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Abstract
This paper introduces an area-level Poisson mixed model with SAR(1) spatially cor-
related random effects. Small area predictors of proportions and counts are derived 
from the new model and the corresponding mean squared errors are estimated by 
parametric bootstrap. The behaviour of the introduced predictors is empirically 
investigated by running model-based simulation experiments. An application to real 
data from the Spanish living conditions survey of Galicia (Spain) is given. The tar-
get is the estimation of domain proportions of women under the poverty line.

Keywords  Small area estimation · Area-level models · Spatial correlation · Count 
data · Bootstrap · Living conditions survey · poverty proportion

AMS Subject Classification  62E30 · 62J12

1  Introduction

This paper introduces statistical methodology for estimating proportions and counts, 
with applications to poverty mapping in areas of Galicia. This is an autonomous 
community in the northwest of Spain with an economic activity strongly related to 
natural resources. The beginning of the 21th century has been characterized by the 
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increase in the differences between the areas of the inner zone, which are poorer, and 
the coastal areas, which present greater development. One of the Spanish statistical 
sources to monitor poverty indicators is the living conditions survey. Unfortunately, 
the sample sizes of this survey do not allow obtaining precise direct estimators for 
the counties of Galicia. Small area estimation (SAE) deals with this problem by 
introducing indirect predictors based on statistical models. The monographs of Rao 
and Molina (2015); Pratesi (2016) and Morales et al. (2021) are introductory texts 
to SAE. Recent methodology for SAE is described in the review papers of Jiang 
and Lahiri (2006); Rao (2008); Pfeffermann (2013) and Sugasawa and Kubokawa 
(2020).

Developing statistical methodologies to model counting data and to predict 
domain counts and proportions in small areas is important to understand the phe-
nomena studied (like poverty) and, consequently, to make decisions about public 
policies. This manuscript introduces a spatial extensions of the basic area-level Pois-
son mixed model, for better fitting the needs of real data and giving rise to increas-
ingly complex and realistic models. The main contribution is the introduction of 
small area predictors that incorporates information from other domains, auxiliary 
variables and spatial correlation.

Without taking into account the spatial correlation at the domain level, the statis-
tical literature on area-level mixed models for count data has interesting contribu-
tions to SAE. We can find univariate and multivariate models for count data. In the 
first case, regression models with Poisson distribution have been widely used. Some 
contributions in this field are Ghosh et al. (1998), Trevisani and Torelli (2017), Bou-
beta et  al. (2016, 2017) or Reluga et  al. (2021). In the second case, the multivar-
iate models for the count data additionally borrow the strength of the correlation 
between the target variables to introduce new predictors. This was done by Ferrante 
and Trivisano (2010), López-Vizcaíno et al. (2013, 2015), Esteban et al. (2020) or 
Burgard et al. (2022), among others. These models link all the domains to enhance 
the estimation at a particular area, that is, they borrow strength from other areas. 
The models have random effects taking into account the between-domain variability 
that is not explained by the auxiliary variables, but they assume that the domain ran-
dom effects are independent. However, in socioeconomic, environmental and epi-
demiological applications, estimates for areas that are spatially close may be more 
alike than estimates for areas that are further apart. In fact, Cressie (93) shows that 
not employing spatial models may lead to inefficient inferences when the auxiliary 
variables does not explain the spatial correlation of the study variable.

In other fields of statistics than SAE, such as econometrics or epidemiology, spa-
tial models for count data have wide applicability. See for example the papers of 
Anselin (2001), Wakefield (2007), Mohebbi et al. (2011) or Glaser (2017) and ref-
erences therein, or the books of LeSage and Pace (2009), Dubé and Legros (2014) 
and Banerjee et  al. (2015). Among those models are the “spatial autocorrelation” 
or “simultaneous autoregressive” (SAR) Poisson regression models. However, SAR 
Poisson models do not play the most relevant role in those areas, unlike normal 
models, because there is no direct functional relationship between the dependent 
and the explanatory variables. On the other hand, the area-level approach to SAE 
looks for the relation between the intensity parameter (conditional expectation of 
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the dependent variable) and the regressors. The reason is that the dependent variable 
is an estimator obtained from unit-level survey data and not the area-level popula-
tion parameter of interest. In the SAE setup, population parameters (such as pov-
erty proportions) are directly related to the conditional expectation of the dependent 
variable.

In SAE, modelling the spatial correlation between data from different areas 
allows to borrow even more strength from the areas. This recommendation was 
applied to the basic Fay–Herriot model by Singh et al. (2005). Later, several authors 
have proposed new spatial area-level linear mixed models. Petrucci and Salvati 
(2006); Pratesi and Salvati (2008); Molina et  al. (2009); Marhuenda et  al. (2013) 
and Chandra et  al. (2015) consider linear mixed models (LMM) that extend the 
Fay–Herriot model. Most of these papers assume that area effects follow a simulta-
neously autoregressive process of order 1 or SAR(1).

In the Bayesian framework, Moura and Migon (2002) and You and Zhou (2011) 
consider spatial stationary mixed models, Sugasawa et al. (2020) study an empirical 
Bayesian estimation method with spatially non-stationary hyperparameters for area-
level discrete and continuous data having a natural exponential family distribution. 
Arima et al. (2012) propose a full Bayesian separable spatio-temporal hierarchical 
Bayesian model, which allows the integration of missing data imputation and pollut-
ant concentration prediction. Choi et al. (2011) apply the spatio temporal models to 
study chronic obstructive pulmonary disease at county level in Georgia.

Concerning nonparametric and robust methods, Opsomer et  al. (2008) give a 
small area estimation procedure using penalized spline regression with applications 
to spatially correlated data. Ugarte et al. (2006) and Ugarte et al. (2010) study the 
geographical distribution of mortality risk using small area techniques and penal-
ized splines. Chandra et al. (2012) introduce a geographical weighted empirical best 
linear unbiased predictor for small area averages. Baldermann et al. (2016) describe 
robust SAE methods under spatial non-stationarity linear mixed models. Chandra 
et al. (2017) introduce small area predictors of counts under a non-stationary spatial 
model. Chandra et al. (2018) develop a geographically weighted regression exten-
sion of the logistic-normal and the Poisson-normal generalized linear mixed models 
(GLMM) allowing for spatial nonstationarity.

