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Why Do Computer Methods For Grounding
Analysis Produce Anomalous Results?

Fernin Navarrina, Ignasi Colominas/ember, IEEEand Manuel Casteleiro

Abstract— Grounding systems are designed to guarantee per- Ir
sonal security, protection of equipments and continuity of power ~ -—-——-
supply. Hence, engineers must compute the equivalent resistance
of the system and the potential distribution on the earth surface 1;:
when a fault condition occurs [1], [2], [3]. While very crude < —s
approximations were available until the 70’s, several computer AN V
methods have been more recently proposed on the basis of chl_ s E
practice, semi-empirical works and intuitive ideas such as super-
position of punctual current sources and error averaging [1], [3], / \l
[4], [5], [6]. Although these techniques are widely used, several \v Y
problems have been reported. Namely: large computational re-
quirements, unrealistic results when segmentation of conductors
is increased, and uncertainty in the margin of error [2], [5]. Fig. 1. Fault current disipation in a single layer soil model.

A Boundary Element formulation for grounding analysis is
presented in this paper. Existing computer methods such as

APM are identified as particular cases within this theoretical . ) .
framework. While linear and quadratic leakage current elements The current density vector field describes the stream of

allow to increase accuracy, computing time is reduced by means €lectric charges in the vicinity of each point. Thus, the scalar
of new analytical integration techniques. Former intuitive ideas producte’(z)n gives the electric charge flux, i.e. the amount
can now be explained as suitable assumptions introduced in of charge flowing per unit of surface and unit of time, in
anomaloLs. atympiotic behaviour of s kind of methots s 1S, difection of the vecton at the poinia. In the steady
mathematically explained, and sources of error are rigorously state, t,)y definition, the amou.n.t C?f charge ‘?‘O,es not vary at
identified. any point. Therefore, the equilibrium equatiadlv(o) = 0

. in F is just a standard conservation law that expresses the

Index Terms— Anomalous results, average potential method, . - . . .

boundary element methods, boundary integral equations, com- mdgstrucnblllty of charge. Ob_wously, this law can easily be
puter methods for grounding analysis, convergence of numerical derived from Maxwell's equations [9], [11].

methods, fault currents, grounding, power system protection. The constitutive equatior = —y grad(V) is a general-
ized version of Ohm’s law. In essence, Maxwell's equations
I. INTRODUCTION predict an irrotational electric field intensigy for the steady

AULT currents dissipation into the earth can be modellegtate. Therefore, a so-called electric scalar poterfiahust
by means of Maxwell's Electromagnetic Theory [7], [8]€Xist, such tha€ = —grad(V) [9], [11]. Thus, the above
[9]. Constraining the analysis to the electrokinetic steadgonstitutive equation establishes a linear relation between the
state response, and neglecting the resistivity of the earthigigirent densitye and the electric field intensitg at each
electrode, the 3D problem associated to an electrical curr@@int, in terms of the so-called conductivity tensprlf the
derivation to earth can be written as medium being dealt with is homogeneous, the conductivity
tensor is constant. If the medium is isotropic, the conductivity
o'n. =0 in Ty V=V in T Fensor can be substitu_ted by a scalar conductivlty-leqce, _
] ’ in the case of a one-dimensional homogeneous and isotropic
V=0 if |z — oo, (D) medium, the constitutive equation simply says that the current
where E' is the earth aney its conductivity tensor] is the intensity per unit of surface is proportional to the loss of
earth surface ana, its normal exterior unit field, and is electric potential per unit of length, that is a known form of
the earthing electrode surface [10], [11], [12]. The solution ©©hm’s law.
this problem gives the potentidd (x) and the current density  Since the scalar produetn, gives the electric charge flux
o(x) at an arbitrary poin in E when the earthing electrodein the direction of the normal to the earth surface, it must be
is energized to the so-called Ground Potential Riseelative clear now that the natural boundary conditiefn, = 0 in
to remote earth. Ix is equivalent to consider the air as a perfect insulator. On
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V must satisfy some theoretical regularity requirements ahere¢’ is the symmetric of with respect to the earth surface.

infinity. These so-called “normal conditions” are made explicince (3) holds on the earthing electrode surface [11], the

in Appendix | [7], [8]. boundary conditionlr = 1 leads to the Fredholm integral
In these terms, the leakage current density) at an equation of the first kind o

arbitrary point¢ on the earthing electrode surface, the ground 1

current/r (total surge current being leaked into the earth) and 1—— // k(x,&)o(€) dl =0 vx eI, (5)

the equivalent resistance of the earthing system, can be dmy er

written as which solution is the unknown leakage current density
Wi Equation (5) can be written in the weaker variational (or
=a'(E)m, Ir= / / dl, Reg=—, (2) =9
o) =o' (&n, Ir er"(o =10 @ weighted residuals) form [19], [20]

beingn the normal exterior unit field t@". SinceV and o 1
are proportional to the GPR, the assumptign = 1 is not // w(x) ll ~ i // k(x,g)o(f)dl“l dl' =10, (6)
restrictive at all and it will be used from now on. Xer v er

