solar radiation. The data set was divided in two: training (70%) 
and testing (30%). The different types of errors detailed in Table 2 give 
an overview of the precision between measured and simulated data. 

2.3.1. Linear model 
Linear regression (LR) is considered one of the most known and well- 

understood algorithms in machine learning (Machine Learning, 2019). 
Linear regression is recognized as a linear approach to perform the 
strong link between one or more explanatory variables and a scalar 
response (Freedman, 2009a; Freedman, 2009b; Rencher and Chris- 
tensen, 2012; Seal, 1967). Some good information regarding this model 
can be found in (Freedman, 2009a). In this research, the best results are 
observed in which (R2   around 0.9) and (RMSE<10) parameters, for 
example in Roma, Sofia, Warsaw and Stockholm. 

2.3.2. Decision tree 
DT algorithms are commonly used in ML, in operations research, 

specifically in decision analysis, to help identify a strategy most likely to 
reach a purpose, Such as the Decision Tree algorithm, It is also a popular 
tool in machine learning (Kamiński et al., 2017; Karimi and Hamilton, 
2011; Quinlan, 1987a; Quinlan, 1987b). Some information regarding 
this model can be found in the literature, and more precise in the ref- 
erences (Quinlan, 1983; Wagner, 1975). 

2.3.3. Random Forest 
Random Forests (RF) is an ensemble learning technique proposed by 

Breiman which combines bagging and random feature selection by using 
a large number of non-pruned decision trees. Hence, each individual tree 
is trained on a different subset of samples (due to bagging), as well as a 
different subset of features (due to random feature selection) the random 
feature selection for every tree allows to decorrelate the predictions of 
the different trees (Ho, 1995). The aggregation of decorrelated classi- 
fiers allows reducing the variance of the final prediction. In the case of 
classification, the aggregation is performed by majority vote (i.e. the 
class that is predicted by the largest number of individual classifiers is 
selected as the prediction) (Ho, n.d.). In the case of regression, the ag- 
gregation is performed by performing the average of the individual 
predictions (Maillo et al., n.d.; Saikia et al., n.d.; Erdal and Aytug, 2016; 
Nordhaug et al., 2018). 

2.3.4. Support vector machine (SVM) 
The machine learning algorithm named support vector machine is 

commonly used to handle classification and regression problems (Min 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Preliminary and learning stage of data. 

 
et al., 2003). In such an algorithm, each data item constitutes a specific 
point located in an n-dimensional space (n in this case represents the 
number of features obtained). The content of each feature represents the 
value of a particular point. 

2.3.5. Deep learning (DL) 
DL is considered as one of the very popular programming tools 

applied to search for a solution to somewhat complex problems that 
contain very large data sets (Najafabadi et al., 2015; Pardis et al., 2019; 
Talib et al., 2016). Thus, in a DL method, so-called semi-supervised, 
supervised, and unsupervised algorithms are used (Najafabadi et al., 
2015). One of the advantages of DL compared to other classical machine 
learning approaches is that it has the ability to perform feature extrac- 
tion itself, even if some raw data is known as input and, in this particular 
approach, an increase in the dataset directly implies an increase in the 
various learning performances (Morgan. Nelson., 2011; Shaohui et al., 
2017; Yi-zhou et al., 2017; Yuming et al., 2015). 

2.3.6. Gradient boosted trees 
Boosting is an additional generic ensemble technique that attempts 

to boost the accuracy of any given learning algorithm (Piryonesi and El- 
Diraby, 2020). The focus of boosting methods is to produce a series of 
weak learners in order to produce a powerful combination (Hastie et al., 
2009; Piryonesi and El-Diraby, 2021). A weak learner is a learner that 
has accuracy only slightly better than chance. Unlike Bagging (employed 
in Random Forests), the resampling of the training set is dependent on 
the performance of the earlier classifiers, which prevents a parallel 
implementation of the assembling procedure (Meteonorm, n.d.). In this 
research, the best predictions of solar radiation with the Gradient 
Boosted algorithm was observed in Sofia, Prague, and Amsterdam. The 
different stages are showed in the Fig. 3. 

The selection of these siX ML algorithms was not done random, 
indeed, These algorithms are used frequently in many researches to 
predict daily global solar radiation in a region (Bayrakçı et al., 2018; 
Huang et al., 2001). These algorithms can be used for numerous 
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Chi-Square Tests for Global Solar Radiation (compare to Ta, Va, and RH). 
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functions such as prediction, curve fitting and regression. The advantage 
of most of this algorithms is that they do not, always need the knowledge 
of mathematical calculations between the parameters but they involve 
lesser computational effort and provide a compact solution for multi- 
variable issues. 

2.4. Evaluation metrics 

In this study, some metrics are applied such as AAE (Average abso- 
lute error), RMSE (Root mean squared error), ARE (Average relative 
error), and R2 (Coefficient of determination), to compare the perfor- 
mance success of the prediction models. These different statistical 
metrics, their corresponding equations, and brief descriptions are given 
in Table 2. 

2.5. Data pre-processing 

Following are siX different steps involved in machine learning to 
perform data pre-processing applied in this research: 

Step 1: Import Libraries, A library is a collection of modules that can 
be called and used. In R, we have a lot of libraries that are helpful in data 
pre-processing (e.g. Ggvis, Plotly, Rcharts, Rbokeh, Broom,StringR, 
Magrittr, Slidify,Rvest, Future, RMySQL, RSQLite); 

Step 2: Import data, our next step is to load the collected data. 
Mostly the datasets are available in CSV formats as they are low in size 
which makes it fast for processing. So, to load a csv file using the 
read_csv function of the R’s library. Once the dataset is loaded, we have 
to inspect it and look for any noise. To do so we have to create a feature 
matriX X and an observation vector Y with respect to X; 

Step 3: Checking for missing values, Once we created the feature 
matriX we are looking the missing values. 

