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Why Do Computer Methods For Grounding
Analysis Produce Anomalous Results?

Ferḿın Navarrina, Ignasi Colominas,Member, IEEE,and Manuel Casteleiro

Abstract— Grounding systems are designed to guarantee per-
sonal security, protection of equipments and continuity of power
supply. Hence, engineers must compute the equivalent resistance
of the system and the potential distribution on the earth surface
when a fault condition occurs [1], [2], [3]. While very crude
approximations were available until the 70’s, several computer
methods have been more recently proposed on the basis of
practice, semi-empirical works and intuitive ideas such as super-
position of punctual current sources and error averaging [1], [3],
[4], [5], [6]. Although these techniques are widely used, several
problems have been reported. Namely: large computational re-
quirements, unrealistic results when segmentation of conductors
is increased, and uncertainty in the margin of error [2], [5].

A Boundary Element formulation for grounding analysis is
presented in this paper. Existing computer methods such as
APM are identified as particular cases within this theoretical
framework. While linear and quadratic leakage current elements
allow to increase accuracy, computing time is reduced by means
of new analytical integration techniques. Former intuitive ideas
can now be explained as suitable assumptions introduced in
the BEM formulation to reduce computational cost. Thus, the
anomalous asymptotic behaviour of this kind of methods is
mathematically explained, and sources of error are rigorously
identified.

Index Terms— Anomalous results, average potential method,
boundary element methods, boundary integral equations, com-
puter methods for grounding analysis, convergence of numerical
methods, fault currents, grounding, power system protection.

I. I NTRODUCTION

FAULT currents dissipation into the earth can be modelled
by means of Maxwell’s Electromagnetic Theory [7], [8],

[9]. Constraining the analysis to the electrokinetic steady-
state response, and neglecting the resistivity of the earthing
electrode, the 3D problem associated to an electrical current
derivation to earth can be written as

div(σσσσσσσσσσσσσσ) = 0 in E, being σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ grad(V )
σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE , V = VΓ in Γ,

V → 0 if |xxxxxxxxxxxxxx| → ∞, (1)

whereE is the earth andγγγγγγγγγγγγγγ its conductivity tensor,ΓE is the
earth surface andnnnnnnnnnnnnnnE its normal exterior unit field, andΓ is
the earthing electrode surface [10], [11], [12]. The solution to
this problem gives the potentialV (xxxxxxxxxxxxxx) and the current density
σσσσσσσσσσσσσσ(xxxxxxxxxxxxxx) at an arbitrary pointxxxxxxxxxxxxxx in E when the earthing electrode
is energized to the so-called Ground Potential RiseVΓ relative
to remote earth.
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Fig. 1. Fault current disipation in a single layer soil model.

The current density vector fieldσσσσσσσσσσσσσσ describes the stream of
electric charges in the vicinity of each point. Thus, the scalar
productσσσσσσσσσσσσσσt(xxxxxxxxxxxxxx)nnnnnnnnnnnnnn gives the electric charge flux, i.e. the amount
of charge flowing per unit of surface and unit of time, in
the direction of the vectornnnnnnnnnnnnnn at the pointxxxxxxxxxxxxxx. In the steady
state, by definition, the amount of charge does not vary at
any point. Therefore, the equilibrium equationdiv(σσσσσσσσσσσσσσ) = 0
in E is just a standard conservation law that expresses the
indestructibility of charge. Obviously, this law can easily be
derived from Maxwell’s equations [9], [11].

The constitutive equationσσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ grad(V ) is a general-
ized version of Ohm’s law. In essence, Maxwell’s equations
predict an irrotational electric field intensityEEEEEEEEEEEEEE for the steady
state. Therefore, a so-called electric scalar potentialV must
exist, such thatEEEEEEEEEEEEEE = −grad(V ) [9], [11]. Thus, the above
constitutive equation establishes a linear relation between the
current densityσσσσσσσσσσσσσσ and the electric field intensityEEEEEEEEEEEEEE at each
point, in terms of the so-called conductivity tensorγγγγγγγγγγγγγγ. If the
medium being dealt with is homogeneous, the conductivity
tensor is constant. If the medium is isotropic, the conductivity
tensor can be substituted by a scalar conductivityγ. Hence,
in the case of a one-dimensional homogeneous and isotropic
medium, the constitutive equation simply says that the current
intensity per unit of surface is proportional to the loss of
electric potential per unit of length, that is a known form of
Ohm’s law.

Since the scalar productσσσσσσσσσσσσσσtnnnnnnnnnnnnnnE gives the electric charge flux
in the direction of the normal to the earth surface, it must be
clear now that the natural boundary conditionσσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in
ΓE is equivalent to consider the air as a perfect insulator. On
the other hand, the essential boundary conditionV = VΓ in Γ
comes from neglecting the resistivity of the earthing electrode.

Finally, the essential boundary conditionV → 0 if |xxxxxxxxxxxxxx| → ∞
assigns a null (arbitrary but convenient) value to the reference
potential at remote earth [11]. Additionally, the potential
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V must satisfy some theoretical regularity requirements at
infinity. These so-called “normal conditions” are made explicit
in Appendix I [7], [8].

In these terms, the leakage current densityσ(ξξξξξξξξξξξξξξ) at an
arbitrary pointξξξξξξξξξξξξξξ on the earthing electrode surface, the ground
currentIΓ (total surge current being leaked into the earth) and
the equivalent resistance of the earthing systemReq, can be
written as

σ(ξξξξξξξξξξξξξξ) = σσσσσσσσσσσσσσt(ξξξξξξξξξξξξξξ)nnnnnnnnnnnnnn, IΓ =
∫∫

ξξξξξξξξξξξξξξ∈Γ

σ(ξξξξξξξξξξξξξξ) dΓ, Req =
VΓ

IΓ
, (2)

being nnnnnnnnnnnnnn the normal exterior unit field toΓ. SinceV and σσσσσσσσσσσσσσ
are proportional to the GPR, the assumptionVΓ = 1 is not
restrictive at all and it will be used from now on.