For most practical purposes, the assumption of homoggnich myst hold for all membera(x) of a suitable class of

neous and isotropic soil can be considered acceptable [él(;'-called test (or weighting) functions dn[10], [11], [12].
and the tensoty can be substituted by a meassured apparent; geemg quite clear that the weak form (6) is a consequence

scalar conductivityy (see figure 1). Otherwise, a multi-layeros i original (or strong) form (5) of the problem. The reverse
model can be accepted without risking a serious calculati

#'not obvious, but it can be proved. The basic idea is quite

error [13], [14]. Since the kind Qf techniq'ues described in thﬁmple: roughly speaking, weak form (6) must be satisfied for
paper can be extended to multi-layer soil models [15], furthghy selected test functiom(x), and this will not be possible

discussion is restricted to uniform soils. Hence, problefjoqs strong form (5) is fulfilled. In fact, both forms of the
(1) reduces to the Laplace equation with mixed bounda%

oblem can be proved to be equivalent [19], [20] as a general
conditions [7], [8]. If one further assumes that the earth surfa P a [19], [20] g
is horizontal (see Appendix 1), symmetry allows to rewrite (1

Weak form (6) will be our startin oint to obtain an
in terms of a Dirichlet Exterior Problem [16]. ©) gp

L ; . approximate solution to the original problem (1) by means
This kind of problems has been rigorously studied [17], a ?he Boundary Element Meth(?d. Foﬁ)lowing trfe)su%sequent

its solution can _b_e obt_amed in many te_chmcal applications velopments will be fairly straightforward for those readers
means of the Finite Diference or the Finite Element metho ho are familiar with the Finite Element basic technology
But that. I not our case. In most substapon gr.oundlng_syster[%]’ [19], [9]. The essential idea is to approximate variational
the buried garthmg electrode (grognd|_ng grid) consists Ofﬁfatement (6) in a finite-dimensional context. First, we shall
”“T“beT of mterconnec.ted barg cylindrical conductor;, Wh'%ubstitute the exact solution(¢) by a discretized approxima-
ratio _d|am_eterlle_ng_ht_ is relatively smalks( 107). Since ion o (&) in terms of a set of unknown parameters. And, sec-
domain £ is half-infinite and the electrode must be eXCIUde%nd, we shall discretize the space of test functions in a similar

the adequate discretization @& requires an extremely Iargeway. Our purpose s to reduce the approximated problem to a

pumber (.)f degrtees of :‘r((ajed(t)hm. Thus,ftr;%proh;tl):_mve fr?rgp%bll posed linear system, with the same number of degrees of
INg requirements preclude the use o or Methods gfedom (unknown parameters) as discretized equations. We

practice [18]. . . o
On the other hand, two basic goals must be achieved insfg\all also discretize the geometry of the boundary, which is

: — ual in this kind of methods, with the aim of simplifying and
grounding system design: human safety must be preserved gtematizing the integration tasks
limiting step and touch voltages), and integrity of equipmemy )
and continuity of service must be guaranteed (by ensuring
fault currents dissipation into the earth) when a fault conditia2D Boundary Element General Formulation
occurs [1], [2], [11]. Since computation of potential is only g4, 4 given set{ N;(¢)} of A so-called trial (or interpo-
required on the earth surfaég, and the equivalent resistancqating) functions [19], [20] defined of, and for a given set

can be easily obtained in terms of the leakage current (2)_ Pa} of M 2D boundary elements (portions of the electrode
Boundary Element approach [19] seems to be the right Cth?rface), the unknown leakage current densityand the

[10], [11], [12]. electrode surfac& can be discretized in the form
Il. VARIATIONAL STATEMENT OF THE PROBLEM

N M
Applying Green’s Identity [17] to (1), one gets the following o(§) = a"(€) = Zai Ni(6), I'= U re @
expression (see Appendix I) for the potentiain E, in terms i=1 a=1

of the unknown leakage current[10], [11], [12] Then, a discretized form of (3) can be written as
— i o N M
V@)= / / Hz)o() dr. O )V =S @, Vi@ =S Ve ©
with the weakly singular kernel i=1 a=1
k(z, &) = ( ! + ! ) r(z,€&) = |:1: —-£&, 4 Vi¥(z) = L // k(x, &) N; (&) dT. (9)
S \r(=,8) (e €))’ o ’ ' dry J Jgere
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restrict the class of test functions to those with circumferential
uniformity, that isw(x) = w(x) Yx € C(X), (6) results in

dL =10

(15)
which must hold for all member& () of a suitable class of
test functions onl, being the integral kernel