Step 4: Checking for categorical data, Data in the dataset has to be in 
a numerical form so as to perform computation on it. 

Step 5: Feature Scaling, Feature scaling is a technique that is used to 
bring the data value in a shorter range. 

Step 6: Splitting data into training, validation and evaluation sets: 
Finally, we need to split our data into different sets, training set to train 
the model, validation set to validate the accuracy of our model and 
finally test set to test the performance of our model on generic data. 
Before splitting the Dataset, it is important to shuffle the Dataset to avoid 
any biases. 

2.6. Chi-Square tests 

This subsection determines the relevant inputs which more correlate 
with global solar radiation. As in the majority of the most common 
applied used for the t-test, in this part, all the analysis were carried out 
with 95% of confidence level (CL) which was considered level of sig- 
nificance equal to 5%. The different analysis was carried out with Chi- 
Square method. This test is very important in this statistical study 
because it makes it easier to evaluate or compare two groups (or two 
measures) and easily take the best possible decision. With the SPSS 

 
 
 
 

Fig. 4. Variation of CO2 as main consequence of the increase of the air tem- 
perature (https://en.wikipedia.org/wiki/Representative_Concentration_Path- 
way, n.d.). 

 
software, the interval of significance can be freely selected; indeed, it is a 
quantitative estimate (called the p-value) of the probability that the 
observed differences are random. Results are showed in Table 3. All the 
statistical analyses were carried out by means of IBM SPSS 24.0 Statis- 
tical software. Table 3 shows the Chi-Square test results for global solar 
radiation with regard to the air temperature, relative humidity and air 
speed analysis. It can be inferred from Table 3 that there was no obvious 
difference between the global solar radiation and (Ta, Va, and RH) (P > 
0.05), as highlighted, the test is significant for p < 0.05 (5%); in this 
case, being the level of significance (p-value) equal to 0.061 (0.061 > 
0.05). 

 
2.7. Scenarios 

In this research, it was used three scenarios proposed by the IPCC 
(RCP 2.6, RCP 4.5, and RCP 8.5), to assess the evolution of the outside 
temperature and of the global solar radiation in the 27 countries of the 
European Union. Based on the hourly data for the last thirty years (from 
1961 to 1990), we have predicted the evolution of these 2 parameters in 
2050 and 2100. The date from (2000–2019) were applied for making 
prediction with machine Learning algorithm. In each country, only the 
capitals were selected, because according to the literature, in most 
countries the capitals are places with a high concentration of population 
and high pollution (https://en.wikipedia.org/wiki/Representative_- 
Concentration_Pathway, n.d.; Pielke and Roger, 2021).Fig. 4. shows the 
variation of carbon according to four scenarios. 

2.7.1. Scenario-RCP 2.6 
The RCP 2.6 scenario is a “very stringent” pathway. According to the 

IPCC, the RCP 2.6 scenario implies that CO2 emissions decrease from 
2020 onwards and become almost zero in 2100 (https://en.wikipedia. 
org/wiki/Representative_Concentration_Pathway, n.d.; Pielke and 
Roger, 2021). This scenario also requires that methane emissions 
decrease by half compared to the amount emitted in 2020, and that 
sulphur dioXide (SO2) emissions decrease by 10% compared to the 
period 1980–1990 (https://en.wikipedia.org/wiki/Representative_- 
Concentration_Pathway, n.d.; Pielke and Roger, 2021). In addition, RCP 
2.6 requires negative CO2 emissions (e.g. CO2 absorption by trees). The 
RCP 2.6 scenario conditions negative emissions to 2 gigatons of CO2 per 
year. In this perspective, the main goal of the RCP2.6 scenario is to keep 
the global temperature increase below 2 ◦C by 2100 (https://en.wiki- 
pedia.org/wiki/Representative_Concentration_Pathway, n.d.; Pielke 
and Roger, 2021). 

 Value df Asymp. 
 

sided) 

 

Relative Pearson Chi- 354374.145a 249243 0.061  
Humidity Square    

 Likelihood 31308.844 249243 1.000  

 Ratio    

 Linear-by- 1595.274 1 0.000  
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Table 4 
AR5 global warming increase (◦C) projections (https://en.wikipedia.org/wiki/ 
Representative_Concentration_Pathway, n.d.).  

scenarios are used for spatial-temporal visualization through mapping. 
The cartography is executed according to different scenarios aggrega- 
tions, using the Quantum GIS-QGIS 3.10.8 software (Qgis, 2021). In this 

SSP 
Scenario 

Range of Global Mean Temperature Increase (◦C) - 2100 from pre- 
Industrial baseline 

study, the division method of the natural threshold classification was 
used with five classes, with the aim of grouping data with the same 

 

RCP 2.6 1.5–2.5 
RCP 4.5 2.5–3.5 
RCP 8.5 3.5–5.5 

 
 

 
2.7.2. Scenario-RCP 4.5 

The RCP 4.5 scenario is showed by the IPCC as an intermediate 
scenario. The peak of emissions in RCP 4.5 will be achieve probably 
2040, then will decrease. Seen the conclusions of the IPCC, the RCP 4.5 
scenario requires that the CO2 concentration start decreasing in 2045 to 
reach roughly half of the levels of 2050 by 2100(https://en.wikipedia. 
org/wiki/Representative_Concentration_Pathway, n.d.; Pielke and 
Roger, 2021). 

