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Abstract: Systems engineering plays a key role in the naval sector, focusing on how to design,
integrate, and manage complex systems throughout their life cycle; it is therefore difficult to conceive
functional warships without it. To this end, specialized information systems for logistical support
and the sustainability of material solutions are essential to ensure proper provisioning and to know
the operational status of the frigate. However, based on an architecture composed of a set of logistics
applications, this information system may require highly qualified operators with a deep knowledge
of the behavior of onboard systems to manage it properly. In this regard, failure detection systems
have been postulated as one of the main cutting-edge methods to address the challenge, employing
intelligent techniques for observing anomalies in the normal behavior of systems without the need
for expert knowledge. In this paper, the study is concerned to the scope of the Spanish navy, where
a complex information system structure is responsible for ensuring the correct maintenance and
provisioning of the vessels. In such context, we hereby suggest a comparison between different
one-class techniques, such as statistical models, geometric boundaries, or dimensional reduction to
face anomaly detection in specific subsystems of a warship, with the prospect of applying it to the
whole ship.

Keywords: fault detection; one-class; warship; machine learning

1. Introduction

Among many benefits, there are two significant cross-cutting advantages in ship
automation: the crew diminution and the hazards and risks reduction of the people in
general and the ship itself [1]. The first implies a significant reduction in ship operating costs
directly [2]. Indirectly, it would entail aspects related to improving the conditions of workers
in general terms (training, social security, the possibility of oversizing the workforce, . . . ) [3].
On the second way, remark that in general terms, automation confers advantages with
reducing risks for workers since it is the automatic machine that performs the work and
the worker normally reduces his work to supervision. In addition, tedious and repetitive
tasks, with the problems that these entails, are carried out by automata [3].

From a technical point of view, automation implies optimization if the accomplishing is
correct [4]. In this sense, if the ship processes are well automated, then as result, advantages
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such as emissions reduction, consumption reduction, increased reliability, and availability
could be achieved. Consequently, aspects as important as sustainability and reduction of
environmental impact would be favored [5]. These aspects must continue to be pursued
and improved as technology advances, and as there is a margin within which to do so.

The current convulsed geopolitical situation invites us to pay special attention to the
military sector.Given the evolution of today’s societies, losing lives in armed conflicts is
tremendously unpopular from a country’s political point of view [6]. Because of all this, it
is a priority right now to put the minimum number of human lives at risk. It is especially
important to try to move towards solutions similar to those of unmanned aerial vehicles
(UAVs) or functional robots. The government’s goal is to achieve zero human deaths in the
face of any military intervention [6].

In the specific case of warships, all the ship aspects mentioned before are applicable.
However, it is necessary to consider and add the characteristics and conditions of military
ships. In addition to multiple singularities, this kind of ship usually has more confined and
optimized spaces [7]. Due to these characteristics, it would be desirable for this type of ship
to transport only the essentials, and of course to guarantee satisfactory operation.

In general terms, the ships have a certain useful life. The same thing happens with
warships, and it is even more restrictive. The fact that the useful life is shorter will depend,
among others, on the economy of the country, of popularity from a social point of view,
and on obsolescence from a military point of view [8]. Operationally, ships should ideally
be at the forefront of technology.

Like in other sectors, the design of the warships obviously depends on the current
technology and its future trend. Nowadays, as in the industry, there is a very strong trend
in the naval sector towards digitization [9]. From an operational point of view, warships
tend to install this type of technology because of the advantages they bring [10]. Thanks
to this kind of relatively incipient technology, the optimization possibilities on ships are
huge compared to the current state. It is necessary to emphasize that due to issues such as
climate change or global warming, it is also mandatory that everything is carried out from
a point of view of sustainability, energy efficiency, and low emissions.

Anomaly or failure detection is one of the objectives that must be achieved in any
sector [11]. Digitization allows and helps carrying out this kind of technique, even giving
new advantages from a reliability and accuracy point of view [12]. If this task is carried out
satisfactorily, new advantages can be achieved in operation. Some of them are, for example,
the increase in the efficiency of maintenance tasks, shipment of the optimal number of
spare parts, or the optimization of the material purchase process.

There are many anomaly detection methods [13,14]. Consequently, there are several
possible classifications that can be made of the types of existing techniques [13]. In some
cases, an exhaustive knowledge of the system on which failure detection is intended is
necessary [15]. This fact can have certain advantages during the process, such as better
results, accuracy, and/or performance [12]. However, in cases where operating personnel
change frequently, it can be very important that exhaustive process knowledge is not
necessary [12]. Thus, they could perform anomaly detection autonomously or with non-
expert operators.

Anomaly detection in several ships’ systems is essential in order to know the opera-
tional status of the frigate. Therefore, analyzing and detecting anomalies or malfunctions is
a previous and necessary step to predict the possible spare parts to be shipped depending
on the ship’s condition.

This research paper deals with a novel fault detection system approach applied to
certain onboard subsystems, aiming to expand to the entire ship. In this manner, our pro-
posal tests a set of different intelligent techniques following a one-class conceptualization,
where only information from the system’s normal operation is consumed to model its
performance during the training stage.

The present research work is organized as follows. After the current introduction, the
related works are described. After this section, the case of the study is explained, detailing
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the equipment and the information system structure. Then, the materials and the methods
taken into account for the present research are detailed. The work is continued with a
description of the experiments and their results. Finally, conclusions and future works
are presented.

2. Related Work

Throughout this section, we briefly mention recent work that may be related to the present
study, either according to the techniques employed or the application to warship equipment.

