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Abstract
Any machine learning (ML) model is highly dependent on the data it uses for learning, and this is even more important in

the case of deep learning models. The problem is a data bottleneck, i.e. the difficulty in obtaining an adequate number of

cases and quality data. Another issue is improving the learning process, which can be done by actively introducing experts

into the learning loop, in what is known as human-in-the-loop (HITL) ML. We describe an ML model based on a neural

network in which HITL techniques were used to resolve the data bottleneck problem for the treatment of pancreatic cancer.

We first augmented the dataset using synthetic cases created by a generative adversarial network. We then launched an

active learning (AL) process involving human experts as oracles to label both new cases and cases by the network found to

be suspect. This AL process was carried out simultaneously with an interactive ML process in which feedback was

obtained from humans in order to develop better synthetic cases for each iteration of training. We discuss the challenges

involved in including humans in the learning process, especially in relation to human–computer interaction, which is

acquiring great importance in building ML models and can condition the success of a HITL approach. This paper also

discusses the methodological approach adopted to address these challenges.

Keywords Human-in-the-loop machine learning � Active learning � Interactive machine learning � Pancreatic cancer �
Generative adversarial network

Mathematics Subject Classification 68T05 � 68T07

1 Introduction

1.1 Data bottleneck

Anyone who has ever developed a machine learning (ML)

model is aware that the first problem they face is obtaining

sufficient and representative data to be able to successfully

implement training. This problem has been exacerbated in

recent years with deep learning (DL) algorithms that

require a vast amount of data for training.

The ML developer is thus confronted with two possi-

bilities: collect the data oneself, or rely on public data

collected by others. They each have drawbacks, the first

because the process can be demanding in terms of both

human and time resources and, depending on the

circumstances, data may even be impossible to obtain, and

the second because public data are often scattered, difficult

to locate, may not correspond exactly to the problem to be

solved, and often have issues that limit their applicability,

such as inconsistencies, missing values, class imbalance,

and so on.

This problem has come to be known as the data bot-

tleneck [77], defined as the inability to locate quality data

with which to train ML models. And we say quality data

because the problem often lies not only in the number of

cases available, but also in their quality, which is not

always easy to measure [8].

There are several ways to deal with data bottlenecks.

One is to develop open datasets, curated around unsolved

problems and made available to researchers. Examples are

the Nightingale Open Science initiative [58] for the field of

medicine in general, and The Cancer Genome Atlas
Extended author information available on the last page of the article
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Program [83], which makes a large number of diagnosed

cancer cases with all the related data available to

researchers.

But even with these initiatives, it is very likely that the

datasets used have certain issues that may affect the per-

formance of the ML models developed using them. Tech-

niques to reduce the impact of these issues have been

organized into two main groups [77]:

• Data are missing. If data are missing, we can create

more data using techniques such as data augmentation,

or get more out of existing data with techniques such as

curriculum learning, or reuse a model trained with

other data as a starting point for our problem using

techniques such as transfer learning.

• Labels are missing. If labels are missing, techniques

such as active learning or gamification can be used to

create them, or we can create what are called weak

labels using heuristically generated label functions and

external knowledge bases to programmatically label the

data.

1.2 Human-in-the-loop machine learning

We need to take into account not only the data we are

going to use in ML, but also the learning process itself.

Until recently, ML models were built by humans going

through steps as follows: obtaining data, preprocessing the

data, performing feature engineering, launching learning,

and tuning learning hyperparameters trying to improve the

results. However, an important paradigm shift occurred

with the advent of DL models [44]. In these models, feature

extraction is algorithmically computed, without human

intervention, using a series of layers that, starting with the

raw input, transform a representation at a lower level into a

representation at a higher and slightly more abstract level.

Recently, techniques have been developed that include

human participation in the learning process (in some aspect

related to it). These techniques are often collectively

referred to as human-in-the-loop (HITL) ML [56].

DL has been largely based on taking humans out of the

equation to improve performance; however, this has come

at the cost of needing more data and greater computational

requirements. The idea behind HITL-ML is to overcome

those obstacles: to make learning more efficient by using

fewer data and fewer computational resources. This is

especially true in medical domains, where human expertise

and extensive experience can fill in the gaps in large

amounts of data or help deal with complex data [29].

We can classify HITL methods according to their rela-

tionship to the learning process [56], as depicted in Fig. 1.

• Before learning. Here, we find curriculum learning

(CL) [10], in which the dataset is organized in terms of

increasing complexity in order to take advantage of

previously learned concepts and to ease the abstraction

of new concepts. This ordering can be done automat-

ically or by domain experts.

• During learning. Based on the entity in control of the

learning process, three distinct categories of techniques

can be identified [28]: (a) active learning (AL) [76],

where the system controls the learning process and

relies on human input to label unlabelled data; (b) in-

teractive ML (IML) [7], characterized by closer inter-

action between users and learning systems, where

humans frequently and interactively provide informa-

tion to the system and react to the system’s responses;

and (c) machine teaching (MT) [70, 79], where human

domain experts use didactic techniques to control the

learning process without needing any ML skills or

expertise.

• After learning. DL models are characterized by being

poorly explainable since they lack a declarative repre-

sentation of knowledge that is interpretable [30].

Explainable artificial intelligence (XAI) [22] tries to

produce more explainable models while maintaining a

high level of learning performance.

• Beyond learning. Finally, we can include techniques

that are beyond the learning process, such as those

involved in usable AI and useful AI [90]. The former

refers to AI solutions that ensure an optimal user

experience, and the latter, going beyond usability, refers

to how to develop ML solutions that satisfy user needs

in a trustworthy manner.

In the recent literature, the term HITL-ML is mainly

associated with AL, as is demonstrated in Chen et al. [14],

Na et al. [60], and Saghir et al. [75], although works also

exist that cannot be included in the previous categories,

such as Delussu et al. [16], in which user feedback is used

to identify people in images in the domain shift environ-

ment. Also, in Abdar et al. [1], a novel ensemble learning

approach is proposed that includes late fusion in both

feature selection and decision steps. The novelty lies in

using feature selection by both machine and human experts

and then applying the ensemble technique.

