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Due to the increasingly large amount of data acquired into point clouds, from LiDAR (Light
Detection and Ranging) sensors and 2D/3D sensors, massive point clouds processing has become
a topic with high interest for several fields. Current client-server applications usually use multires-
olution out-of-core proposals; nevertheless, the construction of the data structures required is very
time-consuming. Furthermore, these multiresolution approaches present problems regarding point
density changes between different levels of detail and artifacts due to the rendering of elements
entering and leaving the field of view. We present an autotuning multiresolution out-of-core strategy
to avoid these problems. Other objectives are reducing loading times while maintaining lowmemory
requirements, high visualization quality and achieving interactive visualization of massive point
clouds. This strategy identifies certain parameters, called performance parameters, and defines a
set of premises to obtain the goals mentioned above. The optimal parameter values depend on the
number of points per cell in the multiresolution structure. We test our proposal in our web-based
visualization software designed toworkwith the structures and storage format used and displaymas-
sive point clouds achieving interactive visualization of point clouds with more than 27 billion points.
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1. INTRODUCTION

Light Detection and Ranging (LiDAR) technology provides
extremely useful high-resolution data in the form of point
clouds that can be applied in a wide range of fields, including
geology, agriculture, forestry, urban planning and infrastructure
maintenance. The massive amount of spatial information that
may be acquired by LiDAR technology entails an enormous
challenge when developing applications focused on handling
such amounts of data, such as DTM generation [1], land cov-
erage classification [2] or semantic-based classification [3].
Real-time interaction, memory requirements and loading times
involved in handling massive LiDAR point clouds are some of
the susceptible problems to be addressed.
Multiresolution techniques are widely used in these sit-

uations. They are based on the use of different levels of
detail (LODs) or resolutions to represent and handle the data
at different scales, maintaining good performance on every

LOD. Hierarchical data structures that allow processing and
visualization of massive point clouds are usually used, such
as k-tree, quadtrees and octrees. These structures allow the
reduction of the data that need to be managed employing
multiresolution techniques; moreover, they allow out-of-core
or external memories strategies to load and unload data if they
exceed available memory [4, 5].
Multiresolution techniques are used for large volumetric data

handling, from storage to visualization and, in some cases,
processing or modification. These volumetric data are usually
stored using voxels, which is the basic building block of the
multiresolution techniques [6, 7], with special focus on effi-
cient ray-casting on the volumes [8, 9]. A review of several
techniques and structures used for volume visualization can be
read in [10], focused on the use of GPUs. One of the objectives
is to allow the visualization and the processing of point clouds
in several platforms [11–13]. In addition, when the data size
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exceeds available resources, out-of-core or external memory
algorithms are used [13–16]. With respect to massive point
clouds, in some cases, the point clouds are voxelized [17],
allowing the application of the techniques explained above,
or simply as an intermediate step for building other structures
[18].
In contrast with other volumetric data, massive point clouds

are irregular in nature and the previous techniques are not
always adequate or efficient. Multiresolution approaches
tailored for point clouds are still widely used, from earlier
approaches such as Surfels [19] andQSplat [20] to more recent
ones. A multiresolution technique that groups the points in
chunks, where each chunk contains points that are added
to the contents of its parent, was proposed in [21]. Chunk-
based techniques became the standard for large-scale point
clouds rendering due to their high efficiency in GPU-based
rendering. Further works improved upon them or introduced
alternatives to parts of these techniques. A nested octree
system is introduced in [22]. This was refined in [23] with
the introduction of a Poisson-disk distribution to perform the
same sampling process.
Some works take advantage of the spatial structure to store

LODs efficiently [24], propose a multiresolution out-of-core
system with no data redundancy supported in a layered cell
hierarchy [15], use a multiresolution kd-tree [13] and use
an octree. Reference [25] exploit the order of the points in
storage to obtain LODs, in such a way that loading more points
increases the detail, filling the gaps among previously loaded
points. Reference [14] use geo-morphing and interpolation
to create the data for each resolution, while reference [26]
generate the LODs information in real-time from the octree
structure that stores the points, but this information is not stored
in disk explicitly [23].
The biggest drawback of these proposals is that they group