The above cited papers introduce SAE procedures that borrow strength from 
spatial correlations. Assuming the frequentist parametric inference setup, they 
mainly apply spatial LMMs to small area estimation. However, few of them deal 
with empirical best predictors (EBP) under spatial GLMMs. This work partially fills 
that gap and studies an area-level Poisson mixed model containing SAR(1) spatially 
correlated domain effects. The final target is the estimation of domain counts and 
proportions.

This paper has a double starting point. On the one hand, it modifies the spatial LMM 
of Pratesi and Salvati (2008) by changing the conditional distribution of the target vari-
able from normal to Poisson. On the other hand, it extends the model of Boubeta et al. 
(2016) by including random effects with SAR(1) distribution. The proposed model and 
the predictors derived from it are new. There is also no statistical software that allows 
estimating the parameters of the new model. For this reason, we adapt and implement 
the method of simulated moments (MSM) studied by Jiang (1998). Further, we give 
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approximate EBPs to avoid the problem of approximating multiple integrals and we 
empirically investigate their behavior.

The manuscript is organized as follows. Section 2 introduces the model and a fitting 
algorithm based on the MSM method. Section 3 gives empirical best and plug-in pre-
dictors of domain proportions and counts, provides approximations to the integrals that 
appear in the predictor formulas and proposes a parametric bootstrap method for esti-
mating their mean squared errors (MSE). Section 4 empirically investigates the intro-
duced predictors by means of simulation experiments. Section 5 gives a relevant appli-
cation to real data in the socio-economic field. The target is the estimation of women 
poverty proportion in counties of Galicia. Section  6 collects the main conclusions. 
Finally, the paper contains a supplementary material with some appendixes. Appen-
dix A provides the nonlinear system of MSM equations that must be solved to esti-
mate the model parameters. Appendixes B and C describe algorithms to calculate the 
penalized maximum likelihood (PQL) and the maximum likelihood (ML) estimators 
of the model parameters. Appendix D shows two bootstrap algorithms to test hypoth-
eses about the variance and correlation parameters. Appendix E gives some additional 
simulation results by considering deviations from normality in the data generating 
processes. Appendix F presents complementary results to the application to real data, 
including the analysis of the goodness-of-fit of alternative Poisson regression models 
and the use of EBLUPs based on a spatial Fay–Herriot model.

2 � The model

This section introduces an area-level Poisson mixed model in the context of spatial 
correlation. Specifically, it assumes a SAR(1) process on the random effects. Let us 
consider a population partitioned into D domains and let us denote each particular 
domain by d, d = 1,… ,D . Let v = (v1,… , vD)

� be a vector of spatially correlated ran-
dom effects following a SAR(1) process with unknown autoregression parameter � and 
known proximity matrix W . This means that the vector of random effects v fulfills the 
linear combination

where u ∼ ND(0, ID) , 0 is the D × 1 zero vector and ID denotes the D × D iden-
tity matrix. Assuming that (ID − �W) is non-singular, the equation (2.1) can be 
expressed as

For the proximity matrix W , we assume that it is row stochastic, i.e. the elements 
of each row are positive and add up to 1. Then, the autoregression parameter � is a 
correlation and is called spatial autocorrelation parameter. Some of the most used 
proximity matrices are based on: (i) common borders, (ii) distances and (iii) k-near-
est neighbours. In all cases, the proximity matrix W is obtained from an original 
proximity matrix W0 with diagonal elements equal to zero and remaining entries 
depending on the employed option. In option (i), the non diagonal elements of W0 

(2.1)v = �Wv + u,

(2.2)v = (ID − �W)−1u.
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are equal to 1 when the two domains corresponding to the row and the column indi-
ces are regarded as neighbours and zero otherwise. In option (ii), the nondiago-
nal elements of the proximity matrix W0 are defined by applying a monotonically 
decreasing function to the domain distances; for example, by using the inverse func-
tion. Finally, the non diagonal elements of W0 in option (iii) are 1 if they corre-
spond to the k-nearest neighbours of a given domain and zero otherwise. For each 
option, the row standardization is carried out by dividing each entry of W0 by the 
sum of the elements in its row. Consequently, W is row stochastic. Spatial weights 
are usually standardized by row, especially in binary weights strategies (i) and (ii). 
Row standardization is used to create proportional weights in cases where domains 
have an unequal number of neighbours. Row standardization involves dividing the 
weight of each neighbour of a domain by the sum of the weights of all neighbours of 
that domain. For area-level models, the row standardization is recommended when 
the distribution of the target variable is potentially influenced due to the sampling 
design or to the aggregation scheme. More information on row standardization can 
be found in the monograph Viton 2010.

Equation (2.2) implies that v ∼ ND(0,�(�)) , where

and C(�) = (ID − �W)�(ID − �W) . Therefore, the density function of the random 
effects is

The vector of response variables y = (y1,… , yD)
� follows an area-level Poisson 

mixed model with a SAR(1) vector of domain random effects v if its components 
y1,… , yD are independent conditionally on v and the conditioned distribution of yd , 
given v , is

where �d denotes the mean of the Poisson distribution. We assume that �d can be 
expressed as �dpd , where �d and pd are size and probability parameters respectively. 
We find two advantages of using a Poisson mixed model instead of a binomial 
mixed model. The first is that we can avoid calculating combinatorial numbers with 
values outside the range of the computer. The second is that we can explicitly com-
pute some integrals and this avoids the need to use approximation methods. This is 
particularly important when applying the MSM method. Besides, by the nature of 
our problem, �d takes large values and pd small values. Then, everything points to a 
good behavior of the Poisson model in addition to its computational advantages. As 
�d is assumed to be known, the Poisson parameter, �d , is determined if and only if 
one knows the parameter pd . In what follows, we will refer to pd as target parameter. 
To finish the definition of the area-level Poisson mixed model with SAR(1) random 
effects (Model S1), we express the natural parameter log�d in terms of a set of q 
covariates xd = (xd1,… , xdq) and the random effect vd , i.e.