HITL can be used also not only to obtain better per-

formance in ML models, but to achieve a new type of

relationship between humans and these models. For

example, Mosqueira-Rey et al. [55] used MT based on

didactic techniques as a didactic technique itself to teach

orthography to students.
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1.3 Contribution

The threefold contribution of this paper is as follows. First,

we demonstrate that involving human experts in the

learning process improves the learning capacity of a neural

network model. This is especially important in the medical

domain where data are usually difficult to obtain. Second,

we present specific HITL strategies to address the data

bottleneck problem, whether a data missing problem or a

labels missing problem.

The strategy followed to solve the missing data problem

is a data augmentation process carried out through a con-

ditional tabular generative adversarial network (CTGAN).

The novelty of this approach, further explained in Sect. 5,

is that humans, acting as an additional discrimination layer

in the GAN, try to identify synthetic cases and, through an

IML process, provide the information that allows identifi-

cation of those cases as not real. That information is sub-

sequently converted into a new condition or constraint that

is applied to the next synthetic cases generated by the

CTGAN, so that, in successive iterations, cases are more

indistinguishable from real cases (and therefore more

useful for learning).

That leaves us with a sort of labels missing problem, and

we say ‘‘sort of’’ because all the cases have labels, but we

can consider them to be weak for two reasons: first, the

labels of the synthetic cases have been assigned by the ML

model itself, so we cannot consider them to be entirely

reliable; and second, the actual labels of the dataset are also

unreliable, given that several valid courses of action are

possible in a complex medical environment, based on

protocols that may change over time. So here an AL

strategy is followed, whereby we do not relabel the entire

dataset, as this would be an unrealistic goal, but only those

cases that the model considers doubtful (see Sect. 4).

Finally, while bringing humans back into the loop in ML

offers advantages, it also implies a new set of very human

problems such as availability, attention, interactivity, and

different expertise. Our contribution to addressing these

human issues in the HITL approach is a usability analysis

of the whole process of interaction between the experts and

the model using an extended usability model and a context-

of-use taxonomy (see Sect. 6). The idea is to ensure that

expert interactions with the system are simple and do not

imply a high cognitive load beyond that inherent to the

complex problem they are dealing with. The experts can

thus focus their attention more on the problem to be solved

and less on the application used to present the cases to

them.

The paper is structured as follows: in Sect. 2, we

describe a pancreatic cancer problem and the correspond-

ing dataset. In Sect. 3, we provide a general overview of

the experiment and describe the artificial neural network

(ANN) used. In Sect. 4, we explain the AL approach in

more detail, and in Sect. 5, we do the same for the IML

approach. In Sect. 6, we describe the human–computer

interface (HCI) issues that we faced and how we solved

them. Finally, we report our results in Sect. 7 and include a

discussion, final conclusions, and pointers for future work

in Sect. 8.

2 Pancreatic cancer

Pancreatic cancer incidence and mortality are both high

and symptoms are frequently absent. Crucial in diagnosis is

correct identification of pancreatic tumours, which can be

classified as [53]: (a) neoplasms of the exocrine pancreas,

(b) neoplasms of mixed or uncertain differentiation,

(c) tumours of the endocrine pancreas, (d) pancreatic

mesenchymal tumours, and (e) secondary tumours of the

pancreas.

Of these tumour types, we focus on pancreatic adeno-

carcinomas, a type of neoplasm of the exocrine pancreas,

because of their higher incidence. We used as reference

‘‘Pancreatic Adenocarcinoma—NCCN Clinical Practice

Guidelines in Oncology’’ [61], which is widely used by the

medical community for this type of diagnosis.

Numerous papers describe applications of AL and IML

to the diagnosis of pancreatic cancer, although since they

mainly focus on tumour image analysis, they cannot be

used as a reference for a guideline-based analysis. For

example, Wen et al. [88], in a study of the application of

AL to segmentation quality assessment of pancreatic can-

cer images, reported satisfactory performance and effi-

ciency for three classification methods, namely, support

vector machine (SVM), random forest (RF), and convolu-

tional neural network (CNN). Another noteworthy appli-

cation was by Zhuang [94], who applied DL techniques to

Fig. 1 Classification of HITL

methods
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the interpretation of computed tomography images of

pancreatic lesions, and pancreatic neuroendocrine tumours.

In our work, we applied AL and IML techniques to

pancreatic cancer diagnostics, based on variables used and

tests performed by physicians in accordance with clinical

practice guidelines in oncology, with the aim of developing

an approach to AL and IML diagnostics that is close to the

diagnostic process usually followed by medical staff.

The dataset used in this work was obtained from The

Cancer Genome Atlas Program [83]—published by the

USA National Cancer Institute (NCI) and the National

Human Genome Research Institute—as the database of

pancreatic cancer cases most widely used in this type of

study. This database is composed of several research pro-

jects, among them, TCGA-PAAD, currently with 185

diagnosed cases with all the necessary details to carry out a

full analysis of pancreatic cancer cases, including their

treatments.

The TCGA-PAAD project consists of information about

cancer patients. The raw data have a total number of 158

attributes, but since some of them were irrelevant to the

problem in hand (that is the chemotherapy treatment

decision), some of them were not used (e.g. the project

code, the disease code, the therapy ongoing, etc.). Finally,

only 56 attributes were considered. Preprocessing included

the removal of duplicate cases, the removal of irrelevant

columns, and refactoring of the data labels. The data for

185 patients (83 female and 102 male) indicated that they

were cancer positive for three disease types: adenomas and

adenocarcinomas, ductal and lobular neoplasms, and cys-

tic, mucinous, and serous neoplasms. For each case, we

were interested in determining whether chemotherapy

treatment was indicated or not based on the diagnostic

information available. The database includes patient

demographic information, family history, diagnosis, treat-

ments, and genomic, epigenomic, transcriptomic, and

proteomic data.

Other scientific studies have used the same dataset for

different purposes, e.g. separation of cases into moderate

and aggressive clusters in order to develop a prognosis and

survival rate model, also using the genetic information

provided in the dataset [39], development of a DL model to

identify pancreatic cancer subtypes and determine their

molecular characteristics [80], and data curation to identify

biomarkers [62].

3 Experiment design

The experiment took place over one month. On weekdays,

the patient samples were assessed and annotated by a panel

of cancer experts (two to four, depending on availability),

and at weekends, the system was retrained with the newly

annotated data.

The workflow of the HITL system is shown in Fig. 2

and its steps were as follows:

1. Training the ANN model with the initial dataset. This

model was the baseline from which we started training

(ANN characteristics are explained in more detail in

Sect. 3.1).