For most practical purposes, the assumption of homoge-
neous and isotropic soil can be considered acceptable [1],
and the tensorγγγγγγγγγγγγγγ can be substituted by a meassured apparent
scalar conductivityγ (see figure 1). Otherwise, a multi-layer
model can be accepted without risking a serious calculation
error [13], [14]. Since the kind of techniques described in this
paper can be extended to multi-layer soil models [15], further
discussion is restricted to uniform soils. Hence, problem
(1) reduces to the Laplace equation with mixed boundary
conditions [7], [8]. If one further assumes that the earth surface
is horizontal (see Appendix I), symmetry allows to rewrite (1)
in terms of a Dirichlet Exterior Problem [16].

This kind of problems has been rigorously studied [17], and
its solution can be obtained in many technical applications by
means of the Finite Diference or the Finite Element methods.
But that is not our case. In most substation grounding systems,
the buried earthing electrode (grounding grid) consists of a
number of interconnected bare cylindrical conductors, which
ratio diameter/lenght is relatively small (≈ 10−3). Since
domainE is half-infinite and the electrode must be excluded,
the adequate discretization ofE requires an extremely large
number of degrees of freedom. Thus, the prohibitive comput-
ing requirements preclude the use of FD or FE methods in
practice [18].

On the other hand, two basic goals must be achieved in a
grounding system design: human safety must be preserved (by
limiting step and touch voltages), and integrity of equipment
and continuity of service must be guaranteed (by ensuring
fault currents dissipation into the earth) when a fault condition
occurs [1], [2], [11]. Since computation of potential is only
required on the earth surfaceΓE , and the equivalent resistance
can be easily obtained in terms of the leakage current (2), a
Boundary Element approach [19] seems to be the right choice
[10], [11], [12].

II. VARIATIONAL STATEMENT OF THE PROBLEM

Applying Green’s Identity [17] to (1), one gets the following
expression (see Appendix I) for the potentialV in E, in terms
of the unknown leakage currentσ [10], [11], [12]

V (xxxxxxxxxxxxxx) =
1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) σ(ξξξξξξξξξξξξξξ) dΓ, (3)

with the weakly singular kernel

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) =
(

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)

+
1

r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ′)

)
, r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) =

∣∣xxxxxxxxxxxxxx− ξξξξξξξξξξξξξξ
∣∣, (4)

whereξξξξξξξξξξξξξξ′ is the symmetric ofξξξξξξξξξξξξξξ with respect to the earth surface.
Since (3) holds on the earthing electrode surface [11], the
boundary conditionVΓ = 1 leads to the Fredholm integral
equation of the first kind onΓ

1− 1
4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ = 0 ∀χχχχχχχχχχχχχχ ∈ Γ, (5)

which solution is the unknown leakage current densityσ.
Equation (5) can be written in the weaker variational (or
weighted residuals) form [19], [20]

∫∫

χχχχχχχχχχχχχχ∈Γ

w(χχχχχχχχχχχχχχ)

[
1− 1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) σ(ξξξξξξξξξξξξξξ)dΓ

]
dΓ = 0, (6)

which must hold for all membersw(χχχχχχχχχχχχχχ) of a suitable class of
so-called test (or weighting) functions onΓ [10], [11], [12].

It seems quite clear that the weak form (6) is a consequence
of the original (or strong) form (5) of the problem. The reverse
is not obvious, but it can be proved. The basic idea is quite
simple: roughly speaking, weak form (6) must be satisfied for
any selected test functionw(χχχχχχχχχχχχχχ), and this will not be possible
unless strong form (5) is fulfilled. In fact, both forms of the
problem can be proved to be equivalent [19], [20] as a general
rule.

Weak form (6) will be our starting point to obtain an
approximate solution to the original problem (1) by means
of the Boundary Element Method. Following the subsequent
developments will be fairly straightforward for those readers
who are familiar with the Finite Element basic technology
[20], [19], [9]. The essential idea is to approximate variational
statement (6) in a finite-dimensional context. First, we shall
substitute the exact solutionσ(ξξξξξξξξξξξξξξ) by a discretized approxima-
tion σh(ξξξξξξξξξξξξξξ) in terms of a set of unknown parameters. And, sec-
ond, we shall discretize the space of test functions in a similar
way. Our purpose is to reduce the approximated problem to a
well posed linear system, with the same number of degrees of
freedom (unknown parameters) as discretized equations. We
shall also discretize the geometry of the boundary, which is
usual in this kind of methods, with the aim of simplifying and
systematizing the integration tasks.

2D Boundary Element General Formulation

For a given set{Ni(ξξξξξξξξξξξξξξ)} of N so-called trial (or interpo-
lating) functions [19], [20] defined onΓ, and for a given set
{Γα} of M 2D boundary elements (portions of the electrode
surface), the unknown leakage current densityσ and the
electrode surfaceΓ can be discretized in the form

σ(ξξξξξξξξξξξξξξ) ≈ σh(ξξξξξξξξξξξξξξ) =
N∑

i=1

σi Ni(ξξξξξξξξξξξξξξ), Γ =
M⋃

α=1

Γα. (7)

Then, a discretized form of (3) can be written as

V (xxxxxxxxxxxxxx) ≈ V h(xxxxxxxxxxxxxx) =
N∑

i=1

σi Vi(xxxxxxxxxxxxxx), Vi(xxxxxxxxxxxxxx) =
M∑

α=1

V α
i (xxxxxxxxxxxxxx), (8)

V α
i (xxxxxxxxxxxxxx) =

1
4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γα

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ) dΓ. (9)
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Fig. 2. Assumption of circumferential uniformity.

Finally, for a given set{wj(ξξξξξξξξξξξξξξ)} of N test functions defined
on Γ, (6) reduces to the linear system [10], [11], [12]

N∑

i=1

Rjiσi = νj , j = 1, . . . ,N ; (10)

Rji =
M∑

β=1

M∑
α=1

Rβα
ji , νj =

M∑

β=1

νβ
j ,

{
i = 1, . . . ,N ;
j = 1, . . . ,N ; (11)

Rβα
ji =

1
4πγ

∫∫

χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)

[∫∫

ξξξξξξξξξξξξξξ∈Γα

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ)dΓ

]
dΓ, (12)

νβ
j =

∫∫

χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ) dΓ. (13)

It can be easily understood that 2D discretizations required
to solve the above stated equations in real cases imply a
large number of degrees of freedom. Since the coefficients
matrix in (10) is not sparse, and 2D integration in (12) must
be performed twice over the electrode surface, it is clear
that additional assumptions must be introduced in order to
overcome the problem complexity.