(2.3)�(�) =
(
�d1d2 (�)

)
d1,d2=1,…,D

= C−1(�)

fv(v) = (2�)−D∕2|�(�)|−1∕2 exp
{
−
1

2
v��−1(�)v

}
.

yd|v ∼ yd|vd ∼ Poiss (�d), d = 1,… ,D,
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where � = (�1,… , �q)
� and � are the regression and standard deviation parameters 

respectively. We denote the vector of all model parameters by � = (��,�, �)�.
Under Model S1, it holds that

where the target parameter is pd = exp
{
xd� + �vd

}
 . The probability function (like-

lihood) of the response variable y is

where

To estimate the parameters of Model S1, the natural procedure would be to calcu-
late the ML estimators. However, the likelihood (2.4) is a multiple integral over 
ℝ

D , which makes it necessary to combine an integral approximation procedure with 
another for maximization of multivariate functions. Since the size of the integral to 
be approximated coincides with the number of domains (sample size in the aggre-
gated data set on which the area models are fitted), the optimization algorithms are 
inefficient in terms of stability (convergence) and computation time. For the sake of 
completeness of exposition, Appendix C of the supplementary material presents a 
likelihood optimization algorithm that combines the Laplace approximation of the 
multiple integral with the Newton–Raphson optimization algorithm. For the reasons 
stated, this ML-Laplace algorithm has not been selected to estimate the parameters 
of Model S1.

The scientific literature on GLMMs presents alternative procedures to the ML 
method. One of these methods consists of maximizing the joint likelihood of the 
fixed and random effects of the model, for each optimal selection of the variance 
and correlation parameters. This procedure, which we call PQL, alternately com-
bines two optimization algorithms, the first on � and u and the second on � and 
� , such that the output of one algorithm feeds the input from the other and vice 
versa. It is a procedure that calculates ML estimators in the case of LMMs but 
does not guarantee consistent estimators for GLMMs. The method has a lower 

log�d = log �d + log pd = log �d + xd� + �vd, d = 1,… ,D,

ℙ(yd|v) = ℙ(yd|vd) =
1

yd!
exp{−�dpd}�

yd
d
p
yd
d
,

(2.4)ℙ(y) = ∫
ℝD

ℙ(y|v)fv(v) dv = ∫
ℝD

D∏

d=1

ℙ(yd|vd)fv(v) dv = ∫
ℝD

�(y, v) dv,

�(y, v) = fv(v)

D∏

d=1

exp{−�dpd}�
yd
d
exp

{
yd(xd� + �vd)

}

yd!

= fv(v)

(
D∏

d=1

yd!

)−1

exp

{
D∑

d=1

{
− �d exp{xd� + �vd} + yd log �d

}}

⋅ exp

{
p∑

k=1

(
D∑

d=1

ydxdk

)
�k + �

D∑

d=1

ydvd

}
.
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computational cost than the ML-Laplace algorithm, but it presents instability 
problems (lack of convergence) in complex models, such as those of spatial cor-
relation. Appendix B of the supplementary material describes the PQL method. 
Due to the mentioned drawbacks, we have not selected the PQL algorithm to esti-
mate the parameters of the S1 model.

Jiang (1998) proposed the MSM method as a computationally efficient alterna-
tive to procedures based on maximizing likelihood. Under regularity conditions, 
Jiang (1998) proved that the MSM method gives consistent estimators of GLMM 
parameters. In addition, it is a computational stable and economic method that 
only requires solving a non linear system of p + 2 equations. This is why, we have 
decided to apply the MSM method to estimate the parameters of Model S1. In 
what follows, we describe how the MSM method estimates the vector of param-
eters, � , of Model S1.

A natural set of equations for applying the MSM algorithm is

where 
∑D

d1≠d2 is a double sum with d1, d2 = 1,… ,D , d1 ≠ d2 , in the (p + 2) th equa-
tion. The MSM estimator of � is the solution of the system of nonlinear equations 
(2.5). For solving this system, we may apply the Newton–Raphson algorithm with 
updating formula

where

and the components of the vector � are �1 = �1,… , �p = �p , �p+1 = � , �p+2 = � . 
Appendix A contains the calculations of the expectations appearing in f (�) and 
H(�) . Appendixes B and C describe the PQL and the ML methods, and discuss the 
pros and cons of the three fitting algorithms.

As algorithm starting points for � and � , we can take maximum likelihood 
estimates under Model S1 with � = 0 (denoted by Model 1). In the case of inde-
pendent random effects ( � = 0 ), we have functions to fit the model in different 
programming languages. For example, we can employ the glmer function of R. 
Concerning the parameter � , we take the Moran’s I measure of spatial autocorre-
lation based on the Pearson residuals obtained under Model 1, i.e.

(2.5)

0 = fk(�) = Mk(�) − M̂k =
1

D

D∑

d=1

��[yd]xdk −
1

D

D∑

d=1

ydxdk, k = 1,… , p,

0 = fp+1(�) = Mp+1(�) − M̂p+1 =
1

D

D∑

d=1

��[y
2
d
] −

1

D

D∑

d=1

y2
d
,

0 = fp+2(�) = Mp+2(�) − M̂p+2 =
1

D(D − 1)

D∑

d1≠d2
��[yd1yd2 ] −

1

D(D − 1)

D∑

d1≠d2
yd1yd2 ,

(2.6)�(m+1) = �(m) −H−1(�(m))f (�(m)),

(2.7)� = col
1≤k≤p+2(�k), f (�) = col

1≤k≤p+2(fk(�)), H(�) =

(
�fk(�)

��r

)

k,r=1,…,p+2

,
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where ẽd , d = 1,… ,D , denote the Pearson residuals under Model 1, ē = 1

D

∑D

d=1
ẽd 

and wd1d2
 , d1, d2 = 1,… ,D , are the elements of the proximity matrix W . Moran’s 

I measures spatial autocorrelation based on the locations and values of the target 
variable simultaneously. Given a set of domains and a target variable, it evaluates 
whether that variable has a clustered, dispersed, or random pattern. Moran’s I is 
also a statistic that allows testing the null hypothesis of no spatial correlation. The 
null hypothesis establishes that the variable being analysed is randomly distributed 
among the entities in the study area; that is, the spatial processes that promote the 
observed pattern of values is a random mechanism.

