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a b s t r a c t 

This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF 

(Deep AutoEncoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder 

network in a non-iterative way, which drastically reduces training time. Training can be performed incre- 

mentally, in parallel and distributed and, thanks to its mathematical formulation, the information to be 

exchanged does not endanger the privacy of the training data. The method has been evaluated and com- 

pared with other state-of-the-art autoencoders, showing interesting results in terms of accuracy, speed 

and use of available resources. This makes DAEF a valid method for edge computing and federated learn- 

ing, in addition to other classic machine learning scenarios. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

s

h

i

v

h

a

m

l

o

i

p

i

t

t

p

b

n

i

s

d

w

(

d

p

i

n

t

e

t

m

r

s

d

c

t

t

t

i

d

t

m

a

s

p

h

0

. Introduction 

As happened at the time with the massive adoption of per- 

onal computers, the technological development of recent years 

as caused a substantial increase in the number of small comput- 

ng machines such as smartphones or Internet of Things (IoT) de- 

ices, for both industrial and personal use. Despite their size, they 

ave enough computing power to perform tasks that a few years 

go were considered unapproachable, such as the training of small 

achine learning models, real-time inference or the exchange of 

arge amounts of information at high speeds. Due to the abundance 

f these devices and the inefficiencies of traditional cloud comput- 

ng for applications that demand low latencies, a new computing 

aradigm called edge computing has emerged [1] . Edge comput- 

ng (EC) moves computing away from data centers to the edge of 

he network, bringing cloud computing services and utilities closer 

o the end user and their devices. This allows faster information 

rocessing and response time, as well as freeing up the network 

andwidth. 

From a machine learning (ML) point of view, this new tech- 

ological scenario is very suitable for the use of federated learn- 

ng [2] . Federated learning (FL) is a collaborative machine learning 

cheme that allows heterogeneous devices with different private 

atasets to work together to train a global model. In addition, this 

ork scheme emphasizes the preservation of the privacy of local 
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ata collected on each device by implementing mechanisms that 

revent possible direct and indirect leaks of their data. 

On the other hand, in machine learning, anomaly detection (AD) 

s the branch that builds models capable of differentiating between 

ormal and anomalous data [3] . A priori, this turns anomaly de- 

ection into a classification problem with only two classes. How- 

ver, since anomalies tend to occur sporadically, normal data are 

he ones that prevail in these scenarios, so, commonly, that models 

ust be trained with only normal data. The objective is to learn to 

epresent the normal class with high precision to be able to clas- 

ify new data as either normal or abnormal. 

Due to its high economic cost, in many real scenarios powerful 

ata centers are not available, and it is necessary to resort to cloud 

omputing services. If the machine learning models are hosted in 

he cloud, the occurrence of high latencies can negatively affect 

heir purpose. In many real systems, the response time to a de- 

ection of an anomaly can be critical, as is the case of failures in 

ndustrial systems [4] or network intrusions detection [5] . In ad- 

ition, in certain scenarios such as the medical or banking field, 

he privacy of the data that is exchanged is essential. The develop- 

ent of anomaly detection techniques based on edge computing 

nd federated learning may be the solution to reduce these re- 

ponse times and infrastructure limitations while preserving data 

rivacy. 

In this paper, we introduce DAEF (Deep AutoEncoder for Fed- 

rated learning), a fast and privacy-preserving deep autoencoder 

ery suitable for edge computing and federated learning scenarios, 

n addition to classic machine learning environments. Unlike tradi- 

ional deep neural networks, its learning method is non-iterative, 

hich drastically reduces its training time. Its training can be car- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example of autoencoder neural network architecture. 
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ied out incrementally (aggregation of models), in a distributed 

ay (training shared among multiple nodes), and in parallel (at 

he node level if it has several cores), and due to its mathemat- 

cal formulation the information that is exchanged does not en- 

anger the privacy of the training data. All of this makes DAEF a 

seful method for edge computing and federated training, capable 

f performing tasks such as anomaly detection on large datasets 

hile maintaining the performance of traditional (iterative) au- 

oencoders. 

This document is structured as follows. Section 2 contains a 

rief review of the main anomaly detection techniques for edge 

omputing, providing an overview of this field. Section 3 describes 

he ideas taken as the basis for the development of the proposed 

AEF method and Section 4 describes its operation. Section 5 dis- 

usses DAEF’s privacy-preserving capabilities. Section 6 illustrates 

he performance of DAEF through a comparative study with tradi- 

ional autoencoders. Finally, conclusions are drawn in Section 7 . 

. Related work 

Anomaly detection is a field that has a large number of algo- 

ithms that solve the problem of distinguishing between normal 

nd anomalous instances in a wide variety of ways [1,6] . Depend- 

ng on the assumptions and processes they employ, in traditional 

nomaly detection, we can distinguish between five main types of 

ethods: probabilistic, distance-based, information theory-based, 

oundary-based, and reconstruction-based methods. In general, 

hese algorithms are characterized by their high performance when 

lassifying new data, however, they do not focus on other aspects 

hich from a centralized perspective may seem less important, 

uch as data privacy and incremental learning. This makes it dif- 

cult to apply many of these classical methods in decentralized 

nvironments. For this reason, the strong expansion of edge com- 

uting has brought with it a new line of research in the field of 

nomaly detection in charge of designing new algorithms capable 

f learning in a distributed and, in some cases, incremental way, 

hile preserving data privacy. 

Due to their good performance, it is common for these anomaly 

etection methods to be based on reconstruction (neural net- 

orks). In this section, we will distinguish between reconstruc- 

ion based methods that use autoencoders [7] and those that do 

ot. Among those that do not use autoencoders is DïOT [8] , a self-

earning distributed system for the security monitoring of IoT de- 

ices which utilizes a novel anomaly detection approach based on 

epresenting network packets as symbols, allowing to use a lan- 

uage analysis technique to detect anomalies. Hussain et al. [9] . 

resented a deep learning framework to monitor user activities of 

ultiple cells and thus detect anomalies using feedforward deep 

eural networks. Abdel et al. [10] . introduced a federated stacked 

ong short-time memory model to solve multi-task problems using 

oT sensors in smart buildings. Zhao et al. [11] propose a multi-task 

eep neural network in federated learning to perform simultane- 

usly network anomaly detection, VPN traffic recognition, and traf- 

c classification. Other authors like Preuveneers et al. [12] propose 

he use of blockchain technology to carry out a decentralized reg- 

stry of federated model updates. This guarantees the integrity of 

ncrementally-learned machine learning models by cryptographi- 

ally chaining one machine learning model to the next. These solu- 

ions obtain good results, however, they do not emphasize privacy 

reservation and their iterative learning can lead to long training 

imes. 

On the other hand, if we focus on autoencoders [7] , it is also

ossible to find works oriented toward edge computing and/or fed- 

rated learning scenarios. Autoencoders (AE) are a type of self- 

ssociative neural network whose output layer seeks to reproduce 

he data presented to the input layer after having gone through a 
2

imensional compression phase. In this way, they manage to ob- 

ain a representation of the input data in a space with a dimen- 

ion smaller than the original, learning a compact representation 

f the data, retaining the important information, and compressing 

he redundant one. For this reason, they are widely used for the 

laboration of models that are robust to noise, an important qual- 

ty in anomaly detection and regression problems. Fig. 1 represents 

he traditional architecture of an autoencoder. 

Luo and Nagarajan [13] propose to use autoencoders for 

nomaly detection in wireless sensor networks, however, each 

dge device does not train a local model with its own data. These 

evices send their local data to a central cloud node from which 

he training of the global model is carried out. In the approach pre- 

ented by Ngo et al. [14] , an adaptive hierarchical edge computing 

ystem composed of three autoencoder models of increasing com- 

lexity is used for IoT anomaly detection. 

