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Abstract—Time-modulated arrays (TMAs) can effectively per-
form beamsteering over the first positive harmonic pattern by
applying progressively delayed versions of stair-step approxima-
tions of a sine waveform to the antenna excitations. In this letter,
we consider synthesizing such stair-step sine approximations by
means of Haar wavelets. Haar functions constitute a complete
orthonormal set of rectangular waveforms which have the ability
to represent a given function with a high degree of accuracy using
few constituent terms. Hence, when they are applied to TMA
synthesis, employing single-pole double-throw switches, such a
feature leads to an excellent rejection level of the undesired
harmonics as well as a bandwidth greater than that supported
by conventional TMAs with on-off switches.

Index Terms—Time-modulated arrays, beamsteering, Haar
wavelets.

I. INTRODUCTION

T IME-MODULATED arrays (TMA) have the ability to
perform beamsteering (BS) by adjusting the on-off in-

stants of the switches that constitute their feeding network.
They can be considered as a cost-effective alternative for smart
antennas solutions that does not require variable phase shifters
(VPSs). TMA designs, however, have some handicaps such as
the control of the unexploited harmonics [1], [2], the presence
of mirrored frequency diagrams [3], [4], the transmitted (and
received) signal energy wasted during the zero-state of the
switches [5], [6], and the allowable signal bandwidth due
to the spectral overlapping with the signal replicas [7], [8].
When designing TMAs for BS purposes, the aforementioned
drawbacks can be alleviated by means of:

1) The use of stair-step approximations of time-delayed
sine functions –with fundamental frequency ω0– as
the TMA modulating waveforms. This significantly de-
creases the level of the unexploited sideband radiation
(SR). Stair-step approximations also avoid the energy-
absorbing zero-state of the conventional on-off switches
and are easily implementable with single-pole double-
throw (SPDT) switches [9], [10].

2) The use of single sideband (SSB) (or complex)
TMA architectures capable of suppressing power-
consuming frequency-mirrored harmonic patterns [4],
[11], even using amplitude-phase weighting with mul-
tiple branches [7].
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Fig. 1. The first eight Haar wavelets hlm(t) with degree l = {0, 1, 2} and
order m = 1, . . . , 2l.

In this letter we will follow a different approach. The
approximated time-delayed sine waveforms which modulate
the individual TMA elements will be synthesized by means of
a complete set of orthogonal functions: the Haar wavelets [12],
[13]. As shown in Section II, a Haar wavelet hlm(t) is
characterized by its degree l and order m. Haar wavelets with
the same degree l > 0 are successive time-multiplexed (non
overlapped) versions of the corresponding m = 1 first-order
wavelet (see Fig. 1). Hence, Haar wavelets are well suited for
TMA synthesis because those with the same degree can be
easily generated employing SPDT switches, thus enabling a
significant complexity reduction.

Accordingly, a given function can be expressed as a linear
combination of Haar wavelets whose coefficients are obtained
solving integrals similar to those of the Fourier series co-
efficients, but using the corresponding Haar wavelet instead
of sines or cosines. Furthermore, analogously to the discrete
Fourier Transform (DFT), the Haar Discrete Wavelet Trans-
form (HDWT) can be used to efficiently compute the Haar
coefficients. Indeed, since Haar wavelets may be written in
matrix notation by a Haar matrix, when a vector with samples
of the waveform to be approximated is given, the calculation
of the Haar coefficients is performed by just a matrix product.

The main contribution of this letter is the application of
Haar wavelets to the design of TMA modulating waveforms to
perform beamsteering over the first positive harmonic pattern.
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II. HAAR WAVELETS

Except for the special case c(t) = 1 for 0 ≤ t ≤ 1
(a constant unitary function), Haar wavelets are defined as
follows

hlm(t) =


√

2l m−1
2l ≤ t ≤

m− 1
2

2l

−
√

2l
m− 1

2

2l < t ≤ m
2l

0 otherwise

, (1)

being l = 0, 1, 2, . . . and m = 1, . . . , 2l. The degree l denotes
a subset having the same number of zero crossings in a given
width, 1/2l, and the order m gives the position of the function
within this subset. All the members of a subset with the same
degree are obtained by shifting the first member along the axis
by an amount proportional to its order (see Fig. 1).