together and perform the rendering of points in hierarchically
organized chunks. The different extension and point density
of the chunks produces sudden changes between two adjacent
levels that are visualized together. Additionally, they can cause
artifacts when the rendering of incoming and outgoing chunks
is performed. In order to avoid these artifacts, some proposals
[25, 27] exploit the order of the points, either in storage or
in memory after loading, to create a point density gradient in
such a way that points later in the order are located among
previously loaded points, progressively increasing the density.
These approaches cannot facilitate direct access to a specific
Level-of-Detail on demand as it is not clear what point density
is achieved at a certain amount of points without loading
them.
We propose a new out-of-core multiresolution autotuning

strategy aimed at reducing the structure building time as well as
achieving a reduction of loading times while maintaining low-
memory requirements. The tuning strategy, named TVPC (Tun-
ing Visualization of Point Clouds), is based on the automatic
computation of two performance parameters, in accordance

with a set of premises, which have a direct influence on the
performance: the number of points per cell and the number
of LODs for the multiresolution structure. Our strategy takes
into account the characteristics of the point cloud, such as
point density and area covered as well as the size of the point
budget, which takes into consideration the characteristics of the
visualization system.
To evaluate our proposal, we use a web-based visualization

software, Pebbles, which will be presented in Section 2. The
client-server arquitecture introduces new constraints that have
been overcome through many different approaches in several
web-based visualization platforms such as: Dielmo3D [28],
Potree [29], Cesium [30], GVLiDAR [31], ViLMA [24] or
more broad tools such as PCL [32, 33]. Each one of the plat-
forms uses their own file formats, data structures and multires-
olution methods. Pebbles shows high performance, achieving
real-time interaction, handling around 27 billion points with a
high level of interaction.
The rest of the paper is organized as follows: Section 2

presents our efficient strategy for the processing of large point
cloud based on a tuned multiresolution structure; in Section 3,
we evaluate our proposals using Pebbles; finally, Section 4
presents the main conclusions and future work.

2. STRATEGY OVERVIEW FOR TUNING
VISUALIZATION OF POINT CLOUDS

This section explains the strategy for efficiently tuning visual-
ization of large point clouds. The interactive visualization of
massive point clouds, exceeding available memory capacity,
demands the use of multiresolution out-of-core techniques. Our
proposal is focused on improving the interactivity and require-
ments ofmemory.We consider a high interactivity performance
based on two measurements: low loading time, time when the
whole dataset is obtained to the desired LOD, and high frames
per second, to measure the fluidness of the interaction.
An overview of the main stages of the TVPC (Tuning Visu-

alization of Point Clouds) strategy is represented in Fig. 1. The
tuning stage processes the source point cloud and computes the
best parameters tailored to the dataset. Those parameters and
the point data are fed to the structure building stage, creates
the multiresolution data structure tuned for that dataset, storing
the point data compressed in disk ready for the application
stage. In the first stage (Tuning stage in the figure), we need to
determine the main parameters which influence performance
for the visualization of large point clouds and establish a set
of premises. Based on these premises, a number of tuneable
parameters is obtained and, for each case, the optimal values are
chosen. In the second phase, the tunedmultiresolution structure
is built with the suitable tuneable parameters obtained in the
previous stage. Furthermore, the resulting LiDAR data are also
compressed in order to reduce the amount of information to
be stored and potentially transferred through the network. The
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FIGURE 1. General overview of the architecture of our TVPC strategy.

resulting structure is stored in disk ready to be used by other
applications, referenced as application stage. For this paper,
we use our own web-based visualization tool.
The application used, Pebbles, follows a conventional client-

server structure, such asmost web applications. The application
is capable of rendering massive point clouds employing the
screen area used, as well as a configurable point budget to
determine the level of detail to use for different areas of the
point cloud currently being rendered. In addition to point cloud
visualization, it includes the same functionalities as GVLiDAR
[31]. Specifically, Pebbles is written in HTML5, JavaScript
and WebGL as graphics API so it can be executed in any
modern browser. The application files and dataset data are
served through a standard Apache HTTP Server. The clients
interact with Pebbles, which requests the required files from
the data structure stored in the server.

2.1. Tuning stage: automatic parameter estimation

Our proposal allows the design of a multiresolution data struc-
ture with little effort while obtaining competitive performance
with respect to hand-tuned approaches. This strategy is based
on two phases: resource analysis and parameter tuning. In
the first phase, a set of performance parameters are obtained
together with some premises that allow high interactivity and
low-memory requirements to be achieved. The second phase
assigns the suitable values for the performance parameters
obtained in the first phase. This helps to reduce the time
needed to process a point cloud, as otherwise some time
would be wasted finding the correct values for the parameters.