3 � The predictors

This section gives the empirical best and plug-in predictors of pd under Model S1. 
We focus on the calculation of the EBP of pd , given its relationship with �d , and 
assuming that the size parameter �d is known. The corresponding prediction of the 
expected count �d is straightforward. The EBP of pd is obtained from the best pre-
dictor (BP) by replacing the vector of model parameters � by an estimator �̂ . The BP 
of pd is the unbiased predictor that minimizes the MSE and it is given by

where

and �ij is the Kronecker’s delta; i.e. �ij = 1 if i = j and �ij = 0 otherwise. The EBP of 
pd is p̂d(�̂) and it can be approximated by using an antithetic Monte Carlo algorithm. 
The steps are: 

1.	 Generate v(�) i.i.d. ND(0,�(𝜌̂)) and calculate their antithetics v(L+�) = −v(�) , 
� = 1,… , L.

2.	 Calculate 

(2.8)I =
D

∑D

d1=1

∑D

d2=1
wd1d2

∑D

d1=1

∑D

d2=1
wd1d2

(ẽd1 − ē)(ẽd2 − ē)

∑D

d=1
(ẽd − ē)2

,

(3.1)

p̂d(�) = 𝔼�[pd�y] =
∫
ℝD exp{xd� + 𝜙vd}

∏D

i=1
ℙ(yi�vi)fv(v) dv

∫
ℝD

∏D

i=1
ℙ(yi�vi)fv(v) dv

=
Nd(y,�)

Dd(y,�)
,

Nd(y,�) = ∫
ℝD

exp

{
D∑

i=1

[
(yi + �id)(xi� + �vi) − �i exp

{
xi� + �vi

}]
}

fv(v) dv,

Dd(y,�) = ∫
ℝD

exp

{
D∑

i=1

[
yi(xi� + �vi) − �i exp

{
xi� + �vi

}]
}

fv(v) dv,

(3.2)p̂d(�̂) = N̂d∕D̂d,
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 where 

As the BP of pd involves high-dimensional integrals on ℝD , we propose a computation-
ally less demanding approximation. For that, let us divide the response variable y and 
the vector of random effects v into two parts (yd, yd−) and (vd, vd−) , where 
yd− = col

1≤i≤D, i≠d(yi) and vd− = col
1≤i≤D, i≠d(vi) . The conditional distribution of y , given v , is

Using (3.3), the component Dd(y,�) in (3.1) can be rewritten as

and since ℙ(yd−|vd−)f (vd−|vd) = ℙ(yd−|vd−, vd)f (vd−|vd) , the inner integral is

Therefore

Taking into account the relationship given in equation (3.3) and reasoning analo-
gously with the component Nd(y,�) , we have that

Under the assumption that ℙ(yd−|vd) ≈ ℙ(yd−) , d = 1,… ,D , the BP of pd , p̂d(�) , 
can be approximated by

where

N̂d =
1

2L

2L∑

�=1

exp

{
D∑

i=1

[
(yi + 𝛿id)(xi�̂ + 𝜙̂v

(�)

i
) − 𝜈i exp

{
xi�̂ + 𝜙̂v

(�)

i

}]
}

,

D̂d =
1

2L

2L∑

�=1

exp

{
D∑

i=1

[
yi(xi�̂ + 𝜙̂v

(�)

i
) − 𝜈i exp

{
xi�̂ + 𝜙̂v

(�)

i

}]
}

.

(3.3)ℙ(y|v) =
D∏

i=1

ℙ(yi|vi) = ℙ(yd|vd)
D∏

i=1,i≠d
ℙ(yi|vi) = ℙ(yd|vd)ℙ(yd−|vd−).

Dd(y,�) = ∫
ℝ

[
∫
ℝD−1

ℙ(yd−|vd−)f (vd−|vd) dvd−
]
ℙ(yd|vd)f (vd) dvd,

∫
ℝD−1

ℙ(yd−|vd−, vd)f (vd−|vd) dvd− = ℙ(yd−|vd).

Dd(y,�) = ∫
ℝ

ℙ(yd−|vd)ℙ(yd|vd)f (vd) dvd.

Nd(y,�) = ∫
ℝ

exp{xd� + �vd}ℙ(yd−|vd)ℙ(yd|vd)f (vd) dvd.

(3.4)p̂a
d
(�) = Na

d
(y,�)∕Da

d
(y,�),

Na
d
(y,�) = ∫

ℝ

exp
{
(yd + 1)(xd� + �vd) − �d exp

{
xd� + �vd

}}
f (vd) dvd,

Da
d
(y,�) = ∫

ℝ

exp
{
yd(xd� + �vd) − �d exp

{
xd� + �vd

}}
f (vd) dvd.
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Equating ℙ(yd−|vd) to ℙ(yd−) in the derivation of p̂a
d
(�) implies violating the depend-

ency of the components of v = (v1,… , vD)
� for each d = 1,… ,D . This is to say, 

the approximate BP of pd treats yd− as independent of yd . However, this predictor 
maintains the inner dependency structure of yd− . On the other hand, the integrals 
involved in the calculation of the approximate BP, p̂a

d
(�) , are on ℝ and not on ℝD . 

This is a great computational advantage. As before, the integrals on ℝ have a com-
plex analytical solution. Therefore, they are approximated by using an antithetic 
Monte Carlo algorithm analogous to the previous case, but running the new Step 2’. 

	2’.	 Approximate the EBP of pd as 

 where 

The approximate EBP of pd depends on the predictor v̂d of the random effect vd 
and of the estimator �̂ of the model parameters � , under the assumed Model S1. 
This is to say, the spatial correlation plays an active role in the construction of 
p̂a
d
(�̂) by the approximation the conditional distribution of v given y and by the 

incorporation of v̂d and �̂.
Another estimator of pd , commonly used in this context, is the plug-in predic-

tor. It is obtained by replacing, in the theoretical expression of pd , the unknown 
parameters and random effects by their estimators and predictors, i.e.

 Unlikely to the approximate EBP, the plug-in predictor takes advantage of the spa-
tial correlation structure only through the predictors v̂d and the estimator 𝜃̂ , but it 
does not incorporate information by means of the conditional distribution of v given 
y.

It is important to note that the MSM algorithm only provides estimates for 
the fixed effects � , the standard deviation � and the autocorrelation parameter � . 
However, for obtaining p̂P

d
 it is necessary to predict the vector of random effects 

v = (v1,… , vD) . For this sake, we propose to use their EBPs that are obtained 
from the corresponding BPs. The BP of vd is

where

(3.5)p̂a
d
(�̂) = N̂a

d
∕D̂a

d
(d = 1,… ,D),

N̂a
d
=

1

2L

2L∑

�=1

exp
{
(yd + 1)(xd�̂ + 𝜙̂v

(�)

d
) − 𝜈d exp

{
xd�̂ + 𝜙̂v

(�)

d

}}
,

D̂a
d
=

1

2L

2L∑

�=1

exp
{
yd(xd�̂ + 𝜙̂v

(�)

d
) − 𝜈d exp

{
xd�̂ + 𝜙̂v

(�)

d

}}
.