Many reviews are oriented toward maintenance practices and strategies. In this sense,
Kimera et al. [16] provide an overview of the maintenance parameters and practices that are
critical for marine mechanical systems classified as plant, machinery, and equipment (PME).
Previously, Cullum et al. [17] focused on the risk-based maintenance (RBM) scheduling
framework as applied to warships and naval vessels, and provided a critical analysis
of the risk assessment and maintenance scheduling techniques in use. More recently,
Zhang et al. [18] reviewed the methods, strategies, and application of marine systems and
equipment (MSAE) in prognostics and health management (PHM) as an essential means
to optimize resource allocation and improve the intelligent operation and maintenance
(O&M) efficiency of MSAE.

Along these lines, in relation to the PHM of naval mechanical systems, there are other
works from the perspective of technical processes. For example, online condition monitor-
ing and self-repair techniques for in-service marine diesel engines [19], different types of
blade failures and current blade failure-detection methods [20], and mainly data-driven
models and the problem of condition-based maintenance of marine propulsion systems
are reviewed [21]. In the field of autonomous shipping, Karatug et al. [22] propose an
evaluation of PHM systems and reliability centered maintenance strategies, as one method
that can be implemented to cover the three major elements of maintenance management
systems: risk assessment, maintenance strategy selection, and maintenance task interval,
according to Emovon et al. [23] for autonomous marine vessels.

For its part, considering the current status and future trends of maintenance strate-
gies applied in particular to corroded marine steel structures, Abbas et al. [24] analyzed
deterministic and probabilistic models for predicting corrosion rates.

Other works propose their own strategies, suggesting a predictive maintenance so-
lution based on a computational artificial intelligence model using real-time monitoring
data, as stated by Jimenez et al. [25]. They also expose a ship-level method for repair
decisions based on the preventive maintenance concept, relying on an improved failure
mode and effects analysis (FMEA) method along with a Weibull distribution model, where
the parameters are intended to be calculated using the maximum likelihood estimation
(MLE) to predict the characteristic life of the equipment, and then determine the actions to
be taken regarding logical decision principles and rule-based reasoning (RBR) in agreement
with Song et al. [26].

A short time ago, in search of tackling decision making problems, Emovon et al. [27]
presented a comparison of hybrid multi-criteria decision making (MCDM) methods for
the selection of appropriate maintenance strategies for ship machinery systems and other
related ship systems. Similarly, employing dynamic condition monitoring and historic
data to present decision support information onboard, Michala et al. [28] proposed a novel
decision support system (DSS) beforehand. Lately, making use of subjective opinions in
DSS, Maurice et al. [29] attempted a technique for order preference by similarity to an ideal
situation for ranking the maintenance strategies. Prior studies have proven that a decision
support mechanism needs multiple criteria decision on ship equipment maintenance
strategy selection [30–32].

With the specific aim of minimizing maintenance costs and maximizing ship reliability
simultaneously, Zhao et al. [33] tested whether a bi-objective model under a condition-
based maintenance strategy was applicable to the point of being able to provide support
for ship operators.
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In the arena of machine learning (ML) and especially fault detection systems, quite a
few works can be found in the literature. Studies alike employ several prediction techniques,
including regularized linear regression methods such as L1 (lasso) and L2 (ridge), or long
short-term memory (LSTM)-based networks [34]. In this context, previous research has
used artificial neuronal networks (ANN) [35] and decision trees [36], as well as support
vector machines (SVM) [37,38] or the k-nearest neighbor technique (k-NN) as one of the
most common for fault classification [39]. Moreover, in this scope, various deep learning
(DL) techniques have also been used, as in the case of autoencoder neural networks [40] or
recurrent neural networks (RNN) [41] based on long short-term memory network (LSTM)
cells according to Yang et al. [42].

Some of the latest research achievements on the DL-based state of health prognostic
methods address issues with limited labeled samples without assuming that the training
and test datasets come from identical machines operating under similar conditions. In
this context, Zhu et al. [43] developed Bayesian semi-supervised transfer learning with
an active querying-based intelligent fault prognostic framework for remaining useful life
(RUL) prediction across completely different machines under limited data.

As a compilation of the state of the art, recent reviews presented developments within
fault detection and diagnosis (FDD) methods [44], introduced a survey of trends and
techniques of fault detection in networked dynamical systems (NDS) [45], and gave an
overview the theory and strategies of transient fault detection [46].

Other review papers lead to a specific field of application, as may be the optimal
performance of photovoltaic (PV) systems [47,48], uninterrupted and trouble-free operation
of induction motors (IMs) [49] or transient stability in a transmission network in agreement
with Mishra et al. [50].

Working on novel approaches, some studies are available within the industrial pro-
cesses area, proposing a fault detection system based on intelligent techniques [51,52]. In
addition, certain previous works particularly focused on alternatives to hardware-only
and software-only systems, as mentioned by Reis et al. [53] who identifed hybrid hard-
ware/software fault-detection mechanisms.

To conclude, several references based on the techniques that stand the anomaly detec-
tion approach in the current study are present in the bibliography and discussed in more
detail across Section 4.

3. Case of Study

This section introduces the technical–administrative processes, as far as the study is
concerned, through which logistical support and sustainability considerations of material
solutions are integrated into the navy as we know it today, specifically for the Spanish.
The context in which the project takes place and where all the data monitoring and man-
agement is performed by the Data Supervision and Analysis Center of the Spanish Navy
(CESADAR).