In the two previous works, as well as in the majority that 

ses this type of networks, the autoencoders are trained during 

everal iterations to adjust their parameters (weights, bias) using 

echniques such as the gradient descent and backpropagation. This 

reatly increases training time, especially when dealing with large 

atasets or complex networks architectures, which in edge com- 

uting scenarios can be critical. However, there is a line of work 

hat allows training autoencoders in a non-iterative way. This is 

ased on Extreme Learning Machines (ELM) [15] , an alternative 

earning algorithm originally formulated for single-hidden layer 

eedforward neural networks (SLFNs). This algorithm tends to pro- 

ide good generalization performance and an extremely fast learn- 

ng speed. Over time, more advanced versions such as MLELM [16] , 

 multilayer version of ELM, or DELM [17] , a deep version of ELM, 

ave been developed. For anomaly detection in edge computing 

nd federated learning scenarios, Ito et al. [18] propose combining 

S-ELM (Online Sequential Extreme Learning Machine) [19] with 

utoencoders. This allows each edge device to train its own local 

odel and incrementally update it with the results obtained by the 

ther devices. Nevertheless, a possible limitation of this solution is 

ts autoencoder architecture with only one hidden layer, which in 

ome cases may not be sufficient. 

In this work we present DAEF, a deep autoencoder with the fol- 

owing characteristics: 

• The architecture is deep (more than one hidden layer) and 

asymmetrical. 
• The training process is non-iterative and therefore faster than a 

traditional autoencoder. 
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• It can be trained in a distributed and incremental way, which 

makes it suitable for edge computing and federated learning 

environments. 
• It is a privacy-preserving method. 

. Background 

This section introduces the theoretical foundations and as well 

s ideas taken as the basis for the development of DAEF. 

.1. Federated learning architectures 

Federated Learning systems can be classified into four types 

ased on the level of centralization of their architectures [20] : cen- 

ralized, hierarchical, regional and decentralized. In centralized FL 

ystems, all edge nodes are connected to a central aggregation 

ode to update local weights and distribute models. Hierarchical 

rchitectures achieve less level of centralization by keeping a cen- 

ral node but include several regional aggregation nodes whose 

oal is to reduce data exchange and manage local devices. Regional 

rchitectures eliminate the central node to eliminate the risk of a 

ingle point of failure. Decentralized approaches move all tasks to 

he edge so that edge nodes will handle both local training and 

odel aggregation. 

The most common is to use centralized or semi-centralized ar- 

hitectures, in which the aggregator node is a server with high 

omputational capabilities. In this work, we want to design a valid 

ethod to be used with more decentralized architectures on FL 

nd EC scenarios, in which the training and aggregations are car- 

ied out in the edge devices without requiring large computational 

ower, and exchange of data through the network is secure and 

reserves the privacy of local datasets. 

.2. Distributed singular value decomposition autoencoder 

DSVD-autoencoder (Distributed Singular Value Decomposition 

utoencoder) [21] is a hidden single-layer autoencoder network for 

nomaly detection, consisting of an encoder followed by a decoder. 

he idea of its encoder will serve as the basis for our work and, 

herefore, is the one that will be explained in detail below. 

Regarding its encoder part, the aim is to learn a vector space 

mbedding of the input data X ∈ R 
m 0 ×n , where m 0 is the number

f input variables and n the number of data samples, extracting 

 meaningful but lower dimensional representation, known as the 

atent space. This can be accomplished by a low-rank matrix ap- 

roximation of X , which is a minimization problem that tries to 

pproximate a given matrix by another one subject to the con- 

traint that the approximating matrix has reduced rank [22] . The 

ize of this rank is determined by the size of the hidden layer. 

hus, being m 1 the number of neurons of this layer, the Singular 

alue Decomposition (SVD) of rank- m 1 of matrix X is used to ob- 

ain the weights W 1 of this first layer, as follows. Let’s consider the 

ull SVD of X , a factorization of the form: 

 = USV 

T 
, (1) 

here S ∈ R 
m 0 ×n is a diagonal matrix with descending ordered 

on-negative values on the diagonal that are the singular values 

f X , while U ∈ R 
m 0 ×m 0 and V ∈ R 

n ×n are orthogonal matrices con- 

aining the left and right singular vectors of X . In a low-rank ap-

roximation, the optimal rank- m 1 approximation of X can be com- 

uted by taking the first m 1 columns of U and rows of V 
T and

runcating S to the first m 1 diagonal elements. The new trun- 

ated matrices U m 1 
∈ R 

m 0 ×m 1 and V 
T 
m 1 

∈ R 
m 1 ×n are, respectively, 

 1 -dimensional representations of rows (features) and columns 

samples) of the input data X . Therefore, U m is used as the 

1 

3 
eights W 1 for the first layer as it contains the m 1 -dimensional 

ransformation of the input space ( R 
m 0 → R 

m 1 ). 

Moreover, in a distributed scenario, the SVD of an entire 

ata matrix X distributed into P several blocks, that is X = 
 

X 
1 | X 

2 | · · · | X 
P 
] 
, can be also computed distributively by calculating 

t each site p = 1 , . . . , P the local matrices U 
p and S p , correspond-

ng to the rank- m 1 SVD of X 
p , and then arbitrarily computing the 

ollowing operation: 

 U m 1 
, S m 1 

, ∼] = SVD ([ U 

1 S 1 | . . . | U 

P S P ]) . (2) 

Notice that, as only the local SVD decompositions are ex- 

hanged between nodes, from which the original training data 

ould not be deduced, data privacy is preserved in this process. 

lgorithm 1 shows this process. 

lgorithm 1 Distributed singular value decomposition (DSVD). 

Input: X = 

[ 
X 
1 | X 

2 | · · · | X 
P 
] 

∈ IR m 0 ×n , training data split into P 

artitions ( m 0 variables × n samples); m 1 , rank of the SVD; 

Output: U m 1 
, S m 1 

corresponding to the rank- m 1 decomposition 

f X ; 

1: function DSVD 

2: parallelFor p = 1 . . . P � Each partition in parallel 

3: 
(
U 

p , S p , ∼
)

= SVD ( X 
p ) 

4: end parallelFor 

5: [ U , S , ∼] = SVD 

([(
U 
1 S 1 | · · · | U 

p S p 
)])

� Recalculate 

6: U m 1 
= U [ : , 1 : m 1 ] � Obtain the rank- m 1 

7: S m 1 
= S [ : , 1 : m 1 ] � Obtain the rank- m 1 

8: end function 

.3. Regularized One-Layer Neural Network 

ROLANN (Regularized One-Layer Neural Networks) [23] is a L2 

orm-regularized training method that allows training single-layer 

eural networks (without hidden layers) in a non-iterative manner 

y minimizing the mean squared error (MSE) measured before the 

ctivation function of the output neurons, as described in [24] . In 

ddition to not being iterative, the complexity of the method de- 

ends on the smaller dimensions that define the size of the train- 

ng set (number of samples and number of variables), which to- 

ether make the method computationally very efficient. Moreover, 

he algorithm can be used in an incremental and distributed way 

hile preserving privacy, two possibilities that can be combined as 

eeded to obtain, for instance, a distributed learning environment 

hat also learns incrementally at each location. These characteris- 

ics make the method a perfect fit for federated learning environ- 

ents. 