Kx8- [ V K(x f)dc] ac.  (6)
Fig. 2. Assumption of circumferential uniformity. XeC(X) fec(f)

In this way, boundary conditio’V = 1 is forced to be
satisfied on the average at every cross section. In fact, (15) can
be considered as a weaker variational (or weighted residuals)
statement of the Fredholm integral equation of the first kind
N onL
ZRjiUi:ij jZl,...,N; (10) 1
= To(X) =

1 PO~
/XEL( )lﬂ(b( ) — ™ Jt K(x £)5(€)dL

Finally, for a given sefw;(£)} of AV test functions defined
onT, (6) reduces to the linear system [10], [11], [12]

i e K&O7O@ xen an

M M M
a i=1,...,N; i i
Rj; = Z Z ROy, = Z B { (12) Since ends and junctions of conductors are not taken into

i=1. N account in this formulation, slightly anomalous local effects
can be expected at these points.

Lol [] k@i, @2 | |
47T7 em Eere Approximated 1D Boundary Element Formulation

For a given sel{J\AZY;(Z)} of n trial (interpolating) functions
Vf = // w;(x) dr. (13) defined onL, and for a given sefL®} of m 1D boundary el-
XErs ements (segments of the cylindrical conductors), the unknown

It can be easily understood that 2D discretizations requiréghkage curreri, and the whole set of axial lines of the buried
to solve the above stated equations in real cases implyc@nductorsL, can be discretized in the form
large number of degrees of freedom. Since the coefficients R n o m
matrix in (10) is not sparse, and 2D integration in (12) must & (¢) ~ 5" (¢) = Za Ni(¢), L= U L*.  (18)
be performed twice over the electrode surface, it is clear

overcome the problem complexity.

Vie)~ V(@)=Y 6. Vi), Vix)= Z V2 (@), (19)

[1l. APPROXIMATED 1D VARIATIONAL STATEMENT i=1
For a given generic poirg at the surface of a cylindrical bar, 1
let € be its orthogonal projection over the bar axis,#é¢) be V¥ (z) = F} / k(z,&)dC | Ni(€) dL. (20)
the diameter (assumed much smaller than the bar length) and 7 JEere| Jeec®

IetC(E) be the circumferential perimeter of the cross section Finally, for a given set{w;(x)} of n test (weighting)
at this point. LetZ be the whole set of axial lines of thefunctions defined ot., (15) reduces to the linear system [10],
buried conductors. If the leakage current is assumed unifo[m], [12]
around the perimeter of every cross section (see figure 2), that

is o(&) = o(&) V&€ € C(&), expression (3) can be written in

the form [10], [11], [12]

= 1
V(x) B m éEL /feC(Zj) (w E) ic

This assumption seems to be quite adequate and not too
restrictive, if we take into account the real geometry ofground—ﬁfﬁ - / (%) [ K(X,€)N;(€)dL
ing grids [1], [2], [5]. Nevertheless, boundary condititn= 1 Amy Jxers geLe
will not be exactly satisfied yet at every point on the electrode
surface, since the leakage current is not exactly uniform around 7 =/ T o(x) Wi (x) dL. (24)
the cross section. Therefore, variational equality (6) will not XeLr
hold anymore (except in particular cases where the leakagéhe size of the linear equations system (21) and the number
current is really uniform around the perimeter). However, if wef contributions (23) that must be calculated are expected to

ﬁzal—uj7 i=1,...,m; (21)

_M3

s
Il
-

Ms

G@dL. (14 Ru=Y

=1«

m .
pho 5 _ 3 1=1,...,n
Ry J_ﬂz_:lyj’{j:l n: (22)

PN A2

1

dL, (23)
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be significantly smaller than those in (10) and (12). There- IV. ANALYTICAL INTEGRATION TECHNIQUES

fore, the computational work required by this approximated gyrther discussion and examples are restricted to Galerkin
1D formulation should be much lower in practice than thgne formulations, where the matrix of coefficients in (21) is
corresponding to the general formulation given in section by mmetric and positive definite [19]. Diameter of conductors

However, extensive computing is still required, mainly becauge 3ssumed constant within each element. Therefore, (20) and
of circumferential integration in (20) and (16), and furthef23) can be rewritten as

simplifications are necessary to reduce computing time under

acceptable levels. Ve (z) = . P> /A k(z, &) N;(€) dL,  (31)
A7y cLe
Simplified 1D Boundary Element Formulation RBe _ m¢P mo® Nj(f() i@ E) ]\7,@ dLldrL
J 4 ~ o ’ 7 ’
The inner integral of kernet(z, £) in (20) can be approx- T JXers geL (32)

imated as [10], [11], [12] being¢® and¢” the conductor diameters within elemetit$

o~ and L”. Obviously, contributions (32) produce a symmetric
feogh@O = To®F D, @) mavicin o)