2.7.3. Scenario- RCP 8.5 
In the RCP 8.5 scenario, emissions are expected to continue to in- 

crease in the 21st century. This scenario is known to be the most un- 
likely, but may come true (https://en.wikipedia.org/wiki/ 
Representative_Concentration_Pathway, n.d.). The RCP8.5 scenario is 
known as the benchmark for worst climate change scenarios (Pielke and 
Roger, 2021). 

The variation of air temperature according to the IPCC is given in 
Table 4. 

 
2.8. Software program language 

 
2.8.1. Algorithm 

All the algorithms used in this research were programmed in R-stu- 
dio, and also sometimes with Jupiter notebook (in python). A total of 6 
algorithms were written corresponding to the siX MLs applied in this 
study. It is interesting to note that the performance of a Machine 
Learning (ML) algorithm is analysed based on the accuracies obtained 
and the Model Building time (MBT). Model building is the process of 
developing a probabilistic model that best describes the relationship 
between the dependent and independent variables. 

2.8.2. Simulation software 
One of the tools used in this research for predicting solar radiation is 

Meteonorm version 8. We used the most recent version of this software. 
Meteonorm generates accurate and representative typical years for any 
place on earth. It can be chosen from more than 30 different weather 
parameters (Bontempi, 2021). The database consists of more than 8000 
weather stations, five geostationary satellites and a globally calibrated 
aerosol climatology (Bontempi, 2021). On this basis, sophisticated 
interpolation models, based on more than 30 years of experience, pro- 
vide results with high accuracy worldwide (Bontempi, 2021). Meteo- 
norm includes two of the best minute models on the market for reliable 
simulations of large PV plants or energy management & battery systems. 
It can model urban heat effects to support the development of green 
cities. It contains algorithms to calculate extreme years, for example, to 
test design limits (Bontempi, 2021). It can be even simulated Climate 
Change using IPCC scenarios. Historical hourly values of irradiation, 
temperature, humidity, wind and precipitation from 2010 to the pre- 
sent, constantly updated (Bontempi, 2021). 

The cartography makes it possible to visualise the spatial-temporal 
variability of the different IPCC’s scenarios of global radiation and air 
temperature in the long term. 

2.8.3. Spatial-temporal visualization 
All of the 27 countries of the European Union are characterised by 

the global radiation and air temperature of 2050 and 2100. The 

similarities, while maximising the differences between the classes. This 
division method allows reducing the variance within classes and max- 
imising the variance between the classes. 

3. Results 

3.1. Prediction with machine learning algorithms 

This research evaluates the predictability of daily solar radiation and 
the air temperature in the 27 capitals of the European Union via siX 
different machine-learning algorithms. To assess the performance of 
these algorithms, four different statistical metrics, frequently used in the 
literature, are discussed. 

Table 5 shows the different numerical values of the metrics calcu- 
lated for the majority of cities studied and the algorithms of the study. As 
shown in Table 5, the coefficient of determination (R2) varies between 
0.5 and 1.0 depending on the city and the algorithm, in other hang, one 
can easily deduce under the basis of results mentioned in Table 5 that the 
majority of algorithms in terms of R2 show a good performance in the 
prediction of daily global solar radiation. In this section, the algorithms 
related to the studied cities will be analysed considering Table 5 as a 
reference. 

In Paris, Linear Model accomplished an average absolute error of 
0.130. This means if you predict daily global solar radiation (H_Gh 
0.60) as a value, the real value is likely between 0.47 and 0.73. The R 
statistic is 0.766 what means that 76.6% of the data fit the regression 
model. Generally, this value is considered a strong effect size. The deep 
learning algorithm shows an average absolute error of 0.125. This means 
if you predict (H_Gh 0.60) as a value, the real value is likely between 
0.475 and 0.725. The R2 statistic is 0.731. This result reveals that 73.1% 
of the data fit the regression model. Generally, this is a good value. In 
addition, the Decision Tree algorithm gives an average absolute error of 
0.123. This means if you predict (H_Gh       0.60) as a value, the real value 
is likely between 0.477 and 0.723. The R2 statistic is 0.714. This result 
reveals that 71.4% of the data fit the regression model. This value is 
generally considered a strong effect size (Modeste et al., 2020; Nem- 
atchoua et al., 2019f). 

In Berlin, Linear Model accomplished an average absolute error of 
1.569. This means if you predict daily global solar radiation (H_Gh 
4.04) as a value, the real value is likely between 2.471 and 5.609. The R 
statistic is 0.382. This result reveals that 38.2% of the data fit the 
regression model. This value is generally considered a weak or low effect 
size. The Deep Learning model accomplished an average absolute error 
of 1.166. This means if you predict (H_Gh 4.04) as a value, the real 
value is likely between 2.874 and 5.205. The R2 statistic is 0.596. This 
result reveals that 59.6% of the data fit the regression model. This value 
is generally considered a moderate effect size. The Decision Tree algo- 
rithm accomplished an average absolute error of 1.127 what means that 
if you predict H_Gh     4.04 as a value, the real value is likely between 
2.913 and 5.167. The R2 statistic is 0.635. This result reveals that 63.5% 
of the data fit the regression model. This value is generally considered a 
moderate effect size. In addition, the Random Forest model gives an 
average absolute error of 1.197. This means if you predict H_Gh       4.04 
as a value, the real value is likely between 2.843 and 5.237. The R2 

statistic is 0.594. This result reveals that 59.4% of the data fit the 
regression model. This value is generally considered a moderate effect 
size. On the other hand, the Gradient Boosted Trees model accomplished 
an average absolute error of 1.192. This means if you predict H_Gh 
4.04 as a value, the real value is likely between 2.848 and 5.232. The R 
statistic is 0.602. This result reveals that 60.2% of the data fit the 
regression model. This value is generally considered a moderate effect 



 
 

 

 
Table 5 
Performance comparison of cities for each algorithm. 