Commonly used techniques, such as trial-and-error, can take
a long time with large point clouds since the multiresolution
structure construction process can take hours to complete.
Our strategy uses a precomputed multiresolution structure

to store the data for the application stage. Our proposal can be
adapted to several hierarchical data structures and in our case,
due to the 2.5D nature of the point clouds from aerial LiDAR,
a quadtree structure fits adequately. All of the points in the raw
point cloud are stored in the leaf nodes of the tree, according
to their location. The internal nodes of the tree contain copies
of those points, sampled to have a suitable point density for the
level of detail determined by the depth of the node in the tree.
This redundancy is introduced to help reduce loading time, as
explained in more detail in Results section. Each node (both
leaf and internal) stores the points in disk in an independent
file, called a cell. Our proposal is focused on the reduction
of the sudden appearance of sets of points in a client-server
tool for visualization. Moving the camera does not cause the
sudden appearance of points on a previously empty area, but
new data transferred will fill in the gaps between currently
rendered points. The visualization application starts loading the
tree at the root, and as long as it maintains the higher nodes in
cache, there are always points ready to be rendered in every part
of the dataset.
In our quadtree structure, the number of LODs (NL) deter-

mines the area covered by each leaf cell; meanwhile, the
sampling rate (SR) sets up the number of points in the internal
cells. Each internal cell contains a subset of points from its
children cells. Our quadtree structure is focused on a client-
server system with the objective of reducing loading time,
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which is determined by the cell size in bytes (CS). Therefore,
our proposal calculates SR and NL, directly dependent on the
desired size of cells according to the following expressions:

log4 NL = δ × A

CS/PS
(1)

SR = √
CS/PS, (2)

where A is the covered area of the whole dataset, δ is the point
density (in points per area unit) and PS is the size in bytes of
each point.
Our TVPC strategy also takes into account the performance

characteristics of the client system. Even themost modern pow-
erful computers would be unable to load and handle massive
point clouds in their entirety. Multiresolution data structures
provide the means to access a simpler version of the data (lower
detail) that can be loaded by the computers, but a way of
guiding which LOD is the correct one is needed. One of the
simplest ways of controlling the LOD to use is setting a limit on
the amount of points being rendered. The application will load
points increasing the detail until the limit is reached. This limit
is called a point budget (PB) and should be set according to
the performance of the client computer to maximize the detail
used without exceeding the capabilities of the hardware. In this
paper, we focus on high-performance systems and the limits of
usable point budgets are tested.
We focus on finding the best CS value, as it has a big impact

on the used metrics: loading time and memory requirements.
Based on the effects that the value of CS has on the perfor-
mance, some premises to guide the decision of the CS value to
use can be defined:

• Premise 1: CS shoud be adjusted for the PB. High values
for CS paired with low point budgets result in very few
cells being able to fit into the point budget, limiting the
cells that can be managed by the application at the same
time and negatively impacting the image quality due to
under-utilizing the available point budget. Replacing one
cell with its children would exceed the point budget so a
relevant part of it is not used, with the consequent lower
detail being displayed. In our TVPC proposal, the size
of CS must be small enough to allows several cells to fit
inside the PB

CS << PB. (3)

• Premise 2: Use high CS that minimizes NL. High CS
values make it possible to reduce NL, which reduces the
amount of cells consequently the cost in storage space
and the amount of cells necessary to visualize. Higher
values for CS, without causing a reduction in NL, create
internal cells with more points that can fill the point

FIGURE 2. Dataset total size in relation to CS value and required
LODs (NL).

budget using fewer cells, improving the loading times
at the cost of storage space. Comparing two different
values for CS, CSi and CSj, the higher value CSi is better
if the following relation is met:

Ncelli × CSi < Ncellj × CSj

being CSi > CSj and NLi < NLj, (4)

where Ncelli and NLi are the number of cells and LODs
created by using CSi and Ncellj and NLj the number of
cells created by using CSj.

In summary, higher CS values are recommended, as long as
the point budget in use is high enough to avoid the aforemen-
tioned quality problems.
Figure 2 shows a representation of the change in total dataset

size against the value of CS, as well as the changes in the LODs
of the structure (NL). If the amount of LODs required does not
change between CS values, the total dataset will increase, as
each cell contains more points but the number of cells is the
same. However, when an increase in the value of CS allows us
to use fewer LODs, the total size is drastically reduced, since
now there are fewer cells, even though each one is bigger. The
ideal values for CS are those which cause that reduction in NL,
since they provide the benefit of reducing the total size of the
tree while keeping the inner cells as small as possible for that
NL, reducing the redundancy overhead. In Section 3, we will
check the validity of these premises.