Computation of remaining integrals in (31) and (32) by
being means of numerical quadratures is very costly due to the un-
PN 1 1 desirable behaviour of the integrands [10], [11]. Therefore, we

k(z, &) = <A =+t = ) ; (26)  turn our attention to analytical integration techniques. Explicit

r@.£)  7(z¢) formulae were initially derived to compute (31) in the case of

and constant (1 functional node), linear (2 functional nodes) and
P quadratic (3 functional nodes) leakage current elements [10],

?(x’g) - |x—2]2 + L(f)7 (27) [11], [12]. Explicit expressions were subsequently derived

4 [11], [12] for contributions (32). For the most simple cases,

~ o these formulae reduce to those proposed in the literature (i.e.
where{’ is the symmetric of with respect to the earth surface constant leakage current elements in APM [4]). Derivation of
This approximation is quite accurate, unless the distanggsse formulae requires a large and not obvious, analytical
between points: and{ was in the order of magnitude of theyyork [11], which is too cumbersome to be made completely
diametere(¢). Then, integral kernel (16) can be approximategypiicit in this paper. A summary of the whole development
as can be found in [12].

K(x.€) ~ 7 o(x) 7 (&) k(x. ), (28)

)

V. WHY DO THESEMETHODSFAIL TO CONVERGE?

We expect that the discretized leakage current deﬁéi@
2@72) _ ( 1 1 ), (29) will converge to the exact solution(¢) as the number of
degrees of freedom is increased. We also expect that the
discretized potential’” (z) will simultaneously converge to
and the exact solutioV (). In general, we can try to obtain these

being

~

S 22 020 + 2 (%) effects in (18) either by increasing the segmentation of the
rx:€) = \/Ix - & + — (30)  conductors, or by choosing more sophisticated trial functions
N; (&) (that is, using higher order elements) [19], [20]. In
where symmetry is preserved in (21) even for different cothe usual terminology of Finite Elements, the first option is
ductor diameters at poinfg and €. referred to as thé method, while the second is known as the
Now, specific selections of the sets of trial and test functiopsmethod.