3.1. Equipment

Generally speaking, warships are very expensive systems, extraordinarily complex,
with a lengthy procurement acquisition process and long operational life. During their life
cycle, their configuration changes as a result of repairs and modifications. Therefore, the
objective of integrated logistics support (ILS) [54] is to maximize system availability by
optimizing the life cycle cost and ensuring mission compliance.

Another essential process is logistics configuration (LC), also referred to as the con-
figuration, which encompasses the logistics processes required for thedevelopment of the
ILS during the life cycle, defining the systems, subsystems, equipment, and components
installed, with a description of their functional, physical and technical characteristics,
quantity, type, and number of modifications made to each of them, as well as all available
supporting documentation, recorded in documents and databases.
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Following a functional criterion, the configuration is represented by a AEC (configured
elements tree) that has a hierarchical structure. In the AEC, each element is assigned a HSC
(hierarchical structure code) that works as a functional marking, up to 12 digits, which
makes it possible to identify and distinguish that element univocally from others. Thereby,
this HSC code is used as a reference in efforts such as the maintenance processes, spare
parts management, etc.

By way of example, Figure 1 depicts how the AEC is developed on the basis of the
operational requirements, identifying the functional nodes in accordance with the navy’s
material guidelines, which defines the levels of hierarchical decomposition for assigning
the functional mark of an element in the AEC.

1.
Hull 

structure

2. 
Generation

plant

3.
Power
plant

4.
Command
and control

5.
Auxiliary
systems

6.
Habitability

and equipment

7.
Armament

21 22 23 24 25 26

231 232 233 234 235

2341 2341

23411
Main generation gas 

turbine nº1

23412
Main generation gas 

turbine nº2

Level 1. 
Cost Concept

Level 2. 
Cost Sub-ConceptGeneration machinery

Level 3. 
Cost Group

Generation gas turbines

Level 4. 
Cost Sub-Group

Main generation gas turbines

Level 5. 
Element

Figure 1. Example of the development of the functional structure [55].

Thereby, in order to control the evolution of onboard equipment, systems engineering
has as its most effective tool the configuration management (CM) system, which provides
an overview of the system development. At the same time, it is also an indispensable aspect
for achieving interoperability, mitigating risks, and making effective use of NATO (The
North Atlantic Treaty Organization) capabilities [56] in joint operations.

For the achievement of CM, the Spanish navy, through CESADAR, is supported by
information and communication technologies (ICT) using a range of logistics applications
which are itemized in the following subsection.

3.2. Warship Information System Structure

With participation in a multitude of missions since their commissioning in 2002,
mainly under the NATO umbrella, the Spanish Álvaro de Bazán class frigates (F-100)
were appointed to the investigation. Playing the role of the main source of information,
CESADAR is the centralized system in charge of receiving, checking, and analyzing the
data recorded in the vessels, and which in turn is stored and structured within its data lake.

Up until now, CESADAR has as one of its main applications the automation of surveil-
lance and analysis tasks logistics application (ATAVIA), which provide a system for detect-
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ing anomalies in the operation of the monitored equipment based on expert rules. Indeed,
all sensorized onboard systems and equipment are analyzed.

In addition to these, several separate applications developed in different programming
languages and databases have been employed so far for logistics management, mainly
from maintenance and procurement, posing a considerably complex architecture [55].

These logistics applications are difficult systems that require in-depth knowledge and
expert analysis. Likewise, some authors have reviewed these tools proposing an alternative
semi-unsupervised predictive maintenance system [34]. From our side, we focus on a
novel fault detection system approach based on operational data provided by the ATAVIA
application, as discussed below.

4. Materials and Methods

This section describes the techniques considered to achieve anomaly detection. The
datasets used are also presented.

4.1. Employed Methods

The proposal follows a one-class approach, in which only information from the normal
operation of the system is used to model its performance. Then, the detection of anomalous
situations must be addressed without prior knowledge of their nature.

According to the literature [57], the implementation of one-class techniques can be
based on three different principles: dimensional reduction techniques, statistical models,
and the determination of geometric boundaries. To assess the performance of these three
different approaches, four different techniques are proposed to model the normal behavior
of the ship to detect anomalies.

4.1.1. Statistical Models

An interesting approach to face anomaly detection using one-class techniques is based on
the idea of using density functions. One commonly used statistical model is tested in this work.

Gaussian Model

One of the most direct ways to achieve a one-class classifier consists of applying a
Gaussian distribution function over the training set, also known as a target set [57]. The
covariance matrix and the mean vector are calculated and then a new test value is labeled
depending on the score achieved at the Gaussian function.

Let us suppose a test instance x ∈ Rn, whose distribution probability function is
described in Equation (1). The function would produce lower values if x is not part
of the target class. Therefore, selecting an appropriate threshold value would enable
correct classification.

p(x, µ, Σ) =
1

(2π)n/2|Σ|1/2 e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where:

• µ is the training set mean value;
• Σ is the training set covariance matrix.

This simple idea is characterized by a low computational cost, with the calculation
of the covariance matrix being the most challenging step. Incorporating a regularization
parameter Rp can be a valuable tool, particularly in cases where the inverse of the covariance
cannot be computed.

Although this method demonstrates excellent performance, particularly when the tar-
get set is normally distributed [58], it does share a limitation with other density estimation
techniques: the requirement for a sufficiently large training dataset [59].
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4.1.2. Geometric Boundaries

The calculation of the geometric boundaries of the target set can represent a good
approximation to determine the difference between expected and unexpected events.

K-Means

The k-means unsupervised algorithm represents an intuitive way to achieve a one-class
classifier, depending on the geometric distribution of the data [60].