Its bases are as follows. Let’s consider the training input data 

 ∈ R 
m ×n , where m is the number of input variables and n the

umber of data samples. After propagating this data through the 

etwork we can obtain, for each data point, the values of the 

erivative f ′ and the inverse d̄ of the neural function f . With this 

nformation, the weights W of the network can be analytically cal- 

ulated as: 

 U , S , ∼] = SVD ( XF ) , (3) 

 = X ∗
(
f ′ . ∗ f ′ . ∗ d̄ 

)
, (4) 

 = U ∗ in v 
(
S ∗ S + λI 

)
∗
(
U 

T ∗ M 

)
(5) 

here F is the diagonal matrix of f , λ is a weight-decay based reg- 

larization parameter and I is the identity matrix. 
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As mentioned, this method allows incremental and distributed 

earning. Suppose M 
p , U 

p and S p correspond to the knowledge ob- 

ained in the current data partition p. If there were a previous k 

ata partition that ROLANN was already trained on, this method 

an learn from both partitions by calculating: 

U 
k | p , S k | p , ∼

]
= SVD 

(
U 

k S k | U 
p S p 

)
, (6) 

 
k | p = M 

k + M 
p , (7) 

nd finally obtaining the weights as: 

 = U 
k | p ∗ in v 

(
S k | p ∗ S k | p + λI 

)
∗
(
U 

k | p T ∗ M 
k | p 

)
, (8) 

Algorithm 2 shows this process in detail. 

lgorithm 2 ROLANN for incremental/distributed regularized 

earning. 

Input: X p ∈ IR m ×n , new training data ( m variables × n sam- 

les); d p ∈ IR n ×1 , desired outputs; f , nonlinear activation function 

invertible); λ, regularization hyperparameter; M k , U k , S k , matrices 

alculated using previous data (optional); 

Output: w ∈ IR m ×1 , optimal weights; M k | p , U k | p , S k | p , updated 
 , U , S matrices; 

1: function ROLANN 

2: X p = 

[
ones ( 1 , n ) ;X p 

]
� Bias is added 

3: d p = f −1 
(
d p 

)
� Inverse of the neural function 

4: f 
′ = f 

′ (
d p 

)
� Derivate of the neural function 

5: F p = diag(f 
′ 
) � Diagonal matrix 

6: if ( M k & U k & S k are empty matrices) then 

7: 
[
U k | p , S k | p , ∼

]
= SVD (X p ∗ F p ) � Economy size 

8: M k | p = X p ∗ (f 
′ 
. ∗ f 

′ 
. ∗ d p ) 

9: else � Combine previous knowledge 

0: M k | p = M k + X p ∗ (f 
′ 
. ∗ f 

′ 
. ∗ d p ) 

11: 
[
U p , S p , ∼

]
= SVD (X p ∗ F p ) 

2: 
[
U k | p , S k | p , ∼

]
= SVD ([ U k S k | U p S p ]) 

3: end if 

14: w = U k | p ∗ in v (S k | p ∗ S k | p + λI ) ∗ (U 
T 
k | p ∗ M k | p ) 

5: end function 

.4. Multilayer Extreme Learning Machine 

MLELM (Multilayer Extreme Learning Machine) [16] is a mul- 

ilayer neural network that, in each layer, makes use of unsuper- 

ised learning to train its parameters, eliminating the need to fine- 

uning the network. As a result, the authors obtain a method to 

rain multilayer networks in a non-iterative, fast, and mathemati- 

ally simple way. Specifically, it obtains the weights at each layer 

y using an ELM-AE (Extreme Learning Machine-Autoencoder) [16] , 

hich is an unsupervised single hidden layer autoencoder that, like 

ny other, tries to reproduce the input signal at the output. This 

echanism has served as an inspiration for the work presented 

ere. 

. The proposed method 

The main objective DAEF (Deep Autoencoder for Federated 

earning) is to learn a compressed representation of the normal 

ata and, from this reduced space, to reconstruct the inputs at 

he output of the autoencoder. These tasks should be carried out 

n a distributed way, and incrementally where possible, to apply 

he algorithm in edge computing and federated learning environ- 

ents. To achieve this, DAEF employs an asymmetric autoencoder 
4 
rchitecture as shown in Fig. 2 . A first single-layer encoder re- 

uces the dimensionality of the input data and it is adjusted us- 

ng a distributed SVD process. It is followed by a multi-layer de- 

oder to reconstruct the input signal at the output which is trained 

n layer-by-layer basis through a non-iterative process. This sec- 

ion presents in detail the steps followed by the method and its 

heoretical foundations. 

.1. The encoder 

Given an input dataset X ∈ R 
m 0 ×n , where m 0 is the number of 

nput variables and n the number of data samples, the goal of the 

ncoder is to transform X into a vector space embedding of lower 

imension. This will be done using the Distributed Singular Value 

ecomposition ( Algorithm 1 ). Therefore, the weights of the first 

ayer W 1 = U 1 are obtained collaboratively across all node loca- 

ions into which data is partitioned. Finally, the outputs of the first 

idden layer of the network can be calculated, at each location p, 

s: 

 

p 
1 

= f 1 

(
W 

T 
1 X 

p 
)
; ∀ p = 1 , . . . , P, (9) 

here f 1 is the activation function of the first hidden layer. 

It has been decided to use a single-layer encoder, i.e., a single 

imensionality reduction using SVD, as chaining several SVD pro- 

esses sequentially and progressively (one per layer) did not show 

etter performance. Since the encoder consists of a single layer and 

he decoder of several layers, the architecture of this autoencoder 

s asymmetrical, as can be seen in Fig. 2 . 

.2. The decoder 

In the decoder, the goal is to reconstruct the input from the 

ow-dimensional representation provided by the output of the first 

idden layer H 1 (see Eq. 9 ). In order to be able to work with large

atasets in a fast and efficient way, we propose to apply a non- 

terative learning method to obtain the decoder parameters. 

Similar to ELM-AE [16] , DAEF employs an auxiliary network to 

etermine the parameters of each layer of the decoder in an unsu- 

ervised way, layer by layer. In the DAEF decoder, the weights and 

ias of a given (l + 1) th hidden layer will be calculated with an

uxiliary network, as will be explained. Finally, the output matrix 

f (l + 1) th layer ( H l+1 ) can be obtained as: 

 l+1 = f l+1 

(
W 

T 
l+1 H l + b l+1 1 

T 
)

(10) 

eing f l+1 the activation function, H l the output matrix of the lth 

ayer with m l neurons, W l+1 ∈ R 
m l ×m l+1 and b l+1 ∈ R 

m l+1 ×1 the es- 

imated weight matrix and bias vector of the layer, respectively, 

nd 1 a column vector of n ones. 

The use of the already mentioned auxiliary network is shown 

n the top right of Fig. 2 , where W l+1 is obtained as the output

eights of this network. As can be seen, the auxiliary network is 

 single-hidden layer sparse autoencoder. Regarding its structure, 

o calculate the parameters between the l and the (l + 1) hidden 

ayers of the principal network, the number of neurons in the input 

nd the output layers of the auxiliary network will be identical to 

 l , the number of neurons of its hidden layer will be m l+1 , and

f l+1 will be used as activation function. 