lead to different formulations. Thus, for constant leakage cur-However, these formulations fail to converge to the ex-
rent elements (current density is assumed constant within each solution, since the discretized leakage current density
segment), Point Collocation (test functions are Dirac deltas@comes polluted by increasing numerical instabilities when
leads to the very early methods based on the idea that eddtretization is refined beyond a certain point [5], [16]. In
segment of conductor is substituted by an “imaginary spherédct, numerical instabilities can extend to the whole length of
Similarly, Galerkin type weighting (test functions are identicahe conductors when segmentation is increased. This produces
to trial functions) leads to a kind of more recent methods (sucinrealistic results in subsequent computation of potentials on
as APM) based on the idea that each segment of condudtoe earth surface, although the equivalent resistdghgeseems
is substituted by a “line of point sources over the lenght @b converge [11], [18].
the conductor” [5]. Coefficients (23) correspond to “mutual These problems were pointed out by Garret and Pruitt in
and self resistances” between “segments of conductor” [Bheir remarkable and indeed classical paper [5] about the
For higher order leakage current elements (current densityaiscuracy of the Average Potential Method. In spite of lacking
assumed linear, quadratic, etc., within each segment), mareigorous derivation for the method, these authors established
advanced formulations can be derived [11], [12]. and discussed most of the sources of error. However, the origin
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of the above mentioned instabilities could not be explained aperator is unbounded [21]. In plain words: if approximations
that incomplete theoretical framework. (25) and (28) are used, the exact solution of the ill-conditioned
Problem (1) is a well-posed problem [17]. One can argwemplified problem can not be found numerically, since one can
that neglecting the resistivity of the earthing electrode is natways come upon very different leakage current distributions
fully realistic, and thuslr is not exactly constant on thethat apparently verify the boundary conditibh= V1 with ar-
electrode surface. Should this line of reasoning be followebitrarily small errors. This explains why unrealistic results are
one would accept the need for more sophisticated models wiadnained when discretization is refined [5], and convergence
the resistivity of the electrode must be taken into accouns. precluded [16].
But this idealization seems to be reasonable and accurate
enough for most practical purposes [11], [18], and one can VI. ACCURACY AND OVERALL EFFICIENCY
not attribute the origin of the observed instabilities to this At this point, we endorse the lucid advices stated in [5].
assumption. On the other hand, derivations of expression {@)is kind of methods should be applied in an iterative way,
and Fredholm integral equation of the first kind (5) have beémcreasing the number of segments of conductors per computer
rigorously established [11]. Furthermore, the problem definedn. A simple strategy could be to start with a low number of
by variational form (6) is well-posed, kernel (4) is weaklysegments of similar size, and to bisect all the segments at each
singular, and linear system (10) is quite well-conditioned faun of the program until the results converge within acceptable
realistic discretizations of the electrode surface [19]. The latterrors. We recall that segmentation can not be indefinitely
is in contrast to other similar problems having smooth kernelscreased, for the above stated reasons. As a practical rule,
which are frequently very ill-conditioned and thus extremelwe can say that approximations (25) and (28) are not valid if
difficult to solve[19]. the size of segments becomes comparable to or smaller than
Therefore, the origin of the convergence failure must kiae diameter of the electrode.
sought for in the assumptions introduced to overcome theResults obtained for low and medium levels of discretization
computational complexity of the 2D BEM general formulatioan be considered sufficiently accurate for most of practical
[10], [11], [12], that is: A) the leakage current is assumegburposes [11], [18]. However, it is obvious that more accurate
uniform around the perimeter of every cylindrical conductoresults could be required in special cases, and it has been
B) the ends and junctions of conductors are not taken inteported that APM failed to determine satisfactory results in
account, andC) approximations (25) and (28) are introducedpecific instances due to the problems analyzed in this paper.
to avoid circumferential integration and reduce computinig cases like these, the use of higher order elements (linear or
time. guadratic) could help, at least up to a certain level of precision.
Several numerical tests have been performed for the singleOn the other hand, the proposed approach shows the path
bar in infinite domain problem [11], [18]. The results provéo remove the annoying instabilities of this kind of methods.
that assumptio\) is not the origin of the problems encoun\We remark that the simplified 1D BEM formulation is ill-
tered with this kind of methods. No specific numerical testonditioned, but the previous approximated 1D BEM formu-
have been performed so far in order to quantify the errtation is correct. Thus, the obvious solution is to substitute
due to assumptioB). Anyhow, in the authors’ experience,(25) and (28) by better approximations that were valid for
slightly anomalous local effects can be expected at the ergtwrt distances too. This is neither obvious nor straightforward,
and junctions of conductors, but global results should not kice it should be necessary to adapt most of the analytical
noticeably affected. We remark that derivations of expressiarork described in section IV. Anyhow, further research in this
(14) and Fredholm integral equation of the first kind (17jirection could supply efficient asymptotically stable methods
have been rigorously established [11], [12]. Furthermore, tiea close future.
problem defined by variational form (15) is approximated but With regard to the overall computational cost, for a given
well-posed, kernel (16) is weakly singular, and linear systediscretization {» elements ofp nodes each, and a total
(21) must be quite well-conditioned for realistic segmentatiomumber ofn degrees of freedom) a linear system (21) of
of the electrodes [19]. order n must be generated and solved. Since the matrix is
Therefore, the origin of the instabilities must be attributsymmetric, but not sparse, its resolution by means of a direct
ted to the approximations (25) and (28). The fact is thatethod should requir®(n?/3) operations. Matrix generation
these approximations are not valid for short distances. Whesguires O(m?p?/2) operations, sincep? contributions of
discretization is refined, the size of the segments beconype (32) have to be computed for every pair of elements,
comparable to or smaller than the diameter of the conductoand approximately half of them are discarded because of
Then, approximation (28) introduces significant errors in theymmetry. Once the leakage current has been obtained, the
coefficients of the linear system (21), including the diagonabst of computing the equivalent resistance is negligible. The
terms. From another point of view, since the approximaticadditional cost of computing potential at any given point
error increases as discretization becomes thiner, numerigadrmally on the earth surface) by means of (19) requires only
results for dense discretizations do not trend to the solution @fmp) operations, since contributions of type (31) have to
integral equation (17) with kernel (16), but to the solution dbe computed for every element. However, if it is necessary to
an ill-conditioned integral equation with non singular kernetompute potentials at a large humber of points (i.e. to draw
(28). It is a known theoretical result for Fredholm equationsontours), the corresponding computing time could as well be
of the first kind that the inverse of a completely continuousnportant.
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Hence, most of computing effort is devoted to matrix
generation in small/medium problems, while linear system
resolution prevails in medium/large ones. In these cases, the
use of direct methods for the linear system resolution is out of
range. Therefore iterative or semiiterative techniques will be
preferable. The best results have been obtained by a diagonal
preconditioned conjugate gradient algorithm with assembly
of the global matrix [11], [22]. This technique has turned
out to be highly efficient for solving large scale problems,
with a very low computational cost. Finally, the first critical ‘
time-consuming process is matrix generation, followed by it
computation of potential at a large number of points. Both
accept massive parallelization [23]. \

Selection of the type of leakage current density elements
is an important point in the resolution of a real problem. L
We recall that obtaining asymptotical solutions by indefinitely
increasing the discretization level is precluded. Thus, for a
given problem it will be essential to consider the relative
advantages and disadvantages of increasing the number of
elementsif method) or using higher order elementsifethod)
in order to define an adequate discretizacion [11], [12]. In
general, higher order elements are advantageous in comparison
with constant elements, since better results can be obtained
with a lower number of degrees of freedom.