After selecting the desired number of groups, the k-means algorithm partitions a given
dataset into k clusters by minimizing the objective function expressed in Equation (2).

e =
C

∑
k=1

∑
xε$k

‖x− ck‖2 (2)

where:

• x represents a new input vector;
• ck denotes the centroid of the k cluster.

The centroids for each group are calculated using the training set to use k-means as a
one-class technique. The distance of a given test data point to its closest centroid is then
compared to the distances between each cluster data point and its respective centroid. The
test data point is classified as anomalous if the distance exceeds all such distances.

For example, Figure 2 illustrates a case where the training set is divided into two
clusters. In this instance, the black dot, representing a test point, is classified as a target
because its distance to the nearest centroid (the orange star of Cluster 2) is lower than the
distances of most training samples.

Figure 2. Example of k-means technique performance for two clusters.

4.1.3. Dimensional Reduction

The last one-class approach consists of the application of dimensional reduction
techniques to learn patterns that only are presented in the target set.
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Autoencoder

Utilizing artificial neural networks (ANN) configured with an autoencoder design in
dimensional reduction techniques has produced substantial favorable outcomes [61].

To this end, the multilayer perceptron (MLP), which is one of the most common ANN
architectures, is implemented. The MLP typically comprises an input layer, an output
layer, and one or more hidden layers. The neurons in the contiguous layers are connected
by weighted links that are automatically adjusted to minimize the discrepancy between
the produced output and the desired output. Each layer also possesses an activation
function applied to all the neurons within that layer, such as the linear, step, tan-sigmoid,
or log-sigmoid function. The hidden layer output is computed using Equation (3),

hi = f1(W1xi + b1) (3)

where:

• hi defines the output of the hidden layer;
• f1 is the hidden layer activation function;
• W1 corresponds to the weight matrix between input and hidden layer;
• xi is the input vector;
• b1 denotes the bias vector.

Subsequently, the output of the ANN is obtained using Equation (4).

x̂ = fo(Wohi + po) (4)

where:

• x̂ is the ANN output.
• fo denotes the activation function of the output layer.
• Wo define the weight matrix between hidden and output layers.
• po is the bias vector.

The fundamental principle of the autoencoder involves training an ANN so that the
output x̂ is equal to the input x while also executing a nonlinear reduction within the
hidden layer through the activation function. This means that the number of neurons in
the hidden layer must be lower than that of the inputs, which results in decompression
being performed at the output [61]. The autoencoder method operates on the premise
that anomalous points are significantly different from standard points in the hidden layer
subspace, and the decompression process leads to high reconstruction errors.

Principal Component Analysis

Principal component analysis (PCA) is a commonly used technique for data dimen-
sionality reduction tasks. This technique aims to identify the directions in the data with
the highest variability and use them to establish new variables [60,62]. These directions
are referred to as components and are calculated using the eigenvectors obtained from the
eigenvalues of the covariance matrix.

PCA projects the original data points into the eigenvectors subspace, resulting in linear
transformations. This technique is particularly effective in cases where the subspace is
clearly linear.

In addition to its performance in dimensional reduction tasks, PCA can also be applied
to one-class problems using reconstruction error criteria. For instance, suppose we have
a training set X ∈ R2 and use one of the two principal components to linearly transform
it into X̂ ∈ R1. A test data point xt is labeled based on a reconstruction error criteria
(Equation (5)), calculated as the difference between the initial point xt and its projection x̂t.

Anomalous points are likely to have higher reconstruction errors, and hence when the
reconstruction error of a test data point is above a specific threshold, the anomaly is detected.

e(x) = ||xt − x̂t|| (5)
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An instance where the distance from a test point to its projection exceeds all distances
from the training points to their respective projections is illustrated in Figure 3. In this
scenario, only the first component is utilized. The threshold distinguishing normal from
anomalous behavior is frequently associated with the percentile distance of the training set.

Feature 1

Fe
at

ur
e 

2

First 
component

Figure 3. Representation of PCA for one class.

4.2. Dataset

The information available through the abovementioned application, ATAVIA, has been
used to obtain the working datasets. This application includes sensorization, warnings,
and alarms of malfunctioning systems and equipment. For the present research, different
subsystems of the vessels were selected as the object of analysis, selecting diesel power
generation equipment. Specifically, three different datasets corresponding to the operation
of a different components of the diesel generator have been used. No information about the
study component and dataset features is provided for confidentiality reasons. In addition,
generic names will be used to refer to them.

The working datasets contain the information captured by the sensors associated with
each component within a 1 min period (sample rate of 0.016667 Hz), as well as the target
variable, which indicates whether the sample corresponds to the normal or anomalous
system performance. The operating data are available from May 2011 to May 2022.

It is important to emphasize that in this research only data recorded with the diesel
generator operating in a stationary regime have been used, since the fault detection system
from which the data are obtained generates a large number of false alarms in the system
start-up and shutdown processes, minimizing the dataset quality.

Finally, the three working datasets are:

• Dataset 1 contains two variables and a total of 902,796 samples, of which 219 corre-
spond to anomalous data.

• Dataset 2 contains two variables and 897,191 samples, of which 101 correspond to
anomalous data.

• Dataset 3 contains twenty-five variables and 887,294 samples, of which 233 correspond
to anomalous data.

5. Experiments Description (Setup) and Results

The research presented in this paper discusses the performance of three alternative
one-class approaches. For this purpose, four different techniques are evaluated to model
the normal performance of selected components of the power-generation system of the
F-100 frigates. To obtain the best performance of each technique, several experiments have
been carried out.
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5.1. Experimental Setup and Assessment

To validate and compare the proposed techniques, different experiments have been
carried out for each of the three datasets mentioned in Section 4.2. To achieve the best
classifier, the performance of each technique has been evaluated for different values of its
hyperparameters. The evaluated configurations are listed below.