III. A PPROXIMATED 1D VARIATIONAL STATEMENT

For a given generic pointξξξξξξξξξξξξξξ at the surface of a cylindrical bar,
let ξ̂ξξξξξξξξξξξξξ be its orthogonal projection over the bar axis, letφ(ξ̂ξξξξξξξξξξξξξ) be
the diameter (assumed much smaller than the bar length) and
let C(ξ̂ξξξξξξξξξξξξξ) be the circumferential perimeter of the cross section
at this point. LetL be the whole set of axial lines of the
buried conductors. If the leakage current is assumed uniform
around the perimeter of every cross section (see figure 2), that
is σ(ξξξξξξξξξξξξξξ) = σ̂(ξ̂ξξξξξξξξξξξξξ) ∀ξξξξξξξξξξξξξξ ∈ C(ξ̂ξξξξξξξξξξξξξ), expression (3) can be written in
the form [10], [11], [12]

V̂ (xxxxxxxxxxxxxx) =
1

4πγ

∫

ξ̂ξξξξξξξξξξξξξ∈L

[∫

ξξξξξξξξξξξξξξ∈C(ξ̂ξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC

]
σ̂(ξ̂ξξξξξξξξξξξξξ) dL. (14)

This assumption seems to be quite adequate and not too
restrictive, if we take into account the real geometry of ground-
ing grids [1], [2], [5]. Nevertheless, boundary conditionV = 1
will not be exactly satisfied yet at every point on the electrode
surface, since the leakage current is not exactly uniform around
the cross section. Therefore, variational equality (6) will not
hold anymore (except in particular cases where the leakage
current is really uniform around the perimeter). However, if we

restrict the class of test functions to those with circumferential
uniformity, that isw(χχχχχχχχχχχχχχ) = ŵ(χ̂χχχχχχχχχχχχχ) ∀χχχχχχχχχχχχχχ ∈ C(χ̂χχχχχχχχχχχχχ), (6) results in

∫

χ̂χχχχχχχχχχχχχ∈L

ŵ(χ̂χχχχχχχχχχχχχ)

[
πφ(χ̂χχχχχχχχχχχχχ)− 1

4πγ

∫

ξ̂ξξξξξξξξξξξξξ∈L

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)σ̂(ξ̂ξξξξξξξξξξξξξ)dL

]
dL = 0

(15)
which must hold for all memberŝw(χ̂χχχχχχχχχχχχχ) of a suitable class of
test functions onL, being the integral kernel

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =
∫

χχχχχχχχχχχχχχ∈C(χ̂χχχχχχχχχχχχχ)

[∫

ξξξξξξξξξξξξξξ∈C(ξ̂ξξξξξξξξξξξξξ)

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) dC

]
dC. (16)

In this way, boundary conditionV = 1 is forced to be
satisfied on the average at every cross section. In fact, (15) can
be considered as a weaker variational (or weighted residuals)
statement of the Fredholm integral equation of the first kind
on L

πφ(χ̂χχχχχχχχχχχχχ) =
1

4πγ

∫

ξ̂ξξξξξξξξξξξξξ∈L

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL ∀χ̂χχχχχχχχχχχχχ ∈ L. (17)

Since ends and junctions of conductors are not taken into
account in this formulation, slightly anomalous local effects
can be expected at these points.

Approximated 1D Boundary Element Formulation

For a given set{N̂i(ξ̂ξξξξξξξξξξξξξ)} of n trial (interpolating) functions
defined onL, and for a given set{Lα} of m 1D boundary el-
ements (segments of the cylindrical conductors), the unknown
leakage current̂σ, and the whole set of axial lines of the buried
conductorsL, can be discretized in the form

σ̂(ξ̂ξξξξξξξξξξξξξ) ≈ σ̂h(ξ̂ξξξξξξξξξξξξξ) =
n∑

i=1

σ̂i N̂i(ξ̂ξξξξξξξξξξξξξ), L =
m⋃

α=1

Lα. (18)

Then, a discretized version of (14) can be written as

V̂ (xxxxxxxxxxxxxx) ≈ V̂ h(xxxxxxxxxxxxxx) =
n∑

i=1

σ̂i V̂i(xxxxxxxxxxxxxx), V̂i(xxxxxxxxxxxxxx) =
m∑

α=1

V̂ α
i (xxxxxxxxxxxxxx), (19)

V̂ α
i (xxxxxxxxxxxxxx) =

1
4πγ

∫

ξ̂ξξξξξξξξξξξξξ∈Lα

[∫

ξξξξξξξξξξξξξξ∈C(ξ̂ξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC

]
N̂i(ξ̂ξξξξξξξξξξξξξ) dL. (20)

Finally, for a given set{ŵj(χ̂χχχχχχχχχχχχχ)} of n test (weighting)
functions defined onL, (15) reduces to the linear system [10],
[11], [12]

n∑

i=1

R̂jiσ̂i = ν̂j , j = 1, . . . , n; (21)

R̂ji =
m∑

β=1

m∑
α=1

R̂βα
ji , ν̂j =

m∑

β=1

ν̂j
β ,

{
i = 1, . . . , n;
j = 1, . . . , n; (22)

R̂βα
ji =

1
4πγ

∫

χ̂χχχχχχχχχχχχχ∈Lβ

ŵj(χ̂χχχχχχχχχχχχχ)

[∫

ξ̂ξξξξξξξξξξξξξ∈Lα

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)N̂i(ξ̂ξξξξξξξξξξξξξ)dL

]
dL, (23)

ν̂β
j =

∫

χ̂χχχχχχχχχχχχχ∈Lβ

π φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ) dL. (24)

The size of the linear equations system (21) and the number
of contributions (23) that must be calculated are expected to
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be significantly smaller than those in (10) and (12). There-
fore, the computational work required by this approximated
1D formulation should be much lower in practice than the
corresponding to the general formulation given in section II.
However, extensive computing is still required, mainly because
of circumferential integration in (20) and (16), and further
simplifications are necessary to reduce computing time under
acceptable levels.