2.2. Structure building stage: generation of a suitable
multiresolution structure

In this section, the description of the quadtree estructure
focused towards a server-client system is explained in detail.
Additionally, the cell compression format used to optimize
the loading times and storage requirements is described. The
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FIGURE 3. Diagram of the building process to create the completed data structure.

values for CS indicated throughout this paper are given without
taking compression into account, since the actual compression
ratio achieved varies from cell to cell, depending on the values
of the points being compressed.
First, the bounding box of the point cloud is divided follow-

ing a quadtree pattern: with NL and bounding box known, the
leaf cells of uniform size are created with the correct dimen-
sions in the deepest LOD. The size of the cells in the horizontal
plane are divided by two in each level. Since the datasets do
not always fill the bounding box, there may be empty leaf cells
and cells with fewer points than expected by the point density.
Then, the points are assigned to their corresponding leaf cell
on the tree, and the structure is completed by merging the
cells using a sampling process to populate the inner cells with
points.
The sampling process is performed by dividing the parent

cell into the same amount of divisions in each axis, creating
a regular grid of tiles and selecting one point per tile, taking
the points from the children cells. If some tiles have no points,
other tiles can select more than one point, making use of the
available space caused by the empty tiles. Figure 3 shows a
representation of the building process, starting with the divi-
sion of the point cloud to create the leaf cells and finish-
ing with the sampling process to create the internal cells of
the tree.
The original LiDAR files are usually compressed in order

to reduce the amount of data to be stored, transferred and
processed. To the best of our knowledge, LASzip [34] and LZ
[31] are the best lossless compressionmethods for LiDAR data.
Both formats use delta compression to store the differences in
the properties of contiguous points using smaller data types

when possible. TVPC uses a small variation of LZ, described
in detail in [31]; the main difference is that it is fully lossless.
The storage format is not limited to TVPC or Pebbles;

therefore, it is not known which data fields of the LAS format
will be used; accordingly, all of the LAS data fields from record
formats 0 to 5 are added to the compressed format.
Although the new data format can store every field, we added

the possibility of saving space by not storing RGB data or GPS
time data. These options can be toggled independently, in the
event that the user knows that data will not be needed, the
storage requirements can be reduced by disabling the fields not
needed. We limit the options to GPS time and RGB data as they
use an important amount of space and are more likely to not be
used. For its use in Pebbles, RGB is stored but GPS time is
removed.
The method for compressing the data is still delta compres-

sion, which is based on storing the differences between adjacent
points in the file, using smaller data types when possible. There
is one difference with respect to the version in [24]: since the
GPS time is stored as a double precision floating point in the
LAS format, we need to add support for 8-byte wide data.
For simplicity, we process the GPS time as if it were a long
integer; thus, we can use the already existing data structures
for storing the differences, and we only need to add two more
data structures: one for storing differences larger than a short
integer using a 32 bit integer and the original values as a 64 bit
integer, when the difference exceeds what a 32 bit integer can
store.
Finally, after all the previous steps, we apply GZIP compres-

sion to the resulting data to maximize space savings as much
as possible. GZIP compression is a very common compression
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TABLE 1. Hardware specifications.

Platform O.S. CPU GPU RAM Display Bandwidth

Client desktop PC Windows 10 AMD Ryzen 9 3900X NVIDIA RTX 2080 Ti 32 GB 1920x1080 @60Hz Gigabit Ethernet
Server CentOS 6.7 Intel Xeon E5-2603 v3 – 64 GB – –

TABLE 2. Point clouds statistics.

Point cloud N SCP

PNOA 28x109 802 GB
Volcano 550x106 15.7 GB

format that has a very low cost on modern hardware, easily
supported on most programming languages and applications.
Specifically to our application, most web browsers support
automatic decompression of incoming files if they are com-
pressed with GZIP, eliminating that step for the decompression
of the data in Pebbles.