2. Applying data augmentation using a CTGAN. A

CTGAN was trained to generate synthetic cases that

would augment the dataset (CTGANs are described in

more detail in Sect. 5.1).

3. Making predictions using the model. The model

predicted the labels of the real and synthetic data.

4. AL—uncertainty sampling. The human expert was

provided with mostly synthetic cases for labelling,

but also some real cases. Here, the system followed an

uncertainty sampling strategy to select cases close to

the decision boundary, i.e. those that have the highest

uncertainty in the classification (details of the AL

experiment are described in Sect. 4).

5. Including cases considered certain in the dataset.

Cases with predictions that were considered certain

were sent to the dataset, including synthetic cases not

selected for labelling by the expert and whose labels

were determined by the model’s predictions.

6. AL—new data labelling. The human experts labelled

the data presented to them and these data were also

added to the dataset. Therefore, the new dataset

included both cases for which predictions by the model

were certain and cases reviewed by human experts.

7. IML—CTGAN constraint updating. The experts iden-

tified inconsistencies in synthetic cases that led to their

rejection. Those inconsistencies were used to create

new constraints that would feed into creating better

synthetic cases in subsequent iterations (CTGAN

updating is described in more detail in Sect. 5.2).

8. Re-training the model. The model was retrained with

the new dataset.

9. Re-training the CTGAN. The CTGAN was retrained if

new constraints were included in the IML experiment.

For each case presented to the experts, we collected the

following information:

• Patient treatment. Whether or not the patient should

receive chemotherapy given the data available.

• Reason for prescribing chemotherapy. In an area as

sensitive as health care, understanding the reason for

indicating chemotherapy.

• Identification of synthetic cases. Whether or not the

expert considers a given case to be synthetic.
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• Comments on cases. Feedback as shared by the experts,

which usually included comments regarding the data,

possible failures detected in the data and, mainly, an

explanation of why case was identified as synthetic.

The interface used by the experts in the AL and IML

processes, as well as the related HCI aspects, is detailed in

Sect. 6.

3.1 ML model: ANN

An ANN was used as the ML model, preferred over other

‘‘shallow’’ ML models because an ANN gives us the

flexibility to scale up the problem to more complex

domains if necessary [74]. Since the dataset consisted of

structured data, it was decided to use a simple dense net-

work instead of more complex versions such as convolu-

tional networks or recurrent networks, more suitable for

handling unstructured data or numerical series.

The inputs of the model were the 56 features that

described each patient. The output of the last layer was

associated with the classification problem possible cate-

gories, i.e. the options of ‘‘Chemotherapy’’ or ‘‘No

Chemotherapy’’.

The hyperparameters of the ANN (number and size of

hidden layers, learning rate, momentum, batch size, etc.)

where established by an optimization process called grid

search, consisting of an exhaustive search of the hyper-

parameters in a range of values provided by the ML

engineer. While grid search, because it tests all possible

configurations of hyperparameters, is a very computation-

ally expensive technique, it is the preferred solution in low-

dimensional spaces because of ease of execution, paral-

lelization, and durability [9]. The values used for each

hyperparameter are summarized in Table 1.

Because of the small size of the dataset, regularization

was necessary to avoid overfitting (the model fitting the

training data so well that it loses its ability to generalize

and so predictions for new cases are incorrect). Therefore,

we included the following regularization techniques: (1)

Fig. 2 HITL experiment workflow

Table 1 Range of the hyperparameter values

Hyperparameter Values

Hidden layers 1, 2

Neurons in each layer 64, 128, 256

Learning rate 1e�2; 1e�3; 1e�4

Momentum 0.95, 0.90, 0.85, 0.80

Dropout 0.3, 0.4

Batch size 16, 32, 64

Epochs 10, 20, 30, 40
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dropout layers were added to each hidden layer to eliminate

co-adaptation between neurons, (2) an L2 regularization

term was added to restrict the values of the weights to small

numbers, and (3) 10-fold cross-validation was performed to

avoid overdependence on the data selected as the validation

dataset. The final model was an ANN with two hidden

layers with 128 neurons in each, a learning rate of 0.9, a

momentum of 0.9, a dropout value of 0.4, a batch size of 16

and 20 epochs. Figure 3 shows the layer distribution of the

base model.

4 AL approach

AL is a machine learning technique used to overcome

labelling bottleneck by posing queries in the form of

unlabelled instances to be labelled by an oracle (e.g. a

human annotator) [76].

The goal of AL is to use fewer training examples than

other ML techniques to achieve the same accuracy. It is

particularly useful when the labelling process is expensive

or time-consuming, or when dealing with a scenario of

scarcity of examples.

AL is also useful in weak supervision scenarios [12, 47],

in which labelling functions that encode domain knowl-

edge—such as user-specified heuristics or external

knowledge bases—are developed and used to noisily

annotate subsets of data. The weak labels generated in this

process may not be very reliable, so human supervision is

necessary to relabel those cases identified as doubtful by

the model.

In our case, the weak labels came from the synthetic

cases generated by the CTGAN and annotated by the

current iteration of the model. As the cases were generated

and the labels were created by a model that was not fully

trained, we could not have too much confidence in them.

We could also have doubts regarding the existing labels in

the dataset itself, not so much because they were erro-

neously labelled, but because they originated with physi-

cians who applied clinical practice guidelines that were

changed and updated. Therefore, it was necessary to

analyse and relabel them according to more current

guidelines.

Regarding the AL approach employed, an essential

stage in any AL procedure involves defining the sampling

process, also known as the query strategy, which entails the

selection of instances to be labelled by the human expert.

Two options exist [59]:

• Uncertainty sampling identifies unlabelled items that

are close to a decision boundary in the current ML

model.

• Diversity sampling identifies unlabelled items that are

underrepresented in or unknown to the current ML

model.

These two types of sampling correspond to a well-known

dilemma in AI: exploitation versus exploration [26].

Uncertainty sampling is an exploitation process in which

the focus is on improving efficiency using existing data,

whereas diversity sampling is an exploratory process that

tries to go beyond the known data samples to enhance the

diversity of the data.

