
Sensitivity analysis and
optimization of the dynamics of

multibody systems using analytical
gradient based methods

Álvaro López Varela

Advisor: Daniel Dopico Dopico

Doctoral thesis

Programa Oficial de Doutoramento
en Enxeñaŕıa Naval e Industrial

Ferrol, 2022





Dr. Daniel Dopico Dopico, Doctor by the University of A Coruña certifies that this
doctoral dissertation, entitled Sensitivity analysis and optimization of the dynamics
of multibody systems using analytical gradient based methods, has been developed by
Álvaro López Varela under his supervision in order to obtain the International Doctor
mention by the University of A Coruña.

Dr. Daniel Dopico Dopico, Doctor por la Universidade da Coruña certifica que la
presente memoria, titulada Sensitivity analysis and optimization of the dynamics of
multibody systems using analytical gradient based methods, ha sido desarrollada por
Álvaro López Varela bajo su supervisión para optar al grado de Doctor con mención
Internacional por la Universidade de Coruña.

Dr. Daniel Dopico Dopico, Doutor pola Universidad de A Coruña certifica que
a presente memoria, titulada Sensitivity analysis and optimization of the dynamics
of multibody systems using analytical gradient based methods, foi desenvolvida por
Álvaro López Varela baixo a súa supervisión para optar ó grao de Doutor con mención
Internacional pola Universidade da Coruña.

Ferrol, 2022.

Álvaro López Varela Dr. Daniel Dopico Dopico
PhD student Advisor
Doctorando Director
Doutorando Director





Á miña madriña





Acknowledgments

The jump from the private sector to research in a public university seems quite
difficult nowadays, specially after the hard process to reach an employment in accor-
dance with your qualification. In my case, the decision was very meditated, but I do
not regret the selection of the research career, in which I wish I would be involved in
coming years. In this sense, I need to thank Alfredo del Caño Gochi for connecting
me with the Laboratorio de Ingenieŕıa Mecánica (LIM) and informing me about the
opportunity to develop a doctoral thesis in this wonderful group.

Above all, I would like to express my sincere gratitude towards my advisor Daniel
Dopico Dopico for his guidance and help during this period. Without his patience and
support, this work would have been impossible. Moreover, I should remark that my
field of expertise was Electronic Engineering, but I did not have important problems
in my introduction to Multibody Dynamics thanks to his thoughtful and detailed
explanations.

Additionally, I extend this acknowledgment to all the members of LIM for the
extremely good work environment, and especially to Alberto Luaces Fernández for
assisting me with the debugging of the code and for sharing with me his programming
skills and knowledge.

Moreover, I want to thank professor Olivier Brüls for offering me the opportunity to
explore new fields of multibody dynamics during my research stay in the Multibody &
Mechatronic Systems Laboratory at the University of Liège. I really value his support
and all the material and lessons he have gifted me. I would like to also thank Juliano
Todesco for his invaluable collaboration, and to Facundo Cosimo for making my stay
more comfortable.

Finally, I would like to thank my family for their unwavering support, particularly
to my parents Rosa Maŕıa and Manuel. They have taught me more than anyone else,
and I still have a lot to learn from them. I cannot forget the ones that are now with
me, Clara, Moncho, Rubén, abuela Clara..., and those who left us but who are still
present in our lives.





Agradecimientos

El salto del sector privado a la investigación en una universidad pública parece muy
dif́ıcil actualmente, especiamente después del duro proceso de alcanzar un trabajo
acorde con tu cualificación. En mi caso, la decisión fue muy meditada, pero no
me arrepiento de la selección de la carrera de investigación, en la cual deseo estar
involucrado en los próximos años. En este sentido, necesito agradecer a Alfredo del
Caño Gochi que me conectara con el Laboratorio de Ingenieŕıa Mecánica (LIM) y por
informarme de la oportunidad de desarrollar una tesis doctoral en este maravilloso
grupo.

Por encima de todo, me gustaŕıa expresar mi más sincera gratitud hacia mi di-
rector Daniel Dopico Dopico por su ayuda y dirección durante este periodo. Sin su
paciencia y apoyo, este trabajo habŕıa sido imposible. Además, debo destacar que
mi campo de especialidad era Ingenieŕıa Electrónica, pero gracias a sus razonadas
y detalladas explicaciones no tuve demasiados problemas en mi introducción en la
dinámica multicuerpo.