3. EXPERIMENTAL RESULTS

An implementation of TVPC strategy, described in this paper,
has been integrated into our visualization application, Pebbles,
to evaluate the results produced with several point clouds.
Table 1 describes the test platform used in our experiments,

using an NVIDIA RTX 2080 Ti GPU. On the software side,
the visualization application is served from a server through
an instance of Apache HTTP Server version 2.4.28. The appli-
cation is accessed in the client using the open source web
browser Chrome, version 92.0.4515.107, and only results for
this browser are presented for the sake of clarity, since it offers
good performance overall and provides adequate development
tools. Nonetheless, other browsers have been tested and provide
similar results.
Table 2 contains information on the datasets used for testing

our strategy: the number of points, N, and original size of
the full point cloud, SCP. The PNOA [35] (National Plan of
Aerial Orthophotography, Spain) point cloud covers the region
of Galicia, Spain, totaling to 28 billion points. This point cloud
comes from an airborne LiDAR survey at a point density of 0.5
point/m2 and is available in the Spanish GIS database (IDEE)
(Infraestructura de Datos Espaciales de España IDEE). The
Volcano [36] point cloud contains 0.55 billion points, with a
point density of 13.71 point/m2. This point cloud is available
at OpenTopography.
In this section, each test is performed 10 times and the aver-

age is used. When the browser cache is involved, the process
is repeated after enabling the browser cache (and performing
an initial load not measured to allow any data to be brought to
cache).

TABLE 3. Compression ratios for each dataset and CS value. LR
stands for Leafs Ratio and TR stands for Total Ratio.

Dataset CS LR (%) TR (%) NL

PNOA LASzip - 12.44 - -
PNOA TVPC 2.5 12.77 38.90 12

5 12.43 33.41 11
10 12.43 38.02 11
25 12.30 34.78 10
50 12.30 39.27 10

Volcano LASzip – 12.10 – –
Volcano TVPC 2.5 13.37 19.18 7

5 13.37 16.56 6
10 13.50 19.29 6
25 13.56 17.19 5
50 13.66 15.56 4

3.1. Storage analysis

The first point of view of the analysis is with regards to the
requirements of storage of multiresolution structure. Table 3

shows the compressed ratio, calculated as
Sizecompressed
Sizeoriginal

× 100,
of the leaf cells alone as leafs ratio (LR) and the compression
ratio of the entire multiresolution structure as total ratio (TR),
due to the addition of data redundancy to support efficient
multiresolution. Both ratios are expressed in percentage of the
original size.NL is the number of LODs required for storing the
dataset. This table allows an analysis regarding the advantage
indicated in Premise 2 and the benefit of the compression
format used.
Figure 4 shows the relative size with respect to the original

size of the dataset. It shows the size of the leaf cells and the size
of the inner part of the tree. The leaf cells contain the original
points and the inner cells contain the redundant data to support
the multiresolution technique.
The part of the graph that corresponds with PNOA datasets

clearly follows the pattern shown in Fig. 2, with the drops in
size ocurring for CS values between 2.5 and 5 MB as well as
between 10 and 25 MB. These are the points where the NL
changes. For the Volcano dataset, there are 4 reductions in NL,
between 2.5 and 5 MB, between 10 and 25 MB and between
25 and 50 MB. For these two datasets, the best values for CS
would be 5 or 25 MB for PNOA; 2, 25 or 50 MB in the case of
Volcano. The selection between those depends on Premise 1.
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FIGURE 4. Compression ratios for each dataset and CS value.

We can compare our compression format with LASzip. The
multiresolution structure stores the original points only in the
leaf cells of the tree, and only original points in those cells.
The compression format used is competitive with LASzip,
especially in the PNOA dataset, with lower compression ratio
in the most of the cases. A small difference with LASzip is
expected due to reductions in delta encoding efficiency caused
by the high amount of independent files required. In the PNOA
case, 100 GB spread into files of a maximum size of CS,
so ranging from 41 thousand files using 2.5 MB as CS to 2
thousand files in the 50 MB case.

3.2. Loading times

As stated previously, this work is aimed towards high-
performance systems, so we will test the limits with high
point budgets to see the effects of different values for CS. All
points budgets are tested with the two datasets processed with
5 different values for CS: 2.5, 5, 10, 25 and 50 MB, to study the
changes in loading times. Values of 1, 2, 4, 8, 16 and 25 million
points for the point budget will be tested sincemost systems can
handle the first three, irrespective of whether they are high-end
or low-end systems, and they allow us to compare with other
visualization tools. The other three point budgets allow us to
push more powerful systems. These values allow good results
both in terms of performance and accurate representation of
the original point clouds; 16 and 25 million points (and 8 M
to a lesser extent) provide diminishing returns with current
day technology. While 4k(UHD) screens are becoming more
common, they would mainly take advantage of 8 M point
budget, while higher resolutions such as 6k or 8k are needed to
have more pixels than rendered points on higher point budgets.
We measure loading time without browser cache as that would
be the worst case.