In our case we decided initially to apply uncertainty

sampling, mainly due to the size of the dataset: since we

had few cases, selecting cases with the highest uncertainty

was more important than diversity. However, our sampling

process had the peculiarity that our major source of

uncertainty was the synthetic cases generated by the

CTGAN, so we ultimately followed a mixed strategy: 80%

of the cases selected for labelling by the expert came from

the CTGAN and the remaining 20% were cases near the

decision boundary (synthetic or real).

Lastly, another aspect associated with the AL process is

determining the number of new instances to label before

retraining the model. In this context, Rubens et al. [73]

identified two primary approaches:

• Batch. Multiple examples are labelled before the model

is retrained, with the batch size also impacting on the

model’s performance.

• Sequential. The system undergoes retraining after each

new labelling of elements, providing immediate feed-

back to the user.

When considering these alternatives, various trade-offs

arise. Sequential training is crucial in recommender sys-

tems, as users expect to receive an updated list of recom-

mendations based on their latest annotation. Small batch

Fig. 3 Layer distribution of the

base model
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sizes ensure that the most benefit is gained from each data

point in each iteration. But these are the least efficient

strategies in terms of computational cost, since the model

has to be trained more often. Maximizing the sample size,

however, will ensure that more items are labelled sooner

and the model has to be retrained less often, making the

overall process more computationally efficient.

Another cost, apart from the computational cost, that it

is not usually considered is the cost associated with human

interactions. One problem associated with AL is the

assumption that the oracle is ‘‘infallible (never wrong),

indefatigable (always answers), individual (only one ora-

cle), and insensitive to costs (always free or always char-

ges the same)’’ [17]. Obviously, however, this is not true,

as humans can become distracted and fatigued over time,

and this introduces variability in the quality of their

annotations.

We consider that the best strategy to avoid including

noisy annotations in the AL process is to take HCI issues

into account. It is important that the number of cases in

each iteration and the number of iterations are not too high.

The idea is to avoid fatigue, boredom, loss of interest, etc.,

and also not to overburden professionals whose time is

scarce. We therefore decided to limit batch size to ten cases

and to limit the duration of the experiment to one month.

The HCI issues are described in more depth in Sect. 6.

Our AL approach followed an iterative process, starting

from a set of labelled (i.e. known) examples, and a set of

unlabelled examples (i.e. unknown) that could be incor-

porated in the model. The aim is to select the best examples

to both improve the learning process and to make human

participation more efficient by reducing the number of

examples to be annotated.

AL has been applied in several cancer diagnosis sce-

narios. Wen et al. [88] uses AL for segmentation quality

assessment for pathology images, comparing three classi-

fication methods for performance improvement and effi-

ciency. Halder and Kumar [25] described an AL approach

that deployed a rough fuzzy classifier for cancer prediction,

using micro-array gene expression data as the basis and

providing an alternative to other AL algorithms. AL has

also been used in a narrowing uncertainty process in two

breast cancer classification experiments [45].

5 IML approach

As we have seen, in AL interactivity is limited to humans

acting as annotators of the cases presented to them. But

more important than the limited interactivity is the lack of

control over the process, as it is the model that decides

which case should be presented to the experts for annota-

tion. IML includes a wide range of applications where

control is shared between humans and the model and where

interaction between them is close. This last point is

important because, given the increased level of interaction

in IML, it becomes necessary to consider HCI techniques.

The most typical form of IML is that the human reviews

and corrects annotations made by the model on unstruc-

tured data. For example, a human can use an IML process

to perform image segmentation or to fine-tune segmenta-

tion as performed by the model in a process known as

interactive image segmentation [68]. Other successful

applications involve working with video [40] and sound

[18] time-series data.

IML, since it is based on AL, shares some of its limi-

tations while also introducing its own. A prominent issue is

the blending of ML and HCI aspects due to increased

interactivity, leading to the need for more extensive efforts

for application development, as these must be tailored and

studied individually. Perhaps a future solution lies in

exploring methodologies and theoretical frameworks for

IML systems, like that proposed by Meza Martı́nez et al.

[50].

In our case we used IML as an aid to the data aug-

mentation process. As an additional discriminatory layer in

the CTGAN in charge of generating the synthetic data, we

used the experts, who were in charge of creating new

constraints that would improve the generation of synthetic

cases in each iteration. Below we describe the CTGAN in

more detail, and also the process by which expert opinions

were collected to incorporate new constraints into the

system.

5.1 CTGANs

When employing supervised ML algorithms in the medical

domain, one of the main challenges is to deal with small

datasets and numbers of annotated samples, given that the

algorithms require labelled data and a sufficient number of

training examples. Researchers attempt to overcome this

challenge by using data augmentation schemes, one of the

most popular of which is the generative adversarial net-

work (GAN).

A GAN [20] is a DL framework composed of two net-

works—a generator and a discriminator—competing with

each other in the form of a zero sum game. The generator

produces data examples taking into account the charac-

teristics of the training data, and the discriminator tries to

distinguish real data from generated data.

GAN models have been successfully applied in the

fields of computer vision [87], natural language processing

[84], and image generation [35], among others. Given their

excellent performance, they have also attracted the atten-

tion of researchers in the medical image fusion field, as
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exemplified by Fu et al. [19], Zhan et al. [91], Jiang et al.

[38], and Guo et al. [23].

Particularly useful in the data augmentation context is to

allow for controlled image generation [51]. GANs condi-

tioned on a label or a segmentation map, for instance, can

be used to generate synthetic lesions or, more generally, to

balance a dataset by augmenting underrepresented groups

[78]. Image translation architectures, such as CycleGANs

[93], have been used for cross-domain medical image

synthesis, which allows samples to be transferred from

modalities in which data are relatively abundant (e.g.

computed tomography) to more costly or less widely

implemented modalities (e.g. magnetic resonance imaging)

[37].

Although the most popular studies related to GANs

involve datasets from the computer vision domain, data

science applications, even in the medical domain, usually

deal with multiple continuous and categorical variables.

Over the past 6 years, the promise of GAN models has

encouraged their development for tabular data generation.

However, the generation of synthetic data in tabular data-

sets is not so simple, as we normally have a mixture of

continuous data which may have multiple modes, and

discrete data which is sometimes imbalanced. Several

approaches have been proposed for synthetic tabular data

generation. Based on input real patient records, medGAN

[15] generates high-dimensional discrete variables via a

combination of an autoencoder and GANs. Mottini et al.