Simplified 1D Boundary Element Formulation

The inner integral of kernelk(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) in (20) can be approx-
imated as [10], [11], [12]

∫

ξξξξξξξξξξξξξξ∈C(ξ̂ξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC ≈ π φ(ξ̂ξξξξξξξξξξξξξ) k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ), (25)

being

k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) =

(
1

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ)
+

1

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ′)

)
, (26)

and

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) =

√
∣∣xxxxxxxxxxxxxx− ξ̂ξξξξξξξξξξξξξ

∣∣2 +
φ2(ξ̂ξξξξξξξξξξξξξ)

4
, (27)

whereξ̂ξξξξξξξξξξξξξ′ is the symmetric of̂ξξξξξξξξξξξξξξ with respect to the earth surface.
This approximation is quite accurate, unless the distance
between pointsxxxxxxxxxxxxxx and ξ̂ξξξξξξξξξξξξξ was in the order of magnitude of the
diameterφ(ξ̂ξξξξξξξξξξξξξ). Then, integral kernel (16) can be approximated
as

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) ≈ π φ(χ̂χχχχχχχχχχχχχ)π φ(ξ̂ξξξξξξξξξξξξξ) ̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ), (28)

being

̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

(
1

̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)
+

1
̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ′)

)
, (29)

and

̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

√
∣∣χ̂χχχχχχχχχχχχχ− ξ̂ξξξξξξξξξξξξξ

∣∣2 +
φ2(ξ̂ξξξξξξξξξξξξξ) + φ2(χ̂χχχχχχχχχχχχχ)

4
, (30)

where symmetry is preserved in (21) even for different con-
ductor diameters at pointŝχχχχχχχχχχχχχχ and ξ̂ξξξξξξξξξξξξξ.

Now, specific selections of the sets of trial and test functions
lead to different formulations. Thus, for constant leakage cur-
rent elements (current density is assumed constant within each
segment), Point Collocation (test functions are Dirac deltas)
leads to the very early methods based on the idea that each
segment of conductor is substituted by an “imaginary sphere”.
Similarly, Galerkin type weighting (test functions are identical
to trial functions) leads to a kind of more recent methods (such
as APM) based on the idea that each segment of conductor
is substituted by a “line of point sources over the lenght of
the conductor” [5]. Coefficients (23) correspond to “mutual
and self resistances” between “segments of conductor” [5].
For higher order leakage current elements (current density is
assumed linear, quadratic, etc., within each segment), more
advanced formulations can be derived [11], [12].

IV. A NALYTICAL INTEGRATION TECHNIQUES

Further discussion and examples are restricted to Galerkin
type formulations, where the matrix of coefficients in (21) is
symmetric and positive definite [19]. Diameter of conductors
is assumed constant within each element. Therefore, (20) and
(23) can be rewritten as

V̂ α
i (xxxxxxxxxxxxxx) =

1
4πγ

π φα

∫

ξ̂ξξξξξξξξξξξξξ∈Lα

k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL, (31)

R̂βα
ji =

πφβ πφα

4πγ

∫

χ̂χχχχχχχχχχχχχ∈Lβ

N̂j(χ̂χχχχχχχχχχχχχ)

[∫

ξ̂ξξξξξξξξξξξξξ∈Lα

̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

]
dL,

(32)
beingφα andφβ the conductor diameters within elementsLα

and Lβ . Obviously, contributions (32) produce a symmetric
matrix in (21).

Computation of remaining integrals in (31) and (32) by
means of numerical quadratures is very costly due to the un-
desirable behaviour of the integrands [10], [11]. Therefore, we
turn our attention to analytical integration techniques. Explicit
formulae were initially derived to compute (31) in the case of
constant (1 functional node), linear (2 functional nodes) and
quadratic (3 functional nodes) leakage current elements [10],
[11], [12]. Explicit expressions were subsequently derived
[11], [12] for contributions (32). For the most simple cases,
these formulae reduce to those proposed in the literature (i.e.
constant leakage current elements in APM [4]). Derivation of
these formulae requires a large and not obvious, analytical
work [11], which is too cumbersome to be made completely
explicit in this paper. A summary of the whole development
can be found in [12].

V. WHY DO THESEMETHODSFAIL TO CONVERGE?

We expect that the discretized leakage current densityσ̂h(ξ̂ξξξξξξξξξξξξξ)
will converge to the exact solutionσ(ξξξξξξξξξξξξξξ) as the number of
degrees of freedomn is increased. We also expect that the
discretized potential̂V h(xxxxxxxxxxxxxx) will simultaneously converge to
the exact solutionV (xxxxxxxxxxxxxx). In general, we can try to obtain these
effects in (18) either by increasing the segmentation of the
conductors, or by choosing more sophisticated trial functions
N̂i(ξ̂ξξξξξξξξξξξξξ) (that is, using higher order elements) [19], [20]. In
the usual terminology of Finite Elements, the first option is
referred to as theh method, while the second is known as the
p method.

However, these formulations fail to converge to the ex-
act solution, since the discretized leakage current density
becomes polluted by increasing numerical instabilities when
discretization is refined beyond a certain point [5], [16]. In
fact, numerical instabilities can extend to the whole length of
the conductors when segmentation is increased. This produces
unrealistic results in subsequent computation of potentials on
the earth surface, although the equivalent resistanceReq seems
to converge [11], [18].

These problems were pointed out by Garret and Pruitt in
their remarkable and indeed classical paper [5] about the
accuracy of the Average Potential Method. In spite of lacking
a rigorous derivation for the method, these authors established
and discussed most of the sources of error. However, the origin
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of the above mentioned instabilities could not be explained in
that incomplete theoretical framework.

Problem (1) is a well-posed problem [17]. One can argue
that neglecting the resistivity of the earthing electrode is not
fully realistic, and thusVΓ is not exactly constant on the
electrode surface. Should this line of reasoning be followed,
one would accept the need for more sophisticated models when
the resistivity of the electrode must be taken into account.
But this idealization seems to be reasonable and accurate
enough for most practical purposes [11], [18], and one can
not attribute the origin of the observed instabilities to this
assumption. On the other hand, derivations of expression (3)
and Fredholm integral equation of the first kind (5) have been
rigorously established [11]. Furthermore, the problem defined
by variational form (6) is well-posed, kernel (4) is weakly
singular, and linear system (10) is quite well-conditioned for
realistic discretizations of the electrode surface [19]. The latter
is in contrast to other similar problems having smooth kernels,
which are frequently very ill-conditioned and thus extremely
difficult to solve[19].