The training of this auxiliary network can be divided into two 

tages: the training of the first half of the network, in which the 

nput of the network H aux 0 (which is the output H l of the DAEF’s 

rincipal network lth layer) is transformed at the hidden layer; and 

 second stage, in which, using the data H aux 1 coming from the 

idden layer, the original input is reconstructed at the output H aux 2 

f the auxiliary network. 
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Fig. 2. The asymmetric deep autoencoder DAEF. 
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The weights W aux 1 and the bias b aux 1 of the first stage are ini- 

ialized and fixed (the different initialization schemes will be stud- 

ed in Section 6.2 ). Subsequently, the H aux 1 output of the hidden 

ayer can be calculated as: 

 aux 1 = f 

(
W 

T 
aux 1 

H aux 0 + b aux 1 1 
T 
)
, (11) 

In the second stage, the weights W aux 2 are obtained in a super- 

ised way using ROLANN ( Algorithm 2 ). Considering that each out- 

ut of the neural network depends solely on a set of independent 

eights, this second stage can be computed in parallel. Once this 

s calculated, the weights between the principal network’s lth and 

l + 1) th layers can be obtained as W l+1 = W 
T 
aux 2 

, and the output 

 l+1 can be calculated using Eq. 10 . 

This process will be repeated for each of the hidden layers of 

he decoder, using the outputs of one layer to calculate the weights 

f the next one, until reaching the last layer. Finally, as the output 

arget values for the DAEF’s last layer are known (the same as in 

he DAEF’s input layer), the weights of the last layer can be cal- 

ulated directly in a supervised and distributed way using again 
5 
OLANN ( Algorithm 2 ). We can summarize the DAEF training as 

ollows: 

1. Dimensionality reduction in the first layer using distributed 

SVD (encoder). 

2. Unsupervised/supervised training, layer by layer, using an aux- 

iliary network in which ROLANN is used as a regularization 

method (decoder). 

3. Supervised training of the last layer using ROLANN (decoder). 

.3. Incremental, distributed, and parallel learning 

DAEF performs various operations that can be computed in a 

arallel way if the node (device) on which it is executed has sev- 

ral cores. These operations are the SVD computation of the en- 

oder (the dataset can be divided and the partial SVDs concate- 

ated and recalculated) and the ROLANN regularization processes 

n the decoder (the weights concerning the output layer can be 

alculated in parallel). 

In addition to this, the trained DAEF models can be updated 

hen new data arrives thanks to their incremental learning capac- 
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Fig. 3. DAEF networks collaborating through an MQTT protocol. 
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ty. A node can add knowledge to its model without having to re- 

rain from scratch, incorporating the new knowledge quickly and 

nexpensively. A DAEF network trained with a data partition can 

ncorporate the knowledge obtained by a second DAEF network 

rained with a different partition if the latter shares the U m 1 
ma- 

rices of its encoder [21] , and the M k , U k , and S k matrices of each

ayer of its decoder [23] . By adding this information, the first DAEF 

etwork can recalculate its weights and will have learned incre- 

entally. 

If we are faced with a multi-node environment, such as an IoT 

cenario, where each node has a partition of the global dataset, 

e can take advantage of the incremental capacity of the DAEF 

etwork to carry out a distributed training. Each node (device) 

ould train a DAEF autoencoder network with its local data, and 

sing a protocol such as MQTT [25] , these nodes can publish their 

ocal model information through a broker to share their particu- 

ar knowledge with the rest of the devices. The broker will be in 

harge of sending this information to the nodes that are subscribed 

o the updates, which will be able to aggregate the information re- 

eived to their model. 

We consider the local dataset of each node as a partition of a 

lobal dataset, so all the nodes must use a DAEF autoencoder net- 

ork with a similar architecture. For the model information shared 

etween nodes to be compatible with each other, the nodes must 

lso use the same weights generated by the Xavier Glorot initial- 

zation scheme and the same bias. At the start of the training, one 

f the nodes must define the architecture, generate the weights 

nd bias and publish them through the broker. Fig. 3 shows this 

cenario using the MQTT protocol. 

The private data of each node will be protected since the infor- 

ation that is sent through the broker is another. The data shared 

y each DAEF model (node) will be the U m 1 
matrices of the en- 

oder, and the M k , U k , and S k matrices of each layer of the de-

oder, from which the original data are not recoverable [21,23] . The 

AEF network matrices mentioned above are the only information 

eeded to perform the federated learning, so if desired, the orig- 

nal dataset of each node can be removed to save space. Storing 

hese matrices is not a problem since their size is independent of 

he number of instances of the original dataset. 

Note that DAEF could also be used in a centralized scenario in 

hich the information from the local models would be sent to a 

entral node, which would be in charge of aggregating the infor- 

ation, obtaining the global model, and sharing it with the net- 

ork nodes. 

.4. Pseudocode 

Algorithm 3 contains the pseudocode for the DAEF training 

hase for one node with t available cores. The processes carried 
6 
ut in the encoder are described between lines 5 and 12. In line 7 

he dimensionality of the data is reduced using SVD, in a parallel 

ay splitting the local dataset into t partitions, obtaining the en- 

oder weights and, in line 9, the encoder output. Between lines 13 

nd 20, the hidden layers of the decoder are trained one by one. 

or this, Algorithm 4 is used in line 15. In lines 21 and 22, the last

ayer of the decoder is trained directly using ROLANN also using 

arallelization. 

lgorithm 3 DAEF training phase. 

Input: X ∈ IR m 0 ×n , training dataset ( m 0 variables × n samples); 

 , number of layers; a , list of number of neurons per layer; λhid and

last , regularization hyperparameters of the hidden and last layers; 

f hid and f last , activation functions of the hidden and last layers; t , 

vailable cores. 

Output: Model, trained model composed of the weights W list 

nd bias b list , the training output H L , and the matrix list needed for

ncremental learning, i.e., U 1 and S 1 matrices of the encoder and 

he M l , U l , and S l matrices of each layer of the decoder. 

1: function DAEF_train 

2: W list = ∅ � Layer weight list 

3: H list = ∅ � Layer output list 

4: matrices list = ∅ � matrix list for incremental learning 

5: � Learning the encoder 

6: X part it ioned = Split X in t partitions 

7: U 1 , S 1 = DSVD (X part it ioned , a [1]) � a[1], latent space 

dimension 

8: W 1 = U 1 � Weights of the encoder 

9: H 1 = f hid ((W 1 ) 
T X ) 

0: Append W 1 to W list 

11: Append H 1 to H list 

2: Append [ U 1 , S 1 ] to matrix list 
3: � Learning the decoder 

4: for l = 2 .L − 1 do � L − 1 , decoder hidden layers

5: W l , b l , H l , M l , U l , S l = T LD (H list [ l − 1] , a [ l] , λhid , f hid , t) �

Call to Algorithm 2 

6: Append W l to W list 

17: Append b l to b list 
18: Append H l to H list 

9: Append [ M l , U l , S l ] to matrix list 
0: end for 

1: pool = Pool (t) � Pool of t processes 

2: W L , b L , M L , U L , S L = pool.map(ROLANN, (H list [ L −
1] , X , λlast , [])) � Parallel training of the last layer with

ROLANN 

3: H L = f last ((W L ) 
T H list [ l − 1]) 

4: Append W L to W list 

5: Append b L to b list 
6: Append [ M L , U L , S L ] to matrix list 
27: Model = W list , b list , H L , matrix list 
8: end function 

Algorithm 4 contains the pseudocode of the auxiliary function 

sed in Algorithm 3 to train the different hidden layers of the de- 

oder using an auxiliary autoencoder. In lines 2 and 3, the weights 

nd bias are generated respectively, while in line 4 the output of 

he hidden layer is computed. Between lines 5 and 7, the decoder 

eights and the output are calculated using ROLANN. Since the 

eights concerning each neuron of the output layer are calculated 

ndependently, the t available cores will be used to perform these 

alculations in parallel. 

Algorithm 5 contains the pseudocode for the DAEF prediction 

hase where the trained network will reconstruct a test sample. 

omparing the input value and its reconstruction after passing 

hrough the network (reconstruction error), it could be classified 
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Algorithm 4 Train one layer of the decoder (TLD). 