City Metric Linear model Deep Learning Decision Tree Random Forest Gradient Boosted Trees Support Vector Machine 

RMSE (kWh/m2) 0.166 0.155 0.162 0.160 0.163 0.145 
AAE 0.126 0.120 0.126 0.127 0.130 0.116 

Paris ARE (%) 54.74 45.80 52.84 57.53 58.37 44.00 
R2 

MBT (S) 
0.681 
7.296 

0.723 
1.066 

0.694 
0.157 

0.703 
2.468 

0.693 
13.909 

0.775 
38.031 

RMSE (kWh/m2) 1.882 1.480 1.405 1.480 1.470 1.488 
AAE 1.569 1.166 1.127 1.197 1.192 1.154 

Berlin ARE (%) 13.7 74.67 78.94 83.47 81.03 67.64 
R2 

MBT(S) 
0.382 
4.187 

0.596 
0.932 

0.635 
0.114 

0.594 
0.481 

0.602 
8.615 

0.601 
15.403 

RMSE (kWh/m2) 0.188 0.190 0.197 0.181 0.179 0.185 
AAE 0.147 0.152 0.157 0.146 0.144 0.140 

Prague ARE (%) 74.62 81.25 84.00 80.07 76.50 67.72 
R2 

MBT(S) 
0.716 
4.382 

0.712 
0.728 

0.690 
0.114 

0.733 
1.836 

0.741 
10.109 

0.712 
35.996 

RMSE (kWh/m2) 0.159 0.156 0.159 0.155 0.166 0.147 
AAE 0.125 0.125 0.129 0.127 0.137 0.118 

Athens ARE (%) 25.43 24.15 26.42 24.89 27.74 22.42 
R2 

MBT(S) 
0.752 
7.623 

0.755 
0.741 

0.748 
0.112 

0.759 
0.991 

0.720 
10.504 

0.782 
31.37 

RMSE (kWh/m2) 2.126 1.429 1.432 1.432 1.482 1.449 
AAE 1.883 1.150 1.151 1.155 1.218 1.159 

Lisbon ARE (%) 70.78 38.39 39.41 39.63 40.26 36.42 
R2 

MBT (S) 
0.373 
0.11 

0.649 
0.708 

0.649 
0.086 

0.646 
0.889 

0.616 
8.275 

0.630 
15.235 

RMSE (kWh/m2) 2.065 1.485 1.503 1.505 1.444 1.459 
AAE 1.823 1.220 1.217 1.217 1.199 1.147 

Madrid ARE (%) 75.53 40.62 41.37 41.07 38.34 40.04 
R2 

MBT(S) 
0.537 
0.109 

0.634 
0.663 

0.600 
0.076 

0.600 
0.397 

0.624 
8.53 

0.629 
11.808 

RMSE (kWh/m2) 1.818 1.484 1.533 1.560 1.450 1.563 
AAE 1.485 1.163 1.146 1.172 1.109 1.187 

Brussels ARE (%) – 91.11 85.20 87.56 91.82 84.53 
R2 

MBT (S) 
0.310 
4.416 

0.458 
0.698 

0.408 
0.083 

0.415 
0.639 

0.473 
8.359 

0.401 
12.715 

RMSE (kWh/m2) 0.304 0.223 0.505 0.390 0.346 0.189 
AAE 0.248 0.176 0.381 0.319 0.276 0.140 

Roma ARE (%) 4.95 3.54 7.70 6.38 5.54 2.80 
R2 0.978 0.988 0.933 0.961 0.968 0.990 

 
LuXembourg 

 
 

Amsterdam 

 
 
 

Budapest 

 
 
 

Vienna 

 
 
 

Dublin 

 
 
 

Sofia 

 
 

Warsaw 

R2 0.981 0.990 0.959 0.968 0.982 0.980 

(continued on next page) 

MBT (S) 7.516 0.816 0.194 3.699 11.452 36.988 
RMSE (kWh/m2) 1.188 1.175 1.115 1.081 1.114 1.083 

AAE 0.921 0.897 0.860 0.800 0.849 0.758 
ARE (%) 57.33 53.50 42.47 41.06 43.00 28.56 

R2 

MBT (S) 
0.690 
7.279 

0.704 
0.801 

0.736 
0.113 

0.756 
0.898 

0.722 
10.607 

0.750 
40.624 

RMSE (kWh/m2) 0.268 0.235 0.405 0.383 0.351 1.331 
AAE 0.207 0.157 0.259 0.255 0.213 6.312 

ARE (%) 19.74 8.07 11.32 11.63 9.21 64.68 
R2 

MBT (S) 
0.985 
7.327 

0.989 
0.68 

0.966 
0.114 

0.970 
0.853 

0.974 
9.549 

0.947 
22.66 

RMSE (kWh/m2) 1.136 1.119 1.379 1.188 1.105 1.200 
AAE 0.903 0.886 0.967 0.862 0.846 0.822 

ARE (%) 63.71 62.29 46.30 44.77 50.22 27.78 
R2 

MBT (S) 
0.728 
7.344 

0.732 
0.705 

0.622 
0.12 

0.703 
1.989 

0.745 
9.148 

0.720 
33.432 

RMSE (kWh/m2) 1.292 1.333 1.335 1.298 1.309 1.283 
AAE 1.041 1.057 1.061 0.996 1.010 0.968 