Therefore, the origin of the convergence failure must be
sought for in the assumptions introduced to overcome the
computational complexity of the 2D BEM general formulation
[10], [11], [12], that is: A) the leakage current is assumed
uniform around the perimeter of every cylindrical conductor,
B) the ends and junctions of conductors are not taken into
account, andC) approximations (25) and (28) are introduced
to avoid circumferential integration and reduce computing
time.

Several numerical tests have been performed for the single
bar in infinite domain problem [11], [18]. The results prove
that assumptionA) is not the origin of the problems encoun-
tered with this kind of methods. No specific numerical tests
have been performed so far in order to quantify the error
due to assumptionB). Anyhow, in the authors’ experience,
slightly anomalous local effects can be expected at the ends
and junctions of conductors, but global results should not be
noticeably affected. We remark that derivations of expression
(14) and Fredholm integral equation of the first kind (17)
have been rigorously established [11], [12]. Furthermore, the
problem defined by variational form (15) is approximated but
well-posed, kernel (16) is weakly singular, and linear system
(21) must be quite well-conditioned for realistic segmentations
of the electrodes [19].

Therefore, the origin of the instabilities must be attribut-
ted to the approximations (25) and (28). The fact is that
these approximations are not valid for short distances. When
discretization is refined, the size of the segments become
comparable to or smaller than the diameter of the conductors.
Then, approximation (28) introduces significant errors in the
coefficients of the linear system (21), including the diagonal
terms. From another point of view, since the approximation
error increases as discretization becomes thiner, numerical
results for dense discretizations do not trend to the solution of
integral equation (17) with kernel (16), but to the solution of
an ill-conditioned integral equation with non singular kernel
(28). It is a known theoretical result for Fredholm equations
of the first kind that the inverse of a completely continuous

operator is unbounded [21]. In plain words: if approximations
(25) and (28) are used, the exact solution of the ill-conditioned
simplified problem can not be found numerically, since one can
always come upon very different leakage current distributions
that apparently verify the boundary conditionV = VΓ with ar-
bitrarily small errors. This explains why unrealistic results are
obtained when discretization is refined [5], and convergence
is precluded [16].

VI. A CCURACY AND OVERALL EFFICIENCY

At this point, we endorse the lucid advices stated in [5].
This kind of methods should be applied in an iterative way,
increasing the number of segments of conductors per computer
run. A simple strategy could be to start with a low number of
segments of similar size, and to bisect all the segments at each
run of the program until the results converge within acceptable
errors. We recall that segmentation can not be indefinitely
increased, for the above stated reasons. As a practical rule,
we can say that approximations (25) and (28) are not valid if
the size of segments becomes comparable to or smaller than
the diameter of the electrode.

Results obtained for low and medium levels of discretization
can be considered sufficiently accurate for most of practical
purposes [11], [18]. However, it is obvious that more accurate
results could be required in special cases, and it has been
reported that APM failed to determine satisfactory results in
specific instances due to the problems analyzed in this paper.
In cases like these, the use of higher order elements (linear or
quadratic) could help, at least up to a certain level of precision.

On the other hand, the proposed approach shows the path
to remove the annoying instabilities of this kind of methods.
We remark that the simplified 1D BEM formulation is ill-
conditioned, but the previous approximated 1D BEM formu-
lation is correct. Thus, the obvious solution is to substitute
(25) and (28) by better approximations that were valid for
short distances too. This is neither obvious nor straightforward,
since it should be necessary to adapt most of the analytical
work described in section IV. Anyhow, further research in this
direction could supply efficient asymptotically stable methods
in a close future.

With regard to the overall computational cost, for a given
discretization (m elements ofp nodes each, and a total
number of n degrees of freedom) a linear system (21) of
order n must be generated and solved. Since the matrix is
symmetric, but not sparse, its resolution by means of a direct
method should requireO(n3/3) operations. Matrix generation
requires O(m2p2/2) operations, sincep2 contributions of
type (32) have to be computed for every pair of elements,
and approximately half of them are discarded because of
symmetry. Once the leakage current has been obtained, the
cost of computing the equivalent resistance is negligible. The
additional cost of computing potential at any given point
(normally on the earth surface) by means of (19) requires only
O(mp) operations, sincep contributions of type (31) have to
be computed for every element. However, if it is necessary to
compute potentials at a large number of points (i.e. to draw
contours), the corresponding computing time could as well be
important.



IEEE TRANSACTIONS ON POWER DELIVERY, VOL. XX, NO. Y, MONTH 2003 6

Hence, most of computing effort is devoted to matrix
generation in small/medium problems, while linear system
resolution prevails in medium/large ones. In these cases, the
use of direct methods for the linear system resolution is out of
range. Therefore iterative or semiiterative techniques will be
preferable. The best results have been obtained by a diagonal
preconditioned conjugate gradient algorithm with assembly
of the global matrix [11], [22]. This technique has turned
out to be highly efficient for solving large scale problems,
with a very low computational cost. Finally, the first critical
time-consuming process is matrix generation, followed by
computation of potential at a large number of points. Both
accept massive parallelization [23].

Selection of the type of leakage current density elements
is an important point in the resolution of a real problem.
We recall that obtaining asymptotical solutions by indefinitely
increasing the discretization level is precluded. Thus, for a
given problem it will be essential to consider the relative
advantages and disadvantages of increasing the number of
elements (h method) or using higher order elements (p method)
in order to define an adequate discretizacion [11], [12]. In
general, higher order elements are advantageous in comparison
with constant elements, since better results can be obtained
with a lower number of degrees of freedom.

VII. A PPLICATION TO REAL CASES

The techniques derived by the authors have been imple-
mented in a Computer Aided Design system for earthing grids
of electrical substations called TOTBEM [24]. At present, the
single-layer code runs in real-time in personal computers, and
the size of the largest problem that can be solved is limited by
the memory storage required to handle the coefficients matrix.
Thus, for a problem with 2000 degrees of freedom, at least
16Mb would be needed, while computing times for matrix
generation and system resolution would be in the same order of
magnitude (around 15 seconds in what is considered a medium
performance single processor personal computer in year 2000).
The system has been used by the authors and by several
Spanish power companies to analyze several medium/large
installations during the last 8 years. Some of these results can
be found in [10], [11], [12], [24].

