
Pattern Recognition 143 (2023) 109805

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Fast deep autoencoder for fe derate d learning

David Novoa-Paradela ∗, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas

Universidade da Coruña, CITIC, Campus de Elviña s/n, A Coruña, 15008, Spain

a r t i c l e i n f o

Article history:

Received 12 July 2022

Revised 4 May 2023

Accepted 5 July 2023

Available online 8 July 2023

Keywords:

Deep autoencoder

Anomaly detection

Federated learning

Edge computing

Machine learning

a b s t r a c t

This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF

(Deep AutoEncoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder

network in a non-iterative way, which drastically reduces training time. Training can be performed incre-

mentally, in parallel and distributed and, thanks to its mathematical formulation, the information to be

exchanged does not endanger the privacy of the training data. The method has been evaluated and com-

pared with other state-of-the-art autoencoders, showing interesting results in terms of accuracy, speed

and use of available resources. This makes DAEF a valid method for edge computing and federated learn-

ing, in addition to other classic machine learning scenarios.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

s

h

i

v

h

a

m

l

o

i

p

i

t

t

p

b

n

i

s

d

w

(

d

p

i

n

t

e

t

m

r

s

d

c

t

t

t

i

d

t

m

a

s

p

h

0

. Introduction

As happened at the time with the massive adoption of per-

onal computers, the technological development of recent years

as caused a substantial increase in the number of small comput-

ng machines such as smartphones or Internet of Things (IoT) de-

ices, for both industrial and personal use. Despite their size, they

ave enough computing power to perform tasks that a few years

go were considered unapproachable, such as the training of small

achine learning models, real-time inference or the exchange of

arge amounts of information at high speeds. Due to the abundance

f these devices and the inefficiencies of traditional cloud comput-

ng for applications that demand low latencies, a new computing

aradigm called edge computing has emerged [1] . Edge comput-

ng (EC) moves computing away from data centers to the edge of

he network, bringing cloud computing services and utilities closer

o the end user and their devices. This allows faster information

rocessing and response time, as well as freeing up the network

andwidth.

From a machine learning (ML) point of view, this new tech-

ological scenario is very suitable for the use of federated learn-

ng [2] . Federated learning (FL) is a collaborative machine learning

cheme that allows heterogeneous devices with different private

atasets to work together to train a global model. In addition, this

ork scheme emphasizes the preservation of the privacy of local
∗ Corresponding author.

E-mail addresses: david.novoa@udc.es (D. Novoa-Paradela), oscar.fontenla@udc.es

O. Fontenla-Romero), berta.guijarro@udc.es (B. Guijarro-Berdiñas) .

e

v

i

t

w

ttps://doi.org/10.1016/j.patcog.2023.109805

031-3203/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article
ata collected on each device by implementing mechanisms that

revent possible direct and indirect leaks of their data.

On the other hand, in machine learning, anomaly detection (AD)

s the branch that builds models capable of differentiating between

ormal and anomalous data [3] . A priori, this turns anomaly de-

ection into a classification problem with only two classes. How-

ver, since anomalies tend to occur sporadically, normal data are

he ones that prevail in these scenarios, so, commonly, that models

ust be trained with only normal data. The objective is to learn to

epresent the normal class with high precision to be able to clas-

ify new data as either normal or abnormal.

Due to its high economic cost, in many real scenarios powerful

ata centers are not available, and it is necessary to resort to cloud

omputing services. If the machine learning models are hosted in

he cloud, the occurrence of high latencies can negatively affect

heir purpose. In many real systems, the response time to a de-

ection of an anomaly can be critical, as is the case of failures in

ndustrial systems [4] or network intrusions detection [5] . In ad-

ition, in certain scenarios such as the medical or banking field,

he privacy of the data that is exchanged is essential. The develop-

ent of anomaly detection techniques based on edge computing

nd federated learning may be the solution to reduce these re-

ponse times and infrastructure limitations while preserving data

rivacy.

In this paper, we introduce DAEF (Deep AutoEncoder for Fed-

rated learning), a fast and privacy-preserving deep autoencoder

ery suitable for edge computing and federated learning scenarios,

n addition to classic machine learning environments. Unlike tradi-

ional deep neural networks, its learning method is non-iterative,

hich drastically reduces its training time. Its training can be car-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.patcog.2023.109805
http://www.ScienceDirect.com
http://www.elsevier.com/locate/pr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109805&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:david.novoa@udc.es
mailto:oscar.fontenla@udc.es
mailto:berta.guijarro@udc.es
https://doi.org/10.1016/j.patcog.2023.109805
http://creativecommons.org/licenses/by/4.0/

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

r

w

t

i

d

u

o

w

t

b

c

t

D

c

t

t

2

r

a

i

a

m

b

t

c

w

s

fi

e

p

a

o

w

d

w

t

n

l

v

r

g

p

m

n

l

I

d

o

fi

t

i

i

c

t

p

t

p

e

a

t

Fig. 1. Example of autoencoder neural network architecture.

d

t

s

o

t

e

i

t

a

e

d

t

s

s

p

u

s

t

g

d

p

t

b

l

f

v

i

a

h

a

O

a

m

o

i

s

l

ied out incrementally (aggregation of models), in a distributed

ay (training shared among multiple nodes), and in parallel (at

he node level if it has several cores), and due to its mathemat-

cal formulation the information that is exchanged does not en-

anger the privacy of the training data. All of this makes DAEF a

seful method for edge computing and federated training, capable

f performing tasks such as anomaly detection on large datasets

hile maintaining the performance of traditional (iterative) au-

oencoders.

This document is structured as follows. Section 2 contains a

rief review of the main anomaly detection techniques for edge

omputing, providing an overview of this field. Section 3 describes

he ideas taken as the basis for the development of the proposed

AEF method and Section 4 describes its operation. Section 5 dis-

usses DAEF’s privacy-preserving capabilities. Section 6 illustrates

he performance of DAEF through a comparative study with tradi-

ional autoencoders. Finally, conclusions are drawn in Section 7 .

. Related work

Anomaly detection is a field that has a large number of algo-

ithms that solve the problem of distinguishing between normal

nd anomalous instances in a wide variety of ways [1,6] . Depend-

ng on the assumptions and processes they employ, in traditional

nomaly detection, we can distinguish between five main types of

ethods: probabilistic, distance-based, information theory-based,

oundary-based, and reconstruction-based methods. In general,

hese algorithms are characterized by their high performance when

lassifying new data, however, they do not focus on other aspects

hich from a centralized perspective may seem less important,

uch as data privacy and incremental learning. This makes it dif-

cult to apply many of these classical methods in decentralized

nvironments. For this reason, the strong expansion of edge com-

uting has brought with it a new line of research in the field of

nomaly detection in charge of designing new algorithms capable

f learning in a distributed and, in some cases, incremental way,

hile preserving data privacy.

Due to their good performance, it is common for these anomaly

etection methods to be based on reconstruction (neural net-

orks). In this section, we will distinguish between reconstruc-

ion based methods that use autoencoders [7] and those that do

ot. Among those that do not use autoencoders is DïOT [8] , a self-

earning distributed system for the security monitoring of IoT de-

ices which utilizes a novel anomaly detection approach based on

epresenting network packets as symbols, allowing to use a lan-

uage analysis technique to detect anomalies. Hussain et al. [9] .

resented a deep learning framework to monitor user activities of

ultiple cells and thus detect anomalies using feedforward deep

eural networks. Abdel et al. [10] . introduced a federated stacked

ong short-time memory model to solve multi-task problems using

oT sensors in smart buildings. Zhao et al. [11] propose a multi-task

eep neural network in federated learning to perform simultane-

usly network anomaly detection, VPN traffic recognition, and traf-

c classification. Other authors like Preuveneers et al. [12] propose

he use of blockchain technology to carry out a decentralized reg-

stry of federated model updates. This guarantees the integrity of

ncrementally-learned machine learning models by cryptographi-

ally chaining one machine learning model to the next. These solu-

ions obtain good results, however, they do not emphasize privacy

reservation and their iterative learning can lead to long training

imes.

On the other hand, if we focus on autoencoders [7] , it is also

ossible to find works oriented toward edge computing and/or fed-

rated learning scenarios. Autoencoders (AE) are a type of self-

ssociative neural network whose output layer seeks to reproduce

he data presented to the input layer after having gone through a
2

imensional compression phase. In this way, they manage to ob-

ain a representation of the input data in a space with a dimen-

ion smaller than the original, learning a compact representation

f the data, retaining the important information, and compressing

he redundant one. For this reason, they are widely used for the

laboration of models that are robust to noise, an important qual-

ty in anomaly detection and regression problems. Fig. 1 represents

he traditional architecture of an autoencoder.

Luo and Nagarajan [13] propose to use autoencoders for

nomaly detection in wireless sensor networks, however, each

dge device does not train a local model with its own data. These

evices send their local data to a central cloud node from which

he training of the global model is carried out. In the approach pre-

ented by Ngo et al. [14] , an adaptive hierarchical edge computing

ystem composed of three autoencoder models of increasing com-

lexity is used for IoT anomaly detection.