• Gaussian Model

– Data normalization
– Data regularization
– Outlier factor

• K-means

– Data normalization
– Number of clusters
– Outlier factor

• Autoencoder

– Data normalization
– Neurons in the hidden layer
– Outlier factor

• Principal Component Analysis

– Data normalization
– Number of components considered
– Outlier factor

Each technique has been evaluated for three different data conditions. First, the data
were used without any normalization process, NoNorm, then the data were normalized
using a 0 to 1 criterion, Norm, and finally, the z-score method was applied (with a mean of 0
and a standard deviation of 1), Zscore [63]. The use of these normalization techniques, Zscore,
in combination with one-class classification methods, has shown satisfactory results [64].

Moreover, each technique has been tested with different percentages of outliers in the
training dataset. Values of 0, 5, 10, and 15% were used. The different configurations that
have been tested for each technique are summarized in Table 1. All the one-class techniques
have been implemented in Matlab R2022b using different packages and toolboxes.

Table 1. Configurations tested.

Evaluated Technique Evaluated Configuration Tested Values

Gaussian Model
Data normalization
Data regularization
Outlier factor (\%)

NoNorm, Norm, Zscore
0:0.003:0.009

0:5:15

K-means
Data nomalization
Number of clusters
Outlier factor (\%)

NoNorm, Norm, Zscore
2:2:6

0:5:15

Autoencoder
Data nomalization

Neurons in the hidden layer
Outlier factor (\%)

NoNorm, Norm, Zscore
1:1:nvar − 1

0:5:15

PCA
Data nomalization

Number of components
Outlier factor (\%)

NoNorm, Norm, Zscore
1:1:nvar − 1

0:5:15

Finally, it is important to highlight that k-fold cross-validation with a k = 3 was used
for model validation and training. A schematic of the experimental setup is shown in
Figure 4.
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NORMAL  
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K-fold (repeated 3 times)

2/3
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Figure 4. Experimental setup diagram.

5.2. Results

The classifier performance evaluation has been measured using the area under the
receiver operating curve (AUC) metric. This metric is well known in classifier performance
analysis, and its result, measured as a percentage, relates false positive and true positive
rates. In addition, the AUC is commonly used in cases where the dataset is unbalanced,
as it is insensitive to class imbalance. Since the k-fold cross-validation method is used,
the AUC results correspond to the mean performance of each configuration. In this way,
each classifier’s training time has been considered to evaluate the computational cost. As a
matter of fact, the results obtained for the different configurations of each technique are
shown in Tables 2–7.

Table 2 collects the results for the different configurations evaluated with the Gaussian
model. As shown, in the three datasets the best AUC scores are registered with the data
without normalization, with a regularization value of 0.009 and an outlier factor of 5% (in
dataset 1 and 2) and 15% (in dataset 3). With this particular combination, with the first
dataset, an AUC of 95.797% was obtained, 97.592% with the second data set, and 86.222%
with the high-dimensional dataset.

In general terms, it can be observed that the Gaussian model is a technique with a
low computational cost. In fact, none of the tested configurations exceeded a training time
of 0.01 s for both datasets with two features, and for the third dataset, most settings had
training times of less than 1 s.

Similarly, the resolution for the different sets of parameters evaluated with the k-
means technique are summarized in Table 3. In this case, other combinations provide better
performance for each dataset. As depicted, with dataset 1, the most favorable outcomes
are obtained with a total of 2 clusters, an outlier factor of 10%, and normalizing the data
with the z-score method; achieving with this specific configuration a 95.075% AUC. On
the other hand, in the second experiment, with dataset 2, a percentage of 97.544% AUC
was scored with the 6-cluster classifier implemented with an outlier factor of 5%, and the
data normalized with the 0/1 criterion. Finally, the best classifier for the third dataset is
obtained with 4 clusters, an outlier factor of 10%, and a Zscore normalization. With this
configuration, an AUC value of 91.539% is achieved.

Generally speaking, with the k-means technique, good efficiency is appreciated with a
fairly low computational cost. Still, analyzing Table 3, it is noticeable how the classifiers
with an outlier factor of 0% do not achieve beneficial values. This fact can be produced as a
consequence of possible anomalies labeled as normal data.
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Table 2. Gaussian model results.

Norm. Regul.
Out.

Factor
(%)

Dataset 1 Dataset 2 Dataset 3

AUC
(%)

T. Time
(s)

AUC
(%)

T. Time
(s)

AUC
(%)