(3.6)p̂P
d
(�̂) = exp

{
xd�̂ + 𝜙̂v̂d

}
.

v̂d(�) = 𝔼�[vd�y] =
∫
ℝD vd

∏D

i=1
ℙ(yi�vi)fv(v) dv

∫
ℝD

∏D

i=1
ℙ(yi�vi)fv(v) dv

=
Nv,d(y,�)

Dd(y,�)
,
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If the assumption ℙ(yd−|vd) ≈ ℙ(yd−) , holds for d = 1,… ,D , similar mathematical 
developments as those presented above yield to an approximation to v̂d(�) equiv-
alent to that obtained for the target parameter pd . The approximate BP of vd is 
v̂a
d
(�) = Na

v,d
(y,�)∕Da

d
(y,�) , where

By plugging v̂a
d
(�) in the formula of pd , we get a non calculable plug-in predictor. 

The approximate plug-in-BP predictor of pd is

The EBP of vd is v̂d = v̂d(�̂) and it can be approximated by v̂a
d
= v̂a

d
(�̂) . We propose 

approximating the analytical integrals by using the same described antithetic Monte 
Carlo algorithm, but with the new Step 2”. 

	2”.	 Calculate v̂a
d
= v̂a

d
(�̂) = N̂a

v,d
∕D̂a

d
 ( d = 1,… ,D ), where 

The approximate plug-in predictor of pd , which is the fully empirical version of 
(3.7) calculated from v̂a

d
 , is

Concerning the prediction of the Poisson parameter �d = �dpd (expected count), the 
EBP is 𝜇̂d(�̂) = 𝜈dp̂d(�̂) , the approximate EBP is 𝜇̂a

d
(�̂) = 𝜈dp̂

a
d
(�̂) , the plug-in predic-

tor is 𝜇̂P
d
(�̂) = 𝜈dp̂

P
d
(�̂) , and the approximate plug-in predictor is 𝜇̂Pa

d
(�̂) = 𝜈dp̂

Pa

d
(�̂).

The MSE is a measure of the accuracy of the predictors of pd . Boubeta et  al. 
(2016) showed that the analytical approach is computationally demanding in Model 
1. This is why we recommend estimating the MSE of p̂d under Model S1 by using a 
parametric bootstrap procedure based on the ones given in González-Manteiga et al. 
(2008, 2010). The steps are 

1.	 Fit Model S1 to the sample and calculate the estimator �̂ = (�̂
�
, 𝜙̂, 𝜌̂).

2.	 For each domain d, d = 1,… ,D , repeat B times ( b = 1,… ,B ): 

i)	 Generate the bootstrap random effects v∗(b) = (v
∗(b)

1
,… , v

∗(b)

D
)� ∼ ND(0,�(𝜌̂)) , 

where �(𝜌̂) is the plug-in version of the covariance matrix (2.3).
ii)	 Calculate the theoretical bootstrap parameter p∗(b)

d
= exp{xd�̂ + 𝜙̂v

∗(b)

d
}.

iii)	 Generate the response variables y∗(b)
d

∼ Poiss (�dp
∗(b)

d
).

Nv,d(y,�) = ∫
ℝD

vd exp

{
D∑

i=1

yi(xi� + �vi) − �i exp{xi� + �vi}

}
fv(v) dv.

Na
v,d
(y,�) = ∫

ℝ

vd exp
{
yd(xd� + �vd) − �d exp{xd� + �vd}

}
f (vd) dvd.

(3.7)p̂P
a

d
(�) = exp

{
xd� + 𝜙v̂a

d
(�)

}
.

N̂a
v,d

=
1

2L

2L∑

�=1

v
(�)

d
exp

{
yd(xd�̂ + 𝜙̂v

(�)

d
) − 𝜈d exp

{
xd�̂ + 𝜙̂v

(�)

d

}}
.

(3.8)p̂P
a

d
(�̂) = exp

{
xd�̂ + 𝜙̂v̂a

d

}
.
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iv)	 Calculate the estimator �̂
∗(b)

 and the EBP p̂∗(b)
d

= p̂
∗(b)

d
(�̂

∗(b)
).

3.	 Output:    mse∗(p̂d) =
1

B

B∑

b=1

(
p̂
∗(b)

d
− p

∗(b)

d

)2.

4 � Simulation experiment

This section presents a simulation experiment for investigating the performance of 
the proposed predictors (EBP, approximate EBP and plug-in) based on Model S1, 
with SAR(1)-correlated random effects. It also studies the performance of the pro-
posed predictors when model parameters are known (BP and approximate BP and 
plug-in-BP). In addition, we also consider the corresponding predictors based on 
Model 1, with independent random effects, to analyse the loss of efficiency when the 
spatial autocorrelation is not taken into account.

The simulations are based on the application to real data of poverty in Galicia 
during 2013 (see Sect. 5 for more details). We use the same explanatory variables as 
those used in the real case, i.e. proportions of unemployed (lab2) and of people with 
university level completed (edu3) by counties. We generate independent response 
variables yd|vd ∼ Poiss (�dpd) , where �d and pd = exp{�0 + lab2�1 + edu3�2 + �vd} 
are the sample size and target parameter, d = 1,… ,D . The domain sample sizes 
and the model parameters �0, �1, �2,� and � are taken from the real data case. That 
is, we simulate the target variable from the Model S1 selected in the application to 
Galician data.

The domain random effects, vd , d = 1,… ,D , are generated according to a 
SAR(1) process with autocorrelation parameter � and the proximity matrix W given 
in Sect. 5. The number of domains (counties of Galicia) is D = 49 . As the estima-
tion of the autocorrelation parameter in the application to real data was 𝜌̂ = 0.324 , 
we take � = 0.1, 0.3, 0.5 . The number of Monte Carlo iterations (simulated data sets) 
is K = 500.