Adicionalmente, extiendo este agradecimiento a todos los miembros del LIM por
el extremadamente buen ambiente de trabajo, y especialmente a Alberto Luaces
Fernández por su apoyo durante el proceso de depuración del código y por compartir
conmigo sus habilidades y conocimientos de programación.

Además, quiero agradecer al profesor Oliver Brüls que me haya ofrecido la posibil-
idad de explorar nuevos campos de la dinámica multicuerpo durante mi estancia en el
Multibody & Mechatronic Systems Laboratory de la University of Liège. Realmente
valoro su apoyo y todo el material y lecciones que me ha facilitado. También me gus-
taŕıa agradecer a Juliano Todesco su inestimable colaboración, y a Facundo Cosimo
por hacer mi estancia más agradable.

Finalmente, me gustaŕıa agradecer a mi familia su apoyo incondicional, especial-
mente a mis padres Rosa Maŕıa y Manuel. Ellos me han enseñado más que cualquier
otra persona, y todav́ıa me queda mucho que aprender de ellos. No me puedo olvidar
de aquellos que están conmigo, Clara, Moncho, Rubén, abuela Clara..., y de aquellos
que nos dejaron pero que están todav́ıa muy presentes en nuestras vidas.





Agradecementos

O salto do sector privado á investigación nunha universidade pública parece moi
dif́ıcil actualmente, especiamente despois do duro proceso de alcadar un traballo
acorde coa túa cualificación. No meu caso, a decisión foi moi meditada, pero non
me arrepinto da selección da carrera de investigación, na cal desexo estar involu-
crado nos próximos anos. Neste sentido, necesito agradecer a Alfredo del Caño Gochi
que me conectara co Laboratorio de Ingenieŕıa Mecánica (LIM) e por informarme da
oportunidade de desenvolver unha tese doutoral neste marabilloso grupo.

Por riba de todo, gustaŕıame expresar a miña máis sincera gratitude cara ó meu
director Daniel Dopico Dopico pola súa axuda e dirección durante este periodo. Sen
a súa paciencia e apoio, este traballo seŕıa imposible. Ademais, debo destacar que o
meu campo de especialidade era Enxeñaŕıa Electrónica, pero gracias ás súas razonadas
e detalladas explicacións non tiven demasiados problemas na miña introducción na
dinámica multicorpo.

Adicionalmente, extendo este agradecemento a tódolos membros do LIM polo ex-
tremadamente bo ambiente de traballo, e especialmente a Alberto Luaces Fernández
polo seu apoio durante o proceso de depuración do código e por compartir comigo as
súas habilidades e coñecementos de programación.

Ademais, quero agradecer ó profesor Oliver Brüls que me ofrecese a posibilidade de
explorar novos campos da dinámica multicorpo durante a miña estancia no Multibody
& Mechatronic Systems Laboratory da University of Liège. Realmente valoro o seu
apoio e todo o material e leccións que me facilitou. Tamén me gustaŕıa agradecer a
Juliano Todesco a súa inestimable colaboración, e a Facundo Cosimo por facer a miña
estancia máis agradable.

Finalmente, gustaŕıame agradecer á miña familia o seu apoio incondicional, espe-
cialmente a meus pais Rosa Maŕıa e Manuel. Eles ensináronme máis que calquera
outra persoa, e áında me queda moito que aprender deles. Non me podo olvidar de
aqueles que están comigo, Clara, Moncho, Rubén, abuela Clara..., e de aqueles que
nos deixaron pero que están áında moi presentes nas nosas vidas.





Abstract

Sensitivity analysis of the dynamics of multibody systems is an extraordinarily
useful tool for the design optimization and optimal control problems. In this thesis
document, the sensitivity analysis of joint-coordinate formulations is studied using
purely analytical differentiation methods. The recursive foundations of joint coor-
dinate modeling are reviewed and extended to support the definition of recursive
kinematic relations and accumulation schemes with an arbitrary selection of reference
points.