T. Time
(s)

NoNorm 0 0 50.000 0.094 50.000 0.112 50.000 0.863
NoNorm 0 5 81.317 0.082 97.501 0.089 48.365 0.937
NoNorm 0 10 81.260 0.082 95.136 0.090 56.761 0.784
NoNorm 0 15 82.460 0.072 92.507 0.086 64.647 0.921
NoNorm 0.003 0 50.000 0.077 50.000 0.087 50.000 0.874
NoNorm 0.003 5 89.071 0.077 97.537 0.091 55.218 0.936
NoNorm 0.003 10 93.209 0.079 95.019 0.090 72.345 1.056
NoNorm 0.003 15 92.529 0.076 92.565 0.092 85.718 0.773
NoNorm 0.006 0 50.000 0.079 50.000 0.082 50.000 0.965
NoNorm 0.006 5 93.676 0.073 97.584 0.079 55.942 0.748
NoNorm 0.006 10 95.048 0.074 95.065 0.082 74.366 0.967
NoNorm 0.006 15 92.528 0.076 92.562 0.082 86.222 0.946
NoNorm 0.009 0 50.000 0.077 50.000 0.075 50.000 0.796
NoNorm 0.009 5 95.797 0.076 97.592 0.074 56.158 1.059
NoNorm 0.009 10 95.045 0.075 95.021 0.086 76.098 0.814
NoNorm 0.009 15 92.516 0.075 92.583 0.095 86.222 0.739
Norm 0 0 50.000 0.074 50.000 0.083 50.000 1.085
Norm 0 5 81.384 0.078 97.501 0.093 48.366 0.920
Norm 0 10 81.254 0.076 95.136 0.101 56.688 0.928
Norm 0 15 82.453 0.078 92.507 0.095 64.648 0.770
Norm 0.003 0 50.076 0.078 50.000 0.076 50.000 0.925
Norm 0.003 5 81.313 0.074 97.501 0.089 48.150 0.819
Norm 0.003 10 81.243 0.072 95.088 0.084 53.658 0.741
Norm 0.003 15 82.469 0.085 92.511 0.100 62.551 0.839
Norm 0.006 0 50.000 0.073 50.000 0.077 50.000 0.852
Norm 0.006 5 81.376 0.074 97.504 0.077 48.150 1.051
Norm 0.006 10 81.183 0.074 95.046 0.082 54.234 0.928
Norm 0.006 15 82.473 0.072 92.504 0.087 62.771 0.839
Norm 0.009 0 50.000 0.078 50.000 0.089 50.000 0.883
Norm 0.009 5 81.307 0.078 97.515 0.086 48.149 0.883
Norm 0.009 10 81.112 0.079 95.074 0.089 54.667 0.950
Norm 0.009 15 82.488 0.078 92.501 0.094 64.002 0.822
Zscore 0 0 50.000 0.077 50.000 0.084 50.000 0.862
Zscore 0 5 81.388 0.079 97.501 0.089 48.365 0.852
Zscore 0 10 81.193 0.075 95.137 0.091 56.689 0.841
Zscore 0 15 82.467 0.074 92.506 0.091 64.649 0.951
Zscore 0.003 0 50.000 0.075 50.000 0.090 50.000 0.925
Zscore 0.003 5 81.386 0.077 97.501 0.083 48.149 0.753
Zscore 0.003 10 81.261 0.076 95.137 0.090 53.585 0.993
Zscore 0.003 15 82.477 0.080 92.531 0.090 62.556 0.946
Zscore 0.006 0 50.000 0.078 50.000 0.088 50.000 0.900
Zscore 0.006 5 81.534 0.074 97.504 0.088 48.148 0.820
Zscore 0.006 10 81.155 0.076 95.145 0.090 53.730 0.809
Zscore 0.006 15 82.478 0.077 92.514 0.094 62.340 0.958
Zscore 0.009 0 50.000 0.075 50.000 0.085 50.000 0.874
Zscore 0.009 5 81.532 0.076 97.503 0.099 48.148 0.872
Zscore 0.009 10 81.194 0.074 95.118 0.093 54.523 0.878
Zscore 0.009 15 82.470 0.078 92.517 0.082 62.267 0.865
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Table 3. K-means results.

Norm. Nº of
Clusters

Out.
Factor

(%)

Dataset 1 Dataset 2 Dataset 3

AUC
(%)

T. Time
(s)

AUC
(%)

T. Time
(s)

AUC
(%)

T. Time
(s)

NoNorm 2 0 50.228 0.263 50.000 0.271 50.000 4.756
NoNorm 2 5 88.435 0.229 97.509 0.273 47.716 4.473
NoNorm 2 10 91.251 0.280 95.045 0.241 61.300 4.746
NoNorm 2 15 88.648 0.304 92.559 0.278 86.572 4.692
NoNorm 4 0 50.000 0.642 50.000 0.413 50.000 6.553
NoNorm 4 5 91.340 0.529 97.520 0.398 48.004 6.977
NoNorm 4 10 89.028 0.663 95.052 0.361 73.487 5.410
NoNorm 4 15 86.670 0.593 92.540 0.514 56.844 7.174
NoNorm 6 0 50.076 0.625 50.000 0.492 50.000 7.230
NoNorm 6 5 90.155 0.650 94.489 0.670 58.692 7.526
NoNorm 6 10 84.190 0.473 95.015 0.586 45.210 7.120
NoNorm 6 15 88.033 0.910 92.515 0.630 42.706 8.634
Norm 2 0 50.000 0.271 50.000 0.300 50.000 7.109
Norm 2 5 84.373 0.353 97.524 0.314 62.796 9.290
Norm 2 10 85.206 0.326 95.040 0.340 89.068 8.206
Norm 2 15 86.559 0.334 92.559 0.328 89.902 6.341
Norm 4 0 50.000 0.569 50.000 1.018 50.000 12.225
Norm 4 5 89.866 0.540 89.801 0.937 78.969 10.016
Norm 4 10 90.562 0.843 90.328 0.600 76.912 9.586
Norm 4 15 89.376 0.599 92.522 0.637 86.655 14.039
Norm 6 0 50.000 0.802 50.000 1.123 50.000 11.278
Norm 6 5 93.246 1.094 97.544 1.223 53.423 18.574
Norm 6 10 91.043 1.130 94.989 1.107 66.796 9.461
Norm 6 15 88.726 1.232 92.517 0.770 62.852 15.000
Zscore 2 0 50.000 0.344 50.000 0.373 50.000 8.096
Zscore 2 5 85.232 0.269 97.503 0.358 78.669 14.072
Zscore 2 10 95.075 0.274 95.076 0.400 90.743 13.373
Zscore 2 15 92.559 0.281 92.553 0.330 89.685 12.033
Zscore 4 0 50.076 0.789 50.000 1.016 50.000 16.391
Zscore 4 5 95.003 0.641 97.527 0.634 90.428 17.606
Zscore 4 10 89.446 0.713 95.020 0.645 91.539 18.379
Zscore 4 15 90.092 1.038 92.509 1.104 89.689 15.503
Zscore 6 0 50.000 1.298 50.000 1.121 50.000 17.635
Zscore 6 5 94.997 1.076 97.530 1.268 62.290 18.634
Zscore 6 10 91.536 1.368 95.009 1.400 70.902 23.149
Zscore 6 15 90.209 1.306 92.529 1.493 74.332 20.021