Input: H l−1 ∈ IR m l ×n output of principal network ′ s layer l − 1 

used as training data for this algorithm; m l , number of neurons of 

the layer l; λhid , regularization hyperparameter of the hidden layer; 

f hid , activation function of the layer; t , available cores; 

Output: W l , weights of the layer l; b l bias of the layer; H l , 

output of the layer l; and a list with the matrices needed for in- 

cremental learning, [ M , U , S ]; 

1: function TLD 

2: W aux 1 = Xa v ier(m l−1 , m l ) � Initial weights 

3: b aux 1 = Random (m l , 1) � Initial bias 

4: H aux 1 = f hid (W 
T 
aux 1 

H l−1 + b aux 1 1 
T ) 

5: pool = Pool (t) � Pool of t processes 

6: W l , b l , M l , U l , S l = pool.map(ROLANN, (H aux 1 , H l−1 , λhid , [])) � 

Parallel training of the layer 

7: H l = f hid (W 
T 
l 
H l−1 + b l 1 

T ) 

8: end function 

Algorithm 5 DAEF prediction phase. 

Input: X ∈ IR m 0 ×n , test dataset ( m 0 variables × n samples); 

W list , weights of the trained network; b list , bias of the trained net- 

work; f hid and f last , activation functions of the hidden and last lay- 

ers; a , list of number of neurons per layer; 

Output: prediction , reconstruction of the input X after passing 

through the network; 

1: function DAEF_predict 

2: H 1 = f hid ((W list [1]) 
T X ) 

3: for l = 2 .length (W list ) − 1 do 

4: H l = f hid ((W list [ l]) 
T H l−1 + b list [ l − 1] 1 T ) 

5: end for 

6: prediction = f last ((W list [ l]) 
T H l + b list [ l] 1 

T ) 

7: end function 
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s normal or anomalous. The complete implementation of the al- 

orithm is available in GitHub 1 . 

. Privacy treatment 

In distributed environments (EC and FL), preserving the privacy 

f data at each node is a critical aspect, even more so if they con-

ain sensitive information, such as personal data. Due to this, in 

his section, we will analyze the privacy preservation capacity of 

he DAEF method. To do so we will consider two main threat sce- 

arios [26] . 

.1. Preventing direct leakage 

In classic environments, it is common for the original data from 

he nodes to be sent to other nodes or to a central server, for ex-

mple, to be analyzed, pre-processed, or to build a global machine 

earning model. This puts the privacy of the data at risk, which can 

e used maliciously and not to carry out the original tasks. 

In the case of the DAEF method, the data shared for training the 

lobal model is not the original data ( X ). Regarding the encoder 

lock, each node p, using its local data ( X 
p ), computes an SVD =

SV 
p and the only information shared to carry out the federated 

earning is the product U 
p S p . Since the matrix V 

p is neither cal-

ulated nor sent, the original data X 
p cannot be retrieved through 

he factorization expression described in Eq. 1 . Regarding the de- 

oder block, the federated learning is carried out by interchanging 
1 https://github.com/DavidNovoaP/DAEF 

c

t

o

7 
he M 
p , U 

p , and S p matrices obtained through ROLANN regulariza- 

ion, so the original data is also kept safe. Once the global model is 

btained, it is distributed to each of the local nodes p to be used 

rivately, so there is also no direct data leakage in the operation 

hase. 

.2. Preventing indirect leakage 

Another possible scenario is one in which a malicious node im- 

ersonates a real participant of the distributed learning protocol 

o try to obtain the private data of other nodes. Due to the na- 

ure, when we train models in a distributed way, it is common 

or nodes to share their calculations and parameters. Using this in- 

ormation, several authors have proposed specific methods that in 

ertain cases can obtain the original training data, putting the pri- 

acy of the nodes at risk. The model inversion attack [27] , once the

etwork has been trained, follows the gradient used to adjust the 

eights of the network and obtains a reverse-engineered example 

or all represented classes in the model. Another way to address 

he problem is to train a Generative Adversarial Network (GAN) 

28] in parallel to the attacked network using its gradients, so that 

t manages to extract information about classes of data that it does 

ot know. 

In the case of DAEF, the method is not iterative, so this type of 

ttack is not a problem. The model parameters are calculated in 

 single step, so it is not possible to train GAN networks in this 

ay. In addition, as we have seen previously, stochastic gradients 

re not shared (they are not used), so model inversion attacks are 

lso not possible. 

. Evaluation 

Although autoencoder networks have several uses, the main 

ask for which DAEF has been designed is anomaly detection. In 

his section, several experiments are presented to show its behav- 

or in this kind of scenario. 

.1. Experimental setup 

DAEF emerges as a fast alternative to perform anomaly detec- 

ion in environments where time can be a critical factor, such 

s edge computing and federated learning scenarios. Iterative ap- 

roaches achieve high accuracy in anomaly detection, but in cer- 

ain cases, their long training times may make them unsuitable for 

hese environments. This study aims to analyze the performance 

chieved by DAEF compared to the adaptation of Online Sequential 

xtreme Learning Machine (OS-ELM) for federated learning [18] , 

nother non-iterative approach that uses a single hidden layer, as 

ell as iterative single hidden layer autoencoders (SHL-AE) and it- 

rative multiple hidden layer autoencoders (MHL-AE), models that 

ollow a classical approach based on iterative learning. For this, 

 machine equipped with an Intel Core i7-11700k processor and 

4GB of RAM has been used. 

The algorithms were evaluated over seven datasets available in 

he UCI Machine Learning Repository [29] , Kaggle [30] , and ODDS 

31] . Their characteristics are summarized in Table 1 . All datasets 

ere normalized using standard scalers with zero mean and unit 

ariance. To assess the performance of each algorithm, the data 

ere split using a 10-fold cross-validation. The algorithms were 

rained using only normal data, while the test phase included data 

rom both classes (50% normal and 50% anomalies). 

Given an autoencoder network trained with normal data, the 

lassification of new instances can be carried out by comparing 

heir value at the network input with the values obtained at the 

utput. The difference is known as the reconstruction error, and 

https://github.com/DavidNovoaP/DAEF


D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805 

Table 1 

Characteristics of the datasets used. All represent anomaly detection data, except 

Covertype whose class 4 was taken as anomalous. 

Dataset Samples Anomalies Dimension 

Shuttle 49,097 3511 (7.2%) 9 

Covertype 581,012 2747 (1.0%) 10 

Pendigits 6870 156 (2.3%) 16 

Cardio 1831 176 (9.6%) 21 

Credit card 284,807 492 (0.2%) 29 

Ionosphere 351 126 (35.9%) 33 

Optdigit 5216 64 (2.9%) 62 

Table 2 

Average test F1-score ± standard deviation for the different datasets. 

Dataset DAEF Ortho. DAEF Random DAEF Xavier 

Shuttle 94.1 ±4.9 93.9 ±5.1 96.0 ±3.5 

Covertype 81.4 ±6.3 80.1 ±9.7 86.0 ±4.4 

Pendigits 70.2 ±9.3 70.6 ±12.1 76.3 ±5.5 

Cardio 86.4 ±2.6 85.2 ±2.2 85.5 ±3.6 

Credit card 89.1 ±1.8 87.6 ±2.3 90.0 ±0.6 

Ionosphere 93.7 ±3.1 93.4 ±4.1 94.1 ±4.1 

Optdigit 76.0 ±2.3 75.2 ±6.1 77.0 ±4.0 
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Table 3 

Average training time (seconds) ± standard deviation for the different datasets. 