ARE (%) 52.65 49.58 50.09 41.08 41.77 39.48 
R2 

MBT (S) 
0.694 
0.156 

0.675 
0.666 

0.672 
0.163 

0.696 
0.709 

0.704 
9.634 

0.665 
32.777 

RMSE (kWh/m2) 1.023 0.787 0.789 0.747 0.748 0.759 
AAE 0.768 0.674 0.569 0.564 0.549 0.491 

ARE (%) 62.23 58.09 31.32 32.90 34.44 21.74 
R2 

MBT (S) 
0.818 
7.448 

0.878 
0.672 

0.849 
0.126 

0.870 
3.243 

0.876 
10.606 

0.878 
37.941 

RMSE (kWh/m2) 0.346 0.301 0.451 0.376 0.367 0.272 
AAE 0.263 0.228 0.314 0.251 0.242 0.200 

ARE (%) 13.96 8.10 10.22 9.57 7.89 11.63 
R2 

MBT (S) 
0.976 
4.553 

0.983 
0.733 

0.965 
0.132 

0.972 
1.773 

0.971 
10.008 

0.987 
40.941 

RMSE (kWh/m2) 0.270 0.202 0.390 0.349 0.303 0.264 
AAE 0.205 0.157 0.258 0.233 0.195 0.183 

ARE (%) 17.00 11.00 10.50 10.22 8.82 12.92 

 



 
 

 

= 

= 

= 

= 

= 

= 

= 

 
Table 5 (continued ) 

City  Metric Linear model Deep Learning Decision Tree Random Forest Gradient Boosted Trees Support Vector Machine 

MBT(S)  4.396  0.74  0.109  2.881  10.086  39.448 
RMSE (kWh/m2) 0.290 0.284 0.556 0.543 0.394 0.267 

Copenhagen 

Stockholm 

AAE 0.231 0.233 0.346 0.311 0.239 0.175 
ARE (%) 24.81 17.11 16.67 11.21 8.54 24.78 

R2 0.983 0.989 0.931 0.941 0.966 0.986 
MBT (S) 4.36 0.7 0.124 2.707 10.151 46.406 

RMSE (kWh/m2) 0.306 0.271 0.456 0.498 0.391 0.210 
AAE 0.235 0.193 0.277 0.300 0.231 0.128 

ARE (%) 49.1 33.79 12.69 14.98 11.18 19.81 
R2 0.977 0.982 0.959 0.945 0.963 0.991 

 
 

 
Fig. 5. Measured daily global solar radiation function of air temperature in 
Madrid, Brussels. 

 
size. Finally, the Support Vector Machine model gives an average ab- 
solute error of 1.154. This means if you predict H_Gh      4.04 as a value, 
the real value is likely between 2.886 and 5.194. The R2 statistic is 
0.601. This result reveals that 60.1% of the data fit the regression model. 
This value is generally considered a moderate effect size. 

It is very interesting to notice that in Prague, Linear Model accom- 
plished an average absolute error of 0.147. This means if you predict 
daily global solar radiation (H_Gh     0.64) as a value, the real value is 
likely between 0.493 and 0.787. The R2 statistic is 0.716. This result 
reveals that 71.6% of the data fit the regression model. Generally, this is 
a good value. The Deep Learning model accomplished an average ab- 
solute error of 0.152. This means if you predict (H_Gh 0.64) as a value, 
the real value is likely between 0.488 and 0.792. The R2 statistic is 
0.712. This result reveals that 71.2% of the data fit the regression model. 
This value is generally considered a strong effect size. In addition, the 
Decision Trees model accomplished an average absolute error of 0.157. 
This means if you predict (H_Gh 0.64) as a value, the real value is 
likely between 0.483 and 0.797. The R2 statistic is 0.690. This result 
reveals that 69.0% of the data fit the regression model. This value is 
generally considered a moderate effect size. The Random Forest model 
accomplished an average absolute error of 0.146. This means if you 
predict (H_Gh 0.64) as a value, the real value is likely between 0.494 
and 0.786. The R2 statistic is 0.733. This result reveals that 73.3% of the 
data fit the regression model. Generally, this is a good value. On the 
other hand, the Gradient Boosted Trees model accomplished an average 
absolute error of 0.144. This means if you predict daily solar radiation 
(H_Gh 0.64) as a value, the real value is likely between 0.496 and 
0.784. The R2 statistic is 0.741. This result reveals that 74.1% of the data 
fit the regression model. Generally, this is a good value. Finally, the 
Support Vector Machine model accomplished an average absolute error 
of 0.140. This means if you predict (H_Gh      0.64) as a value, the real 
value is likely between 0.5 and 0.78. The R2 statistic is 0.712. This result 
reveals that 71.2% of the data fit the regression model. Generally, this is 
a good value. The measured daily global radiation function of air tem- 
perature are given in fig. (5–6). 

 
 

Fig. 6. Measured daily g l o b a l  s o l a r  r a d i a t i o n  f u n c t i o n  o f  a i r  
t e m p e r a t u r e  in Vienna. 

 
 

Fig. 7. Root mean squared error (RMSE) in some cities according to siX 
machine-learning models. 

 
In each of the figs. (5–6), the different groups are easily identified 

under the basis of their unique color. Every data is represented by one 
point. For example group 1, can represent air temperature; group 2, 
solar radiation; group 3, relative humidity; and group 4, wind speed. In 
statistics, the standard deviation is a measure of the amount of variation 
or dispersion of a set of values. A low standard deviation indicates that 
the values tend to be close to the mean of the set, while a high standard 
deviation indicates that the values are spread out over a wider range 
(Nematchoua et al., 2020). It’s very interesting to notice that we got in 
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Fig. 8.  Predictive performance (R2  and RMSE) of the siX-machine learning models in several cities in the Europe. 