VII. APPLICATION TOREAL CASES

The techniques derived by the authors have been imple-
mented in a Computer Aided Design system for earthing grids
of electrical substations called TOTBEM [24]. At present, the
single-layer code runs in real-time in personal computers, and
the size of the largest problem that can be solved is limited by
the memory storage required to handle the coefficients matrix.
Thus, for a problem with 2000 degrees of freedom, at least
16Mb would be needed, while computing times for matrix
generation and system resolution would be in the same order of
magnitude (around 15 seconds in what is considered a medium
performance single processor personal computer in year 2000).
The system has been used by the authors and by several
Spanish power companies to analyze several medium/large \
installations during the last 8 years. Some of these results can >
be found in [10], [11], [12], [24]. Fig. 3. E.R. Barbex substation grounding: Plan and potential distribution

The following examples have been obtained with then the ground surface (contours plotted every 0.2 kV; thick contours every
TOTBEM system. The presented results were computed fof¥):

a GPR value ofr = 10 kV. The estimated value of the soil
conductivity wasy = (60 2m)~1. A Galerkin weighting type
formulation was used in all the cases.

computed potential distribution on the ground surface when a
fault condition occurs. Figure 4 shows the computed potential
profiles along two given lines on the ground surface. The
A. Example 1: The E.R. Barkegrounding grid computed Fault Current i$r = 31.8 kA, which gives an

The first example is the E. R. Barl@esubstation grounding Equivalent Resistance dt., = 0.315 Q.

(90 x 145 m?) close to the city of Barcelona in Spain that is This case was originally computed in a PC486/16Mb at
operated by the power compaRECSA This earthing system 66MHz [12]. It took 450 seconds to complete the analysis in
(see figure 3) consist of 408 barg € 12.85 mm) buried to 1997. The same analysis can be performed in ab®seconds

a depth of 80 cm. using a regular PC in 2002.

Each conductor is discretized in one single linear densityWe notice that using one constant (instead of linear) den-
element (the aproximated leakage current densityvaries sity element per conductor leads to a larger problem (408
linearly within each conductor). This leads to an approximateshknowns). Hence, this example shows that linear density
problem with a total of 238 unknowns. Figure 3 shows thelements can be advantageous in comparison with constant
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Fig. 4. E.R. Barbex substation grounding: Potential profiles along two given

lines.

1 Unit=10m

Fig. 5. Balados Il substation grounding: Plan (vertical rods marked with
black points) and potential distribution on the ground surface (contours plot

every 0.2 kV; thick contours every 1 kV).

1 Unidad = 10 m

RN

Fig. 6. Santiago Il substation grounding: Plan and potential distribution on
the ground surface (as a fraction of the GPR).

density elements, since one can obtain higher precision results
for a similar overall computing effort (the lower computational
cost in linear solving is the counterweight to the higher
computational cost in matrix generation).

B. Example 2: The Baldos Il grounding grid

The second example is the Balas Il substation grounding
(80 x 60 m?) close to the city of Vigo in Spain that is operated
by the power companMNION FENOSATHhis earthing system
(see figure 5) consist of 107 barg £ 11.28 mm) buried to
a depth of 80 cm, supplemented with 67 vertical rods=(
14.00 mm, L = 2.5 m).

Each conductor is discretized in one single quadratic el-
ement (the aproximated leakage current density varies
guadratically within each conductor). This leads to an approx-
imated problem with a total of 315 unknowns. Figure 5 shows
the computed potential distribution on the ground surface
when a fault condition occurs. The computed Fault Current
was It = 25.0 kA, which gives an Equivalent Resistance of
Ry = 0.400 €.
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This case was also originally computed in a PC486/16Mb. Further Developments
at 66MHz [12]. It took600 seconds to complete the analysis The techniques described in this paper can be extended
in 1997. The same analysis can be performed in alout o myiti-layer soil models [25], [26], although computing
seconds using a regular PC in 2002. time becomes not contemptible whatsoever. The proposed

In this case, using one single constant density element ggfmulation has been implemented in a high-performance
conductor leads to an approximated problem with 174 UBarallel computer and the code has been applied to the analysis
knowns, while using one single linear density element per cogf several real grounding systems [23], [25], [26]. The results
ductor leads to an approximated problem with 141 unknowngstained by the authors with the multi-layer code have been
This example shows that using quadratic density elemeRgticeably different from those obtained by using a single layer
leads to larger approximated problems than using constag§i model. Thus, it is the authors’ belief that the proposed
or linear density elements. Obviously, the computational CO®lulti-layer BEM formulation will become a real-time design
devoted to matrix generation and linear solving is highego] in a close future, as high-performance parallel computing
However, the overall computing effort is still acceptable (in thgecomes a widespread available resource in engineering. The
same order of magnitude), while the precision of the resugrmulation can also be adapted for computing transferred
is much higher. potentials [11].