Figure 5(a) shows the loading times for the PNOA dataset.
Figure 5(b) shows the loading times for the Volcano dataset.
The full datasets are loaded, allowing the multiresolution algo-
rithm to decide the LOD to use according to the point budget
and data loaded, using a downward-looking camera position
showing the entire dataset.
It is clear that there is a downward trend in loading timewhen

the value for CS is increased, due to the reduction in the total
data downloaded which results from the increased CS values.
Considering the most demanding point budgets, increasing the
value of CS can provide speedups of up to 2.4x for the PNOA
dataset and 2.1x for the volcano dataset. While one would
be tempted to always use the highest CS value, in low point
budgets, it results in lower image quality, as it will be verified
in Section 3.3. There are no data for 10, 25 and 50 MB as CS
with the first three point budgets because they are too low, they
violate the first premise in Section 2.1, and in some cases, it
is not possible to load even 1 cell with the given point budget.
For example using 50 MB as CS, the root cell in the Volcano
dataset (the lowest detail possible) contains 3.09million points,
one cell alone hasmore points than allowed in the lowest 2 point
budgets and cannot be displayed.
Expanding on this behavior, in the Volcano dataset, using

50 MB as CS as before and 8 million points as point budget,
only the 3.09 million points from the root are rendered. The
visualization tool cannot replace the root cell with its four
children as the point count of the four children (aproximately 12
million points) exceeds the point budget, and it has to replace
one cell with the four children since the four children are in
the field of view, otherwise parts of the dataset would not be
rendered. If a CS value of 10 MB is used instead, 25 cells are
rendered at the same time, replacing one with its children has a
lesser impact on the total point count, and less available points
are required to allow each LOD change.
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FIGURE 5. Loading times for the test datasets with different point bugdet and CS values.

In higher point budgets, this is not a problem because there
are more cells being rendered, even on high CS values. There
is more flexibility to choose which cell gets replaced with its
children; therefore, there is a greater chance of filling a larger
part of the point budget. This is the source of the first rule in
Section 2.1.
With all of the data presented, we can make an informed

decision on which value for CS is recommended. Due to the
inability of lower budgets to display datasets that use higher
values for CS, we will make two different recomendations:
one for lower points budgets intended for low end computers
or mobile devices and another one for higher point budgets
intended for high-performance computers. The best values are
shown in Table 4. For lower PBs, speedups in loading time of
using 5MB asCSwith respect to 2.5MB are between 1.58x and
2.72x in the PNOA dataset and between 1.21x and 1.58x in the
volcano dataset. For higher PBs, comparing against the 2.5MB
for CS, the speedups in loading time range from 1.30x and
2.67x for the PNOA dataset using 25MB as CS, and between
1.28x and 3.48x in the Volcano dataset using 50MB as CS. We
recomend 25MB for CS in the PNOA dataset given that with
50 MB, there is no reduction in NL, so the total size is disk
increases notably with that CS, while in Volcano, there is a
reduction in NL going from 25 to 50 MB for CS and the total
size in disk is reduced.
To finish this discussion, we analyze whether or not the

different values for CS affect the loading time; in other ways,
in Fig. 6, we show the relation between the total size of the
downloaded data and the loading time, for each case in the two
previous graphs. Each data point corresponds with a combina-
tion of point budget and CS value, so 2 data points for lower
budgets and 5 data points for 8, 16 and 25 million points, for
each dataset. For reference, the curves for transfer speeds of
200, 300 and 400 Mbps are also displayed.

TABLE 4. CS value recomendations.