[57] used Cramér GANs with a generator architecture that

combines feed-forward layers with the Cross-Net archi-

tecture and uses an input embedding layer for the cate-

gorical features to generate realistic synthetic passenger

name records. In the field of data synthesis and with the

objective of maintaining privacy, Park et al. [66] proposed

a method called table-GAN that synthesizes tables con-

taining categorical, discrete, and continuous values.

GANs can be extended to a conditional model—called

CGAN [51]—if both the generator and discriminator are

conditioned on some extra information, which could be any

kind of auxiliary information, such as class labels or data

from other modalities. Conditioning is done by feeding this

extra information into both the discriminator and generator

as an additional input layer. CGANs have been success-

fully applied in many fields, including images [49], natural

language [82], and anomaly detection [85].

The tabular version of the CGAN is called conditional

tabular GAN (CTGAN) [89]. CTGAN allows conditions or

constraints to be assigned to the synthetically generated

tabular data, thus allowing values to be assigned in a fixed

way or to be calculated with respect to other columns

(features). These conditions improve the accuracy of the

data by prohibiting combinations of feature values that may

not exist in the real dataset. This very common scenario

when working with tabular data is finding features that

have very particular relationships between them that are

very hard to model and that can easily confuse a case

generator.

The CTGAN approach has been applied from different

perspectives. From the perspective of data balancing,

Wang et al. [86] proposed the CTT (traffic) GAN

scheme to expand small category samples in traffic datasets

for classification purposes. Jia et al. [36] used CTGANs to

augment disk failure data, demonstrating their effective-

ness through classic ML models. Nugraha et al. [65]

developed a classification system to predict health insur-

ance fraud, solving the imbalanced data problem by using

CTGAN as an oversampling method to generate additional

data for minority classes. In the missing data imputation

field, Khan et al. [41] used CTGAN to add synthetic

samples and increase the amount of training data and, in

this way, improve imputation performance. From the per-

spective of dataset generation for domains with no public

datasets, Rahman et al. [69] applied CTGAN to obtain a

dataset with personality trait scores and responses to

phishing with a view to investigating the psychological

aspects that may contribute to sensitivity to phishing

attacks. With similar aims, Tang et al. [81] augmented

training data to build an ensemble ML framework to search

for sweet spots in shale reservoirs, Hong and Baik [32]

generated voluminous training data to establish bankruptcy

predictions, and Moon et al. [52] generated electric load

data to train forecasting models.

5.2 CTGAN updating using IML

We used the CTGAN implementation that is part of the

Synthetic Data Vault (SDV) project [67], as it allows

special relationships to be defined between columns called

constraints that are used to improve the quality of the

generated data by prohibiting certain combinations that

may not exist in real data.

CTGAN allows several types of constraints. In our case

we mainly used three types:

• Fixed combinations force combinations between a set

of columns to be fixed, i.e. no other permutation or

shuffling is allowed other than what is already observed

in the real data. An example would be different columns

with data representing cities and countries, which we

would not want to be shuffled, ending up with incorrect

associations such as Paris–Italy or Rome–Spain.

• Inequalities force inequality relationships between pairs

of columns. For every row, the value in one column

must be greater than the value in another column. For

example, an employment start date in a company must

be earlier than the employment end date.
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• Custom constraints are used to represent business logic

that cannot be represented using predefined constraints

such as fixed combinations and inequalities.

Constraints can be handled in two ways:

• Rejection. A sample is discarded if the generated

synthetic sample violates a constraint.

• Transformation. The data are transformed in such a way

as to guarantee that the synthetic data look like the

original data, e.g. by copying one of the possible

combinations in the original data that meets the

imposed constraints.

Although rejection is a simple procedure, it may slow down

the sampling process, whereas transformation is more

efficient but cannot always be used.

The missing data problem was solved by a data aug-

mentation process in a CTGAN model where humans acted

as additional discrimination layers. Through IML, the

information provided by the experts to identify synthetic

cases was converted into new conditions or constraints that

improved the CTGAN results.

Figure 4 depicts a representation of several of these

restrictions:

• Constraint lymph_node is an inequality constraint

that was manually created as the result of an expert

comment that There cannot be more positive lymph

nodes than nodes tested, an obvious situation but one

that the CTGAN failed to identify. The handling

strategy is reject.

• Constraint fixed_R1_postoperative is a fixed

combination constraint that resulted from an expert

commentary that You cannot have post-operative RXTX

if you do not have radiation therapy prescribed because

of a residual tumour. The handling strategy is reject.

• Constraint fixed_pathologic was created because

the pathological stage of patients follows rules that

cause several columns to affect each other. As the

number of possible combinations between the columns

defining the pathological stage was very large, the

CTGAN could not infer and reproduce all the relation-

ships. Because of this, the expert detected inconsisten-

cies such as The stage is not correct, if there are

positive nodes in He, they should also be identified in

IHQ and also the stage cannot be N0. The handling

strategy is transform, i.e. modifying the data with some

of the existing combinations in the original dataset.

• Constraint days_to_new_event is a custom con-

straint used when there are no new tumours after initial

treatment, and so it eliminates the values of columns

associated with the treatment of new tumours. The

constraint identifies the affected columns and, after

generating the synthetic cases, the

reverse_transform function modifies the values

of those columns to NaN if there are no new tumours,

i.e. the handling strategy is transform. This constraint

was added and due to numerous comments such as It is

inconsistent to have a progressive disease with the

absence of further events and Pharmaceutical therapy

is YES. Why are you treating him if the disease has not

recurred?

Our CTGAN model had a total of 19 constraints, which

were included in the model as the outcome of feedback

from human experts. Sixteen were fixed combination

constraints, meaning that the values of the columns

involved should be present in the real data, while the

remaining constraints were two inequalities and one cus-

tom constraint. The main handling strategy was rejection

(fourteen cases), since it is often easier to discard a con-

flicted case and generate a new case, and the handling

strategy for the remaining cases was transformation. This

IML process helped us to build better synthetic cases that

were more indistinguishable from real cases and so were

more useful for the training process.

6 HCI issues

Given the human-centred nature of HITL-ML, it is logical

that the literature and the standards produced in the HCI

field become more crucial than for ML in general. The

central concept of HCI is usability, which is defined in the

ISO 9241-210:2010 [33] standard as ‘‘the extent to which a

product can be used by specified users to achieve specified

goals with effectiveness, efficiency, and satisfaction in a

specified context of use’’. This means that usability is not

an inherent property of a system but rather depends on the

characteristics of its context of use, where the main attri-

butes are users, tasks, equipment, and environment (again

according to ISO 9241-210:2010 [33]).