Dataset DAEF Ortho. DAEF Random DAEF Xavier 

Shuttle 1.8 ±0.1 1.8 ±0.1 1.8 ±0.1 

Covertype 4.2 ±0.0 4.3 ±0.0 4.2 ±0.0 

Pendigits 1.8 ±0.0 1.8 ±0.0 1.8 ±0.0 

Cardio 1.9 ±0.0 1.9 ±0.0 1.9 ±0.0 

Credit card 36.3 ±0.4 36.4 ±0.3 36.3 ±0.3 

Ionosphere 1.9 ±0.0 1.8 ±0.0 1.9 ±0.0 

Optdigit 3.4 ±0.0 3.4 ±0.0 3.6 ±0.1 

Table 4 

Average test F1-score ± standard deviation for the different datasets. 

Dataset DAEF OS-ELM SHL-AE MHL-AE 

Shuttle 96.0 ±3.5 97.9 ±0.3 98.0 ±1.1 98.4 ±1.0 

Covertype 86.0 ±4.4 85.8 ±0.2 72.0 ±4.9 81.5 ±13.3 

Pendigits 76.3 ±5.5 88.2 ±2.0 84.2 ±4.4 86.3 ±6.1 

Cardio 85.5 ±3.6 88.1 ±1.3 87.8 ±1.7 87.2 ±2.7 

Credit card 90.0 ±0.6 90.7 ±0.5 91.0 ±0.6 89.0 ±1.6 

Ionosphere 94.1 ±4.1 96.7 ±3.2 91.9 ±2.4 94.0 ±2.3 

Optdigit 77.0 ±4.0 81.7 ±0.8 83.1 ±7.7 88.9 ±3.7 
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ince anomalies are very rare in these scenarios, instances corre- 

ponding to the normal class will have a low reconstruction er- 

or, while anomalies will emit a much higher error. The recon- 

truction errors are calculated using the MSE (Mean Squared Error) 

nd, after training the network, it is necessary to establish an er- 

or threshold above which input samples are classified as anoma- 

ies. There are many alternatives, a popular one being to define this 

hreshold based on the interquartile range (IQR) of the reconstruc- 

ion errors of the training examples, i.e.: 

QR = Q 3 − Q 1 (12) 

here Q 1 and Q 3 represent the first and the third quartiles. In this 

ork, we define two error thresholds, one for outliers ( outlier IQR ) 

nd another for extreme outliers ( extreme IQR ): 

utlier IQR = Q 3 + 1 . 5 × IQR (13) 

xtreme IQR = Q 3 + 3 × IQR (14) 

In addition, we also considered other thresholds using fixed 

ercentiles ( Q 95 , Q 90 , Q 80 , Q 70 , Q 60 and Q 50 ). 

Considering the anomalous class as the positive one, and based 

n the number of true positives (TP), true negatives (TN), false pos- 

tives (FP), and false negatives (FN), to measure the performance of 

he algorithms the F1-score metric was used: 

 1 = 2 
precision · recall 
precision + recall 

= 

2 × T P 

2 × T P + F P + F N 

(15) 

Finally, the combinations of parameters chosen for each algo- 

ithm, as well as the error thresholds, were selected using a grid 

earch and are available in Appendix A ( Tables A1 and A2 ). 

.2. Choosing the best initialization for DAEF 

Firstly, the effects of using different types of initialization 

or the weights and biases of the DAEF network were studied. 

able 2 shows the results obtained by the DAEF model using three 

ypes of initializations: orthogonal, random, and Xavier Glorot. In 

ll cases, we have used sigmoid activation functions in the hidden 

ayers and linear functions in the outputs since we want to recon- 

truct in the output any real input data to the network. 

As can be seen, the performance of DAEF is very similar for 

he three types of initializations, with Xavier Glorot being slightly 

igher in some cases, such as the Covertype dataset. To validate 
8

his statement, statistical tests were carried out to compare the 

lobal performance of the three approaches. The chosen procedure 

as been Kruskal-Wallis and Tukey’s HSD as a post hoc test [32,33] . 

sing a significance level of 5% in both cases and the F1-scores of 

he algorithms for the different datasets, the Xavier Glorot initial- 

zation and the orthogonal initialization rank first, while random 

nitialization is in a lower group, represented graphically by Fig. 4 . 

his allows us to affirm that the performance of the DAEF model is 

quivalent using Xavier Glorot and orthogonal initializations, these 

eing slightly better than the totally random one. This could be re- 

ated to the difficulty of sigmoid activation functions to deal with 

mall random weights [34] 

Table 3 shows the mean training time of each algorithm (lower 

alues than 0.05 have been represented as 0.0). Test times have 

ot been included in this work because they are very low for all 

he algorithms. As can be seen, the training times are very similar 

egardless of the initialization used. Due to this, and his slightly 

etter performance, Xavier Glorot will be considered the default 

nitialization for DAEF and will be used in the remaining tests. 

.3. DAEF vs. other Anomaly Detection algorithms 

In this section, we compare the performance obtained by DAEF 

Xavier Glorot initialization) and the algorithms mentioned in 

ection 6.1 (OS-ELM, SHL-AE, and MHL-AE). Since the goal is to 

easure only their ability to detect anomalies, DAEF and OS-ELM 

ere executed using a single node. Notice that running the OS-ELM 

daptation for FL [18] using a single node is equivalent to using the 

riginal OS-ELM algorithm [19] . 

Table 4 summarizes the mean test results. Again, Kruskal-Wallis 

nd Tukey’s HSD tests (significance level of 5%) have been used for 

ach dataset to highlight in bold the models that rank first. As can 

e seen, the DAEF algorithm achieves good performance for most 

atasets, matching the performance of the best models in four of 

he seven datasets (Covertype, Cardio, Credit card, and Ionosphere), 

nd getting a very close performance on datasets such as Shuttle. 

 Nemenyi statistical test [35,36] was carried out to compare the 

lobal performance of the algorithms. Using a significance level of 

% and the F1-scores of the algorithms for the different datasets, 

he four methods rank in the same position, represented graphi- 

ally by Fig. 5 . 

Table 5 shows the mean training time of each algorithm. Be- 

ause DAEF training is non-iterative, its training times are much 

horter than those required by traditional iterative autoencoders 
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Fig. 4. Graphical representation of Nemenyi test with α = 0.05. The critical distance (CD) obtained was 1.25. 

Fig. 5. Graphical representation of the Nemenyi test with α = 0.05. The critical distance (CD) obtained was 1.77. 

Table 5 

Average training time (seconds) ± standard deviation for the different datasets. 

Dataset DAEF OS-ELM SHL-AE MHL-AE 

Shuttle 1.8 ±0.1 0.0 ±0.0 53.9 ±1.0 157.8 ±1.7 

Covertype 4.2 ±0.0 0.2 ±0.0 157.1 ±1.3 239.6 ±2.3 

Pendigits 1.8 ±0.0 0.0 ±0.0 19.6 ± 2.2 58.6 ±4.0 

Cardio 1.9 ±0.0 0.0 ±0.0 11.9 ±0.1 2.4 ±0.1 

Credit card 36.3 ±0.3 0.9 ±0.0 387.2 ±6.2 194.7 ±3.6 

Ionosphere 1.9 ±0.0 0.0 ±0.0 4.0 ±0.1 2.59 ±0.2 

Optdigit 3.6 ±0.1 0.0 ±0.0 3.9 ±0.4 13.04 ±0.4 

Table 6 

Estimated emissions (CO 2 -eq) for the different datasets. 

