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Abstract. A model for the propagation of water waves is presented, which retrieves the
concepts of rays and fronts from the geometrical optics approximation. Their definition here
is nevertheless different in that it considers both refraction and diffraction, solving thus most
of the problems usually associated with ray methods.
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1 INTRODUCTION

Establishing the wave climate which will affect a coastal or port structure or a beach
renourishment scheme is a key point in its design. To this purpose the deepwater wave
conditions are prescribed by means either of generation models – which treat the formation and
growth of a wave field under the influence of the wind – or of statistical hindcasts. However
the deepwater conditions do not coincide with those observed nearshore, since the wave field
changes as it approaches the coastline. This transformation is assessed by propagation models.

Until the 70’s, the problem was treated exclusively by means of the so-called ray methods
or pure refraction models, which follow the geometrical optics approximation. Unfortunately
the assumptions inherent to this approximation cause them to fail in some situations of
practical interest. For instance in the so-called caustics, where the bottom contours induce the
intersection of adjacent wave rays. Applying the assumptions of the models to this case, an
infinite wave height is predicted at the point of intersection, which is obviously unreal. Behind
the first intersection point – the cusp of the caustic – lays an area covered by ray crossings.
Some efforts have been made to extract information from the density of intersecting rays, in
order to evaluate the wave heights1. It is clear however that the philosophy of ray methods is
not directly applicable to this area.

The geometrical optics approximation considers the wave field quasi-uniform at a local
scale, disregarding the influence of the amplitude variations on the propagation, that is, the
phenomenon of diffraction. A neglect which is acceptable in many applications, but not in all.
As an example, in caustic areas the ray convergence brings about a strong concentration of
energy and consequently significant amplitude gradients, which cannot be ignored.

Diffraction had been thoroughly studied in optics, after Sommerfeld’s pioneer work2. In
1952 his theory was adapted to water waves3, allowing engineers and scientists to assess the
diffractive effects on the propagation, with a strong restriction however: constant depth or, in
other words, no refraction. There existed thus mathematical tools to handle refraction without
diffraction – the ray methods – or diffraction without refraction – 

The combined problem is first treated in 1972 by the mild-slope equation4. An elliptic
equation, it yields the wave field provided conditions are prescribed along the whole curve
enclosing the study area. It can be solved by means of the finite element or the boundary
element method, as well as by finite differences. At any rate its solution is quite involved from
a computational point of view, its application being thus restricted to relatively small areas.

To overcome this limitation many approximations to the equation have been proposed. The
parabolic one, in its many variations after its introduction in 19795, has achieved the greatest
success. Nowadays many wave propagation models are presented each year, each aimed at
better performance in a given situation.

Most models of combined refraction-diffraction agree in the absence of rays and fronts. The
equations are solved either on an orthogonal grid (finite difference models) or on a triangular
mesh (finite element models). In the rare cases in which the concepts of wave ray and wave
front occur6,7,8, they are defined in the same way as in the geometrical optics approximation,
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that is, considering only refraction. This approach bears significant limitations, especially where
the bottom topography induces the intersection of wave rays.

In this paper a numerical model is presented which treats refraction-diffraction on a ray-
front pattern. Wave rays are defined in a new way, considering the effects of both refraction
and diffraction. Most of the problems usually associated with ray methods are thus solved.

2 MATHEMATICAL FORMULATION

Berkhoff’s equation4 accounts for combined refraction-diffraction of linear, monochromatic
water waves, provided the bottom slope is mild9. Denote by ψ the complex wave potential; by
c, the phase celerity; by cg, the group celerity; and by k, the separation factor. The equation
reads:

0)( 2 =+∇⋅∇ ψψ gg cckcc (1)

The separation factor k is obtained from the linear dispersion relation:

( )khkg tanh2 =ω (2)

Where ω = angular frequency, h = water depth and g = acceleration of gravity.
When Fresnel’s representation of the wave potential is applied to (1), two equations are

obtained:
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Where A = wave potential amplitude and S = wave phase.
It can easily be proved that the rays of the geometrical optics approximation are the

characteristic lines of the eikonal equation in pure refraction:

22
kS =∇ (5)

Bearing in mind that (3) takes into account both refraction and diffraction, whereas (5)
considers only refraction, it is clear that diffractive effects are accounted for by the term

)(
1
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Acc g

g

∇⋅∇ .

In the present model rays are defined to be the characteristics of the eikonal equation in
combined refraction-diffraction (3). From a practical point of view, this increases significantly
the complexity of their calculation. When equation (5) is imposed, in effect, each ray can be
calculated independently from the others, its path being a function of the bottom configuration.
On the contrary, the use of equation (3) implies that ray paths depend also on the gradient of
the wave amplitude. Strictly speaking this is only known once the propagation problem is
completely solved, a difficulty which can only be mastered with an iterative approach.
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An orthogonal coordinate system (τ,η) is used, the curves dη=0 and dτ=0 being
respectively wave rays and fronts. It is convenient to take the coordinate τ as the propagation
time, and its counterpart η as the arc length along the first wave front. Expressing the
differential operators of (3) and (4) in this system yields:
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Where SK ∇= ; 
c

c
n g= ; and β stands for the ratio between the value of the ray separation

at a given point and its value at the first front.
Thanks to this coordinate system, the energy equation (4) simplifies to an ordinary

differential equation (7), alleviating the numerical procedure.
In practice the determination of the ray-front pattern is accomplished by means of the

following relations:
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Where α represents the angle of the wave ray with a reference direction, such as the x-axis
of the bathymetric chart.