The following examples have been obtained with the
TOTBEM system. The presented results were computed for
a GPR value ofVΓ = 10 kV . The estimated value of the soil
conductivity wasγ = (60 Ω m)−1. A Galerkin weighting type
formulation was used in all the cases.

A. Example 1: The E.R. Barberá grounding grid

The first example is the E. R. Barberá substation grounding
(90× 145 m2) close to the city of Barcelona in Spain that is
operated by the power companyFECSA. This earthing system
(see figure 3) consist of 408 bars (φ = 12.85 mm) buried to
a depth of 80 cm.

Each conductor is discretized in one single linear density
element (the aproximated leakage current densityσh varies
linearly within each conductor). This leads to an approximated
problem with a total of 238 unknowns. Figure 3 shows the

Fig. 3. E.R. Barbeŕa substation grounding: Plan and potential distribution
on the ground surface (contours plotted every 0.2 kV; thick contours every
1 kV).

computed potential distribution on the ground surface when a
fault condition occurs. Figure 4 shows the computed potential
profiles along two given lines on the ground surface. The
computed Fault Current isIΓ = 31.8 kA, which gives an
Equivalent Resistance ofReq = 0.315 Ω.

This case was originally computed in a PC486/16Mb at
66MHz [12]. It took 450 seconds to complete the analysis in
1997. The same analysis can be performed in about15 seconds
using a regular PC in 2002.

We notice that using one constant (instead of linear) den-
sity element per conductor leads to a larger problem (408
unknowns). Hence, this example shows that linear density
elements can be advantageous in comparison with constant
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Fig. 4. E.R. Barbeŕa substation grounding: Potential profiles along two given
lines.

Fig. 5. Baláıdos II substation grounding: Plan (vertical rods marked with
black points) and potential distribution on the ground surface (contours plotted
every 0.2 kV; thick contours every 1 kV).

Fig. 6. Santiago II substation grounding: Plan and potential distribution on
the ground surface (as a fraction of the GPR).

density elements, since one can obtain higher precision results
for a similar overall computing effort (the lower computational
cost in linear solving is the counterweight to the higher
computational cost in matrix generation).

B. Example 2: The Balaı́dos II grounding grid

The second example is the Balaı́dos II substation grounding
(80×60 m2) close to the city of Vigo in Spain that is operated
by the power companyUNIÓN FENOSA. This earthing system
(see figure 5) consist of 107 bars (φ = 11.28 mm) buried to
a depth of 80 cm, supplemented with 67 vertical rods (φ =
14.00 mm, L = 2.5 m).

Each conductor is discretized in one single quadratic el-
ement (the aproximated leakage current densityσh varies
quadratically within each conductor). This leads to an approx-
imated problem with a total of 315 unknowns. Figure 5 shows
the computed potential distribution on the ground surface
when a fault condition occurs. The computed Fault Current
was IΓ = 25.0 kA, which gives an Equivalent Resistance of
Req = 0.400 Ω.
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This case was also originally computed in a PC486/16Mb
at 66MHz [12]. It took600 seconds to complete the analysis
in 1997. The same analysis can be performed in about20
seconds using a regular PC in 2002.

In this case, using one single constant density element per
conductor leads to an approximated problem with 174 un-
knowns, while using one single linear density element per con-
ductor leads to an approximated problem with 141 unknowns.
This example shows that using quadratic density elements
leads to larger approximated problems than using constant
or linear density elements. Obviously, the computational cost
devoted to matrix generation and linear solving is higher.
However, the overall computing effort is still acceptable (in the
same order of magnitude), while the precision of the results
is much higher.

C. Example 3: The Santiago II grounding grid

The third (and final) example is the Santiago II substation
grounding (230 × 195 m2) close to the city of Santiago
de Compostela in Spain that is also operated by the power
companyUNIÓN FENOSA. This earthing system (see figure
6) consist of 534 bars (φ = 11.28 mm) buried to a depth of
75 cm, supplemented with 24 vertical rods (φ = 15.00 mm,
L = 4.0 m). The earth resistivity is60 Ω m.

Each bar is discretized in one single linear density element,
while each rod is discretized in two linear density elements.
This leads to an approximated problem with a total of 386
unknowns. Figure 6 shows the computed potential distribution
on the ground surface when a fault condition occurs. The
computed Fault Current isIΓ = 67.3 kA, which gives an
Equivalent Resistance ofReq = 0.149 Ω.

This case was originally computed in a DEC AlphaServer
4000–AXP running VMS [25], [26]. It took7.7 seconds to
complete the analysis in 1990. The same analysis can be
performed in less than20 seconds using a regular PC in 2002.

D. The effect of increasing the segmentation

The above mentioned examples have been repeatedly solved
for an increasing segmentation of the electrodes. As the theory
predicts (and it has been reported) the numerical instabilities
pollute the results when the discretization is refined beyond a
certain point.

Anyway, it seems that a reasonable (moderate) level of
segmentation is sufficient to obtain quite accurate results in
practice. In our experience, increasing the number of elements
was needless in all the studied cases, since the results (at
the scale of the whole grid) were not noticeably improved. It
seems that increasing the segmentation is only justified when
high accuracy local results are required for a limited part of
the whole earthing system.

On the other hand, the use of higher order elements (liner
or quadratic) seems to be more advantageous (in general) than
increasing intensively the segmentation of constant elements,
since the accuracy is higher for a remarkably smaller total
number of degrees of freedom [11].

E. Further Developments

The techniques described in this paper can be extended
for multi-layer soil models [25], [26], although computing
time becomes not contemptible whatsoever. The proposed
formulation has been implemented in a high-performance
parallel computer and the code has been applied to the analysis
of several real grounding systems [23], [25], [26]. The results
obtained by the authors with the multi-layer code have been
noticeably different from those obtained by using a single layer
soil model. Thus, it is the authors’ belief that the proposed
multi-layer BEM formulation will become a real-time design
tool in a close future, as high-performance parallel computing
becomes a widespread available resource in engineering. The
formulation can also be adapted for computing transferred
potentials [11].