In the two previous works, as well as in the majority that

ses this type of networks, the autoencoders are trained during

everal iterations to adjust their parameters (weights, bias) using

echniques such as the gradient descent and backpropagation. This

reatly increases training time, especially when dealing with large

atasets or complex networks architectures, which in edge com-

uting scenarios can be critical. However, there is a line of work

hat allows training autoencoders in a non-iterative way. This is

ased on Extreme Learning Machines (ELM) [15] , an alternative

earning algorithm originally formulated for single-hidden layer

eedforward neural networks (SLFNs). This algorithm tends to pro-

ide good generalization performance and an extremely fast learn-

ng speed. Over time, more advanced versions such as MLELM [16] ,

 multilayer version of ELM, or DELM [17] , a deep version of ELM,

ave been developed. For anomaly detection in edge computing

nd federated learning scenarios, Ito et al. [18] propose combining

S-ELM (Online Sequential Extreme Learning Machine) [19] with

utoencoders. This allows each edge device to train its own local

odel and incrementally update it with the results obtained by the

ther devices. Nevertheless, a possible limitation of this solution is

ts autoencoder architecture with only one hidden layer, which in

ome cases may not be sufficient.

In this work we present DAEF, a deep autoencoder with the fol-

owing characteristics:

• The architecture is deep (more than one hidden layer) and

asymmetrical.
• The training process is non-iterative and therefore faster than a

traditional autoencoder.

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

3

a

3

b

t

s

n

a

t

g

a

s

t

m

c

c

m

a

r

p

p

3

A

a

T

t

e

o

a

l

p

a

s

s

T

V

t

f

X

w

n

o

t

p

p

t

c

m

(

w

t

d[

a

i

f

[

c

c

A

A

p

o

3

n

n

b

a

a

p

i

g

t

w

n

t

t

m

X

n

n

d

i

c

[

M

W

w

u

• It can be trained in a distributed and incremental way, which

makes it suitable for edge computing and federated learning

environments.
• It is a privacy-preserving method.

. Background

This section introduces the theoretical foundations and as well

s ideas taken as the basis for the development of DAEF.

.1. Federated learning architectures

Federated Learning systems can be classified into four types

ased on the level of centralization of their architectures [20] : cen-

ralized, hierarchical, regional and decentralized. In centralized FL

ystems, all edge nodes are connected to a central aggregation

ode to update local weights and distribute models. Hierarchical

rchitectures achieve less level of centralization by keeping a cen-

ral node but include several regional aggregation nodes whose

oal is to reduce data exchange and manage local devices. Regional

rchitectures eliminate the central node to eliminate the risk of a

ingle point of failure. Decentralized approaches move all tasks to

he edge so that edge nodes will handle both local training and

odel aggregation.

The most common is to use centralized or semi-centralized ar-

hitectures, in which the aggregator node is a server with high

omputational capabilities. In this work, we want to design a valid

ethod to be used with more decentralized architectures on FL

nd EC scenarios, in which the training and aggregations are car-

ied out in the edge devices without requiring large computational

ower, and exchange of data through the network is secure and

reserves the privacy of local datasets.

.2. Distributed singular value decomposition autoencoder

DSVD-autoencoder (Distributed Singular Value Decomposition

utoencoder) [21] is a hidden single-layer autoencoder network for

nomaly detection, consisting of an encoder followed by a decoder.

he idea of its encoder will serve as the basis for our work and,

herefore, is the one that will be explained in detail below.

Regarding its encoder part, the aim is to learn a vector space

mbedding of the input data X ∈ R
m 0 ×n , where m 0 is the number

f input variables and n the number of data samples, extracting

 meaningful but lower dimensional representation, known as the

atent space. This can be accomplished by a low-rank matrix ap-

roximation of X , which is a minimization problem that tries to

pproximate a given matrix by another one subject to the con-

traint that the approximating matrix has reduced rank [22] . The

ize of this rank is determined by the size of the hidden layer.

hus, being m 1 the number of neurons of this layer, the Singular

alue Decomposition (SVD) of rank- m 1 of matrix X is used to ob-

ain the weights W 1 of this first layer, as follows. Let’s consider the

ull SVD of X , a factorization of the form:

 = USV

T
, (1)

here S ∈ R
m 0 ×n is a diagonal matrix with descending ordered

on-negative values on the diagonal that are the singular values

f X , while U ∈ R
m 0 ×m 0 and V ∈ R

n ×n are orthogonal matrices con-

aining the left and right singular vectors of X . In a low-rank ap-

roximation, the optimal rank- m 1 approximation of X can be com-

uted by taking the first m 1 columns of U and rows of V
T and

runcating S to the first m 1 diagonal elements. The new trun-

ated matrices U m 1
∈ R

m 0 ×m 1 and V
T
m 1

∈ R
m 1 ×n are, respectively,

 1 -dimensional representations of rows (features) and columns

samples) of the input data X . Therefore, U m is used as the

1

3
eights W 1 for the first layer as it contains the m 1 -dimensional

ransformation of the input space (R
m 0 → R

m 1).

Moreover, in a distributed scenario, the SVD of an entire

ata matrix X distributed into P several blocks, that is X =

X
1 | X

2 | · · · | X
P
]
, can be also computed distributively by calculating

t each site p = 1 , . . . , P the local matrices U
p and S p , correspond-

ng to the rank- m 1 SVD of X
p , and then arbitrarily computing the

ollowing operation:

 U m 1
, S m 1

, ∼] = SVD ([U

1 S 1 | . . . | U

P S P]) . (2)

Notice that, as only the local SVD decompositions are ex-

hanged between nodes, from which the original training data

ould not be deduced, data privacy is preserved in this process.

lgorithm 1 shows this process.

lgorithm 1 Distributed singular value decomposition (DSVD).

Input: X =

[
X
1 | X

2 | · · · | X
P
]

∈ IR m 0 ×n , training data split into P

artitions (m 0 variables × n samples); m 1 , rank of the SVD;

Output: U m 1
, S m 1

corresponding to the rank- m 1 decomposition

f X ;

1: function DSVD

2: parallelFor p = 1 . . . P � Each partition in parallel

3:
(
U

p , S p , ∼
)

= SVD (X
p)

4: end parallelFor

5: [U , S , ∼] = SVD

([(
U
1 S 1 | · · · | U

p S p
)])

� Recalculate

6: U m 1
= U [: , 1 : m 1] � Obtain the rank- m 1

7: S m 1
= S [: , 1 : m 1] � Obtain the rank- m 1

8: end function

.3. Regularized One-Layer Neural Network

ROLANN (Regularized One-Layer Neural Networks) [23] is a L2

orm-regularized training method that allows training single-layer

eural networks (without hidden layers) in a non-iterative manner

y minimizing the mean squared error (MSE) measured before the

ctivation function of the output neurons, as described in [24] . In

ddition to not being iterative, the complexity of the method de-

ends on the smaller dimensions that define the size of the train-

ng set (number of samples and number of variables), which to-

ether make the method computationally very efficient. Moreover,

he algorithm can be used in an incremental and distributed way

hile preserving privacy, two possibilities that can be combined as

eeded to obtain, for instance, a distributed learning environment

hat also learns incrementally at each location. These characteris-

ics make the method a perfect fit for federated learning environ-

ents.

Its bases are as follows. Let’s consider the training input data

 ∈ R
m ×n , where m is the number of input variables and n the

umber of data samples. After propagating this data through the

etwork we can obtain, for each data point, the values of the

erivative f ′ and the inverse d̄ of the neural function f . With this

nformation, the weights W of the network can be analytically cal-

ulated as:

 U , S , ∼] = SVD (XF) , (3)

 = X ∗
(
f ′ . ∗ f ′ . ∗ d̄

)
, (4)

 = U ∗ in v
(
S ∗ S + λI

)
∗
(
U

T ∗ M

)
(5)

here F is the diagonal matrix of f , λ is a weight-decay based reg-

larization parameter and I is the identity matrix.

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

l

t

d

c[

M

a

W

A

l

p

(

c

M

1

1

1

1

3

t

v

t

t

c

b

w

a

m

h

4

l

d

t

i

t

m

a

d

i

c

i

t

t

4

i

e

d

D

l

t

h

a

H

w

d

c

b

t

i

4

l

h

d

i

d

p

b

a

o

H

b

l

t

a

i

w

a

t

l

a

m

s

i

p

a

h

o

As mentioned, this method allows incremental and distributed

earning. Suppose M
p , U

p and S p correspond to the knowledge ob-

ained in the current data partition p. If there were a previous k

ata partition that ROLANN was already trained on, this method

an learn from both partitions by calculating:

U
k | p , S k | p , ∼

]
= SVD

(
U

k S k | U
p S p

)
, (6)

k | p = M

k + M
p , (7)

nd finally obtaining the weights as:

 = U
k | p ∗ in v

(
S k | p ∗ S k | p + λI

)
∗
(
U

k | p T ∗ M
k | p

)
, (8)

Algorithm 2 shows this process in detail.

lgorithm 2 ROLANN for incremental/distributed regularized

earning.