Two different solutions of the equations of motion of unconstrained open-loop
systems are developed, leading to a semi-recursive and a fully-recursive approach.
Moreover, the dynamics of constrained multibody systems is described using Matrix
R and ALI3-P formulations combined with semi-recursive methods.

The main contribution of this thesis consists on the analytical development of each
derivative required in the sensitivity analysis of joint-coordinate formulations. As a
result, two sensitivity analyses for unconstrained open-loop systems and six sensitiv-
ity formulations for constrained systems are achieved. All dynamic and sensitivity
formulations have been implemented in the multibody library MBSLIM as general
formulations.





Resumen

El análisis de sensibilidad de la dinámica de sistemas multicuerpo es una her-
ramienta extraordinariamente útil para problemas de optimización de diseño y con-
trol óptimo. En el presente documento de tesis se estudia el análisis de sensibilidad
de formulaciones en coordenadas de par usando métodos de diferenciación puramente
anaĺıticos. Los fundamentos recursivos de los modelos en coordenadas de par son
revisados y extendidos para soportar la definición de relaciones cinemáticas recursivas
y esquemas de acumulación para una selección arbitraria de puntos de referencia.

Se desarrollan dos soluciones diferentes de las ecuaciones del movimiento para sis-
temas de cadena abierta no restringidos que conducen a formulaciones semi-recursivas
y totalmente recursivas. Además, se describe la dinámica de sistemas restringidos me-
diante formulaciones de Matriz R y ALI3-P combinadas con métodos semi-recursivos.

La principal contribución de esta tesis consiste en el desarrollo anaĺıtico de cada
derivada requerida en el análisis de sensibilidad de formulaciones en coordenadas de
par. Como resultado se consiguen dos análisis de sensibilidad para cadenas abiertas
sin restricciones y seis formulaciones de sensibilidad de sistemas restringidos. Todas
las formulaciones dinámicas y de sensibilidad han sido implementadas en la libreŕıa
multicuerpo MSBLIM como formulaciones generales.





Resumo

A análise de sensibilidade da dinámica de sistemas multicorpo é unha ferramenta
extraordinariamente útil para problemas de optimización de deseño e control óptimo.
No presente documento de tese estúdase a análise de sensibilidade de formulacións
en coordenadas de par usando métodos de diferenciación puramente anaĺıticos. Os
fundamentos recursivos dos modelos en coordenadas de par son revisados e esten-
didos para soportar a definición de relacións cinemáticas recursivas e esquemas de
acumulación para unha selección arbitraria de puntos de referencia.

Desenvólvense dúas solucións diferentes das ecuacións do movemento para sistemas
de cadea aberta non restrinxidos que conducen a formulacións semi-recursivas e total-
mente recursivas. Ademais, descŕıbese a dinámica de sistemas restrinxidos mediante
formulacións de Matriz R y ALI3-P combinadas con métodos semi-recursivos.

A principal contribución desta tese consiste no desenvolvemento anaĺıtico de cada
derivada requirida na análisee de sensibilidade de formulacións en coordenadas de par.
Como resultado, conséguense dúas análises de sensibilidade para cadeas abertas sen
restricións e seis formulacións de sensibilidade para sistemas restrinxidos. Todas as
formulacións dinámicas e de sensibilidade foron implementadas na libreŕıa multicorpo
MSBLIM como formulacións xerais.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Multibody modeling . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Topological formulations for the dynamics of open-loop systems 15
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Revolute joint kinematics . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Prismatic joint kinematics . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Cardan joint kinematics . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Cylindrical joint kinematics . . . . . . . . . . . . . . . . . . . . 22
2.1.5 Spherical joint kinematics . . . . . . . . . . . . . . . . . . . . . 23
2.1.6 Floating joint kinematics . . . . . . . . . . . . . . . . . . . . . . 26
2.1.7 Planar joint kinematics . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Recursive kinematic relations . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Revolute joint recursive equations . . . . . . . . . . . . . . . . . 34
2.2.2 Prismatic joint recursive equations . . . . . . . . . . . . . . . . 36
2.2.3 Cardan joint recursive equations . . . . . . . . . . . . . . . . . . 38
2.2.4 Cylindrical joint recursive equations . . . . . . . . . . . . . . . . 39
2.2.5 Spherical joint recursive equations . . . . . . . . . . . . . . . . . 41
2.2.6 Floating joint recursive equations . . . . . . . . . . . . . . . . . 43
2.2.7 Planar joint recursive equations . . . . . . . . . . . . . . . . . . 44