Tables 1 and 2 present the average across domains of the biases (BIAS) and the 
root-MSEs (RMSE), both multiplied by 102 , of the theoretical predictors BP (3.1), 
approximate BP (3.4) and approximate plug-in-BP (3.7) based on Model S1. They 

Table 1   BIAS ( ×102 ) of predictors of pd based on Models 1 and S1

Model 1 Model S1

� BP P
BP

EBP P
EBP

BP BPa Pa

BP
EBP EBPa Pa

EBP

0.1 0.073 0.098 0.192 0.219 0.081 0.074 0.097 0.237 0.189 0.177
0.2 0.074 0.100 0.192 0.230 0.080 0.073 0.099 0.205 0.198 0.185
0.3 0.078 0.115 0.239 0.271 0.079 0.080 0.114 0.238 0.205 0.194
0.4 0.081 0.109 0.246 0.241 0.078 0.082 0.109 0.224 0.221 0.215
0.5 0.081 0.115 0.255 0.279 0.082 0.082 0.109 0.295 0.222 0.213
0.6 0.087 0.116 0.263 0.266 0.086 0.089 0.141 0.275 0.248 0.237
0.7 0.089 0.106 0.276 0.272 0.087 0.092 0.089 0.276 0.261 0.266
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are labelled as BP, BPa and P a
BP

 respectively. These tables also present the same per-
formance measures for the empirical predictors EBP (3.2), approximate EBP (3.5) 
and approximate plug-in (3.8). They are labelled as EBP, EBPa and P a

EBP
 respec-

tively. The plug-in predictors P a
BP

 and P a
EBP

 are obtained by predicting the vector 
of random effects v by its approximate BP v̂a(�) and EBP v̂a(�̂) respectively. We 
implement the Monte Carlo algorithms for approximating integrals with L = 5000 
iterations. For the sake of comparisons, Tables 1 and 2 also present the BIAS and 
the RMSE, both multiplied by 102 , of the theoretical predictors BP, and plug-in-BP 
based on Model 1. They are labelled as BP and P BP respectively. These tables pre-
sent the same performance measures for the EBP and plug-in predictors based on 
Model 1. They are labelled as EBP and P EBP respectively. Again, the Monte Carlo 
algorithms for approximating integrals is carried out with L = 5000 iterations.

Table 1 shows an increase in bias when we consider empirical predictors. Regard-
ing the comparison between Model 1 and Model S1, there are no substantial dif-
ferences between the two models, although in general the approximate predictors 
based on Model S1 have slightly lower biases than the corresponding predictors of 
Model 1. Because of the approximation of multiple integrals, the BP and EBP based 
on Model S1 do not outperforms the BP and EBP based on Model 1. If the average 
across domains is ignored, the behaviour of the domain biases, Bd’s, shows that pre-
dictors of Model 1 are not centered in many domains (see Fig. 1 for more details). 
For low values of the correlation parameter � the predictors have lower biases than 
for high values. The plug-in predictors based on Model 1 have greater bias than the 
corresponding BP and EBP. When the variance components are known, the differ-
ence between the predictors BP, BPa and P a

BP
 based on Model S1 have the theoreti-

cal expected good behaviour with low biases. However, when we substitute the vari-
ance components by the their MSM estimators, the corresponding predictors EBP, 
EBPa and P a

EBP
 based on Model S1 have larger biases.

Table  2 presents the average across domains of the RMSEs ( ×102 ) of the BP, 
EBP and plug-in for both area-level Poisson mixed models: Model 1 and Model 
S1. It reveals an increase in the RMSE as the parameter � increases and also when 
one uses empirical versions instead of theoretical ones. Regarding the compari-
sons between predictors, the plug-in predictor P a

BP
 has, in general, a slight lower 

Table 2   RMSE ( ×102 ) of predictors of pd based on Models 1 and S1

Model 1 Model S1

� BP P
BP

EBP P
EBP

BP BPa Pa

BP
EBP EBPa Pa

EBP

0.1 1.806 1.794 2.238 2.232 2.140 1.805 1.793 2.370 2.170 2.159
0.2 1.845 1.822 2.177 2.161 2.165 1.843 1.820 2.516 2.206 2.190
0.3 1.876 1.845 2.297 2.271 2.153 1.873 1.842 2.415 2.236 2.226
0.4 1.919 1.901 2.261 2.247 2.237 1.910 1.892 2.642 2.299 2.284
0.5 2.020 2.001 2.468 2.455 2.336 1.997 1.977 2.650 2.380 2.354
0.6 2.152 2.223 2.477 2.462 2.431 2.108 2.088 2.889 2.525 2.511
0.7 2.361 2.341 2.616 2.607 2.578 2.247 2.231 3.105 2.672 2.659
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RMSE than the best predictors BP and BPa based on Model S1. On the other hand, 
approximate predictors BPa and EBPa reduce the RMSE with respect to BP and EBP 
respectively. Then, in terms of RMSE, it is preferable to use the approximate predic-
tors based on Model S1. For any estimator, the variance is the most important term 
of the MSE since the bias is much smaller than the RMSE.

In summary, the biases of predictors EBP and P EBP based on Model S1 are greater 
than the corresponding biases s (simulated data sets) of EBPa and P a

EBP
 based on Model 

S1. The same happens with root-MSEs if � ≤ 0.5 . For the cases � ≥ 0.6 , the fitting 

Fig. 1   Boxplots of Bd ’s (first column) and REd ’s (second column) for the predictors of pd and values of � 
shown in Tables 1 and 2
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algorithm becomes more unstable and produces an increase in the variance of predic-
tors. Therefore, some improvement is achieved when using predictors based on model 
S1 that take advantage of the spatial correlation structure. In the application to real data 
it is worthwhile to apply predictors based on the Model S1, as 𝜌̂ = 0.324.

Figure 1 shows the boxplots of the domain biases, Bd’s, (first column) and the 
domain root-MSEs, REd’s, (second column) for the predictors and the values of � 
appearing in Tables 1 and 2. In each graph, the first four boxplots refer to the predic-
tors based on Model 1 and the remaining six to the predictors based on Model S1. 
The BP’s and EBP’s ( ̂pd(�) and p̂d(�̂) ) are represented in blue, their approximations 
based on the Model S1 ( ̂pa

d
(�) and p̂a

d
(�̂) ) are plotted in green and the plug-in predic-

tors ( ̂pP
d
(�) and p̂P

d
(�̂) ) are colored in orange.