Input: X p ∈ IR m ×n , new training data (m variables × n sam-

les); d p ∈ IR n ×1 , desired outputs; f , nonlinear activation function

invertible); λ, regularization hyperparameter; M k , U k , S k , matrices

alculated using previous data (optional);

Output: w ∈ IR m ×1 , optimal weights; M k | p , U k | p , S k | p , updated
 , U , S matrices;

1: function ROLANN

2: X p =

[
ones (1 , n) ;X p

]
� Bias is added

3: d p = f −1
(
d p

)
� Inverse of the neural function

4: f
′ = f

′ (
d p

)
� Derivate of the neural function

5: F p = diag(f
′
) � Diagonal matrix

6: if (M k & U k & S k are empty matrices) then

7:
[
U k | p , S k | p , ∼

]
= SVD (X p ∗ F p) � Economy size

8: M k | p = X p ∗ (f
′
. ∗ f

′
. ∗ d p)

9: else � Combine previous knowledge

0: M k | p = M k + X p ∗ (f
′
. ∗ f

′
. ∗ d p)

11:
[
U p , S p , ∼

]
= SVD (X p ∗ F p)

2:
[
U k | p , S k | p , ∼

]
= SVD ([U k S k | U p S p])

3: end if

14: w = U k | p ∗ in v (S k | p ∗ S k | p + λI) ∗ (U
T
k | p ∗ M k | p)

5: end function

.4. Multilayer Extreme Learning Machine

MLELM (Multilayer Extreme Learning Machine) [16] is a mul-

ilayer neural network that, in each layer, makes use of unsuper-

ised learning to train its parameters, eliminating the need to fine-

uning the network. As a result, the authors obtain a method to

rain multilayer networks in a non-iterative, fast, and mathemati-

ally simple way. Specifically, it obtains the weights at each layer

y using an ELM-AE (Extreme Learning Machine-Autoencoder) [16] ,

hich is an unsupervised single hidden layer autoencoder that, like

ny other, tries to reproduce the input signal at the output. This

echanism has served as an inspiration for the work presented

ere.

. The proposed method

The main objective DAEF (Deep Autoencoder for Federated

earning) is to learn a compressed representation of the normal

ata and, from this reduced space, to reconstruct the inputs at

he output of the autoencoder. These tasks should be carried out

n a distributed way, and incrementally where possible, to apply

he algorithm in edge computing and federated learning environ-

ents. To achieve this, DAEF employs an asymmetric autoencoder
4
rchitecture as shown in Fig. 2 . A first single-layer encoder re-

uces the dimensionality of the input data and it is adjusted us-

ng a distributed SVD process. It is followed by a multi-layer de-

oder to reconstruct the input signal at the output which is trained

n layer-by-layer basis through a non-iterative process. This sec-

ion presents in detail the steps followed by the method and its

heoretical foundations.

.1. The encoder

Given an input dataset X ∈ R
m 0 ×n , where m 0 is the number of

nput variables and n the number of data samples, the goal of the

ncoder is to transform X into a vector space embedding of lower

imension. This will be done using the Distributed Singular Value

ecomposition (Algorithm 1). Therefore, the weights of the first

ayer W 1 = U 1 are obtained collaboratively across all node loca-

ions into which data is partitioned. Finally, the outputs of the first

idden layer of the network can be calculated, at each location p,

s:

p
1

= f 1

(
W

T
1 X

p
)
; ∀ p = 1 , . . . , P, (9)

here f 1 is the activation function of the first hidden layer.

It has been decided to use a single-layer encoder, i.e., a single

imensionality reduction using SVD, as chaining several SVD pro-

esses sequentially and progressively (one per layer) did not show

etter performance. Since the encoder consists of a single layer and

he decoder of several layers, the architecture of this autoencoder

s asymmetrical, as can be seen in Fig. 2 .

.2. The decoder

In the decoder, the goal is to reconstruct the input from the

ow-dimensional representation provided by the output of the first

idden layer H 1 (see Eq. 9). In order to be able to work with large

atasets in a fast and efficient way, we propose to apply a non-

terative learning method to obtain the decoder parameters.

Similar to ELM-AE [16] , DAEF employs an auxiliary network to

etermine the parameters of each layer of the decoder in an unsu-

ervised way, layer by layer. In the DAEF decoder, the weights and

ias of a given (l + 1) th hidden layer will be calculated with an

uxiliary network, as will be explained. Finally, the output matrix

f (l + 1) th layer (H l+1) can be obtained as:

 l+1 = f l+1

(
W

T
l+1 H l + b l+1 1

T
)

(10)

eing f l+1 the activation function, H l the output matrix of the lth

ayer with m l neurons, W l+1 ∈ R
m l ×m l+1 and b l+1 ∈ R

m l+1 ×1 the es-

imated weight matrix and bias vector of the layer, respectively,

nd 1 a column vector of n ones.

The use of the already mentioned auxiliary network is shown

n the top right of Fig. 2 , where W l+1 is obtained as the output

eights of this network. As can be seen, the auxiliary network is

 single-hidden layer sparse autoencoder. Regarding its structure,

o calculate the parameters between the l and the (l + 1) hidden

ayers of the principal network, the number of neurons in the input

nd the output layers of the auxiliary network will be identical to

 l , the number of neurons of its hidden layer will be m l+1 , and

f l+1 will be used as activation function.

The training of this auxiliary network can be divided into two

tages: the training of the first half of the network, in which the

nput of the network H aux 0 (which is the output H l of the DAEF’s

rincipal network lth layer) is transformed at the hidden layer; and

 second stage, in which, using the data H aux 1 coming from the

idden layer, the original input is reconstructed at the output H aux 2

f the auxiliary network.

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Fig. 2. The asymmetric deep autoencoder DAEF.

t

i

l

H

v

p

w

i

(

H

t

o

t

t

c

R

f

4

p

e

c

n

i

c

w

The weights W aux 1 and the bias b aux 1 of the first stage are ini-

ialized and fixed (the different initialization schemes will be stud-

ed in Section 6.2). Subsequently, the H aux 1 output of the hidden

ayer can be calculated as:

 aux 1 = f

(
W

T
aux 1

H aux 0 + b aux 1 1
T
)
, (11)

In the second stage, the weights W aux 2 are obtained in a super-

ised way using ROLANN (Algorithm 2). Considering that each out-

ut of the neural network depends solely on a set of independent

eights, this second stage can be computed in parallel. Once this

s calculated, the weights between the principal network’s lth and

l + 1) th layers can be obtained as W l+1 = W
T
aux 2

, and the output

 l+1 can be calculated using Eq. 10 .

This process will be repeated for each of the hidden layers of

he decoder, using the outputs of one layer to calculate the weights

f the next one, until reaching the last layer. Finally, as the output

arget values for the DAEF’s last layer are known (the same as in

he DAEF’s input layer), the weights of the last layer can be cal-

ulated directly in a supervised and distributed way using again
5
OLANN (Algorithm 2). We can summarize the DAEF training as

ollows:

1. Dimensionality reduction in the first layer using distributed

SVD (encoder).

2. Unsupervised/supervised training, layer by layer, using an aux-

iliary network in which ROLANN is used as a regularization

method (decoder).

3. Supervised training of the last layer using ROLANN (decoder).

.3. Incremental, distributed, and parallel learning

DAEF performs various operations that can be computed in a

arallel way if the node (device) on which it is executed has sev-

ral cores. These operations are the SVD computation of the en-

oder (the dataset can be divided and the partial SVDs concate-

ated and recalculated) and the ROLANN regularization processes

n the decoder (the weights concerning the output layer can be

alculated in parallel).

In addition to this, the trained DAEF models can be updated

hen new data arrives thanks to their incremental learning capac-

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Fig. 3. DAEF networks collaborating through an MQTT protocol.

i

t

i

i

t

t

l

n

m

s

w

n

w

u

l

l

c

t

c

g

w

b

a

i

o

a

s

m

b

c

c

D

n

i

t

t

w

c

m

w

4

p

o

t

w

c

a

F

l

p

A

L

λ

a

a

i

t

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

u

c

a

t

w

w

i

c

p

C

t

ty. A node can add knowledge to its model without having to re-

rain from scratch, incorporating the new knowledge quickly and

nexpensively. A DAEF network trained with a data partition can

ncorporate the knowledge obtained by a second DAEF network

rained with a different partition if the latter shares the U m 1
ma-

rices of its encoder [21] , and the M k , U k , and S k matrices of each

ayer of its decoder [23] . By adding this information, the first DAEF

etwork can recalculate its weights and will have learned incre-

entally.

If we are faced with a multi-node environment, such as an IoT

cenario, where each node has a partition of the global dataset,

e can take advantage of the incremental capacity of the DAEF

etwork to carry out a distributed training. Each node (device)

ould train a DAEF autoencoder network with its local data, and

sing a protocol such as MQTT [25] , these nodes can publish their

ocal model information through a broker to share their particu-

ar knowledge with the rest of the devices. The broker will be in

harge of sending this information to the nodes that are subscribed

o the updates, which will be able to aggregate the information re-

eived to their model.

We consider the local dataset of each node as a partition of a

lobal dataset, so all the nodes must use a DAEF autoencoder net-

ork with a similar architecture. For the model information shared

etween nodes to be compatible with each other, the nodes must

lso use the same weights generated by the Xavier Glorot initial-

zation scheme and the same bias. At the start of the training, one

f the nodes must define the architecture, generate the weights

nd bias and publish them through the broker. Fig. 3 shows this

cenario using the MQTT protocol.