Point budget

Dataset 1M-4M 8M-25M

PNOA 5MB 25MB
Volcano 5MB 50MB

Once past the first tens of MB of transferred data, the
transfer speed remains fairly constant, indicating that the main
bottleneck for loading time is the transfer speed. With lower
point budgets and low amounts of data transferred, the time
required for loading the page and executing the visualization
code becomes the dominant part, adding a fixed amount to the
loading time.
The reductions in loading time are achieved by reducing the

amount of data transferred, not by sending the data faster, as
that would show up in the graph. Therefore, higher values for
CS have a beneficial impact on the amount of data that needs
to be moved through the network, improving the efficiency
of the process of filling the point budget. Higher values for
CS allow the point budget to be filled with fewer cells; even
though each cell is bigger, the total size is lower. This is due
to the need for fewer intermediate cells, cells that are not
rendered at the end of the load as there is enough space in the
point budget to render their children. These intermediate cells
could be considered a waste of data; they are rendered only
until the four children are ready. Downloading and rendering
these intermediate cell is beneficial as it allows us to use the
visualization tool immediately after the root cell is downloaded
and rendered, and the user can interact with the dataset, while
the rest of the cells are still downloading. This allows us to
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FIGURE 6. Loading time versus download size.

improve the interactivity with respect to other proposals that
need to wait until the final LOD is downloaded. We measure
the time to load a full dataset as it is the moment when the
dataset is at the highest detail possible, as well as being a more
fair comparison with other visualization tools that do not have
this while-loading interaction capability.

3.3. Interactive visualization

With regards to the interactivity in terms of frames per second,
all of the tests performed maintained 60 frames per second on
the testing computer, even in the more demanding cases, such
as using 25 million points as point budget.
On the other hand, the image quality can be impacted by the

relation between CS value and point budget, according to the
first premise in Section 2.1. Lower values of CS provide good
results in all point budgets, with the higher loading times seen
previously, but higher values require higher point budgets to
maintain good visual quality in all cases. In extreme cases, for
example 1 or 2 million points as PB and 50 MB as CS, they
cannot be used at the same time since not even one cell can fit
into those PB.
Figure 7 shows the same position on the PNOA dataset,

using the same PB but two different values for CS, 5 MB in
Fig. 7(a) and 50 MB in Fig. 7(b). Figure 8 does the same in the
Volcano dataset, this time using the height as a color gradient.
As can be seen, Figs 7(a) and 8(b) have a higher point density,
which shows notably more detail in the urban area in Fig. 7(a),
allowing the differentiation of streets and buildings, or the trees
in Figs 8(a), 7(b) and 7(b) have lower point density. The area
rendered is split in two or more cells, and in the 50 MB, those
cells do not fit into the PB at the same time. The visualization
tool has to load the first common parent of those cells that
covers the entire area rendered. This is the main reason to

include the first premise in Section 2.1, to provide a guide to
avoid this situations.
To close this section and show the visual quality of the

images obtained with our proposal achieving 60 FPS, Fig. 9
shows the same localization in the PNOA dataset displaying
color data taken from satellite images. The CS and PB are the
same as Fig. 7(a), 5MB and 8 million points, respectively.

3.4. Comparison against Vilma

The comparison is focused on memory consumption and
loading time. We compare with a previous framework, Vilma
[24], designed to work on multiple platforms in a client-
server system, from mobile devices to desktops and, to the
best of our knowledge, the best proposal in terms of loading
times or memory requirements. In [24], the performance of
Vilma is compared with Potree (version 1.5), another well-
known alternative for web-based visualization. The results
show an improvement of 54–86% in memory requirements
and 47–54% in loading times over Potree using a classic octree
approach.
We have tested the lastest available version of Potree, 1.8,

but we cannot obtain adequate measurements with this version
following the same testing procedure. The testing procedure
is loading the entire dataset without user interaction with the
camera, loading in the default position and orientation, to avoid
introducing user reaction times and consistency of movements
into the variables. The default camera position in Potree seems
to locate the camera and points far enough to not trigger the load
of an increased LOD, regardless of the point budget used. If
the user zooms in and moves the camera, more data are loaded
and then the point budget comes into effect. For these reasons,
we cannot test Potree to the same extent, only measuring with
1 M for PB in the Volcano dataset, obtaining 1.97 and 1.75 s
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FIGURE 7. CS and PB relation comparison in PNOA dataset.

for loading times without and with cache, respectively, using
281 MB of RAM in the process. Pebbles is 4x faster loading
the dataset without cache, 4.9x faster with cache and uses 40%
less memory.