We also need to know the specific usability criteria to

focus on, because, as shown by Gray and Salzman [21], a

general idea that effectiveness, efficiency, and satisfaction

are important is not very useful if we specifically want to

identify actual usability problems. This is why some

usability experts have created what Lewis [46] calls ex-

panded models of usability, which consist of multiple

usability attributes and subattributes, organized into some

kind of hierarchy or taxonomy.

Since usability is so complex and can be assessed from

so many different points of view, the usability studies we

find in the real world take many forms and involve a great

diversity of methods. Adelman and Riedel [2] identified 13

methods, which they classified into three types, namely:

expert (determine what is good and bad about the system
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from a usability perspective), subjective (obtain user

opinions about the usability of evolving prototypes and

operational systems), and empirical (obtain objective data

about how well people can actually use a system). Ivory

et al. [34] proposed a different and even more complete

taxonomy of usability evaluation methods, classified into

five types, namely: testing (users perform tasks), inspection

(evaluators identify problems), inquiry (users provide

feedback), analytical modelling (models are used to make

predictions), and simulation (models are used to mimic

interactions).

6.1 Scope of the analysis

As part of our experiment, we analysed both the context of

use and the usability of the application itself. In choosing a

usability taxonomy, we normally confront the issue that the

concept of usability has been very inconsistently described

in the literature. To provide an objective, comprehensive,

and structured taxonomy, we selected as the basis for our

task the expanded usability model by Alonso-Rı́os et al.

[4], a work that also concerns the context of use in a sep-

arate taxonomy [5]. These taxonomies have been previ-

ously used as the basis of a systematic and generalizable

methodology for usability evaluation [6].

Our first step was to establish the scope of the analysed

system. As mentioned previously, the ML experiment

consisted of an AL process, with a first model built,

without the intervention of the domain experts participating

in the experiment, using the pancreatic cancer data from

the dataset by means of the ANN described in Sect. 3.1.

This model was then retrained with new information pro-

duced by combining existing data with new synthetic cases

produced by the CTGAN, all relabelled in the AL

experiment.

A web application serving as the front-end (Fig. 5)

presented the cases selected by the AL sampling strategy to

the human experts (i.e. medical doctors specializing in

Fig. 4 CTGAN constraints obtained from feedback from human experts
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pancreatic cancer). As explained in Sect. 4, the cases were

selected from among those featuring the highest uncer-

tainty and those generated by the CTGAN (i.e. synthetic).

The experts were asked to annotate the new cases regarding

whether or not to start chemotherapy and to complete a

comments field with any observations, and were also asked

whether they considered the patient data to be real or

synthetic.

6.2 Context of use analysis

Analysing the context of use is important because it helps

to properly design the study and interpret its results. We

considered three different aspects (see Fig. 6) that define

the context: user, task, and environment. These attributes

and their associated subattributes are described in detail in

Alonso-Rı́os et al. [5].

From the point of view of the user, note that the human

experts interacted directly with the system, and even

though the participants were not familiar with this kind of

system, no technical help was provided in advance. In the

design phase, we aimed for a familiar interface (i.e. web

application) that fitted perfectly with our purpose of col-

lecting the required data. Each user was an expert in the

field, with highly specific domain knowledge, and physical

and cognitive characteristics were considered normal.

Attitudes to the system were very positive and collabora-

tion by the users was optimal. The domain user expert

attributes were not an obstacle, even though the users were

not familiar with any similar systems. We consider this not

to be an issue as the experts were familiar with web

applications and interacted frequently with computers.

The task set for the experts was to read a pancreatic

cancer patient case report, with the most relevant attributes

of the disease presented by means of a web form. The

experts were asked to complete information on the pre-

scribed treatment, making choices based on their expertise,

and were asked to determine whether the patient data

reflected a real or synthetic case.

The web application created to obtain the annotated data

from the experts was the result of several iterations

involving a heuristic evaluation of the most important

usability aspects derived from the chosen taxonomy [4].

For two of the topics, treatment and real/synthetic case

identification, radio buttons were provided in the form, as

only one answer was possible. Two text components

allowed the expert to include subjective comments on the

treatment and the case in general.

Task complexity and frequency were low, with users

only completing the task three times in one month. Time

taken to complete the task varied greatly, depending on the

case. Medical diagnosis is a complex process and,

Fig. 5 Web application user

interface
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depending on the evidence and patient data, may require

more than five minutes for a single case. Only ten patient

cases were therefore presented in each session to ensure

sustained motivation.

Finally, the environment consisted of a simple personal

computer setup in an office, with no obstacles in terms of

sensorial, atmospheric, spatial, or safety conditions. Tech-

nological requirements were completely fulfilled and no

issues were detected. The social environment could affect

the focus on the task, and the experts could even be

interrupted. Even though they must interact with the system

individually, we do not consider human collaboration as an

obstacle, as it can only be beneficial for the accuracy on the

answers.

6.3 Usability analysis

For our usability study of the application, we applied

several approaches in order to obtain the maximum infor-

mation without interfering with user task completion. The

usability study was carefully designed taking into account

the characteristics and limitations of our specific context of

use, as outlined above.

As described by Ivory et al. [34], several usability

evaluation methods and techniques exist that can be used in

combination or alone. Our analysis was based on three

classes, namely, inspection, whereby evaluators apply a set

of criteria or heuristics to identify usability problems,

testing, whereby users perform tasks with the application in

the setting described above, and finally, inquiry, whereby

subjective opinions on testing are collected.

6.3.1 Inspection

As shown by Munro [59], an application for annotating

examples—such as that described in this paper—needs to

be carefully designed to ensure effectiveness. Inspection

usability techniques are crucial in this regard and are typ-

ically employed in the system design and initial imple-

mentation stages. Of the many types of inspection

techniques, one of the most widely used is heuristic eval-

uation [64], i.e. according to rules of thumb, as it provides

quick and easy heuristics for designing an interface. Per-

haps the most popular heuristics are the ones proposed by

Nielsen [63] (e.g. aesthetic and minimalist design, flexi-

bility, and efficiency of use).