A given continuous function, f(t), within the interval 0 ≤
t ≤ 1 and repeated periodically outside this interval, can be
synthesized from a Haar series as follows [12]:

f(t) = W 0 +
∞∑
l=0

2l∑
m=1

W lmhlm(t) = W 0 +
∞∑
l=0

Hl(t) (2)

and, by virtue of the orthonormality between Haar wavelets,
we have that the corresponding Haar wavelet coefficients are

W 0 =

∫ 1

0

f(t)dt and W lm =

∫ 1

0

f(t)hlm(t)dt, (3)

satisfying the extremal of the squared error integral condition

lim
Γ→∞

∫ 1

0

∣∣∣∣∣f(t)−

(
W 0 +

Γ∑
l=0

Hl(t)

)∣∣∣∣∣
2

dt = 0. (4)

If the series expansion in (2) is truncated at l = Γ, a finite set
of Haar wavelets is considered for the synthesis and a stair-step
approximation of f(t) is obtained. Furthermore, the HDWT
can be interpreted as the mathematical operator that converts
a finite sequence of equally-spaced samples of f(t) into a
sequence (with the same length) of Haar wavelet coefficients.
For numerical handling, we consider a discrete series of M =
2p terms (with p ∈ N) obtained by sampling f(t) at M equally
spaced points xk over [0, 1), with k ∈ Ψ = {1, 2, . . . ,M}.
Hence, the integrals in (3) can be replaced by the finite sums:

W 0 =
1

M

M∑
k=1

f(xk) and W lm =
1

M

M∑
k=1

f(xk)hlm(xk),

(5)

with l ∈ Λ = {0, . . . , p − 1} and m ∈ Ξ = {1, . . . , 2l}.
The resulting values for {W 0,W lm} constitute the HDWT of
f(t). Notice that the HDWT can be recursively described by a
real-valued square matrix considering the Kronecker product
(denoted as ⊗) as follows:

HM =
1√
2

[
HM/2 ⊗

(
+1 +1

)
IM/2 ⊗

(
+1 −1

)] , (6)

being (+1+1) and (+1−1) row vectors, and IM/2 the identity
matrix of order M/2. The iteration starts with H1 = [1], and
we easily realize that the first M Haar wavelets (see Fig. 1)
–or rather, samples of such wavelets– are the rows of HM .

Fig. 2. (a) SPDT switching architecture capable of generating the term∑2l

m=1W
lmhlm(t) in (8) for a given Haar wavelet of degree l. Notice that

gln(t − Dn) is a square wave with frequency 2lf0 subject to a time delay
Dn, whereas Hl

n(t) =
∑2l

m=1W
lmhlm(t − Dn). The Haar coefficients

W lm are implemented with either a variable or a fixed (depending on l)
attenuator. (b) Generalized architecture for the n-th TMA element feeding
network which synthesizes a Haar wavelet. Note that for the entire array, N
time-modulators like this one are needed (plus a 1:N splitter).

Hence, by considering a periodic (T0) function f(t) continuous
in [0, T0), with normalized period T0 = 1, we can arrange
M = 2p equally spaced samples of f(t) in a column vector
f̄M = [f(x1), . . . , f(xM )]T and represent –by virtue of (5)–
the corresponding HDWT of f(t) through the following matrix
equation:

WM=[W 0W 01W 11W 12 · · ·W (p−1)2p−1

]=
1

M
HM ·fM , (7)

being WM a column vector with the Haar-wavelet coefficients
in (5), and HM the HDWT matrix in (6) with order M .

III. TIME-VARYING ARRAY FACTOR CONTROLLED BY
HAAR WAVELETS

We propose to apply Haar synthesis to design TMAs with
BS capabilities. The idea is to approximate the functions
employed for time-modulating the TMA excitations (sine
waveforms) by means of linear combinations of Haar wavelets
(easily implemented with SPDT switches and variable attenu-
ators (VAs)). Hence, the time-varying array factor is expressed
as a function of the Haar coefficients of such functions.

Fig. 2 shows the proposed feeding architecture for the n-th
element of a linear TMA with N isotropic elements (n ∈ Θ =
{0, . . . , N−1}) requiring only SPDT switches, VAs, and fixed
delay lines. In such a feeding network, the excitation of the
n-th antenna element is time-modulated by the periodic (T0)
pulse hn(t) = h(t−Dn), being h(t) = f(t)+jf(t−τ), where
f(t) is an approximation of a sine waveform with fundamental
frequency ω0 = 2πf0 = 2π/T0, j is the imaginary unit, and
Dn and τ are adaptive and fixed (defined beforehand) time
delays, respectively.