The private data of each node will be protected since the infor-

ation that is sent through the broker is another. The data shared

y each DAEF model (node) will be the U m 1
matrices of the en-

oder, and the M k , U k , and S k matrices of each layer of the de-

oder, from which the original data are not recoverable [21,23] . The

AEF network matrices mentioned above are the only information

eeded to perform the federated learning, so if desired, the orig-

nal dataset of each node can be removed to save space. Storing

hese matrices is not a problem since their size is independent of

he number of instances of the original dataset.

Note that DAEF could also be used in a centralized scenario in

hich the information from the local models would be sent to a

entral node, which would be in charge of aggregating the infor-

ation, obtaining the global model, and sharing it with the net-

ork nodes.

.4. Pseudocode

Algorithm 3 contains the pseudocode for the DAEF training

hase for one node with t available cores. The processes carried
6
ut in the encoder are described between lines 5 and 12. In line 7

he dimensionality of the data is reduced using SVD, in a parallel

ay splitting the local dataset into t partitions, obtaining the en-

oder weights and, in line 9, the encoder output. Between lines 13

nd 20, the hidden layers of the decoder are trained one by one.

or this, Algorithm 4 is used in line 15. In lines 21 and 22, the last

ayer of the decoder is trained directly using ROLANN also using

arallelization.

lgorithm 3 DAEF training phase.

Input: X ∈ IR m 0 ×n , training dataset (m 0 variables × n samples);

 , number of layers; a , list of number of neurons per layer; λhid and

last , regularization hyperparameters of the hidden and last layers;

f hid and f last , activation functions of the hidden and last layers; t ,

vailable cores.

Output: Model, trained model composed of the weights W list

nd bias b list , the training output H L , and the matrix list needed for

ncremental learning, i.e., U 1 and S 1 matrices of the encoder and

he M l , U l , and S l matrices of each layer of the decoder.

1: function DAEF_train

2: W list = ∅ � Layer weight list

3: H list = ∅ � Layer output list

4: matrices list = ∅ � matrix list for incremental learning

5: � Learning the encoder

6: X part it ioned = Split X in t partitions

7: U 1 , S 1 = DSVD (X part it ioned , a [1]) � a[1], latent space

dimension

8: W 1 = U 1 � Weights of the encoder

9: H 1 = f hid ((W 1)
T X)

0: Append W 1 to W list

11: Append H 1 to H list

2: Append [U 1 , S 1] to matrix list
3: � Learning the decoder

4: for l = 2 .L − 1 do � L − 1 , decoder hidden layers

5: W l , b l , H l , M l , U l , S l = T LD (H list [l − 1] , a [l] , λhid , f hid , t) �

Call to Algorithm 2

6: Append W l to W list

17: Append b l to b list
18: Append H l to H list

9: Append [M l , U l , S l] to matrix list
0: end for

1: pool = Pool (t) � Pool of t processes

2: W L , b L , M L , U L , S L = pool.map(ROLANN, (H list [L −
1] , X , λlast , [])) � Parallel training of the last layer with

ROLANN

3: H L = f last ((W L)
T H list [l − 1])

4: Append W L to W list

5: Append b L to b list
6: Append [M L , U L , S L] to matrix list
27: Model = W list , b list , H L , matrix list
8: end function

Algorithm 4 contains the pseudocode of the auxiliary function

sed in Algorithm 3 to train the different hidden layers of the de-

oder using an auxiliary autoencoder. In lines 2 and 3, the weights

nd bias are generated respectively, while in line 4 the output of

he hidden layer is computed. Between lines 5 and 7, the decoder

eights and the output are calculated using ROLANN. Since the

eights concerning each neuron of the output layer are calculated

ndependently, the t available cores will be used to perform these

alculations in parallel.

Algorithm 5 contains the pseudocode for the DAEF prediction

hase where the trained network will reconstruct a test sample.

omparing the input value and its reconstruction after passing

hrough the network (reconstruction error), it could be classified

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Algorithm 4 Train one layer of the decoder (TLD).

Input: H l−1 ∈ IR m l ×n output of principal network ′ s layer l − 1

used as training data for this algorithm; m l , number of neurons of

the layer l; λhid , regularization hyperparameter of the hidden layer;

f hid , activation function of the layer; t , available cores;

Output: W l , weights of the layer l; b l bias of the layer; H l ,

output of the layer l; and a list with the matrices needed for in-

cremental learning, [M , U , S];

1: function TLD

2: W aux 1 = Xa v ier(m l−1 , m l) � Initial weights

3: b aux 1 = Random (m l , 1) � Initial bias

4: H aux 1 = f hid (W
T
aux 1

H l−1 + b aux 1 1
T)

5: pool = Pool (t) � Pool of t processes

6: W l , b l , M l , U l , S l = pool.map(ROLANN, (H aux 1 , H l−1 , λhid , [])) �

Parallel training of the layer

7: H l = f hid (W
T
l
H l−1 + b l 1

T)

8: end function

Algorithm 5 DAEF prediction phase.

Input: X ∈ IR m 0 ×n , test dataset (m 0 variables × n samples);

W list , weights of the trained network; b list , bias of the trained net-

work; f hid and f last , activation functions of the hidden and last lay-

ers; a , list of number of neurons per layer;

Output: prediction , reconstruction of the input X after passing

through the network;

1: function DAEF_predict

2: H 1 = f hid ((W list [1])
T X)

3: for l = 2 .length (W list) − 1 do

4: H l = f hid ((W list [l])
T H l−1 + b list [l − 1] 1 T)

5: end for

6: prediction = f last ((W list [l])
T H l + b list [l] 1

T)

7: end function

a

g

5

o

t

t

t

n

5

t

a

l

b

g

b

U

l

c

t

c

t

t

o

p

p

5

p

t

t

f

f

c

v

n

w

f

t

[

i

n

a

a

w

a

a

6

t

t

i

6

t

a

p

t

t

a

E

a

w

e

f

a

6

t

[

w

v

w

t

f

s normal or anomalous. The complete implementation of the al-

orithm is available in GitHub 1 .

. Privacy treatment

In distributed environments (EC and FL), preserving the privacy

f data at each node is a critical aspect, even more so if they con-

ain sensitive information, such as personal data. Due to this, in

his section, we will analyze the privacy preservation capacity of

he DAEF method. To do so we will consider two main threat sce-

arios [26] .

.1. Preventing direct leakage

In classic environments, it is common for the original data from

he nodes to be sent to other nodes or to a central server, for ex-

mple, to be analyzed, pre-processed, or to build a global machine

earning model. This puts the privacy of the data at risk, which can

e used maliciously and not to carry out the original tasks.

In the case of the DAEF method, the data shared for training the

lobal model is not the original data (X). Regarding the encoder

lock, each node p, using its local data (X
p), computes an SVD =

SV
p and the only information shared to carry out the federated

earning is the product U
p S p . Since the matrix V

p is neither cal-

ulated nor sent, the original data X
p cannot be retrieved through

he factorization expression described in Eq. 1 . Regarding the de-

oder block, the federated learning is carried out by interchanging
1 https://github.com/DavidNovoaP/DAEF

c

t

o

7
he M
p , U

p , and S p matrices obtained through ROLANN regulariza-

ion, so the original data is also kept safe. Once the global model is

btained, it is distributed to each of the local nodes p to be used

rivately, so there is also no direct data leakage in the operation

hase.

.2. Preventing indirect leakage

Another possible scenario is one in which a malicious node im-

ersonates a real participant of the distributed learning protocol

o try to obtain the private data of other nodes. Due to the na-

ure, when we train models in a distributed way, it is common

or nodes to share their calculations and parameters. Using this in-

ormation, several authors have proposed specific methods that in

ertain cases can obtain the original training data, putting the pri-

acy of the nodes at risk. The model inversion attack [27] , once the

etwork has been trained, follows the gradient used to adjust the

eights of the network and obtains a reverse-engineered example

or all represented classes in the model. Another way to address

he problem is to train a Generative Adversarial Network (GAN)

28] in parallel to the attacked network using its gradients, so that

t manages to extract information about classes of data that it does

ot know.

In the case of DAEF, the method is not iterative, so this type of

ttack is not a problem. The model parameters are calculated in

 single step, so it is not possible to train GAN networks in this

ay. In addition, as we have seen previously, stochastic gradients

re not shared (they are not used), so model inversion attacks are

lso not possible.

. Evaluation

Although autoencoder networks have several uses, the main

ask for which DAEF has been designed is anomaly detection. In

his section, several experiments are presented to show its behav-

or in this kind of scenario.

.1. Experimental setup

DAEF emerges as a fast alternative to perform anomaly detec-

ion in environments where time can be a critical factor, such

s edge computing and federated learning scenarios. Iterative ap-

roaches achieve high accuracy in anomaly detection, but in cer-

ain cases, their long training times may make them unsuitable for

hese environments. This study aims to analyze the performance

chieved by DAEF compared to the adaptation of Online Sequential

xtreme Learning Machine (OS-ELM) for federated learning [18] ,

nother non-iterative approach that uses a single hidden layer, as

ell as iterative single hidden layer autoencoders (SHL-AE) and it-

rative multiple hidden layer autoencoders (MHL-AE), models that

ollow a classical approach based on iterative learning. For this,

 machine equipped with an Intel Core i7-11700k processor and

4GB of RAM has been used.