Our goal was to give the users a fully functional appli-

cation from the outset, rather than an initial prototype to be

refined over several cycles. Before actual user testing

began, therefore, we performed a heuristic evaluation of

the application based on the framework proposed in

Alonso-Rı́os et al. [6] that proposes an initial systematic

and generalizable approach to heuristic evaluation that is

then explicitly connected to, and extends, Nielsen’s

heuristics [63].

After several iterations of finding and fixing usability

problems, we obtained an application that could be used in

testing with actual users in their routine working

environment.

6.3.2 Testing

The experiment consisted of having users (with great

expertise in their domain but not necessarily with com-

puters) interacting with a real application requiring them to

annotate patient cases. Note that the interface built was a

real web application, and no prototypes were discussed or

A/B testing was performed. The environment was a real

setup where the medical doctors interacted with the

application on their own. The aim was to avoid any

interference, as in a real use case, so no execution times

were recorded (the task needed to be correctly performed,

so time was not relevant), and the sessions were not

recorded.

Fig. 6 Context of use main attributes
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Instructions on how to use the web application were not

provided as we wanted to test the intuitiveness of the tool

in which a simple task needed to be performed. Complexity

was intrinsically related to the pancreatic cancer evalua-

tion. We expected formal use of the application, which

required completing the specific task of selecting suit-

able treatment, declaring whether the case was real or

synthetic, and briefly describing the selected treatment or

the case in general.

6.3.3 Inquiry

Inquiry methods require the user to provide feedback on an

interface via interviews and/or surveys. In our case we

prepared and distributed a questionnaire to the users. We

based this on the usability taxonomy proposed by Alonso-

Rı́os et al. [4], due to its comprehensiveness and clarity,

and how it relates with the context of use analysis descri-

bed above.

Questionnaire literature was also consulted before we

produced our own questionnaire, particularly the USE

Questionnaire [48], the Software Usability Measurement

Inventory (SUMI) [43] and the Cognitive Dimensions

framework [11], and we also consulted a review on the

applicability of these and other questionnaires by Hinderks

et al. [27]. Our goal was to cover the most significant

usability aspects related to the studied problem without

burdening the users with an excessive number of questions,

as this could act as a disincentive to collaboration.

The usability taxonomy has previously been used for

usability questionnaires custom-built for a different domain

(e.g. [3, 71, 72]). Since the taxonomy is generic and con-

sists of dozens of subattributes, the first step was to remove

the attributes that were not applicable to our study. The fact

that the taxonomy is hierarchically structured facilitates the

pruning of branches of attributes and helps to focus on the

relevant usability criteria. Due to the limited availability of

the domain user experts, our priority was to ensure that the

questionnaire was very brief, so we only included what we

considered to be the most essential usability questions.

The generic attributes were progressively refined to

obtain more specific subattributes that populated subse-

quent taxonomic levels (see Fig. 7). Based on this struc-

tured taxonomy, we prepared the eleven questions

described in Table 2. The taxonomic categories covered by

each question are listed contiguously in a separate column.

Each of the eleven questions was answered with a value

between 1 and 5, where 1 represented maximum dis-

agreement and 5 maximum satisfaction. A comments field

was also provided for users to submit feedback.

Questions 1 and 2 focused on knowability, a property by

means of which the user can understand, learn, and

remember how to use the system. As the web application

was used by the human experts without any prior technical

instruction, it was important to capture their thoughts in

this regard. Questions 3, 4, and 5 covered operability

issues, from the completeness of the tool, to its flexibility in

terms of workflow, passing through terminology and cul-

tural aspects (i.e. universality). Questions 6 and 7 referred

to efficiency, reflecting task complexity in terms of mental

effort over inherent task complexity. Question 8 covered

robustness to internal error. Question 9 referred to the

safety of the system, particularly in terms of preventing

legal issues. Question 10 covered the user’s subjective

satisfaction and interest. Finally, Question 11 was an

overall usability question whose answer should match the

answers to the previous questions.

7 Results

7.1 Training results

To measure model performance, we needed to closely

examine the evolution of the accuracy value during the

different iterations. Since our initial data contained only

181 cases (some initial cases were discarded because they

were incomplete), we used a cross-validation strategy to

obtain an accuracy value that minimized randomness in the

selection of the training and test sets.

Our project baseline was the model trained without

following a HITL strategy. Figure 8a shows the result for

this baseline model, with overall accuracy of around 60%.

Figure 8b shows the result for the HITL strategy, which

obtained accuracy of close to 75%, representing a sub-

stantial improvement for so few data. To avoid possible

overfitting in the final training of the model, an early

stopping strategy was followed.

The HITL experiment consisted of three iterations,

considered the ideal number of iterations both to check if

our strategy had an effect on learning, but also not to

overburden the physicians. As commented in Sect. 6 and

later in the conclusions, a HITL strategy should always

take into account HCI issues.

After the three iterations, we ended up with a dataset of

292 cases, 30 of them labelled by the experts [(ten in each

iteration), selected by the sampling strategy explained in

Sect. 4]. Figure 9 shows how, at each iteration, the clas-

sification performance of the model improved even despite

the small number of annotated cases added.

We consider that, if more iterations had been performed,

accuracy would have been improved further, although

would likely have tapered off. Most cases added in each

iteration were synthetic cases, variations of the cases

included in the initial limited dataset. Note that more data

Neural Computing and Applications

123



implies a greater workload for the physicians and a greater

computational workload.

7.2 Usability questionnaire results

As part of the usability study, we analysed the results of the

questionnaire distributed to the domain experts (see

Table 2).

Maximum scores awarded were 4 for questions 1 and 2,

and 5 for the remaining nine questions. Therefore, while

the web application could be considered successful in

terms of usability, there were two questions that received

less than the highest score, both related to the knowability

attribute, and in particular, with clarity in functioning from

both the user and system perspectives. Those were:

Q1. I understand the process to input the data in the

system.

Q2. I understand the answers provided by the system.