 

the majority of the case a low standard deviation between the different 
measured air temperatures and daily global solar radiation for all the 
cities shown in Figs. 4-6. 

Fig.  8  shows  the  different  RMSE  in  each  city  according  to  the 
machine-learning algorithm. Considering Fig. 7 and Table 5 together, it 
can be observed that the R2 value of the Deep Learning (DL) algorithm is 
around 0.898. Among all algorithms, the SVM and DL algorithms give 
the most successful prediction results in terms of RMSE and MBT. In 
contrast, the Decision tree algorithm gives the worst prediction results in 
terms of RMSE in the majority of cities. Fig. 8 gives predictive perfor- 
mance R2 and RMSE of the siX machine learning models. 

As showed in Fig.  8, the  Linear model  (RMSE = 0.268, and R2 = 
0.985), Deep Learning model (RMSE = 0.235, and R2 = 0.989), Decision 

Tree model (RMSE 0.405, and R2 0.906), Random Forest model 
(RMSE      0.383, and R2      0.970) have been the most successful algo- 
rithm in terms of statistical metrics in predicting solar radiation data in 
Amsterdam city. What is more, they are the most unsuccessful in Lisbon 
(RMSE      2.126kWh/m2, and R2        0.373). It is very important to notice 
that the Support Vector Machine model has been the most successful 
algorithm in terms of statistical metrics in predicting solar radiation data 
(RMSE       0.189, and R2          0.990) in Roma, and also in several other 
cities. Even if the algorithm with the worst R2 and RMSE values is De- 
cision Tree, this algorithm is also meaningful in terms of AAE. Similar to 
the Decision Tree algorithm, the Gradient Boosted Tree algorithm had 
the biggest error magnitude in Budapest. 
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Fig. 9.  Annually air temperature changes in European Countries according to the RCP scenarios. 

 

3.2. Prediction with IPCC scenarios 
 

3.2.1. Variation of air temperature 
Fig. 9 shows the mean air temperature increase according to the 

scenarios RCP 2.6, RCP 4.5 and RCP 8.5 of IPCC by 2050 and 2100 
compare to the period 1961–1990. 

Analysing the different figures obtained under basic of scenario RCP 
2.6, it can be observed deduce that if nothing has done to reduce the 

evolution of the outdoor climate, the mean outdoor air temperature will 
increase from 0.52 to 3.58 ◦C in 2050, and, between 0.56 and 3.86 ◦C, in 
2100, in the 27 countries of EU. The air temperature is expected to in- 
crease from 0.52 to 0.77 ◦C in Portugal and Ireland; from 0.77 to 1.39 ◦C 
in Germany and Greece; and, between 2.77 and 2.84 ◦C, in Poland, 
Ukraine, Belgium, Austria, Bulgaria etc., in 2050. 

According to the scenario RCP 4.5 of the IPCC, in 2050, air tem- 
perature is expected to increase between 0.88 and 4.17 ◦C; in detail, 



 

 

 
Table 6 
Air temperature change and variation of solar radiation. 

4. Discussions and comparisons 

IPCC 
scenarios 

Year Air temperature 
increase 

(◦C) 

Variation of solar 
radiation 

(kWh/m2) 

4.1. Analyse and comparison of prediction algorithms 

Table 6 shows the comparisons between some results from the 
Reference 1961–1990 0 947–1807 

2050 0.52–3.58 993–1818 
2100 0.56–3.86 1000–1828 
2050 0.88–4.17 969–1809 
2100 1.75–4.9 964–1816 
2050 1.16–4.79 976–1817 
2100 3.1–5.5 981–1837 

 
 

 
from 1.91 to 1.66 in Spain, France, Belgium, Netherlands etc., between 
2.66 and 3.41 ◦C, in Poland and Bulgaria; and, from 3.45 to 4.17 ◦C in 
Croatia. By 2100, it will increase from 1.75 to 4.9 ◦C, more precisely, 
between 1.95 and 3.44 ◦C in France, Belgium, Germany, Switzerland 
etc., and from 3.9 to 4.6 ◦C in Norway, Finland, Hungry, and Estonia etc. 

Regarding scenario 8.5 of the IPCC, it is important to notice that the 
air temperature is expected to increase by 2050 between 1.16 and 
4.79 ◦C, either from 3.14 and 4.03 ◦C in Ukraine, Romania, and Bulgaria. 
In addition, in 2100, if nothing has been done to reduce the evolution of 
the outdoor climate, the mean outdoor air temperature will increase 
from 3.1 to 5.5 ◦C. In detail, from 3.9 to 4.4 ◦C in France, Germany and 
Belgium; from 4.4 to 4.6 ◦C in Sweden, Poland and Lithuania; and be- 
tween 4.6 and 4.9 ◦C in Hungry, Austria, Bulgaria etc. 

All these results show that the air temperature increase also depends 
on the geo-location of the country. 

It is very interesting to notice that air temperature will be from 0.55 
to 1.02 ◦C higher in coastal countries than continental countries in the 
next decade in European Union countries. 

3.2.2. Variation of global solar radiation 
As shown in the last column in Table 5, the variation of the global 

solar radiation in the 27 European countries is remarkable. Indeed, in 
2050, it will vary from 993 to 1818 kWh/m2, according to scenario 
RCP2.6; from 969 to 1809 kWh/m2 (RCP4.5); between 976 and 1817 
kWh/m2 (RCP8.5). However, in 2100, the global solar radiation is ex- 
pected to be between 1000 and 1828 kWh/m2, 964–1816 kWh/m2, and 
981–1837 kWh/m2, according to the scenarios RCP2.6, RCP 4.5, and 
RCP 8.5, respectively. The detailed results are grouped in Table 6. 