2.3 Kinematic analysis of minimal relative coordinate models . . . . . . . . 46
2.3.1 Initial position problem . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Velocity problem . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Acceleration problem . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Equations of motion for unconstrained open-loop systems . . . . . . . . 48
2.4.1 Semi-recursive method . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Fully-recursive method . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.3 Specific semi-recursive formulations . . . . . . . . . . . . . . . . 61

i



Contents

3 Topological formulations for the dynamics of closed-loop systems 69
3.1 Kinematics for non-minimal relative coordinates . . . . . . . . . . . . . 70

3.1.1 Initial position problem . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.2 Kinematic velocity analysis . . . . . . . . . . . . . . . . . . . . 73
3.1.3 Kinematic acceleration analysis . . . . . . . . . . . . . . . . . . 74
3.1.4 Topological kinematics with natural coordinates as degrees of

freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Semi-recursive Matrix R formulations . . . . . . . . . . . . . . . . . . . 75

3.2.1 Non-constant B matrix . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Semi-recursive ALI3-P formulations . . . . . . . . . . . . . . . . . . . . 77
3.4 Semi-recursive penalty formulation . . . . . . . . . . . . . . . . . . . . 82
3.5 Topological constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Euler parameters normalization constraint . . . . . . . . . . . . 84
3.5.2 Spherical joint: loop-closure constraint . . . . . . . . . . . . . . 85
3.5.3 Revolute joint: loop-closure constraint . . . . . . . . . . . . . . 85
3.5.4 Cylindrical joint: loop-closure constraint . . . . . . . . . . . . . 86
3.5.5 Prismatic joint: loop-closure constraint . . . . . . . . . . . . . . 87
3.5.6 Cardan joint: loop-closure constraint . . . . . . . . . . . . . . . 87
3.5.7 Planar joint: loop-closure constraint . . . . . . . . . . . . . . . . 88

3.6 Topological derivatives: qz . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.7 Topological derivatives: q̇z . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.8 Evaluation of Ṙ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Sensitivity analysis of unconstrained open-loop systems 93
4.1 Introduction to sensitivity analysis on joint coordinates . . . . . . . . . 94
4.2 Forward sensitivity of semi-recursive EoM for open-loop systems . . . . 95

4.2.1 Semi-recursive mass matrix derivatives . . . . . . . . . . . . . . 98
4.2.2 Semi-recursive generalized forces derivatives . . . . . . . . . . . 102

4.3 Forward sensitivity of fully-recursive EoM for open-loop systems . . . . 111
4.4 Derivatives of recursive kinematic relations . . . . . . . . . . . . . . . . 116

4.4.1 Evaluation of (Ai)z . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2 Evaluation of (Ai)ρ . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.3 Evaluation of (bv

i )ẑ . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.4 Evaluation of
(
ḃv
i

)
ẑ

. . . . . . . . . . . . . . . . . . . . . . . . 131

4.4.5 Evaluation of
(
ḃv
i

)
ˆ̇z

. . . . . . . . . . . . . . . . . . . . . . . . 135

4.4.6 Evaluation of (bv
i )ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.7 Evaluation of
(
ḃv
i

)
ρ̂

. . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.8 Evaluation of (Bv
i )ẑ . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.9 Evaluation of
(
Ḃv

i

)
ẑ

. . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.10 Evaluation of
(
Ḃv

i

)
ˆ̇z

. . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.11 Evaluation of (Bv
i )ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . 140