In the synthesis of f(t) in (2), we realize that W 0 = 0
because f(t) is an approximation of a pure sine (without
direct-current component) and hlm(t) is a periodic (T0)
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Fig. 3. (a) Stair-step approximations of sin(2πt) considering the HDWT with M = 8, 16, and 32 equally spaced points. (b) Relative power level of the
dynamic excitations of the unexploited harmonics. Table II shows the values of the peak SR and the maximum signal bandwidth Bmax.

TABLE I
TIME-VARYING HAAR BFNS FOR EACH VALUE OF M WHEN A SINE

WAVEFORM IS SYNTHESIZED.

H0(t) H2(t) H3(t) H4(t)

M = 8 yes yes no no

M = 16 yes yes yes no

M = 32 yes yes yes yes

Type of attenuator none fixed VA VA

Discrete levels (dB) 0 -13.6 -20.0,-27.7 -28.5,-29.9,-33.4,-42.5

TABLE II
PERFORMANCE COMPARISON BETWEEN SSB SWITCHED TMAS.

Reference Peak SR (dB) Bmax (Hz) ηTMA(%) ηmod(%) η(%)

[7] -25.00 8f0 97.90 20.70 20.27

[4] -13.98 4f0 91.19 33.33 30.40

[14] -16.90 8f0 94.96 50.00 47.48

[9] -16.90 8f0 96.00 58.00 55.68

[10] -23.50 16f0 98.72 50.00 49.36

Proposed (M=32) -29.80 32f0 99.68 50.00 49.84

Haar wavelet whose Fourier series expansion is given by
hlm(t) =

∑∞
q=−∞Glmq ejqω0t, being Glmq the corresponding

Fourier coefficients. By substituting the previous equation into
(2) we have

f(t) =

p−1∑
l=0

2l∑
m=1

W lmhlm(t)

=
∞∑

q=−∞

p−1∑
l=0

2l∑
m=1

W lmGlmq

 ejqω0t. (8)

If we select a delay τ verifying ω0τ = π/2, then e−jqω0τ =

(−j)q and, applying the time-shifting property to the Fourier
coefficients in (8), we write h(t) = f(t) + jf(t− τ) as

h(t) =

∞∑
q=−∞

[1− (−j)q+1]

p−1∑
l=0

2l∑
m=1

W lmGlmq

 ejqω0t, (9)

and by applying again the time-shifting property to the Fourier
coefficients, we express hn(t) = h(t−Dn) as

hn(t)=
∞∑

q=−∞
[1− (−j)q+1]

p−1∑
l=0

2l∑
m=1

W lmGlmq

 e−jqω0Dnejqω0t.

(10)

Therefore, the TMA element architecture shown in Fig. 2 leads
to the following time-varying array factor (with the term ejωct

explicitly included) as a function of the coefficients of the
modulating Haar wavelets:

F (θ, t) =
ejqωct

√
2

N−1∑
n=0

hn(t)ejkzn cos θ

=
∞∑

q=−∞

N−1∑
n=0

p−1∑
l=0

2l∑
m=1

1− (−j)q+1

√
2

W lmGlmq ·

· e−jqω0Dnejkzn cos θ

]
ej(ωc+qω0)t =

∞∑
q=−∞

Fq(θ)e
j(ωc+qω0)t,

(11)

where zn represents the n-th array element position on the
z axis, θ is the angle with respect to such a main axis, and
k = 2π/λc represents the wavenumber for a wavelength λc =
2πc/ωc, with ωc being the carrier frequency and c the speed of
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Fig. 4. (a), (b), and (c): Power radiated patterns of single-beam TMAs designed with Haar wavelets for M = 8, 16, and 32 (Haar feeding networks employed
are explicitly indicated). Notice that the phase excitations are considered to be progressive, i.e., the useful harmonic beam points to the direction θ0 (in the
example, θ0 = 110◦) when ω0Dn = πn cos(θ0), n ∈ Θ (see (12)). (d) An advantage of the technique in terms of flexibility is that the single beam
architecture employed for M = 32 can be exploited to generate two independent beams with the features corresponding to M = 8.