Knowability is defined as the user understanding, learning

and remembering how to use the system. With many ML

models, it is a real challenge to provide the means by which

Fig. 7 Usability main attributes

Table 2 Usability questionnaire

Question Taxonomy category

(1) I understand the process to input data in the system (K): Clarity in functioning/User tasks

(2) I understand the answers provided by the system (K): Clarity in functioning/System tasks

(3) The system provides everything I need to be able to use it (O): Completeness

(4) The terminology used by the system seems correct to me (O): Universality/Cultural universality

(5) The flexibility in using the system seems correct to me (O): Flexibility/controllability/Workflow

controllability

(6) I do not need to invest special mental efforts to use the system (E): In human effort/Mental

(7) I do not need to spend too much time using the system (E): In task execution time

(8) The system looks robust and I do not detect potential issues (R): Robustness to internal error

(9) The system complies with current regulations (S): User safety/Legal safeguarding

(10) I consider the system useful and interesting (SS): Interest

(11) Overall I consider the system easy to use Usability

*Categories: Knowability (K), Operability (O), Efficiency (E), Robustness (R), Safety (S), Subjective satisfaction (SS)
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a final user can understand the internal workings of the

models.

Since the medical experts did not complete the free-

form comments section of the questionnaire for those two

questions, we requested more details in order to understand

why the scores were below the maximum. The general

comment was that it was not clear how the system used the

answers provided by them, nor how the cases were chosen

or annotated before human interaction with the system. We

also relate their uncertainty to the fact that no precise

instructions were issued. Nevertheless, the system was

simple enough for the users to be able to complete the task.

As future work, a different type of model (e.g. decision

tree) could be used so that the final users could better

understand the more important features and how they are

related to each other. An explainability method could also

be applied to the current model so that, in order that they

understand the underlying logic, the most relevant attri-

butes are presented to the final user.

8 Discussion and conclusions

Data bottlenecks are a problem within ML, especially in

complicated domains such as medical environments where

there are either few data, or what data exist are not labelled,

or data have weak or unreliable labels.

One solution to alleviate data bottlenecks is to use data

augmentation techniques, which generate synthetic cases

that make it easier for the ML model to learn existing

patterns in the data. While these techniques are easy to

apply when dealing with images, but less so when working

with tabular data, as the data contain relationships between

the values of the different features that the synthetic case

generator needs to take into account. CTGANs are gener-

ally used to generate synthetic data from tabular data, but

in a data-poor environment, they share the problem of

scarce data, meaning that they cannot learn from the rela-

tionships between features and take them into account

when generating synthetic cases.

This is where HITL techniques can address the data

bottleneck problem. In an AL process, weak labels—such

as those generated for synthetic cases, and even labels from

the dataset itself—are analysed and corrected by human

experts. Humans, even if they analyse just a few cases, can

have a significant impact on system accuracy, as recently

demonstrated in Gupta and Sintorn [24], Bravo-Rocca et al.

[13], Zhao et al. [92], and Khanal et al. [42].

Humans, however, can go beyond merely labelling

cases. In our particular case, humans also analysed cases to

decide whether or they were synthetic, justified their

decision and, if the case was real, provided a rationale as to

why it was assigned a particular label.

Reasons why human experts considered a case to be

synthetic were used to create new constraints for the

CTGAN model. Thus, humans acted as an additional dis-

criminatory layer, thereby enabling the CTGAN to gener-

ate better synthetic cases that were more indistinguishable

Fig. 8 Comparison of results before and after deploying the HITL strategy

Fig. 9 Three iterations in HITL training compared
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from real cases and, therefore, more suitable for the

learning process.

Basically what the human experts did was solving one of

the problems of the data augmentation process, which is to

assess and evaluate the quality of augmented datasets. As

deployment of data augmentation methods grows, so also

will the need to analyse output quality. Furthermore,

human experts can help detect and correct whatever biases

may have been carried over from the original dataset to

data supplemented from that dataset.

However, including humans in the learning process has

a cost, especially when dealing with domain experts whose

availability may be restricted, as happens in the medical

domain. Since having HCI experts is essential to ensure the

success of experiments like ours, this makes it imperative

to take HCI-related aspects into account when designing

any experiment that includes them.

The idea is to reach a trade-off between the amount of

cases an expert can collaborate on (the more the better),

and the amount of time and effort the expert will invest in

analysing those cases (the less the better). A good design of

the user interface and the user interaction is especially

important to maintaining the user’s interest and collabo-

ration and avoiding excessive demands on them [54].

An important event demonstrating how human beha-

viour can influence HITL experiments occurred with the

explanation of why a case was labelled in a given category

(the second component in the expert responses). Our

intention was to use this information to improve the

explanatory capacities of the system, yet the expert

responses were less detailed than responses given when

identifying synthetic cases, which ultimately means that

the responses were not very useful. We believe that the

reason is that the experts invested most effort in detecting

whether a case was synthetic or not because they were keen

not to be ‘‘fooled’’ by the machine (just as we carefully

watch a magician to try and discover the trick and so fail to

pay attention to the rest of the show). A possible solution

would be to design the iterations differently, e.g. include an

iteration in which the experts are aware that all the cases

are synthetic, so they simply provide explanations as to

why the data are synthetic, and another iteration in which

the experts are aware that all the cases are real, so they

focus only on explaining their labels.

8.1 Future work

Several options are being considered for future work.

Firstly, regarding the IML process that includes new

restrictions in the CTGAN, the process is currently manual,

because expert opinions are collected in natural language

that is ambiguous and often needs additional clarifications.

A possible improvement would be to incorporate either a

natural language processor that can generate constraints

automatically, or a more complex interface that allows

physicians to set system constraints interactively. Either of

these solutions would be quite complex; in the first case,

there would be no guarantee that the constraint built from

natural language was exactly what the expert meant, and in

the second case, the interactive tool would add complexity,

would require a more extensive study of usability, and

would not guarantee that all the possible constraints

expressed by experts could be represented, not to mention

the additional demands on the experts.

Secondly, since IML has been successfully applied in

applications dealing with unstructured data (using experts

to give structure to such data), it could also be applied to

interactive image segmentation. The aim is to simplify the

process of eliciting knowledge by involving experts as

users of the IML tool in annotating image content that is

relevant to the model. According to Holzinger et al. [31],

IML is especially suited for applications in the medical

field.

Finally, by incorporating human knowledge and skills

we not only improve the quality of the learning models and

build them with fewer data, but can also use this knowl-

edge to enable features such as retraceability and

explainability that could mitigate the black-box problem in

certain ML models. Also useful is the possibility for

comparing the explanations of human experts with the

explanations obtained by transparent ML models such as

decision trees.
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