The boxplots show an increase of the variability in both Bd ’s and REd ’s when one 
uses the empirical predictors. The bias of the predictors based on Model 1 has less 
variability, but these predictors are clearly biased (except the BP). This fact was not 
shown in Table 1. The predictors based on Model S1 are unbiased except the P a

BP
 

plug-in predictor. The behaviour of the REd ’s for the predictors based on Model 1 is 
similar to the one based on Model S1, although for � = 0.3 , the REd ’s of the plug-
in estimator are slightly lower. For predictors based on Model S1, the REd ’s of the 
approximate BP p̂a

d
(�) and EBP p̂a

d
(�̂) are similar to those of P BP ( ̂pP

d
(�) ) and P EBP 

( ̂pP
d
(�̂) ) respectively, while the REd ’s of the BP p̂d(�) and EBP p̂d(�̂) are generally 

bigger.
From Tables 1 and 2 and Fig. 1, we conclude that the approximate EBP p̂a

d
(�̂) 

(EBPa ) shows a competitive performance when there is an underlying spatial cor-
relation structure in the data, since it is unbiased and its REd ’s behave similarly to 
those of p̂Pa

d
(�̂) (Pa

EBP
).

Appendix E of supplementary material extends the above simulation experiments 
to other data generating processes. Instead of generating u1,… , uD i.i.d. N(0,  1), 
before applying the transformation v = (ID − �W)−1u , with u = (u1,… , uD)

� , we 
generate u1,… , uD i.i.d from the distributions t-Student, Gumbel and skew nor-
mal. Appendix E shows some increase of bias and RMSE when deviating from the 
hypothesis of normality.

The system of MSM nonlinear equations (2.5) is solved by using the nleqslv 
package of R. We have also used the mvtnorm package to generate samples follow-
ing a SAR(1) process and the package spdep to construct the proximity matrix W 
and to test the null hypothesis of no spatial autocorrelation. For � = 0.3 , the average 
runtime of the MSM fitting algorithm was 0.51 seconds. The computational aver-
age runtime of the approximate EBP, p̂a

d
(�̂) , is 0.41 seconds. On the other hand, the 

EBP p̂d(�̂) has a high computational burden compared to its competitors. Its average 
runtime was 48.73 seconds. The employed computer has a processor Intel© CoreTM 
i7-8750 H CPU @ 2.20GHz × 6, and 16 GBs of RAM memory.
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5 � Applications to real data

This section applies the developed methodology to the estimation of poverty 
proportions, pd , in Galicia. The data are taken from the 2013 Spanish living 
conditions survey (SLCS). The Galician counties are the study territories. The 
domains of interest are constructed by crossing the variables county and sex = 
women. In Galicia there are 53 counties, but in four of them there are no available 
data. Therefore, the number of considered domains is D = 49 . The performance 
of Model S1 depends on the choice of the proximity matrix W . To the best of 
our knowledge, there is no a priori procedure to determine or estimate the prox-
imity matrix in GLMM with random effects having SAR(1) spatial correlation. 
Therefore, the way to proceed is to propose several intuitively reasonable alter-
natives, based on knowledge of the socioeconomic situation of Galicia and on 
similar applications of SAR models to real data, and carry out the pertinent stud-
ies for the selection of explanatory variables, applying goodness-of-fit tools and 
performing a complete diagnosis of the model. Based on this statistical analysis, 
the most appropriate proximity matrix is chosen. Following this strategy, three 
different options are tested: common-borders, distances and k-nearest neighbours. 
In the first option (common-borders), two domains are neighbours if they have 
a common delimitation. The second option considers the Euclidean distance 
between the centroids of the counties and sets up a proximity measure by taking 
the inverse of the distance between domains. The last option applies k-nearest 
neighbours with k = 3 . After analyzing the three possibilities in Appendix F of 
the supplementary material, we selected the first option because the common-
borders proximity matrix makes Model S1 have a good fit to the data and present 
better diagnostics.

Figure  2 shows the proximity map that determines the proximity matrix W0 , 
i.e. it provides for each domain, which are its neighbours. See Sect. 2 for more 
details on the construction of the proximity matrix W0 and W.

Fig. 2   Proximity map for each 
domain d ( d = 1,… ,D)

Proximity map
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The target variable, yd , counts the number of women under the poverty line 
in the domain d and �d is the corresponding women sample size. The minimum, 
median and maximum values of �d are 19, 152 and 1384, respectively. The mini-
mum has been reached in the south east of the region, while the median and max-
imum belong to the south west. The auxiliary variables xd are given in Table 4. 
We first fit Model 1 to the data (yd, �d, xd) , d = 1,… ,D and we apply Moran’s I 
test for spatial autocorrelation. As the obtained p-value is lower than 0.001, we 
assume that yd , d = 1,… ,D , follows Model S1 and we fit this model to the data.

Table 3 provides a descriptive analysis for the logarithm of the response variable, 
log(y), and the considered covariates (lab2 and edu3). Specifically, it presents their 
mean, standard deviation (sd), median, minimum and maximum values (min and 
max) and the correlation (cor) between the covariates and log(y).

Table 4 presents the significant estimates (p-value < 0.05 ) of the fixed effect coef-
ficients under Model S1 and their standard errors, z-values and p-values.

Taking into account the signs of the estimates, the auxiliary variable lab2 (pro-
portion of unemployed women), is directly related to the response variable while 
edu3 (proportion of women with university level of education), helps to decrease 
the counts of women under the poverty line. Each domain d, d = 1,… ,D , has a 
random intercept with distribution N(0,�2) , where 𝜙̂ = 0.130 . The 95% percentile 
bootstrap confidence interval for the standard deviation parameter is (0.001, 0.331). 
The estimated autocorrelation parameter is 𝜌̂ = 0.324 . To test the null hypothesis 
H0 ∶ �2 = 0 , Algorithm 1 of Appendix B is applied. The obtained p-value is 0.018. 
Then, taking � = 0.05 , the null hypothesis is rejected. The Algorithm 2 of Appen-
dix B is applied to test H0 ∶ � = 0 . The obtained bootstrap p-value is 0.001. Taking 
� = 0.05 , the bootstrap test concludes that the autocorrelation parameter � is signifi-
cantly different from 0. Therefore, this test recommends fitting Model S1 to the data, 
instead of Model 1.

Figure 3 plots the Pearson residuals of the EBP approximation under Model S1, 
i.e.