The algorithms were evaluated over seven datasets available in

he UCI Machine Learning Repository [29] , Kaggle [30] , and ODDS

31] . Their characteristics are summarized in Table 1 . All datasets

ere normalized using standard scalers with zero mean and unit

ariance. To assess the performance of each algorithm, the data

ere split using a 10-fold cross-validation. The algorithms were

rained using only normal data, while the test phase included data

rom both classes (50% normal and 50% anomalies).

Given an autoencoder network trained with normal data, the

lassification of new instances can be carried out by comparing

heir value at the network input with the values obtained at the

utput. The difference is known as the reconstruction error, and

https://github.com/DavidNovoaP/DAEF

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Table 1

Characteristics of the datasets used. All represent anomaly detection data, except

Covertype whose class 4 was taken as anomalous.

Dataset Samples Anomalies Dimension

Shuttle 49,097 3511 (7.2%) 9

Covertype 581,012 2747 (1.0%) 10

Pendigits 6870 156 (2.3%) 16

Cardio 1831 176 (9.6%) 21

Credit card 284,807 492 (0.2%) 29

Ionosphere 351 126 (35.9%) 33

Optdigit 5216 64 (2.9%) 62

Table 2

Average test F1-score ± standard deviation for the different datasets.

Dataset DAEF Ortho. DAEF Random DAEF Xavier

Shuttle 94.1 ±4.9 93.9 ±5.1 96.0 ±3.5

Covertype 81.4 ±6.3 80.1 ±9.7 86.0 ±4.4

Pendigits 70.2 ±9.3 70.6 ±12.1 76.3 ±5.5

Cardio 86.4 ±2.6 85.2 ±2.2 85.5 ±3.6

Credit card 89.1 ±1.8 87.6 ±2.3 90.0 ±0.6

Ionosphere 93.7 ±3.1 93.4 ±4.1 94.1 ±4.1

Optdigit 76.0 ±2.3 75.2 ±6.1 77.0 ±4.0

s

s

r

s

a

r

l

t

t

I

w

w

a

o

e

p

o

i

t

F

r

s

6

f

T

t

a

l

s

t

h

Table 3

Average training time (seconds) ± standard deviation for the different datasets.

Dataset DAEF Ortho. DAEF Random DAEF Xavier

Shuttle 1.8 ±0.1 1.8 ±0.1 1.8 ±0.1

Covertype 4.2 ±0.0 4.3 ±0.0 4.2 ±0.0

Pendigits 1.8 ±0.0 1.8 ±0.0 1.8 ±0.0

Cardio 1.9 ±0.0 1.9 ±0.0 1.9 ±0.0

Credit card 36.3 ±0.4 36.4 ±0.3 36.3 ±0.3

Ionosphere 1.9 ±0.0 1.8 ±0.0 1.9 ±0.0

Optdigit 3.4 ±0.0 3.4 ±0.0 3.6 ±0.1

Table 4

Average test F1-score ± standard deviation for the different datasets.

Dataset DAEF OS-ELM SHL-AE MHL-AE

Shuttle 96.0 ±3.5 97.9 ±0.3 98.0 ±1.1 98.4 ±1.0

Covertype 86.0 ±4.4 85.8 ±0.2 72.0 ±4.9 81.5 ±13.3

Pendigits 76.3 ±5.5 88.2 ±2.0 84.2 ±4.4 86.3 ±6.1

Cardio 85.5 ±3.6 88.1 ±1.3 87.8 ±1.7 87.2 ±2.7

Credit card 90.0 ±0.6 90.7 ±0.5 91.0 ±0.6 89.0 ±1.6

Ionosphere 94.1 ±4.1 96.7 ±3.2 91.9 ±2.4 94.0 ±2.3

Optdigit 77.0 ±4.0 81.7 ±0.8 83.1 ±7.7 88.9 ±3.7

t

g

h

U

t

i

i

T

e

b

l

s

v

n

t

r

b

i

6

(

S

m

w

a

o

a

e

b

d

t

a

A

g

5

t

c

c

s

ince anomalies are very rare in these scenarios, instances corre-

ponding to the normal class will have a low reconstruction er-

or, while anomalies will emit a much higher error. The recon-

truction errors are calculated using the MSE (Mean Squared Error)

nd, after training the network, it is necessary to establish an er-

or threshold above which input samples are classified as anoma-

ies. There are many alternatives, a popular one being to define this

hreshold based on the interquartile range (IQR) of the reconstruc-

ion errors of the training examples, i.e.:

QR = Q 3 − Q 1 (12)

here Q 1 and Q 3 represent the first and the third quartiles. In this

ork, we define two error thresholds, one for outliers (outlier IQR)

nd another for extreme outliers (extreme IQR):

utlier IQR = Q 3 + 1 . 5 × IQR (13)

xtreme IQR = Q 3 + 3 × IQR (14)

In addition, we also considered other thresholds using fixed

ercentiles (Q 95 , Q 90 , Q 80 , Q 70 , Q 60 and Q 50).

Considering the anomalous class as the positive one, and based

n the number of true positives (TP), true negatives (TN), false pos-

tives (FP), and false negatives (FN), to measure the performance of

he algorithms the F1-score metric was used:

 1 = 2
precision · recall
precision + recall

=

2 × T P

2 × T P + F P + F N

(15)

Finally, the combinations of parameters chosen for each algo-

ithm, as well as the error thresholds, were selected using a grid

earch and are available in Appendix A (Tables A1 and A2).

.2. Choosing the best initialization for DAEF

Firstly, the effects of using different types of initialization

or the weights and biases of the DAEF network were studied.

able 2 shows the results obtained by the DAEF model using three

ypes of initializations: orthogonal, random, and Xavier Glorot. In

ll cases, we have used sigmoid activation functions in the hidden

ayers and linear functions in the outputs since we want to recon-

truct in the output any real input data to the network.

As can be seen, the performance of DAEF is very similar for

he three types of initializations, with Xavier Glorot being slightly

igher in some cases, such as the Covertype dataset. To validate
8

his statement, statistical tests were carried out to compare the

lobal performance of the three approaches. The chosen procedure

as been Kruskal-Wallis and Tukey’s HSD as a post hoc test [32,33] .

sing a significance level of 5% in both cases and the F1-scores of

he algorithms for the different datasets, the Xavier Glorot initial-

zation and the orthogonal initialization rank first, while random

nitialization is in a lower group, represented graphically by Fig. 4 .

his allows us to affirm that the performance of the DAEF model is

quivalent using Xavier Glorot and orthogonal initializations, these

eing slightly better than the totally random one. This could be re-

ated to the difficulty of sigmoid activation functions to deal with

mall random weights [34]

Table 3 shows the mean training time of each algorithm (lower

alues than 0.05 have been represented as 0.0). Test times have

ot been included in this work because they are very low for all

he algorithms. As can be seen, the training times are very similar

egardless of the initialization used. Due to this, and his slightly

etter performance, Xavier Glorot will be considered the default

nitialization for DAEF and will be used in the remaining tests.

.3. DAEF vs. other Anomaly Detection algorithms

In this section, we compare the performance obtained by DAEF

Xavier Glorot initialization) and the algorithms mentioned in

ection 6.1 (OS-ELM, SHL-AE, and MHL-AE). Since the goal is to

easure only their ability to detect anomalies, DAEF and OS-ELM

ere executed using a single node. Notice that running the OS-ELM

daptation for FL [18] using a single node is equivalent to using the

riginal OS-ELM algorithm [19] .

Table 4 summarizes the mean test results. Again, Kruskal-Wallis

nd Tukey’s HSD tests (significance level of 5%) have been used for

ach dataset to highlight in bold the models that rank first. As can

e seen, the DAEF algorithm achieves good performance for most

atasets, matching the performance of the best models in four of

he seven datasets (Covertype, Cardio, Credit card, and Ionosphere),

nd getting a very close performance on datasets such as Shuttle.

 Nemenyi statistical test [35,36] was carried out to compare the

lobal performance of the algorithms. Using a significance level of

% and the F1-scores of the algorithms for the different datasets,

he four methods rank in the same position, represented graphi-

ally by Fig. 5 .

Table 5 shows the mean training time of each algorithm. Be-

ause DAEF training is non-iterative, its training times are much

horter than those required by traditional iterative autoencoders

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Fig. 4. Graphical representation of Nemenyi test with α = 0.05. The critical distance (CD) obtained was 1.25.

Fig. 5. Graphical representation of the Nemenyi test with α = 0.05. The critical distance (CD) obtained was 1.77.

Table 5

Average training time (seconds) ± standard deviation for the different datasets.

Dataset DAEF OS-ELM SHL-AE MHL-AE

Shuttle 1.8 ±0.1 0.0 ±0.0 53.9 ±1.0 157.8 ±1.7

Covertype 4.2 ±0.0 0.2 ±0.0 157.1 ±1.3 239.6 ±2.3

Pendigits 1.8 ±0.0 0.0 ±0.0 19.6 ± 2.2 58.6 ±4.0

Cardio 1.9 ±0.0 0.0 ±0.0 11.9 ±0.1 2.4 ±0.1

Credit card 36.3 ±0.3 0.9 ±0.0 387.2 ±6.2 194.7 ±3.6

Ionosphere 1.9 ±0.0 0.0 ±0.0 4.0 ±0.1 2.59 ±0.2

Optdigit 3.6 ±0.1 0.0 ±0.0 3.9 ±0.4 13.04 ±0.4

Table 6

Estimated emissions (CO 2 -eq) for the different datasets.