3 NUMERICAL PROCEDURE

The area of propagation becomes a rectangle in the (τ,η) plane, discretized with steps ∆τ
and ∆η. The following notation is used:

ττ ∆−= )1(itit

(14)

ηη ∆−= )1(irir
(15)

For convenience, the front τ=τit will be referred to as the it-front. The calculation advances
a number of fronts ∆τ at a time, from it=iti to it=itf=iti+∆τ. Supposing the problem is solved
up to the iti-front, the procedure is as follows:

• The fronts from it=iti+1 to it=itf=iti+∆τ, and the corresponding ray segments, are
defined geometrically neglecting diffraction, that is, substituting equation (6) for the
identification K=k. The advance from a given front to the following one is achieved by
iteration between the equations (8) and (9).

• Wave amplitudes are computed with equation (7).
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• The values of the corrected wave number K are evaluated with equation (6), through an
iterative routine involving all the ∆τ fronts.

• The geometrical definition of the fronts from it=iti+1 to it=itf=iti+∆τ is revised using
the newly obtained values of K.

• Wave amplitudes are calculated again with equation (7), in order to consider both the
new geometrical definition of the fronts – which implies new values of β, k and n – and
the new values of K.

• The last three steps are repeated until convergence is attained.

4 RESULTS

The model is tested first on the bottom topography shown in fig. 1, for an incoming wave
train of period T=10 s, directed perpendicularly to the bed contours and in the sense of
decreasing ordinates. Using a “classical” ray model, rays intersect each other behind the elliptic
shoal, and a caustic turns up (fig. 2). When the refraction-diffraction model is used, the strong
amplitude curvatures prior to the would-be caustic deflect the rays, preventing their
intersection (fig. 3). The relative wave heights just in front of the caustic area (along the
section y=-300 m) are shown (fig. 4) for both the pure refraction and the refraction-diffraction
ray models. It can be seen that the consideration of diffraction leads to a more uniform
distribution of energy, lowering the central peak and increasing the wave height in the adjacent
low energy areas.

The model’s ability to deal with a strong variation of wave height, perpendicular to the
direction of propagation, is demonstrated by considering the lee of a breakwater, depicted as a
strong black line. In order to compare the results with Sommerfeld’s analytical solution, the
depth is kept constant (d=20 m). Absolute wave heights are shown, for an incoming wave train
with height H=1 m and period T=10 s (fig. 5). The maximum deviation with Sommerfeld’s
solution, 0.08 m (8 %), is restricted to a small area, while the average values of the difference
are significantly lower (fig. 6).

5 CONCLUSIONS

Wave propagation was calculated until the 70’s exclusively by means of the so-called ray
methods, which consider the phenomenon of wave refraction. They fail in certain situations of
interest primarily because of their neglect of a second phenomenon, diffraction.

The first mathematical model to deal simultaneously with both phenomena was introduced
by Berkhoff4 in 1972. Thereafter many other propagation models have been presented,
numerically based on finite differences, finite elements or boundary elements. They mostly omit
the concepts of wave ray and wave front, obviously essential to ray methods.

In this paper a refraction-diffraction model in terms of rays and fronts is introduced. Its
main feature is a new definition of the wave rays and, consequently, wave fronts, which
considers both refraction and diffraction.

The coordinate curves being the rays and fronts themselves, the coordinate system is a
priori unknown. It is determined as the calculation proceeds, with an iterative approach. The
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definition of rays as the characteristic lines of the eikonal equation of refraction-diffraction,
together with the implementation of a ray-front coordinate system, reduce the energy equation
to an ordinary differential equation, an important computational economy. Moreover the well-
known limitations of the parabolic approximations in the lee of breakwaters or headlands are
avoided. Finally, with the usual models – based on orthogonal or triangular grids – obtaining
the wave fronts requires an interpolation with the values of the phase function at the grid
nodes. In this model they are instead calculated directly, a more convenient procedure in many
applications of Coastal Engineering. For instance, when it comes to studying the equilibrium
plan shape of a beach.
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Figure 1: Bottom topography for the first example
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Figure 2: Ray paths in pure refraction. A caustic occurs
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Figure 3: Ray paths under combined refraction-diffraction. Diffractive effects prevent the formation of a caustic
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Figure 4: Wave heights on section y=-300 m, expressed in % of incident wave height
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Figure 5: Absolute wave heights (m) in the lee of a breakwater. Incident wave: H=1 m, T=10 s. Depth d=20 m.
Axis scales in meters
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Figure 6: Difference between the model results (fig. 5) and Sommerfeld’s solution, in absolute values of wave
height (m)