C. Example 3: The Santiago Il grounding grid VIIl. CoNcLUSIONS

. . . . . A Boundary Element approach for the analysis of substation
The third (and final) example is the Santiago Il substatio .
grounding 230 x 195 m?) close to the city of Santiago Qarthmg systems has been presented. For 3D problems, some

de Compostela in Spain that is also operated by the bo reasonable assumptions allow to reduce a general 2D BEM
postera in spal ! P y POYE mulation to an approximated less expensive 1D version.

compaquNfION FbENOSATh'S earthlrE)g gyjtem (Zee Egufr urther simplifications reduce computing requirements under
% iﬂSI:LSplgitntzgl%vihl;féi/g:gzél rliJr(If;s :ét015a 0 Oeg[mo acceptable levels. Several widespread methods are identified as
I - 46 m). The earth resistivity i$0 Qm ' "’ particular cases of this approach. In this theoretical framework,
i o . : . L _ roblems encountered with the application of these methods
Each bar is d|_scre_t|zed_|n one smglt_e linear der_15|ty elemeﬁtave been finally explained from a mathematically rigorous
while each rod is discretized in two linear density elements o o view. On the other hand, more efficient and accurate

Thl'(s leads It:O an %ppkzoxmar:ed problerg with a tﬁé‘?" OL 3, rmulations have been derived. New analytical integration
unknowns. Figure 6 shows the compute po't.entla Istr u“?@chniques allow to obtain accurate results in practical cases
on the ground surface when a fault condition occurs. T%th acceptable computing requirements

com_puted Faul_t Current igr = 67.3 kA, which gives an The techniques derived by the authors have been imple-
Equalent Resstan_cg ey = 0.149 Q'_ mented in a Computer Aided Design system called TOTBEM.
This case was originally computed in a DEC AlphaServey; nresent, this system runs in real-time in personal computers,
4000-AXP running VMS [25], [26]. It tookr.7 seconds 10 anq it has been used by the authors and by Spanish power com-
complete the analysis in 1990. The same analysis can b&ies to analyze several medium/large installations during
performed in less thag( seconds using a regular PC in 2002,¢ |5t 8 years. The techniques described in this paper have

also been extended for multi-layer soil models and transferred
: . . otentials.
D. The effect of increasing the segmentation P

The above mentioned examples have been repeatedly solved ACKNOWLEDGMENTS
for an increasing segmentation of the electrodes. As the theory_ . ) L
d seg yl'h|s work has been partially supported by thknisterio

predicts (and it has been reported) the numerical instabilities Educadn y Culturaof the Spanish Government (grant #
ollute the results when the discretization is refined beyon ) .
Eert‘;m point Suts w Iscretization 1S e YONC £597-0108 and # DPI2001-0556), cofinanced with European
’ Upion FEDER funds, by the power compabjniobn Fenosa

Anyway,_ It seems t.hat a reasqnablg (moderate) level ngeniefia S.A, and by research fellowships of thanta de
segmentation is sufficient to obtain quite accurate results T . . : -
ghCIa and theUniversidad de A Coriia.

practice. In our experience, increasing the number of elemen

was needless in all the studied cases, since the results (at

the scale of the whole grid) were not noticeably improved. It APPENDIXI:

seems that increasing the segmentation is only justified when ~ |NTEGRAL EXPRESSION FOR THEPOTENTIAL

high accuracy local results are required for a limited part of We wish to obtain an integral expression for the solution

the whole earthing system. V(z) to problem (1) at an arbitrary poiat in E. We assume
On the other hand, the use of higher order elements (lindat the earth surfach; is horizontal.

or quadratic) seems to be more advantageous (in general) thahirst, we extend the domaifi by adding its symmetric with

increasing intensively the segmentation of constant elememnsspect to the plangés. Let Q(co) be the infinite extended

since the accuracy is higher for a remarkably smaller totsymmetric domain. Lef2(R) C ©(c0) be a finite subdomain

number of degrees of freedom [11]. and letR be its diameter. Lelf, ) be the exterior boundary of
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We now consider the closed domaln(R,s) = Q(R) —
B(z,¢). Obviously, bothV/(z) and ¥ (z) are functions of class
C? in D(R,¢). Therefore, we can apply the second Green’s
Identity [17], [11] to our problem, which gives

/// (V(z) AV(z) - U(z) A V(z))dD _
ZeD(R.e)

//g . (V@)%(o - W(&)%(E))dFD,
€lb(r,e)

whereIp (R, ¢) is the boundary of the domaiP(R,¢) and
np is the corresponding normal exterior unit field.