Table 3   Descriptive analysis Variable Mean SD Median Min Max Cor

log(y) 3.13 1.15 3.18 0.00 5.51 –
lab2 0.10 0.04 0.10 0.02 0.21 0.32
edu3 0.15 0.07 0.14 0.03 0.33 0.42

Table 4   MSM estimates of 
regression parameters under 
Model S1

Variable Estimate SE z-Value p-Value

Intercept −1.8803 0.1515 −12.4086 < 0.001
lab2 2.9848 1.2097 2.4689 0.0136
edu3 −1.3809 0.5033 −2.7445 0.0061
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The distribution of the Pearson residuals is symmetrical around 0 and takes values 
in the interval (−2, 2) . In addition the tested hypotheses on � and � , the conclusion is 
again that Model S1 is appropriate to fit the women poverty data in Galicia by coun-
ties in 2013. This is to say, the incorporation of the underlying spatial correlation 
structure to the inference process seems to be beneficial.

Concerning the prediction of the poverty proportions pd , d = 1,… ,D , the plug-
in predictor based on Model S1 had a good performance in the simulations and 
lower computational cost than the approximate EBP. Therefore, it is a good candi-
date to be employed in this application to real data. On the other side, the plug-in 
predictor takes less amount of information from the spatial correlation structure than 
the approximate EBP. This is why we prefer to apply the approximate EBP.

Figure 4 (left) compares the behaviour of the approximate EBP (3.5) and direct 
estimations. The direct estimators are calculated by using the Hájeck formula with 
the officially calibrated sampling weights. The domains are sorted by the sample 
sizes �d’s. The direct estimators present oscillations of large amplitude, while the 
approximate EBPs have a smoother behaviour, which is something preferred by the 
statistical offices when publishing estimations. As the sample size increases, both 
sets of estimates tend to overlap.

Figure 4 (right) plots the relative root-MSEs (RRMSE) of the approximate EBPs 
based on Model S1 and the relative root-variances of the direct estimators. The 

rP
d
=

yd − 𝜈dp̂
a
d
(�̂)

√
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Fig. 3   Pearson residuals of the EBP approximation under Model S1
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direct estimates have high variability, specially for small sample sizes. As above, 
when the sample size �d increases, both accuracy measures follow the same pattern. 
The RRMSEs of the approximate EBPs are estimated by using the bootstrap proce-
dure of Sect. 3 with B = 500 replicates. The averages of the relative root-variances 
of the direct estimator and of the RRMSEs of the approximate EBP are 0.2595 and 
0.1323, respectively. According to these results, we conclude that the approximate 
EBP performs better. 

Figure 5 (left) maps the approximate EBP estimation of pd for women in 2013. 
The regions where there is no data, are in white. Model S1 gives the following pre-
dictions of women poverty proportions: 1 county with poverty proportion pd ≤ 0.12 , 
12 counties with 0.12 < pd ≤ 0.15 , 24 counties with 0.15 < pd ≤ 0.18 and 12 coun-
ties with pd > 0.18 . Highest levels of poverty are found in the south and west of the 
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Fig. 4   Direct estimates and approximate EBPs of poverty proportions pd (left) and relative root-MSEs 
(right) for women in 2013
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Fig. 5   Poverty proportion approximate EBPs for women based on Model S1 (left) and RRMSEs (right) 
in Galicia during 2013
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community. On the other hand, the counties with the lowest estimated poverty pro-
portion are located in the north-east of the region.

Figure 5 (right) maps the RRMSE estimates of the approximate EBP of pd by 
counties in 2013. There are 8 counties with RRMSE ≤ 10 %, 8 counties with 10% < 
RRMSE ≤ 13 %, 19 counties with 13% < RRMSE ≤ 16 % and 14 counties with 
RRMSE > 16 %. The highest values are found in the north-east of the region. Their 
minimum and maximum are 8.82 and 18.49%, respectively. As the highest RRMSE 
is lower than 20%, these estimates could be accepted for publication by statistical 
offices.

6 � Concluding remarks

This paper introduces an area-level Poisson mixed model with SAR(1) domain effects. 
The new model is a GLMM counterpart of the LMM considered by Pratesi and Sal-
vati (2008) and generalises the area-level Poisson mixed model studied in Boubeta 
et al. (2016) to the context of spatial correlation. The MSM algorithm of Jiang (1998) is 
employed for estimating the model parameters. The empirical best predictor and a plug-in 
predictor of the target parameter pd are given. As these predictors involve integrals in RD , 
approximate predictors requiring the calculation of integrals in R are derived. As accuracy 
measure of the predictors, the MSE is considered and it is estimated by a parametric boot-
strap approach.

For scenarios that mimic the application to real data, a simulation experiment 
studies the bias and the MSE of the new predictors. Specifically, this simulation 
investigates: (1) the behaviour of the EBPs and the plug-in predictors, (2) the perfor-
mance of the suggested approximations to the multiple integrals, and (3) the loss of 
efficiency of BPs and plug-in predictors when model parameters are not known and 
estimated by the MSM method.

From the simulation experiment, we may give the following conclusions. First, 
the approximate EBPs and plug-in predictors have similar computational cost and 
behavior. They also have better performance than their theoretical counterparts. Sec-
ond, the approximation of integrals in RD introduces a source of error that can only 
be reduced with high computational cost; that is, by greatly increasing the number 
of Monte Carlo iterations. Third, the good properties of BPs do not necessarily carry 
over to EBPs, especially when the number of domains is not large.

We use the approximate EBP for estimating women poverty proportions in Gali-
cian counties. The data are taken from the 2013 SLCS. As the the Moran’s I test 
indicates spatial correlation, we fit Model S1 to the data. In addition, the proposed 
predictions are compared against the direct estimates. The approximate EBPs of the 
women poverty proportion are smoother. As the RRMSE of the direct estimator is 
too high when the sample size �d is small, it is preferable to use the approximate 
EBP. The predictions based on Model S1 suggests that the highest levels of women 
poverty are found in the south and west of the region. The average percentage of 
women poverty is 16.89% and its average error is 13.23%.

It is worth mentioning the programming problems of the predictors constructed under 
the introduced spatial model, which leads us to use numerical approaches that introduce 
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an additional source of error. However, we have observed in the simulations that the sug-
gested approximate predictors (EBP and plug-in) have a lower computational cost and 
behave as well as their corresponding non approximate predictors.

The computations in this article have been performed entirely in the R program-
ming language. The developed codes are available upon request.
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