As before, Tables 4 and 5 introduce the findings validated with PCA. Table 4 shows
the results for the first two datasets of 2 variables, while Table 5 shows the performance
of PCA with the dataset of 25 variables. It is important to note that Table 5 only offers the
best configurations obtained by selecting each of the different numbers of the components
since if all the tested configurations were shown, the table would contain a large amount of
information that may compromise its comprehensibility.

In this case, analyzing Table 4, the most effective design is similar for both datasets
since the best behavior is displayed with one component and the data normalized with
the 0/1 criterion. The difference in the configurations corresponds to the percentage of the
outlier factor. Firstly, through simulation with dataset 1, the highest AUC value, 88%, is
collected with an outlier factor of 15%, while in the second case, the best classifier, with
97% of AUC, has been built considering 5% of outliers in the training set.

On the other hand, Table 5 demonstrates the effectiveness of PCA for high-dimensional
data sets (data set 3). The best outcomes are obtained by normalizing the data by the 0/1
criterion, using an outlier factor of 5% of the training set, and selecting only 1 or 2 components.
Following this approach, classifiers with AUC values above 90% can be achieved. However,
using many components does not yield favorable results with this technique.
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In general, it is worth noting that the computational cost of PCA is also quite low. None
of the tested configurations exceeded training times of 0.6 s for the two-variable datasets,
while for the 25-variable dataset, the average training times were approximately 3 s.

Table 4. PCA results for dataset 1 and 2.

Norm. Comp. Out.
Factor (%)

Dataset 1 Dataset 2

AUC (%) T. Time (s) AUC (%) T. Time (s)

NoNorm 1 0 50.000 0.484 50.000 0.488
NoNorm 1 5 59.834 0.518 48.026 0.459
NoNorm 1 10 58.336 0.486 46.032 0.439
NoNorm 1 15 55.814 0.470 44.536 0.441

Norm 1 0 50.000 0.457 50.000 0.461
Norm 1 5 85.668 0.523 97.027 0.438
Norm 1 10 86.524 0.565 95.021 0.451
Norm 1 15 88.009 0.484 92.552 0.478
Zscore 1 0 50.000 0.462 50.000 0.441
Zscore 1 5 70.969 0.458 69.237 0.440
Zscore 1 10 69.865 0.507 76.894 0.441
Zscore 1 15 68.618 0.484 80.425 0.460

Table 5. PCA results for dataset 3.

Norm. Comp. Out.
Factor (%)

Dataset 3

AUC (%) T. Time (s)

Norm 1 5 90.357 2.603
Norm 2 5 90.717 3.353

NoNorm 3 15 72.586 3.045
Norm 4 15 53.828 3.138

NoNorm 5 15 70.494 3.497
NoNorm 6 15 75.689 3.229
NoNorm 7 15 59.308 2.679
NoNorm 8 0 50.000 3.126
NoNorm 9 15 50.148 2.608
NoNorm 10 0 50.000 3.182
NoNorm 11 15 51.809 3.233
NoNorm 12 15 57.290 2.819

Norm 13 15 52.603 3.083
Norm 14 15 58.655 3.468
Zscore 15 15 59.890 3.121
Zscore 16 15 63.352 2.979
Zscore 17 15 63.352 3.097

NoNorm 18 5 53.130 3.132
Norm 19 15 54.117 3.030
Norm 20 15 61.113 3.461
Zscore 21 15 63.493 2.766
Norm 22 15 66.233 3.058

NoNorm 23 15 54.984 3.177
Zscore 24 15 62.700 3.105

Finally, Tables 6 and 7 present the solutions found with the autoencoder neural net-
work. As with the PCA technique, the results are shown in two different tables. In addition,
due to the large number of features of the third dataset, it is important to note that Table 7
only shows the best configurations for the different numbers of neurons tested.

For this method, the finest outcomes also depend on different internal computations.
In the case of the first dataset (Table 6), using 1 neuron in the network hidden layer, an
outlier factor of 15%, and the 0/1 normalization method; it ends with an 87.6% AUC.
Nevertheless, with the second dataset (Table 6), the most promising values are attained
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considering 5% of the training data as outliers and also with 0/1 data normalization. Indeed,
reaching up to more than 97% AUC.

On the other hand, by analyzing Table 7, it can be appreciated how the autoencoder
neural networks are also capable of achieving good results in warship components with
a large number of associated variables. In this case, with the third dataset, this technique
reached more than 90% AUC using only 2 neurons in the hidden layer and considering
a 5% outlier factor and a normalization of the data following the 0/1 criterion. However,
for this dataset, it can be observed that with the increase in the number of neurons in the
hidden layer, the performance is not good, and the tested classifiers do not achieve values
higher than 70% AUC.