Dataset DAEF OS-ELM SHL-AE MHL-AE 

Shuttle 1 . 4 × 10 −6 2 . 8 × 10 −7 7 . 9 × 10 −4 2 . 5 × 10 −3 

Covertype 3 . 3 × 10 −5 3 . 0 × 10 −6 2 . 2 × 10 −3 3 . 7 × 10 −3 

Pendigits 5 . 0 × 10 −6 2 . 3 × 10 −7 2 . 9 × 10 −4 8 . 5 × 10 −4 

Cardio 5 . 3 × 10 −6 7 . 9 × 10 −8 1 . 7 × 10 −4 3 . 1 × 10 −5 

Credit card 4 . 2 × 10 −4 1 . 2 × 10 −5 5 . 3 × 10 −3 2 . 9 × 10 −3 

Ionosphere 4 . 4 × 10 −6 3 . 5 × 10 −8 5 . 1 × 10 −5 3 . 7 × 10 −5 

Optdigit 6 . 9 × 10 −5 2 . 7 × 10 −7 5 . 6 × 10 −5 1 . 9 × 10 −4 

Mean 7 . 7 × 10 −5 2 . 3 × 10 −6 1 . 3 × 10 −3 1 . 5 × 10 −3 

Table 7 

Estimated energy consumed (kWh) for the different datasets. 

Dataset DAEF OS-ELM SHL-AE MHL-AE 

Shuttle 1 . 7 × 10 −6 4 . 7 × 10 −7 1 . 3 × 10 −3 4 . 1 × 10 −3 

Covertype 5 . 3 × 10 −5 5 . 0 × 10 −6 3 . 7 × 10 −3 6 . 2 × 10 −3 

Pendigits 8 . 5 × 10 −6 3 . 9 × 10 −7 4 . 8 × 10 −4 1 . 4 × 10 −3 

Cardio 8 . 9 × 10 −6 1 . 3 × 10 −7 2 . 8 × 10 −4 5 . 3 × 10 −5 

Credit card 7 . 0 × 10 −4 2 . 0 × 10 −5 8 . 9 × 10 −3 4 . 9 × 10 −3 

Ionosphere 7 . 4 × 10 −6 5 . 9 × 10 −8 8 . 6 × 10 −5 6 . 2 × 10 −5 

Optdigit 1 . 1 × 10 −4 4 . 6 × 10 −7 9 . 4 × 10 −5 3 . 3 × 10 −4 

Mean 1 . 3 × 10 −4 3 . 8 × 10 −6 2 . 1 × 10 −3 2 . 4 × 10 −3 
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SHL-AE and MHL-AE). However, it fails to outperform OS-ELM 

hich is extremely fast. This difference in training time is due, in 

art, to the fact that OS-ELM uses a single hidden layer, while DAEF 

ses several. 

Finally, Tables 6 and 7 show an estimation of carbon dioxide 

missions (CO -eq) and energy consumption (kWh) for the ma- 
2 

9 
hine on which the tests were run [37] . As can be seen, in most

ases the consumption and emissions of DAEF are much lower than 

hose of the iterative autoencoders (SHL-AE and MHL-AE) although, 

s expected, higher than those of OS-ELM. 

.4. DAEF in Federated Learning scenarios 

To test the behavior of DAEF in federated environments, several 

xperiments were carried out. The objective was to study its per- 

ormance, training time, and energy consumption as a function of 

he number of nodes. The results were compared with the refer- 

nce method OS-ELM [18] . Given a simulated FL environment with 

 nodes with similar computational resources, and a dataset, it is 

ivided evenly into n partitions of equal size. Each of these nodes 

rain a DAEF network with its local dataset partition, and then 

dds its local model to the global one. To ensure that the parti- 

ions are made up of a sufficiently large number of instances, the 

atasets chosen were the three datasets with the largest number 

f instances: Shuttle, Covertype, and Credit card. Training time was 

easured as the sum of the time needed by the slowest node dur- 

ng local training and the time of all aggregations performed dur- 

ng incremental learning. 

Fig. 6 represents the average F1-score obtained using a different 

umber of nodes (between 1 and 50). As can be seen, the perfor- 

ance of both models remains similar. 

However, a common scenario in FL is one in which, either due 

o the existence of a very high number of nodes, or due to the 

carcity of instances in the dataset, the number of instances per 

ode is low. To test the DAEF and OS-ELM methods in this type 

f scenario, we used all the datasets mentioned in this article 

 Table 1 ). For each of these datasets, the F1-score of both meth- 

ds was measured based on the number of nodes used, in a sim- 

lar way to the previous experiments, but using a sufficiently high 

umber of nodes to cause the number of instances assigned to 

ach node to be low ( ∼50 instances per node). Taking this into ac- 

ount, we have observed that the performance of the DAEF model 

emains stable regardless of the number of data per node, while 

he OS-ELM method tends to generate bad results when the num- 

er of data goes below a certain value (depending on the dataset). 

able 8 shows, for each dataset, the conditions from which the 

erformance of OS-ELM starts to degrade significantly. Except the 

overtype dataset, where none of the models degrades its perfor- 

ance, we can state that, in general, it is remarkable how OS-ELM 
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Fig. 6. Average F1-score of the final global model as a function of the number of nodes used in a federated scenario with DAEF and OS-ELM. 

Fig. 7. Average training time (seconds) required by DAEF and OS-ELM in a federated learning scenario based on the number of nodes used. 

Table 8 

DAEF vs. OS-ELM (F1-score) when the amount of samples per node is extremely 

low. The ”samples per node” column shows the critical point at which the OS- 

ELM model exhibits a significant drop in performance. The ”DAEF” and ”OS-ELM”

columns contain the F1-score reached at that point. 

Dataset Nodes Samples per node DAEF OS-ELM 

Shuttle 1000 ∼50 96.1 86.2 

Covertype - - - - 

Pendigits 100 ∼60 76.2 60.5 

Cardio 100 ∼14 86.1 74.1 

Credit Card 8000 ∼31 89.5 71.2 

Ionosphere 3 ∼67 85.7 53.5 

Optdigit 100 ∼46 75.5 77.9 
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resents difficulties to learn in a federated way when the number 

f instances per node is extremely low (between 14 and 60), while 

AEF maintains its original performance. 

Regarding the training times, Fig. 7 contains the sum of the lo- 

al training time and the aggregation of local models when using 

etween 1 and 50 nodes. In both methods, the time consumed us- 

ng multiple nodes is smaller than the time required for a single 

ode centrally trained on the entire dataset. This is because the 

artitioning of the data set greatly accelerates local training, mak- 

ng most of the time required to complete training associated with 

he aggregation process. Even though the times of the federated 

ersion are better, we can observe a slight increase in training time 
10 
s the number of nodes grows. This is due to the aggregation pro- 

ess performed by the coordinator that, although being a not very 

omplex operation, scales linearly with the number of nodes used. 

ompared to the OS-ELM method, the latter is much faster, largely 

ue to the use of a single hidden layer. Despite this, DAEF is fast 

nough for FL scenarios. 

Finally, Fig. 8 shows the estimated energy consumption (kWh) 

uring the training taking into account all the nodes involved 

again between 1 and 50 nodes). Regarding DAEF’s behavior, in the 

ase of Shuttle, since it is the smaller dataset, the aggregation of 

odels is the process with the greatest weight in total consump- 

ion, which justifies its marked increasing trend concerning the 

umber of nodes. In the case of Covertype and Credit card, con- 

umption shows slower growth in the initial stages because, for 

he same reasons, the computational cost of local training has a 

reater weight. Compared to the OS-ELM method, and under the 

raining times already observed in Fig. 7 , it is natural that the en- 

rgy consumption of DAEF is higher. Again, this does not prevent 

ts use in FL scenarios as it is still a very competitive consumption. 