The Europe countries can be classified according to the global solar 
radiation scale between 2050 and 2100: 

(1) 993–1029 kWh/m2,  case  of  Ireland,  Norway,  Sweden  and 
Finland; 

(2) 1024–1140 kWh/m2, case of Belgium, Germany, LuXembourg, 
Ukraine etc. 

(3) 1188–1607 kWh/m2, case of Hungary, Romania, Italy, Bulgaria 
etc. 

(4) 1583–1818 kWh/m2, case of Spain, Portugal, Greece. 
It noticed that all the input data strongly impact predicted radiation. 

Despite this, good correlations are obtained between measured and 
predicted daily global solar radiation. Fig. 10 shows the Global irradi- 
ation predicted in 2050 and 2100 using three current IPCC scenarios in 
European countries. 

The solar radiation received on a surface, therefore, varies over time 
depending on the position of the Sun, and other meteorological pa- 
rameters, however, this radiation is inexhaustible. 

The essential source of energy for the Earth’s surface is the flow of 
solar energy. If the fluX received at the surface of the Earth in a given 
location varies considerably, especially seasonally, the fluX radiated by 
the Sun is relatively constant. However, signs of variations in the activity 
of the Sun are known for a very long time, and the hypothesis that this 
solar activity can affect our climate is old. 

literature study and this research. 
It is very interesting to notice that the number of preferred metrics in 

determining the prediction success of all the algorithms is limited. 
Indeed, the majority of researches conducted regarding the prediction of 
global solar radiation used algorithms coming from the same classes and 
categories. Therefore, all the statistical metrics generally showed close 
results to every other for a different type of algorithm (Chen et al., 
2013). Often, the limited number of metrics makes it very difficult to 
evaluate the prediction success of the models. For example, in 2011, 
Moreno et al. (Moreno et al., 2011) analysed the daily global solar ra- 
diation data. These authors found one of the highest R2 values with 0.86 
in their study. This value is one of the best ones in Table 6. However, the 
RMSE value was calculated as 0.495 kWh/m2 in the relevant research 
(Chen et al., 2013). This value is also identified as the worst one in 
Table 7. This raises a question in the minds and sometimes makes it 
difficult to select the best simulation model. In this study, four metrics 
are applied, which orient us to discuss and select the best predict model. 

Another important point noticed by analysing Table 7 is that there is 
not any algorithm still showing the best results for all cities. Even 
making the different predictions with the same data type, it is often 

noticed that the algorithms give the best results city to city. Therefore, 
there may have a difference same among the metrics having the same 
algorithms presenting the best results for different cities. For example, in 

2016, Mehdizadeh et al. (Mehdizadeh et al., 2016) achieved the best 
results in the prediction of daily global solar radiation using the ANN 

algorithm. In the relevant research, the good value of RMSE was 
calculated as 1.850 (Mehdizadeh et al., 2016). In another research in 

which achieving the best prediction results with ANN, Antonopoulos 
et al. found the highest RMSE value as 3.166 (Antonopoulos et al., 
2019). 

Some reasons causing this difference may be due to the local climate, 
geographical differences, missing data, input variables, feature selec- 
tion, dataset size etc. 

As explained in the previous sections, in this study, the best predic- 
tion results are achieved with the SVM algorithm in the majority of 
capitals located in the European Union. Table 5 showed some studies, 
where the results obtained with the SVM algorithm are considered. This 
research has mostly presented one of the best metric results in com- 
parison with those of other studies (Chen et al., 2013; Mohammadi et al., 
2015a; Quej et al., 2017b). The main reason behind it may be due to 
dataset diversity, geographical advantages and almost no missing data 
in the dataset. Based on the previous results, we can deduce that the best 
machine-learning model allows getting the prediction data with good 
accuracy. 

4.2. Analysis and comparison of air temperature and global solar 
radiation in the future 

The results of this research show that it will be possible in European 
countries in 2100, to see a temperature change from 0.5 to 3.8 ◦C (ac- 
cording to the scenario RCP 2.6); from 3.1 to 5.5 ◦C (scenario RCP 8.5), 
compare to the period 1960–1990. These temperature increase could 
impacted on global solar radiation, which should to be between 993 and 
1837 kWh/m2. These results enormously depend on the data category 
used during the prediction and model. The prediction of IPCC showed a 
air temperature increase of 1.5–2.5 ◦C (according to the scenario 2.6), 
and, from 3.5 and 5.5 ◦C (regarding the scenario 8.5) in 2100 (see sub- 
section 2.5.3.). The results of this study are consistent with those pro- 
posed by the IPCC. Others research presented the similar results, but 
with different period of comparison (An et al., 2020; An et al., 2021; 
Babatunde et al., 2020a; Babatunde et al., 2020b; Modeste et al., 2020; 

RCP 2.6 

RCP 4.5 

RCP 8.5 



 

 

 

 
Fig. 10.  Global irradiation in European countries in 2050 and 2100 according to IPCC scenarios. 
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Table 7 
Comparison of the present study with the literature researches in the prediction 
of daily global solar radiation (NA = Not applicable). 
 
  

 

Ref. Prediction 
models 

Best 
model 

 
RMSE 
(kWh/ 

m2) 

Evaluation metrics 

AAE ARE R2 

(%) 

The RCPs scenarios (2.6; 4.5; 6.0; 8.5 etc.) of the IPCC are considered 
to be the most reliable in the prediction of climate data. 