Table 6. Autoencoder results for dataset 1 and 2.

Norm. Nº
Neurons

Out.
Factor (%)

Dataset 1 Dataset 2

AUC (%) T. Time (s) AUC (%) T. Time (s)

NoNorm 1 0 50.000 357.132 50.000 147.926
NoNorm 1 5 84.857 352.384 48.031 157.925
NoNorm 1 10 71.600 189.100 46.035 197.221
NoNorm 1 15 79.714 285.890 44.568 128.557

Norm 1 0 50.000 30.100 50.000 31.605
Norm 1 5 85.826 32.068 97.026 45.150
Norm 1 10 86.513 39.528 95.020 55.993
Norm 1 15 87.617 41.665 92.550 41.893
Zscore 1 0 50.000 34.112 50.000 21.486
Zscore 1 5 70.883 21.553 69.231 32.899
Zscore 1 10 70.133 13.587 76.874 50.331
Zscore 1 15 68.329 14.634 81.100 27.728

Table 7. Autoencoder results for dataset 3.

Norm. Nº
Neurons

Out.
Factor (%)

Dataset 3

AUC (%) T. Time (s)

Norm 1 5 90.358 578.872
Norm 2 5 90.646 746.915
Zscore 3 15 71.300 699.515
Zscore 4 5 54.426 957.287
Zscore 5 15 52.447 1787.564
Zscore 6 0 50.000 1621.264
Norm 7 15 75.036 2483.040
Zscore 8 15 64.628 2248.230
Zscore 9 0 50.000 2473.127
Zscore 10 0 50.000 2539.572
Zscore 11 0 50.000 2636.626
Zscore 12 0 50.000 2682.045
Norm 13 15 57.131 3221.705
Zscore 14 15 57.675 2962.068
Zscore 15 15 56.630 3085.607
Norm 16 15 54.603 3490.254
Norm 17 15 56.859 3835.607
Norm 18 15 59.668 3910.105
Zscore 19 15 61.986 3670.120
Zscore 20 15 62.389 3764.557
Zscore 21 15 61.268 3992.231
Norm 22 15 64.799 3722.349
Norm 23 15 62.389 4018.956
Norm 24 15 60.247 4125.477
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Although the results obtained in terms of AUC have been quite good with the three
datasets, the computational cost of this technique is considerable, taking its toll with
training times exceeding 4000 s.

Figure 5 provides a bar chart comparison of the performance of each implemented
one-class technique with its respective dataset. The results are highly satisfactory, with
AUC values exceeding 90%. Based on the results obtained for each technique and dataset,
along with their computational costs, the k-means approach emerges as the most suitable
method as it yields the highest average AUC value across all datasets analyzed.

Gaussian K-means PCA Autoencoder
One-class technique

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

AU
C 

(%
)

Results obtained

Dataset 1
Dataset 2
Dataset 3

Figure 5. Comparison of the performance of each technique in each dataset.

6. Conclusions and Future Works

The present study has focused on the use of one-class techniques for anomaly detection
in different components of a warship diesel generator. For this purpose, the performance
of four one-class methods has been compared, using three different datasets corresponding
to the data collected on the Spanish Navy F-100 frigates between May 2011 and May 2022.

Analyzing the achievements, it has been possible to prove that satisfactory results
have been obtained in the different datasets with the four compared techniques. In the first
experiment performed, with dataset 1, more than 95% AUC was recorded with the Gaussian
model and k-means, while the autoencoder neural network and the PCA technique had
worse performance. In the second case, dataset 2, all the implemented techniques give
more than 97% AUC. Finally, with the third dataset, classifiers with an AUC higher than
90% have been achieved for all techniques except the Gaussian model.

Considering the computational cost, it has been shown that the Gaussian model, k-
means, and PCA have very low rates. Moreover, the training stage of the autoencoder
classifiers involves a much higher computational cost than the aforementioned techniques.
In this case, the training time depends directly on the number of features of the dataset and
the data normalization, given that the largest values are registered without this feature.

In general terms, this research has shown that one-class techniques are capable of
detecting anomalies in the vessel component under analysis. This is a great improvement
compared to the anomaly detection systems currently in operation on the ship, since
their management requires very detailed knowledge of their individual functionalities of
each component. Therefore, designing and tuning the current anomaly detection systems
requires a large amount of expert man-hours to ensure a good performance in detecting
possible failures. In addition, due to the different dynamics of the various components of a
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warship, a different design is required for each of these components which is an arduous
task of design and adjustment.

However, with the proposal presented in this paper, the use of one-class techniques
can simplify the design of these failure detection systems in diesel generator components
of a warship, since no expert knowledge of the system is required. In addition, design
and adjustment times could be drastically reduced, saving many thousands of Euros in
commissioning these services.

On the other hand, this paper has demonstrated that one-class techniques can be used
with high performance in different ship components, so the proposal’s flexibility, integration,
and scalability are assured, being able to use these algorithms in other subsystems of the vessel.

In future work, the performance of these techniques on other ship components may
be analyzed with the aim of obtaining a standardized approach that can detect anomalies
in any component of the diesel generator. Accordingly, due to the different components
within the vessel, the possibility of using hybrid classifiers based on combining clustering
techniques with one-class algorithms may also be studied. In this way, more robust
classifiers that could detect anomalies in various ship components would be developed.
On the other hand, another line of future research will be the analysis of the anomalies
detected by the proposed system in order to facilitate the management of the necessary
shippable spare parts.
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