VIII. C ONCLUSIONS

A Boundary Element approach for the analysis of substation
earthing systems has been presented. For 3D problems, some
reasonable assumptions allow to reduce a general 2D BEM
formulation to an approximated less expensive 1D version.
Further simplifications reduce computing requirements under
acceptable levels. Several widespread methods are identified as
particular cases of this approach. In this theoretical framework,
problems encountered with the application of these methods
have been finally explained from a mathematically rigorous
point of view. On the other hand, more efficient and accurate
formulations have been derived. New analytical integration
techniques allow to obtain accurate results in practical cases
with acceptable computing requirements.

The techniques derived by the authors have been imple-
mented in a Computer Aided Design system called TOTBEM.
At present, this system runs in real-time in personal computers,
and it has been used by the authors and by Spanish power com-
panies to analyze several medium/large installations during
the last 8 years. The techniques described in this paper have
also been extended for multi-layer soil models and transferred
potentials.
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APPENDIX I:
INTEGRAL EXPRESSION FOR THEPOTENTIAL

We wish to obtain an integral expression for the solution
V (xxxxxxxxxxxxxx) to problem (1) at an arbitrary pointxxxxxxxxxxxxxx in E. We assume
that the earth surfaceΓE is horizontal.

First, we extend the domainE by adding its symmetric with
respect to the planeΓE . Let Ω(∞) be the infinite extended
symmetric domain. LetΩ(R) ⊂ Ω(∞) be a finite subdomain
and letR be its diameter. LetΓΩ(R) be the exterior boundary of
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Fig. 7. Extended symmetric domain for problem (1).

Ω(R). Let Γ′ be the image of the earthing electrode surface
Γ with respect to the planeΓE . We assume thatR is large
enough. Thus, the earthing electrode and its symmetric are
embedded —but not included— inΩ(R) (see figure 7).

The soil is considered homogeneous and isotropic. Thus, the
tensorγγγγγγγγγγγγγγ is substituted by the constant scalar conductivityγ.
In these terms, problem (1) can be substituted by the Dirichlet
Exterior Problem

4 V (zzzzzzzzzzzzzz) = 0 ∀zzzzzzzzzzzzzz ∈ Ω(∞),
V (ξξξξξξξξξξξξξξ) = VΓ ∀ξξξξξξξξξξξξξξ ∈ Γ, V (ξξξξξξξξξξξξξξ′) = VΓ ∀ξξξξξξξξξξξξξξ′ ∈ Γ′,
V (zzzzzzzzzzzzzz) verifies normal conditions when|zzzzzzzzzzzzzz| → ∞,

(33)

since the natural boundary conditionσσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE is
automatically fulfilled due to the symmetry of the extended
domain. The so-called normal conditions at infinity can be
mathematically expressed as [7], [8]∣∣V (zzzzzzzzzzzzzz)

∣∣ = O
(|zzzzzzzzzzzzzz|−1

)
when |zzzzzzzzzzzzzz| → ∞, and∣∣∣grad

(
V (zzzzzzzzzzzzzz)

)∣∣∣ = O
(|zzzzzzzzzzzzzz|−2

)
when |zzzzzzzzzzzzzz| → ∞.

(34)

For the given pointxxxxxxxxxxxxxx, the so-called fundamental solution
[27] to the above stated problem is

Ψ(zzzzzzzzzzzzzz) =
1

4πr(xxxxxxxxxxxxxx, zzzzzzzzzzzzzz)
, r(xxxxxxxxxxxxxx, zzzzzzzzzzzzzz) =

∣∣xxxxxxxxxxxxxx− zzzzzzzzzzzzzz
∣∣, (35)

where
∣∣xxxxxxxxxxxxxx − zzzzzzzzzzzzzz

∣∣ is the euclidean distance between the points
xxxxxxxxxxxxxx and zzzzzzzzzzzzzz. It is easy to check that this function satisfies the
statement

4Ψ(zzzzzzzzzzzzzz) = δ(zzzzzzzzzzzzzz − xxxxxxxxxxxxxx) ∀zzzzzzzzzzzzzz ∈ Ω(∞),
Ψ(zzzzzzzzzzzzzz) verifies normal conditions when|zzzzzzzzzzzzzz| → ∞,

(36)

being δ the Dirac’s delta distribution. Therefore, the funda-
mental solution can be interpreted as the particular solution of
the field equation for a punctual source of current at the given
point xxxxxxxxxxxxxx [27].

The Laplacian of the fundamental solution (35) is obviously
singular atzzzzzzzzzzzzzz = xxxxxxxxxxxxxx, but it vanishes at any other point. In order
to avoid the singularity we define the ballB(xxxxxxxxxxxxxx, ε) of radiusε
centered at pointxxxxxxxxxxxxxx (see figure 7). LetΓB(xxxxxxxxxxxxxx,ε) be the boundary
of B(xxxxxxxxxxxxxx, ε).

We now consider the closed domainD(R, ε) = Ω(R) −
B(zzzzzzzzzzzzzz, ε). Obviously, bothV (zzzzzzzzzzzzzz) andΨ(zzzzzzzzzzzzzz) are functions of class
C2 in D(R, ε). Therefore, we can apply the second Green’s
Identity [17], [11] to our problem, which gives∫∫∫

zzzzzzzzzzzzzz∈D(R,ε)

(
V (zzzzzzzzzzzzzz)4Ψ(zzzzzzzzzzzzzz)−Ψ(zzzzzzzzzzzzzz)4 V (zzzzzzzzzzzzzz)

)
dD =

∫∫

ξξξξξξξξξξξξξξ∈ΓD(R,ε)

(
V (ξξξξξξξξξξξξξξ)

∂Ψ
∂nD

(ξξξξξξξξξξξξξξ)−Ψ(ξξξξξξξξξξξξξξ)
∂V

∂nD
(ξξξξξξξξξξξξξξ)

)
dΓD,

(37)

whereΓD(R, ε) is the boundary of the domainD(R, ε) and
nnnnnnnnnnnnnnD is the corresponding normal exterior unit field.