Dataset DAEF OS-ELM SHL-AE MHL-AE

Shuttle 1 . 4 × 10 −6 2 . 8 × 10 −7 7 . 9 × 10 −4 2 . 5 × 10 −3

Covertype 3 . 3 × 10 −5 3 . 0 × 10 −6 2 . 2 × 10 −3 3 . 7 × 10 −3

Pendigits 5 . 0 × 10 −6 2 . 3 × 10 −7 2 . 9 × 10 −4 8 . 5 × 10 −4

Cardio 5 . 3 × 10 −6 7 . 9 × 10 −8 1 . 7 × 10 −4 3 . 1 × 10 −5

Credit card 4 . 2 × 10 −4 1 . 2 × 10 −5 5 . 3 × 10 −3 2 . 9 × 10 −3

Ionosphere 4 . 4 × 10 −6 3 . 5 × 10 −8 5 . 1 × 10 −5 3 . 7 × 10 −5

Optdigit 6 . 9 × 10 −5 2 . 7 × 10 −7 5 . 6 × 10 −5 1 . 9 × 10 −4

Mean 7 . 7 × 10 −5 2 . 3 × 10 −6 1 . 3 × 10 −3 1 . 5 × 10 −3

Table 7

Estimated energy consumed (kWh) for the different datasets.

Dataset DAEF OS-ELM SHL-AE MHL-AE

Shuttle 1 . 7 × 10 −6 4 . 7 × 10 −7 1 . 3 × 10 −3 4 . 1 × 10 −3

Covertype 5 . 3 × 10 −5 5 . 0 × 10 −6 3 . 7 × 10 −3 6 . 2 × 10 −3

Pendigits 8 . 5 × 10 −6 3 . 9 × 10 −7 4 . 8 × 10 −4 1 . 4 × 10 −3

Cardio 8 . 9 × 10 −6 1 . 3 × 10 −7 2 . 8 × 10 −4 5 . 3 × 10 −5

Credit card 7 . 0 × 10 −4 2 . 0 × 10 −5 8 . 9 × 10 −3 4 . 9 × 10 −3

Ionosphere 7 . 4 × 10 −6 5 . 9 × 10 −8 8 . 6 × 10 −5 6 . 2 × 10 −5

Optdigit 1 . 1 × 10 −4 4 . 6 × 10 −7 9 . 4 × 10 −5 3 . 3 × 10 −4

Mean 1 . 3 × 10 −4 3 . 8 × 10 −6 2 . 1 × 10 −3 2 . 4 × 10 −3

(

w

p

u

e

c

c

t

a

6

e

f

t

e

n

d

t

a

t

d

o

m

i

i

n

m

t

s

n

o

(

o

i

n

e

c

r

t

b

T

p

C

m

SHL-AE and MHL-AE). However, it fails to outperform OS-ELM

hich is extremely fast. This difference in training time is due, in

art, to the fact that OS-ELM uses a single hidden layer, while DAEF

ses several.

Finally, Tables 6 and 7 show an estimation of carbon dioxide

missions (CO -eq) and energy consumption (kWh) for the ma-
2

9
hine on which the tests were run [37] . As can be seen, in most

ases the consumption and emissions of DAEF are much lower than

hose of the iterative autoencoders (SHL-AE and MHL-AE) although,

s expected, higher than those of OS-ELM.

.4. DAEF in Federated Learning scenarios

To test the behavior of DAEF in federated environments, several

xperiments were carried out. The objective was to study its per-

ormance, training time, and energy consumption as a function of

he number of nodes. The results were compared with the refer-

nce method OS-ELM [18] . Given a simulated FL environment with

 nodes with similar computational resources, and a dataset, it is

ivided evenly into n partitions of equal size. Each of these nodes

rain a DAEF network with its local dataset partition, and then

dds its local model to the global one. To ensure that the parti-

ions are made up of a sufficiently large number of instances, the

atasets chosen were the three datasets with the largest number

f instances: Shuttle, Covertype, and Credit card. Training time was

easured as the sum of the time needed by the slowest node dur-

ng local training and the time of all aggregations performed dur-

ng incremental learning.

Fig. 6 represents the average F1-score obtained using a different

umber of nodes (between 1 and 50). As can be seen, the perfor-

ance of both models remains similar.

However, a common scenario in FL is one in which, either due

o the existence of a very high number of nodes, or due to the

carcity of instances in the dataset, the number of instances per

ode is low. To test the DAEF and OS-ELM methods in this type

f scenario, we used all the datasets mentioned in this article

 Table 1). For each of these datasets, the F1-score of both meth-

ds was measured based on the number of nodes used, in a sim-

lar way to the previous experiments, but using a sufficiently high

umber of nodes to cause the number of instances assigned to

ach node to be low (∼50 instances per node). Taking this into ac-

ount, we have observed that the performance of the DAEF model

emains stable regardless of the number of data per node, while

he OS-ELM method tends to generate bad results when the num-

er of data goes below a certain value (depending on the dataset).

able 8 shows, for each dataset, the conditions from which the

erformance of OS-ELM starts to degrade significantly. Except the

overtype dataset, where none of the models degrades its perfor-

ance, we can state that, in general, it is remarkable how OS-ELM

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Fig. 6. Average F1-score of the final global model as a function of the number of nodes used in a federated scenario with DAEF and OS-ELM.

Fig. 7. Average training time (seconds) required by DAEF and OS-ELM in a federated learning scenario based on the number of nodes used.

Table 8

DAEF vs. OS-ELM (F1-score) when the amount of samples per node is extremely

low. The ”samples per node” column shows the critical point at which the OS-

ELM model exhibits a significant drop in performance. The ”DAEF” and ”OS-ELM”

columns contain the F1-score reached at that point.

Dataset Nodes Samples per node DAEF OS-ELM

Shuttle 1000 ∼50 96.1 86.2

Covertype - - - -

Pendigits 100 ∼60 76.2 60.5

Cardio 100 ∼14 86.1 74.1

Credit Card 8000 ∼31 89.5 71.2

Ionosphere 3 ∼67 85.7 53.5

Optdigit 100 ∼46 75.5 77.9

p

o

D

c

b

i

n

p

i

t

v

a

c

c

C

d

e

d

(

c

m

t

n

s

t

g

t

e

i

6

d

m

T

resents difficulties to learn in a federated way when the number

f instances per node is extremely low (between 14 and 60), while

AEF maintains its original performance.

Regarding the training times, Fig. 7 contains the sum of the lo-

al training time and the aggregation of local models when using

etween 1 and 50 nodes. In both methods, the time consumed us-

ng multiple nodes is smaller than the time required for a single

ode centrally trained on the entire dataset. This is because the

artitioning of the data set greatly accelerates local training, mak-

ng most of the time required to complete training associated with

he aggregation process. Even though the times of the federated

ersion are better, we can observe a slight increase in training time
10
s the number of nodes grows. This is due to the aggregation pro-

ess performed by the coordinator that, although being a not very

omplex operation, scales linearly with the number of nodes used.

ompared to the OS-ELM method, the latter is much faster, largely

ue to the use of a single hidden layer. Despite this, DAEF is fast

nough for FL scenarios.

Finally, Fig. 8 shows the estimated energy consumption (kWh)

uring the training taking into account all the nodes involved

again between 1 and 50 nodes). Regarding DAEF’s behavior, in the

ase of Shuttle, since it is the smaller dataset, the aggregation of

odels is the process with the greatest weight in total consump-

ion, which justifies its marked increasing trend concerning the

umber of nodes. In the case of Covertype and Credit card, con-

umption shows slower growth in the initial stages because, for

he same reasons, the computational cost of local training has a

reater weight. Compared to the OS-ELM method, and under the

raining times already observed in Fig. 7 , it is natural that the en-

rgy consumption of DAEF is higher. Again, this does not prevent

ts use in FL scenarios as it is still a very competitive consumption.

.5. DAEF vs. Non-IID data

In horizontal federated learning scenarios, when the training

ata is not independent and identically distributed (Non-IID), the

odels usually perform worse than centralized alternatives [38] .

o demonstrate that DAEF allows obtaining a global model equiva-

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

Fig. 8. Estimated energy consumption (kWh) during the training of DAEF and OS-ELM in a federated scenario based on the number of nodes.

Table 9

Average test F1-score ± standard deviation for the Covertype dataset considering

each class as the anomalous and two types of training: IID centralized and Non-IID

decentralized.

Anomalous class IID Centralized Non-IDD Decentralized

Class 1 75.0 ±3.1 75.2 ±2.6

Class 2 69.1 ±5.8 67.9 ±4.0

Class 3 91.5 ±3.2 90.3 ±3.6

Class 4 86.0 ±4.4 85.2 ±5.1

Class 5 82.4 ±3.9 81.8 ±4.6

Class 6 87.2 ±4.3 87.3 ±3.3

Class 7 79.06 ±5.1 80.2 ±2.3

l

I

d

r

h

t

c

g

h

t

T

s

i

7

w

t

p

e

p

u

t

a

f

a

t

m

t

c

f

a

a

t

c

r

p

l

m

c

a

D

c

i

D

A

i

v

t

C

2

a

C

A

s

a

ent to training with all the data in a centralized way also in Non-

ID scenarios, a test has been carried out.