Both functionsV (z) and ¥(z) are harmonic inD(R,¢),
since (33) and (36) are satisfied and the singularity at
z has been isolated. Therefore, the left hand side of (37)
vanishes, what gives

Fig. 7. Extended symmetric domain for problem (1). // T(f)dFD =0, (38)
§€FD(R,5)
/ ; . being
Q(R). LetI" be the image of the earthing electrode surface oOU oV
T with respect to the plan&s;. We assume thaR is large T(¢) = V(ﬁ)%(@ - ‘I’(ﬁ)%(ﬁ)- (39)

enough. Thus, the earthing electrode and its symmetric
embedded —but not included— R(R) (see figure 7).

The soil is considered homogeneous and isotropic. Thus,
tensor+ is substituted by the constant scalar conductivity I / / (VD — 0 20
In these terms, problem (1) can be substituted by the Dirichlet Reéfféeo £elhinn (§)dIh ' (40)
Exterior Problem

e - . o
%rlnally, it is obvious that (38) holds for arbitrarily large values
meR and arbitrarily low values of. Therefore we can write

The exterior boundary oD (R, ¢) is Igry. The interior

AV(z) =0 Vz e Q(c0), boundary of D(R,¢) consists of the exterior boundaries of
V(€ =Vr VEeT, V(E)=Vr V¢ el (33) 1) the earthing electrodel'], 2) the image of the earthing
V(z) verifies normal conditions whenz| — oo, electrode '), and 3) the ball that isolates the singularity

I; . Hence
since the natural boundary conditiaffngy = 0 in Iy is (b@.o)

automatically fulfilled due to the symmetry of the extended Ip = Iyr Ul UL UT (41)
domain. The so-called normal conditions at infinity can bg,q
mathematically expressed as [7], [8]
_ YT(€)dIp = T (€)dI;
|V(z)| =0 (]z|"') when |z| — oo, and 34 //feFDm,E) (§)dIp //&FQ(R) (§)dIb+
grad(V(z))‘ =0 (1z]"%) when |z — . // T+
For the given pointz, the so-called fundamental solution el (42)
[27] to the above stated problem is / / T(€)dTp+
1 §er
U(z) = —F, r(z,2)=|x— 2| (35)
(2) dmr(z, z) (z,2) = | | // T (€)dIp.
er

where |a: — z| is the euclidean distance between the points

z and z. It is easy to check that this function satisfies the By taking into account that (35) giveB(¢) for all £ in Ip,
statement andV (z) satisfies (33) and (34), we can prove that[11]

AV(z) = .5(z —x) Vz € Q(oo), (36) lim // Y(€)dIp = 0,
U(z) verifies normal conditions wherz| — oo, R—co J J€etyn,

being § the Dirac’s delta distribution. Therefore, the funda- |im // T(&)dlp = V(z),
mental solution can be interpreted as the particular solution of <0/ J€er, 5 .,

the field equation for a punctual source of current at the given 1 1 oV
. T(&)dlp = — —(&)dl’
pointz [27]. //{el“ ©)dlp am //ﬁel“ r(z, &) on €l

The Laplacian of the fundamental solution (35) is obviously 1 ov
T(E)dTp = - / /
//{el“’ E)dlb am JJg er

(43)

singular atz = z, but it vanishes at any other point. In order v ?(g’)dl“’,

to avoid the singularity we define the bdl(z, ) of radiuse r(@.£) on

centered at poing (see figure 7). Lef (g ) be the boundary beingn andn’ the normal exterior unit fields té' and I
of B(zx,e). respectively.
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Therefore (40) reduces to [5]

1 1 oV
i Lo g 00O
[7]

1 1oV,
“ir e e T )

Finally, we can take advantage of the symmetry to write[10], (9]

Viz) =

[6]
(44)

[11], [12] w01
1
V@)= o /] _H@&)ol) dr. (45)
being o 1]
o) = 9E),  ger (46)
and
1 1 [12]
wo-(mgtme) @

[13]
where¢’ is the symmetric of with respect to the earth surface.
The functiono (§) in (46) is clearly identified as the leakage
current density at an arbitrary poi§ion the earthing electrode
T

[14]
. [15]

Under the above assumptions we can also prove that (43)6]
holds on the earthing electrode surface. Thus, we still can say

1
V0= s [f i @o@ ar e @®

4wy
This is neither obvious nor trivial, and the proof required!8]
a special discussion[11]. In this case, kernel (47) becomes
singular at{ = x. Since (48) still makes sense in spite of the
singularity, (47) is said to be a weakly singular kernel.

We notice that expression (45) always satisfies the fiel®!
equation, the natural boundary condition and the normal
conditions at infinity for problem (1). Therefore, the only thing[20]
that remains to be done in order to solve this problem is t&l]
fulfill the essential boundary conditiolr = Vi in I'. We
shall enforce this by means of (48). Therefore, our problert?2]
is reduced to finding the unknown leakage current density
distributiono () in T that verifies [23]

1

Vr=—
r 4dmy

// x£)ol€) T, VxeT. (49

Once the leakage current density distribution is known, w&4
shall be able to compute the potential at any point by means

of expression (45). [25]
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