Between (1960–1990) and 2050, minimum solar radiation will vary 
from 946.98 to 975.73 kWh/m2; whereas, mean solar radiation will 

(Chen et al., 
2013) 

(Moreno et al., 
2011) 

(Mohammadi 
et al., 2015a) 
(Wang et al., 

2016) 
(Mohammadi 

et al., 2015b) 
(Wang et al., 

SVM, 
SVM 0.495 NA NA NA 

BC,ANN,KNN ANN 0.875 NA NA  0.86 

SVM,WT, 
ANN,ARMA 
MLP,RBF, 

GRNN 

SVR 

ANFIS, 

varying from 1189.00 to 1247.96 kWh/m2 (scenario RCP8.5). This 
variation may be due to the effect of humans on nature. These results 
confirm research conducted by de Larsen et al. (Larsen et al., 2020) in 
2020, and results of other studies detailed (Maillo et al., n.d.; 
Saikia). 

2017) 
Empirical 
MSTree 

ANFIS 0.573 NA NA 0.91 
 

(Aji et al., 2018) SVR SVR NA NA NA 0.98  
(Quej et al., 

2017b) 
(Mehdizadeh 

et al., 2016) 

ANFIS,SVM, 
ANN 

GEP,ANN, 
ANFIS 

MEA-ANN, 

SVM 0.714 NA NA 0.69 

ANN 0.512 NA NA 0.93 

  
5. Conclusion 
This study evaluates the performance of six different   machine learning 
algorithms (LM, DL, DT, GB, SVM, and RF) in the prediction of daily global 
solar radiation. The research considers various input data (Relative 
Humidity, air temperature, wind speed, and global solar ra- diation) from 
the twenty-seven different stations (Paris, Brussels, Roma, 
Amsterdam, Sofia etc.) in Europe. To evaluate the performance of the 
machine learning algorithms, four metrics (R,2 RMSE, AAE, and ARE) 

(Feng et al., 
2019) 

(Jahani and 

ANN, RF, 
WNN, 

Empirical 

MEA- 
ANN 

0.758 NA NA 0.88 are discussed in this research. Some important conclusions can be drawn 
based on the present result. 

(a) Under the basis of the prediction results in terms of R,2 it can be 
Mohammadi, 

2019) 

ANN, 
Empirica 

ANN 0.513 NA NA 0.92 deduced that algorithms used in all the cities have shown very successful 
results. Indeed, R2 values of the algorithms in this research varied from 

(Antonopoulos 
et al., 2019) 

(Shamshirband 

 
et al., 2015) 

 
2021) 

ANN, MLR ANN 0.876 NA NA 0.88 

ANN-ARX 
ANN-

 

DL,k-NN 

53.7% to 98.6% depending on the cities, excepted in Berlin (38.2%), 
Lisbon (37.3%), and Brussels (31%). 

(b) Regarding all statistical metrics together for 27 cities in Europe, 
the best results are achieved within Amsterdam city. 

(c) When all cities and algorithms are evaluated in terms of RMSE, it 
is seen that the majority of values obtained are nearly zero. That is, mean 
that the majority of prediction results can be categorized as “reasonable 

(d) prediction”, or “good prediction”. It is very interesting to notice 
that, during the general evaluation it was found that DL and SVM 
algorithms give very close results, considering the R2 and RMSE 
metrics. Therefore, different parameters 

(e) GB, (f) S
VM 

(g)  

Morkovkin et al., 2020; Nematchoua et al., 2019b; Nematchoua et al., 
2019f; Nematchoua et al., 2020; Nematchoua et al., 2021a; Nematchoua 
et al., 2021b). The Fig. 11 and 12 show the variation of global solar 
radiation in some cities in Europe. 

At the same time, Table 8 gives some statistical analysis of data 
represented in the previous figures. 

 

should be taken into account to discuss and select the best of these 
algorithms. 
One of the most important parameters that distinguish The DL and SVM 
algorithms is MBT. Even if these two algorithms are very close to each 
other particularly in the majority of cities, the SVM algorithm showed 
higher MBT than DL. However, analysing all the error magni- tudes of the 
observations randomly determined in this research, we can deduce that the 
error magnitudes in the use of the SVM algorithm are very low in 
comparison with those of other algorithms used. 

(a) Repetitive heat waves spread over long periods are expected be- 
tween 2050 and 2100 in Madrid, Athens and Lisbon. 

These results can help the European governments for better decision- 
making regarding the integration of the sun as one of the main sources of 
electricity in the future. 

(b)  

SVM 0.394 NA NA 0.91               

MLP 0.537 NA NA 0.86 
     

SVR 0.555 NA NA 0.91  

 

et al., 2016) ARX 
0.479 NA NA 0.87 

(Shamshirband 
KELM KELM

 0.558 NA NA 0.82 

(Agbulut et al., ANN,SVM, 
ANN

 
0.597 NA NA 0.93 

LM,DL,DT, 
This study 

SVM,RF 
0.708 0.176 38.39 0.80 

 



 

 

 
Fig. 11.  Variation of solar radiation in some cities in European in 2050 (in kWh/m2). 

 
 

 

Fig. 12.  Variation of solar radiation in some cities in the European in 2100 (in kWh/m2). 

 
 
 
 
 
 
 



 

 

Table 8 Statistical analysis of the future global solar radiation (in kWh/m2). 
 

Year Statistical parameter RCP-2.6 RCP-4.5 RCP-8.5 

Standard deviation 204.32 203.76 200.188 

2050 
Minimum 992.8 969.33 975.73 
Maximum 1817.93 1809.01 1816.99 

Mean 1259.55 1243.49 1247.96 
Standard deviation 199.91 209.09 208.66 

2100 
Minimum 999.50 963.95 980.62 
Maximum 1828.21 1815.78 1836.72 

Mean 1269.01 1252.70 1266.5 
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