For this, the Covertype dataset has been used, which has seven

ifferent classes. Considering one of them as anomalous and the

est as normal, a non-IID scenario with no overlap between classes

as been simulated. Simulating six nodes, each one has been

rained with the instances corresponding to one of the six classes

onsidered as normal. After this, the local models have been added,

iving rise to a global model. The performance of this global model

as been compared with the performance of a second model

rained with all the normal data at once in a centralized way (IID).

his test has been repeated ten times using a 10-fold. As can be

een in Table 9 , the performance of both types of training was sim-

lar.

. Conclusion

An alternative method to traditional deep autoencoder net-

orks has been presented. Its distributed, parallel and incremen-

al learning capability, its low computational cost and its privacy

reservation make it a valid solution for edge computing and fed-

rated learning environments. For these scenarios, this paper has

roposed a possible decentralized architecture to implement DAEF

sing MQTT as the communication protocol. Moreover, although

he strengths of the method lie in its usefulness in edge computing

nd federated learning scenarios, it is also an interesting solution

or centralized classical machine learning scenarios.

To prove this claim, DAEF has been compared with traditional

pproaches as well as with OS-ELM, a very efficient federated au-

oencoder. In all cases, DAEF shows a fairly competitive perfor-
11
ance, with training times and energy consumption much lower

han traditional iterative approaches. Regarding OS-ELM, its effi-

iency is hardly surpassable, however, DAEF has shown better per-

ormance when the number of instances per node is low and also

llows the use of deep architectures, which positions it as a good

lternative for edge computing and federated learning scenarios

hat require more complex models, a context for which there are

urrently not many solutions.

As future work, it would be interesting to test the algorithm in

eal edge computing or federated learning environments using real

hysical devices that act as independent nodes, instead of simu-

ating them. Another possible line of work would be to adapt the

ethod to scenarios in which the distribution of the normal class

hanges over time (distribution shift), implementing, for example,

 forgetting mechanism.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was supported in part by grant Machine Learn-

ng on the Edge - Ayudas Fundación BBVA a Equipos de In-

estigación Científica 2019; the Spanish National Plan for Scien-

ific and Technical Research and Innovation (PID2019-109238GB-

22 and TED2021-130599A-I00); the Xunta de Galicia (ED431C

022/44) and ERDF funds. CITIC is funded by Xunta de Galicia

nd ERDF funds. Funding for open access charge: Universidade da

oruña/CISUG.

ppendix A. Parameters used during training

This appendix contains the values of the parameters finally cho-

en as the best for each method and dataset, listed in Tables A1

nd A2 .

https://doi.org/10.13039/501100010801

D
. N

o
vo

a
-P
a
ra
d
ela

, O
. Fo

n
ten

la
-R
o
m
ero

 a
n
d
 B
. G

u
ija

rro
-B
erd

iñ
a
s

P
a
ttern

 R
eco

g
n
itio

n
 14

3
 (2

0
2
3
)
 10

9
8
0
5

Table A1

Parameters used during the experimentation.

Dataset DAEF Ortho. DAEF Random DAEF Xavier

Shuttle Arch: [9, 5, 7, 9], λhid : 0.01, λlast : 0.8, μ: outlier IQR Arch: [9, 5, 7, 9], λhid : 0.8, λlast : 0.8, μ: outlier IQR Arch: [9, 5, 7, 9], λhid : 0.8, λlast : 0.3, μ: outlier IQR

Covertype Arch: [10, 6, 8, 10], λhid : 0.1, λlast : 0.9, μ: P 80 Arch: [10, 6, 8, 10], λhid : 0.05, λlast : 0.1, μ: P 80 Arch: [10, 6, 8, 10], λhid : 0.005, λlast : 0.8, μ: P 80
Pendigits Arch: [16, 5, 10, 16], λhid : 0.3, λlast : 0.8, μ: P 40 Arch: [16, 5, 10, 16], λhid : 0.01, λlast : 0.8, μ: P 40 Arch: [16, 5, 10, 16], λhid : 0.8, λlast : 0.3, μ: P 60
Cardio Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.9, μ: P 90 Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.7, μ: P 90 Arch: [21, 10, 15, 21], λhid : 0.9, λlast : 0.2, μ: P 80
Credit card Arch: [29, 15, 20, 25, 29], λhid : 0.9, λlast : 0.7, μ: outlier IQR Arch: [29, 15, 20, 25, 29], λhid : 0.005, λlast : 0.9, μ: P 90 Arch: [29, 15, 20, 25, 29], λhid : 0.01, λlast : 0.9, μ: outlier IQR

Ionosphere Arch: [33, 20, 25, 33], λhid : 0.005, λlast : 0.9, μ: outlier IQR Arch: [33, 20, 25, 33], λhid : 0.01, λlast : 0.8, μ: outlier IQR Arch: [33, 20, 25, 33], λhid : 0.005, λlast : 0.8, μ: P 90
Optdigit Arch: [62, 20, 30, 40, 50, 62], λhid : 0.01, λlast : 0.8, μ: P 40 Arch: [62, 30, 40, 50, 62], λhid : 0.01, λlast : 0.9, μ: P 50 Arch: [62, 20, 30, 40, 50, 62], λhid : 0.01, λlast : 0.3, μ: P 40

Table A2

Parameters used during the experimentation.

Dataset OS-ELM SHL-AE MHL-AE

Shuttle Arch: [9, 7, 9], Batch: 100, μ: extreme IQR Arch: [9, 5, 9] Epochs: 100, μ: extreme IQR Arch: [9, 7, 5, 3, 5, 7, 9] Epochs: 200, μ: extreme IQR

Covertype Arch: [10, 8, 10], Batch: 500, μ: P 80 Arch: [10, 6, 10] Epochs: 10, μ: P 70 Arch: [10, 8, 6, 4, 6, 8, 10] Epochs: 10, μ: P 90
Pendigits Arch: [16, 12, 16], Batch: 100, μ: P 80 Arch: [16, 8, 16] Epochs: 50, μ: P 80 Arch: [16, 12, 8, 4, 8, 12, 16] Epochs: 100, μ: outlier IQR

Cardio Arch: [21, 5, 21], Batch: 100, μ: P 80 Arch: [21, 5, 21] Epochs: 100, μ: P 90 Arch: [21, 15, 10, 5, 10, 15, 21] Epochs: 90, μ: P 90
Credit card Arch: [29, 25, 29], Batch: 100, μ: extreme IQR Arch: [29, 10, 29] Epochs: 25, μ: outlier IQR Arch: [29, 20, 10, 20, 29] Epochs: 10, μ: extreme IQR

Ionosphere Arch: [33, 20, 33], Batch: 100, μ: extreme IQR Arch: [33, 15, 33] Epochs: 100, μ: outlier IQR Arch: [33, 25, 20, 15, 20, 25, 33] Epochs: 50, μ: extreme IQR

Optdigit Arch: [62, 20, 62], Batch: 100, μ: P 60 Arch: [62, 30, 62] Epochs: 10, μ: P 80 Arch: [62,50, 40, 30, 20, 30, 40,50, 62] Epochs: 25, μ: P 90

1
2

D. Novoa-Paradela, O. Fontenla-Romero and B. Guijarro-Berdiñas Pattern Recognition 143 (2023) 109805

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

D

t

t
I

D

O

A
o

c
o

2

B

s
t

(
t

t

1

eferences

[1] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, IEEE

Access 8 (2020) 85714–85728, doi: 10.1109/ACCESS.2020.2991734 .

[2] Y. Zhang, Y. Xu, S. Wei, Y. Wang, Y. Li, X. Shang, Doubly contrastive represen-
tation learning for federated image recognition, Pattern Recognit 139 (2023)

109507, doi: 10.1016/j.patcog.2023.109507 .
[3] G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a

review, ACM Comput. Surv. 54 (2) (2021), doi: 10.1145/3439950 .
[4] R. Domingues, M. Filippone, P. Michiardi, J. Zouaoui, A comparative evaluation

of outlier detection algorithms: experiments and analyses, Pattern Recognit 74

(2018) 406–421, doi: 10.1016/j.patcog.2017.09.037 .
[5] W.L. Al-Yaseen, A.K. Idrees, F.H. Almasoudy, Wrapper feature selection method

based differential evolution and extreme learning machine for intrusion de-
tection system, Pattern Recognit 132 (2022) 108912, doi: 10.1016/j.patcog.2022.

108912 .
[6] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.

Surv. 41 (3) (2009), doi: 10.1145/1541880.1541882 .
[7] D. Bank, N. Koenigstein, R. Giryes, Autoencoders, 2021, 2003.05991

[8] T.D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, A.-R. Sadeghi,

DÏot: A federated self-learning anomaly detection system for iot, in: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS),

2019, pp. 756–767, doi: 10.1109/ICDCS.2019.0 0 080 .
[9] B. Hussain, Q. Du, S. Zhang, A . Imran, M.A . Imran, Mobile edge computing-

based data-driven deep learning framework for anomaly detection, IEEE Access
7 (2019) 137656–137667, doi: 10.1109/ACCESS.2019.2942485 .