light. Notice that Fq(θ) =
∑N−1
n=0 Inqe

jkzn cos θ is the spatial
array factor at the frequency ωc + qω0 and

Inq =

p−1∑
l=0

2l∑
m=1

1− (−j)q+1

√
2

W lmGlmq e−jqω0Dn , n ∈ Θ,

(12)
the corresponding dynamic excitations that synthesize the
radiated pattern at such a frequency. As in [11], note that

1− (−j)q+1 = {2 q ∈ Υ; 0 otherwise}, (13)

with Υ = {q = 4k − 3; k ∈ Z} = {. . . ,−7,−3, 1, 5, 9, . . . }
and the frequency-mirrored unwanted harmonics are removed
(SSB feature). Hence, for a given harmonic pattern of order
q, the corresponding dynamic excitations Inq in (12) have
identical modulus, but they can be endowed with progressive
phases for n ∈ Θ by selecting Dn with the aim of performing
BS. The different Dn are easily implemented by means of the
switch-on time of the individual Haar wavelets.

IV. NUMERICAL SIMULATIONS

We consider a TMA with N = 16 elements spaced λc/2
and the discrete Haar wavelet synthesis of (7) applied to
f(t) = sin(2πt/T0) for the cases of M = 8, 16, and 32
equally spaced points in the interval (0, 2π]. As indicated
above, we assume a normalized period T0 = 1. Fig. 3
illustrates the synthesized stair-step approximations of f(t)
and the corresponding relative power level of the dynamic
excitations (having identical modulus for n ∈ Θ) of the
unexploited harmonics with respect to the dynamic excitation
levels of the useful harmonic at q = 1.

Table I shows the Haar beamforming networks (BFNs)
needed for each value of M and the characteristics of the
attenuators. H0(t) does not require attenuation (W lm = 1
in Fig. 2a), H2(t) employs a fixed attenuator of −13.6 dB,
whereas H3(t) and H4(t) require VAs with 2 and 4 discrete
levels, respectively, which are specified in Table I. Table II
illustrates the peak SR, the maximum signal bandwith (Bmax),
and the efficiencies of the time modulation method [11]: ηTMA,
which accounts for the ability of the TMA to filter out and

radiate only the useful harmonics; ηmod, which accounts for the
reduction of the total mean power radiated by a uniform static
array caused by the insertion of the TMA switched feeding
network; and η = ηTMA ·ηmod, which represents the total TMA
efficiency. The improvement of the peak SR and the Bmax for
M = 16 (39% and 100%, respectively) and M = 32 (76%
and 300%, respectively) when compared to that of [14], is
remarkable. Additionally, we point out that a key difference
between [10] and this technique is that Walsh functions occupy
an entire period (since they are not time multiplexed like Haar
wavelets with the same degree). Hence, each Walsh function
must be synthesized by an independent switch, thus increasing
the complexity to achieve the same performance.

Fig. 4a to Fig. 4c show the power radiated patterns and the
Haar feeding networks employed for three different values of
M . These figures evidence the outstanding rejection level of
the unwanted harmonics. Fig. 4d shows that we can exploit
the scheme used for M = 32 to generate two independent
beams. Notice that with feeding networks H3(t) and H4(t)
(see Fig. 2a) we can implementH0(t) andH2(t) by modifying
the frequency of gln(t −Dn) and the attenuations W lm, and
governing these two networks by means of square waves with
frequencies different than f0 and 4f0, respectively.

It is remarkable that a b-bit digital phase shifter, a core
element of standard phased arrays, is usually constituted by
2b cascaded SPDT switches [15], and when b increases, so
does both the phase resolution and the insertion losses. With
the proposed technique, the phase resolution is independent
of the number of switches and, with 2b SPDT switches, we
can implement a Haar BFN of order M = 2b+1. Since M
increases with b, the total insertion losses of the Haar BFN
will decrease with b (see η values in Table II).

V. CONCLUSIONS

We proposed a novel approach to TMA beamsteering based
on HDWT modulation. The method provides excellent rejec-
tion levels of the undesired harmonics and allows for signal
bandwidth values higher than those supported by existing
switched TMA schemes with increased hardware complexity.
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