The memory consumption measured during the load of
the full point cloud is shown in Fig. 10. Only results with
the lower values of CS of 2.5 and 5 MB per cell are pro-
vided. Higher values would cause problems in these low point
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FIGURE 8. CS and PB relation comparison in PNOA dataset.

budgets, following the premises shown in Section 2.1. There
are no data for Vilma for 8 and 16 million points since it
does not have those options owing to the hardware limita-
tions of the target devices. We measure RAM and VRAM

separately, obtaining the values using the Task Manager pro-
vided by the desktop version of the Chrome Web Browser.
For these tests, we perform the loading of the entire area
of the point cloud after clearing browser’s cache, annotating
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FIGURE 9. Part of PNOA dataset using 5 MB as CS being rendered with 8 million points using color data from satellite.

the highest value observed during the loading of all the data
needed.
As expected, RAM usage increases with the point budget,

due to the need for the application to store and manage more
points and cells of the multiresolution structure. For point
budgets of 1–4 million points, memory usage is under 1 GB
in all cases. Even low-end laptops and desktop PCs have 4 or
8 GB of RAM available, therefore those lower end systems
can still use Pebbles without reaching memory constraints. On
the other hand, 8 and 16 million points budgets can push the
memory usage to 1.5 GB, and they are only recomended for
more powerful systems.
The VRAM variation is much more limited, with all cases

under 800 MB. It also has less variation between datasets. This
is due to the more limited data moved to the GPU, which is the
main difference for the amount of points in each point budget.
The space required to store a certain amount of point does not
change from dataset to dataset. The amount of points displayed
is the main contributor to the difference in VRAM use. As
modern dedicated GPUs have at least 1 GB of VRAM, usually
more, we consider this consumption adequate even for low end
systems.
Since the use of browser cache can have a significant impact,

we provide the results with and without cache. Figure 11(a)
contains the results enabling and making use of the browser
cache, while in Fig. 11(b), the results with cache disabled
are shown. The time measurements are obtained using the
developer tools of the Chrome Web Browser.

The time needed for full loading without cache varies from
0.5 to 6 s for Pebbles. Overall, in 4 s, any dataset can be fully
loaded with no cache (first loading, for example) on lower
point budgets, more adequate for most computers, while more
powerful ones can use higher point budgets which add a few
seconds to the loading time. In this situation, Pebbles is up to
7.89 times faster using a CS value of 5 MB, and 3.8 times faster
when using a CS value of 2.5MB.
When data are in cache, the loading time can be reduced

by up to 1 s in the most demanding cases, while a minimum
reduction of a few tenths of a second in the lower point budgets.
As already seen, the higher value forCS provides better results,
reinforcing the advantage of Pebbles. In this case, Pebbles is up
to 10.84 times faster using a CS value of 5 MB, and 4.58 times
faster when using a CS value of 2.5MB.
With these data, we can clearly show the strong points of the

new viewer Pebbles versus our previous work ViLMA: ViLMA
focused on lower memory footprint to allow use on mobile
devices, which it achieved at the cost of loading times. On
the other hand, Pebbles is faster in loading times and provides
a better interactive experience, and the increase in memory
requirements is not a problem in the high-performance com-
puters that it is focused on, achieving the objective of reduced
loading times.
We would like to point out that there are some differences in

the systems involved with respect to our previous work, namely
a large increase in network bandwidth and a more recent
version of the chrome web browser, with the improvements
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FIGURE 10. Comparison between Vilma and Pebbles in terms of memory consumption for each dataset and point budget, considering a CS of 2.5
and 5 MB for Pebbles.

FIGURE 11. Comparison between Vilma and Pebbles in terms of loading times for each dataset and point budget, using 2.5 and 5MB as CS values
for Pebbles.

that the newer version includes. This last part is relevant as it
improved the parallel behaviour of multiple network requests,
and ViLMA can leverage this two factors combined to greatly
improve loading times. This is the source of the difference in
ViLMA’s times compared with those published in [24].

4. CONCLUSIONS AND FUTURE WORK

This work presents an autotuning multiresolution out-of-core
strategy with the objective of reducing loading times and keep-
ing memory requirements low while achieving good quality
interactive visualization of massive point clouds. A further
objective is the minimizing of the time needed to build the

multiresolution structure of a point cloud, as previous ones
often use trial-and-error techniques, which can take hours or
days with large point clouds.
Our proposal is tested in our own web-based visualization

software, designed to work with the tuned structures, and
shows good performance results. The loading times improve
with respect to ViLMA, the best proposal to our knowledge.
The interactive visualization is measured in frames per second
and is kept over 60 fps, even in the most demanding cases
with point budgets of 25 million points in display at the same
time.
In terms of future work, there is the potential to extend this

approach to other tools that use point clouds as input, not
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just web-based visualization. This strategy may help bridge
the transition of those tools to Big Data, especially for more
complex geoprocessses with higher computational costs.
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