[10] R.A. Sater, A.B. Hamza, A federated learning approach to anomaly detection in

smart buildings, ACM Trans. Internet Things 2 (4) (2021), doi: 10.1145/3467981 .
[11] Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection

using federated learning, in: SoICT 2019, ACM, 2019, pp. 273–279, doi: 10.1145/
3368926.3369705 .

12] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, E. Ilie-
Zudor, Chained anomaly detection models for federated learning: an intrusion

detection case study, Appl. Sci. 8 (12) (2018), doi: 10.3390/app8122663 .

[13] T. Luo, S.G. Nagarajan, Distributed anomaly detection using autoencoder neu-
ral networks in WSN for IoT, in: IEEE ICC, 2018, pp. 1–6, doi: 10.1109/ICC.2018.

8422402 .
[14] M.V. Ngo, T. Luo, T.Q.S. Quek, Adaptive anomaly detection for internet of things

in hierarchical edge computing: a contextual-bandit approach, ACM Trans. In-
ternet Things 3 (1) (2021), doi: 10.1145/3480172 .

[15] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and ap-

plications, Neurocomputing 70 (1) (2006) 489–501, doi: 10.1016/j.neucom.2005.
12.126 . Neural Networks

[16] L. Kasun, H. Zhou, G.-B. Huang, C.-M. Vong, Representational learning with
ELMs for Big Data, IEEE Intell Syst 28 (2013) 31–34 .

[17] S. Ding, N. Zhang, X. Xu, L. Guo, J. Zhang, Deep extreme learning machine and
its application in EEG classification, Math. Probl. Eng. 2015 (2015) 1–11, doi: 10.

1155/2015/129021 .

[18] R. Ito, M. Tsukada, H. Matsutani, An on-device federated learning approach for
cooperative model update between edge devices, IEEE Access 9 (2021), doi: 10.

1109/access.2021.3093382 . 92986-92998
[19] N.-y. Liang, G.-b. Huang, P. Saratchandran, N. Sundararajan, A fast and accu-

rate online sequential learning algorithm for feedforward networks, IEEE Trans.
Neural Networks 17 (6) (2006) 1411–1423, doi: 10.1109/TNN.2006.880583 .

20] H. Zhang, J. Bosch, H.H. Olsson, Federated learning systems: architecture alter-

natives, in: 2020 27th Asia-Pacific Software Engineering Conference (APSEC),
2020, pp. 385–394, doi: 10.1109/APSEC51365.2020.0 0 047 .

21] O. Fontenla-Romero, B. Pérez-Sánchez, B. Guijarro-Berdiñas, DSVD-
autoencoder: a scalable distributed privacy-preserving method for one-class

classification, Int. J. Intell. Syst. 36 (1) (2021) 177–199, doi: 10.1002/int.22296 .
22] C. Eckart, G. Young, The approximation of one matrix by another of lower rank,

Psychometrika 1 (3) (1936) 211–218, doi: 10.1007/BF02288367 .
23] O. Fontenla-Romero, B. Guijarro-Berdiñas, B. Pérez-Sánchez, Regularized

one-layer neural networks for distributed and incremental environments,

in: IWANN, volume 12862, Springer, 2021, pp. 343–355, doi: 10.1007/
978- 3- 030- 85099- 9 _ 28 .
13
24] O. Fontenla-Romero, B. Guijarro-Berdiñas, B. Pérez-Sánchez, A. Alonso-
Betanzos, A new convex objective function for the supervised learning of

single-layer neural networks, Pattern Recogn. 43 (5) (2010) 1984–1992, doi: 10.
1016/j.patcog.2009.11.024 .

25] B. Mishra, A. Kertesz, The use of MQTT in M2M and IoT systems: asurvey, IEEE
Access 8 (2020) 201071–201086, doi: 10.1109/ACCESS.2020.3035849 .

26] V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivas-
tava, A survey on security and privacy of federated learning, Future Generation

Computer Systems 115 (2021) 619–640, doi: 10.1016/j.future.2020.10.007 .

27] K.-C. Wang, Y. FU, K. Li, A. Khisti, R. Zemel, A. Makhzani, Variational model
inversion attacks, in: Advances in Neural Information Processing Systems, vol-

ume 34, Curran Associates, 2021, pp. 9706–9719 .
28] B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep models under the GAN: Information

leakage from collaborative deep learning, in: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, in: CCS ’17,

Association for Computing Machinery, New York, NY, USA, 2017, pp. 603–618,

doi: 10.1145/3133956.3134012 .
29] D. Dua, C. Graff, UCI machine learning repository, 2017, http://archive.ics.uci.

edu/ml
30] Worldline, the ML Group of ULB, Credit card fraud detection, 2014, https://

www.kaggle.com/mlg-ulb/creditcardfraud
31] S. Rayana, ODDS library, 2016, http://odds.cs.stonybrook.edu .

32] E. Ostertagova, O. Ostertag, J. Kovác, Methodology and application of the

kruskal-wallis test, Applied Mechanics and Materials 611 (2014) 115–120 .
33] A . Nanda, A . Mahapatra, B. Mohapatra, a. mahapatra, Multiple comparison test

by tukey’s honestly significant difference (hsd): do the confident level con-
trol type i error, International Journal of Applied Mathematics and Statistics 6

(2021) 59–65, doi: 10.22271/maths.2021.v6.i1a.636 .
34] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward

neural networks, in: Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceed-
ings, 2010, pp. 249–256 .

35] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (1) (2006) 1–30 .

36] S. García, F. Herrera, An extension on “statistical comparisons of classifiers over
multiple data sets” for all pairwise comparisons, J. Mach. Learn. Res. 9 (89)

(2008) 2677–2694 .

37] V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris, D. Blank, J. Wilson,
S. Friedler, S. Luccioni, CodeCarbon: Estimate and Track Carbon Emissions from

Machine Learning Computing (2021). 10.5281/zenodo.4658424
38] H. Zhu, J. Xu, S. Liu, Y. Jin, Federated learning on non-iid data: a survey, Neu-

rocomputing 465 (2021) 371–390, doi: 10.1016/j.neucom.2021.07.098 .

avid Novoa-Paradela (M) received his B.S. degree in Computer Science from

he University of A Coruña in 2019, and his M.S. degree in Research in Ar-

ificial Intelligence from the Menendez Pelayo International University in 2020.
n October 2020 he started his Ph.D. thesis focused on the field of Anomaly

etection.

scar Fontenla-Romero (M) Ph.D. in Computer Science and Full Professor in

rtificial Intelligence at the University of A Coruña. His research has focused
n the development of new machine learning models, as well as its appli-

ation in engineering and biomedicine areas. He has been part of the Board
f Directors of the Spanish Association for Artificial Intelligence (AEPIA) from

013 to 2018.

ertha Guijarro-Berdiñas (F) Ph.D. in Computer Science and Associate Profes-

or at the University of A Coruña. Her research interests focus on Artificial In-
elligence with special attention to the theoretical aspects of machine learning

distributed, online, scalable, sustainable and efficient learning, privacy preserva-
ion) and its applications. She has participated in more than 30 national and in-

ernational projects, agreements with companies and is co-author of more than

00 articles.

https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1016/j.patcog.2023.109507
https://doi.org/10.1145/3439950
https://doi.org/10.1016/j.patcog.2017.09.037
https://doi.org/10.1016/j.patcog.2022.108912
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/ACCESS.2019.2942485
https://doi.org/10.1145/3467981
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.3390/app8122663
https://doi.org/10.1109/ICC.2018.8422402
https://doi.org/10.1145/3480172
https://doi.org/10.1016/j.neucom.2005.12.126
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0015
https://doi.org/10.1155/2015/129021
https://doi.org/10.1109/access.2021.3093382
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1109/APSEC51365.2020.00047
https://doi.org/10.1002/int.22296
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/978-3-030-85099-9_28
https://doi.org/10.1016/j.patcog.2009.11.024
https://doi.org/10.1109/ACCESS.2020.3035849
https://doi.org/10.1016/j.future.2020.10.007
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0026
https://doi.org/10.1145/3133956.3134012
http://archive.ics.uci.edu/ml
https://www.kaggle.com/mlg-ulb/creditcardfraud
http://odds.cs.stonybrook.edu
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0028
https://doi.org/10.22271/maths.2021.v6.i1a.636
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00503-4/sbref0032
https://doi.org/10.1016/j.neucom.2021.07.098

	Fast deep autoencoder for federated learning
	1 Introduction
	2 Related work
	3 Background
	3.1 Federated learning architectures
	3.2 Distributed singular value decomposition autoencoder
	3.3 Regularized One-Layer Neural Network
	3.4 Multilayer Extreme Learning Machine

	4 The proposed method
	4.1 The encoder
	4.2 The decoder
	4.3 Incremental, distributed, and parallel learning
	4.4 Pseudocode

	5 Privacy treatment
	5.1 Preventing direct leakage
	5.2 Preventing indirect leakage

	6 Evaluation
	6.1 Experimental setup
	6.2 Choosing the best initialization for DAEF
	6.3 DAEF vs. other Anomaly Detection algorithms
	6.4 DAEF in Federated Learning scenarios
	6.5 DAEF vs. Non-IID data

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Parameters used during training
	References