Both functionsV (zzzzzzzzzzzzzz) and Ψ(zzzzzzzzzzzzzz) are harmonic inD(R, ε),
since (33) and (36) are satisfied and the singularity atzzzzzzzzzzzzzz =
xxxxxxxxxxxxxx has been isolated. Therefore, the left hand side of (37)
vanishes, what gives∫∫

ξξξξξξξξξξξξξξ∈ΓD(R,ε)

Υ(ξξξξξξξξξξξξξξ)dΓD = 0, (38)

being

Υ(ξξξξξξξξξξξξξξ) = V (ξξξξξξξξξξξξξξ)
∂Ψ
∂nD

(ξξξξξξξξξξξξξξ)−Ψ(ξξξξξξξξξξξξξξ)
∂V

∂nD
(ξξξξξξξξξξξξξξ). (39)

Finally, it is obvious that (38) holds for arbitrarily large values
of R and arbitrarily low values ofε. Therefore we can write

lim
R→∞,ε→0

∫∫

ξξξξξξξξξξξξξξ∈ΓD(R,ε)

Υ(ξξξξξξξξξξξξξξ)dΓD = 0. (40)

The exterior boundary ofD(R, ε) is ΓΩ(R). The interior
boundary ofD(R, ε) consists of the exterior boundaries of
1) the earthing electrode (Γ), 2) the image of the earthing
electrode (Γ′), and 3) the ball that isolates the singularity
(ΓB(xxxxxxxxxxxxxx,ε)). Hence

ΓD = ΓΩ(R) ∪ ΓB(xxxxxxxxxxxxxx,ε) ∪ Γ ∪ Γ′ (41)

and ∫∫

ξξξξξξξξξξξξξξ∈ΓD(R,ε)

Υ(ξξξξξξξξξξξξξξ)dΓD =
∫∫

ξξξξξξξξξξξξξξ∈ΓΩ(R)

Υ(ξξξξξξξξξξξξξξ)dΓD+
∫∫

ξξξξξξξξξξξξξξ∈ΓB(xxxxxxxxxxxxxx,ε)

Υ(ξξξξξξξξξξξξξξ)dΓD+

∫∫

ξξξξξξξξξξξξξξ∈Γ

Υ(ξξξξξξξξξξξξξξ)dΓD+
∫∫

ξξξξξξξξξξξξξξ∈Γ′
Υ(ξξξξξξξξξξξξξξ)dΓD.

(42)

By taking into account that (35) givesΨ(ξξξξξξξξξξξξξξ) for all ξξξξξξξξξξξξξξ in ΓD,
andV (zzzzzzzzzzzzzz) satisfies (33) and (34), we can prove that[11]

lim
R→∞

∫∫

ξξξξξξξξξξξξξξ∈ΓΩ(R)

Υ(ξξξξξξξξξξξξξξ)dΓD = 0,

lim
ε→0

∫∫

ξξξξξξξξξξξξξξ∈ΓB(xxxxxxxxxxxxxx,ε)

Υ(ξξξξξξξξξξξξξξ)dΓD = V (xxxxxxxxxxxxxx),

∫∫

ξξξξξξξξξξξξξξ∈Γ

Υ(ξξξξξξξξξξξξξξ)dΓD =
1
4π

∫∫

ξξξξξξξξξξξξξξ∈Γ

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)

∂V

∂n
(ξξξξξξξξξξξξξξ)dΓ,

∫∫

ξξξξξξξξξξξξξξ∈Γ′
Υ(ξξξξξξξξξξξξξξ)dΓD =

1
4π

∫∫

ξξξξξξξξξξξξξξ′∈Γ′

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ′)

∂V

∂n′
(ξξξξξξξξξξξξξξ′)dΓ′,

(43)

being nnnnnnnnnnnnnn and nnnnnnnnnnnnnn′ the normal exterior unit fields toΓ and Γ′

respectively.
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Therefore (40) reduces to

V (xxxxxxxxxxxxxx) =− 1
4π

∫∫

ξξξξξξξξξξξξξξ∈Γ

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)

∂V

∂n
(ξξξξξξξξξξξξξξ) dΓ+

− 1
4π

∫∫

ξξξξξξξξξξξξξξ′∈Γ

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ′)

∂V

∂n′
(ξξξξξξξξξξξξξξ′) dΓ′.

(44)

Finally, we can take advantage of the symmetry to write[10],
[11], [12]

V (xxxxxxxxxxxxxx) =
1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) σ(ξξξξξξξξξξξξξξ) dΓ, (45)

being

σ(ξξξξξξξξξξξξξξ) = −γ
∂V

∂n
(ξξξξξξξξξξξξξξ), ξξξξξξξξξξξξξξ ∈ Γ (46)

and

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) =
(

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)

+
1

r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ′)

)
, (47)

whereξξξξξξξξξξξξξξ′ is the symmetric ofξξξξξξξξξξξξξξ with respect to the earth surface.
The functionσ(ξξξξξξξξξξξξξξ) in (46) is clearly identified as the leakage
current density at an arbitrary pointξξξξξξξξξξξξξξ on the earthing electrode
Γ.

Under the above assumptions we can also prove that (45)
holds on the earthing electrode surface. Thus, we still can say

V (χχχχχχχχχχχχχχ) =
1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ, ∀χχχχχχχχχχχχχχ ∈ Γ. (48)

This is neither obvious nor trivial, and the proof requires
a special discussion[11]. In this case, kernel (47) becomes
singular atξξξξξξξξξξξξξξ = χχχχχχχχχχχχχχ. Since (48) still makes sense in spite of the
singularity, (47) is said to be a weakly singular kernel.

We notice that expression (45) always satisfies the field
equation, the natural boundary condition and the normal
conditions at infinity for problem (1). Therefore, the only thing
that remains to be done in order to solve this problem is to
fulfill the essential boundary conditionV = VΓ in Γ. We
shall enforce this by means of (48). Therefore, our problem
is reduced to finding the unknown leakage current density
distributionσ(ξ) in Γ that verifies

VΓ =
1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) σ(ξξξξξξξξξξξξξξ) dΓ, ∀χχχχχχχχχχχχχχ ∈ Γ. (49)

Once the leakage current density distribution is known, we
shall be able to compute the potential at any point by means
of expression (45).
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