.5. DAEF vs. Non-IID data 

In horizontal federated learning scenarios, when the training 

ata is not independent and identically distributed (Non-IID), the 

odels usually perform worse than centralized alternatives [38] . 

o demonstrate that DAEF allows obtaining a global model equiva- 
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Fig. 8. Estimated energy consumption (kWh) during the training of DAEF and OS-ELM in a federated scenario based on the number of nodes. 

Table 9 

Average test F1-score ± standard deviation for the Covertype dataset considering 

each class as the anomalous and two types of training: IID centralized and Non-IID 

decentralized. 

Anomalous class IID Centralized Non-IDD Decentralized 

Class 1 75.0 ±3.1 75.2 ±2.6 

Class 2 69.1 ±5.8 67.9 ±4.0 

Class 3 91.5 ±3.2 90.3 ±3.6 

Class 4 86.0 ±4.4 85.2 ±5.1 

Class 5 82.4 ±3.9 81.8 ±4.6 

Class 6 87.2 ±4.3 87.3 ±3.3 

Class 7 79.06 ±5.1 80.2 ±2.3 
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ent to training with all the data in a centralized way also in Non- 

ID scenarios, a test has been carried out. 

For this, the Covertype dataset has been used, which has seven 

ifferent classes. Considering one of them as anomalous and the 

est as normal, a non-IID scenario with no overlap between classes 

as been simulated. Simulating six nodes, each one has been 

rained with the instances corresponding to one of the six classes 

onsidered as normal. After this, the local models have been added, 

iving rise to a global model. The performance of this global model 

as been compared with the performance of a second model 

rained with all the normal data at once in a centralized way (IID). 

his test has been repeated ten times using a 10-fold. As can be 

een in Table 9 , the performance of both types of training was sim- 

lar. 

. Conclusion 

An alternative method to traditional deep autoencoder net- 

orks has been presented. Its distributed, parallel and incremen- 

al learning capability, its low computational cost and its privacy 

reservation make it a valid solution for edge computing and fed- 

rated learning environments. For these scenarios, this paper has 

roposed a possible decentralized architecture to implement DAEF 

sing MQTT as the communication protocol. Moreover, although 

he strengths of the method lie in its usefulness in edge computing 

nd federated learning scenarios, it is also an interesting solution 

or centralized classical machine learning scenarios. 

To prove this claim, DAEF has been compared with traditional 

pproaches as well as with OS-ELM, a very efficient federated au- 

oencoder. In all cases, DAEF shows a fairly competitive perfor- 
11 
ance, with training times and energy consumption much lower 

han traditional iterative approaches. Regarding OS-ELM, its effi- 

iency is hardly surpassable, however, DAEF has shown better per- 

ormance when the number of instances per node is low and also 

llows the use of deep architectures, which positions it as a good 

lternative for edge computing and federated learning scenarios 

hat require more complex models, a context for which there are 

urrently not many solutions. 

As future work, it would be interesting to test the algorithm in 

eal edge computing or federated learning environments using real 

hysical devices that act as independent nodes, instead of simu- 

ating them. Another possible line of work would be to adapt the 

ethod to scenarios in which the distribution of the normal class 

hanges over time (distribution shift), implementing, for example, 

 forgetting mechanism. 
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ppendix A. Parameters used during training 

This appendix contains the values of the parameters finally cho- 

en as the best for each method and dataset, listed in Tables A1 

nd A2 . 
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Table A1 

Parameters used during the experimentation. 

Dataset DAEF Ortho. DAEF Random DAEF Xavier 

Shuttle Arch: [9, 5, 7, 9], λhid : 0.01, λlast : 0.8, μ: outlier IQR Arch: [9, 5, 7, 9], λhid : 0.8, λlast : 0.8, μ: outlier IQR Arch: [9, 5, 7, 9], λhid : 0.8, λlast : 0.3, μ: outlier IQR 

Covertype Arch: [10, 6, 8, 10], λhid : 0.1, λlast : 0.9, μ: P 80 Arch: [10, 6, 8, 10], λhid : 0.05, λlast : 0.1, μ: P 80 Arch: [10, 6, 8, 10], λhid : 0.005, λlast : 0.8, μ: P 80 
Pendigits Arch: [16, 5, 10, 16], λhid : 0.3, λlast : 0.8, μ: P 40 Arch: [16, 5, 10, 16], λhid : 0.01, λlast : 0.8, μ: P 40 Arch: [16, 5, 10, 16], λhid : 0.8, λlast : 0.3, μ: P 60 
Cardio Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.9, μ: P 90 Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.7, μ: P 90 Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.2, μ: P 80 
Credit card Arch: [29, 15, 20, 25, 29], λhid : 0.9, λlast : 0.7, μ: outlier IQR Arch: [29, 15, 20, 25, 29], λhid : 0.005, λlast : 0.9, μ: P 90 Arch: [29, 15, 20, 25, 29], λhid : 0.01, λlast : 0.9, μ: outlier IQR 

Ionosphere Arch: [33, 20, 25, 33], λhid : 0.005, λlast : 0.9, μ: outlier IQR Arch: [33, 20, 25, 33], λhid : 0.01, λlast : 0.8, μ: outlier IQR Arch: [33, 20, 25, 33], λhid : 0.005, λlast : 0.8, μ: P 90 
Optdigit Arch: [62, 20, 30, 40, 50, 62], λhid : 0.01, λlast : 0.8, μ: P 40 Arch: [62, 30, 40, 50, 62], λhid : 0.01, λlast : 0.9, μ: P 50 Arch: [62, 20, 30, 40, 50, 62], λhid : 0.01, λlast : 0.3, μ: P 40 

Table A2 

Parameters used during the experimentation. 

Dataset OS-ELM SHL-AE MHL-AE 

Shuttle Arch: [9, 7, 9], Batch: 100, μ: extreme IQR Arch: [9, 5, 9] Epochs: 100, μ: extreme IQR Arch: [9, 7, 5, 3, 5, 7, 9] Epochs: 200, μ: extreme IQR 

Covertype Arch: [10, 8, 10], Batch: 500, μ: P 80 Arch: [10, 6, 10] Epochs: 10, μ: P 70 Arch: [10, 8, 6, 4, 6, 8, 10] Epochs: 10, μ: P 90 
Pendigits Arch: [16, 12, 16], Batch: 100, μ: P 80 Arch: [16, 8, 16] Epochs: 50, μ: P 80 Arch: [16, 12, 8, 4, 8, 12, 16] Epochs: 100, μ: outlier IQR 

Cardio Arch: [21, 5, 21], Batch: 100, μ: P 80 Arch: [21, 5, 21] Epochs: 100, μ: P 90 Arch: [21, 15, 10, 5, 10, 15, 21] Epochs: 90, μ: P 90 
Credit card Arch: [29, 25, 29], Batch: 100, μ: extreme IQR Arch: [29, 10, 29] Epochs: 25, μ: outlier IQR Arch: [29, 20, 10, 20, 29] Epochs: 10, μ: extreme IQR 

Ionosphere Arch: [33, 20, 33], Batch: 100, μ: extreme IQR Arch: [33, 15, 33] Epochs: 100, μ: outlier IQR Arch: [33, 25, 20, 15, 20, 25, 33] Epochs: 50, μ: extreme IQR 

Optdigit Arch: [62, 20, 62], Batch: 100, μ: P 60 Arch: [62, 30, 62] Epochs: 10, μ: P 80 Arch: [62,50, 40, 30, 20, 30, 40,50, 62] Epochs: 25, μ: P 90 

1
2
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