ii



Contents

4.4.12 Evaluation of
(
Ḃv

i

)
ρ̂

. . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.13 Evaluation of (dv
i )ẑ . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.14 Evaluation of (dv
i )ˆ̇z . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.15 Evaluation of (dv
i )ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5 Point and vector derivatives . . . . . . . . . . . . . . . . . . . . . . . . 144
4.5.1 Elemental evaluation of qz . . . . . . . . . . . . . . . . . . . . . 145
4.5.2 Elemental evaluation of q̇z . . . . . . . . . . . . . . . . . . . . . 148
4.5.3 Elemental evaluation of q̈z . . . . . . . . . . . . . . . . . . . . . 150
4.5.4 Elemental evaluation of qzz . . . . . . . . . . . . . . . . . . . . 152
4.5.5 Elemental evaluation of qT

zz . . . . . . . . . . . . . . . . . . . . 154
4.5.6 Elemental evaluation of q̇zz . . . . . . . . . . . . . . . . . . . . 155
4.5.7 Evaluation of qρ . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.5.8 Evaluation of q̇ρ . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.9 Evaluation of q̈ρ . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.10 Evaluation of qzρ . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.11 Evaluation of q̇zρ . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Sensitivity analysis of closed-loop systems 163
5.1 Kinematic sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 165

5.1.1 Forward sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.1.2 Adjoint sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2 Sensitivity analysis of semi-recursive Matrix R formulations . . . . . . . 170
5.2.1 Forward sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2.2 Adjoint sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.3 Sensitivity analysis of semi-recursive penalty formulations . . . . . . . . 178
5.3.1 Forward sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3.2 Adjoint sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.4 Sensitivity analysis of semi-recursive ALI3-P formulations . . . . . . . . 181
5.4.1 Forward sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.4.2 Adjoint sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Constraint derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.5.1 Evaluation of Φẑẑ . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.5.2 Evaluation of Φ̇ẑẑ . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.5.3 Evaluation of Φρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.5.4 Evaluation of Φẑρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.5.5 Evaluation of Φ̇ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.5.6 Evaluation of Φ̇ẑρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.5.7 Evaluation of Φ̈ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6 Implementation of the proposed methods in MBSLIM 209
6.1 Kinematics formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2 Forward dynamics formulations . . . . . . . . . . . . . . . . . . . . . . 211

6.2.1 Simplified evaluation of Qd −Mdz̈ . . . . . . . . . . . . . . . . 212
6.2.2 Approximate tangent matrix . . . . . . . . . . . . . . . . . . . . 214

iii



Contents

6.3 Sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.3.1 Simplified calculation of Qd
ρ̂ −Md

ρ̂z̈ . . . . . . . . . . . . . . . . 219

6.4 Design optimization and optimal control of multibody systems . . . . . 220

6.5 Software integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Numerical experiments 225

7.1 Five-bar mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.1.1 Multibody model . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.1.2 Numerical results: dynamics . . . . . . . . . . . . . . . . . . . . 228

7.1.3 Numerical results: sensitivity analysis . . . . . . . . . . . . . . . 230

7.2 Spatial slider crank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.2.1 Multibody model . . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.2.2 Numerical results: dynamics . . . . . . . . . . . . . . . . . . . . 243

7.2.3 Numerical results: sensitivity analysis . . . . . . . . . . . . . . . 245

7.3 Buggy vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3.1 Multibody model . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3.2 Numerical results: dynamics . . . . . . . . . . . . . . . . . . . . 258

7.3.3 Numerical results: sensitivity analysis . . . . . . . . . . . . . . . 262

7.3.4 Numerical results: design optimization . . . . . . . . . . . . . . 270

7.4 Bicycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.4.1 Multibody model . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.4.2 Numerical results: dynamics . . . . . . . . . . . . . . . . . . . . 279

7.4.3 Numerical results: sensitivity analysis . . . . . . . . . . . . . . . 281

7.4.4 Numerical results: optimal control . . . . . . . . . . . . . . . . . 287

7.5 Ship anchor maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.5.1 Multibody model . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.5.2 Numerical results: dynamics . . . . . . . . . . . . . . . . . . . . 291

7.5.3 Numerical results: sensitivity analysis . . . . . . . . . . . . . . . 292

8 Conclusions and future work 293

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

A Derivative of angular velocity with respect to positions of relative
coordinates 311

B Math notes: skew symmetric matrix of a vector and skew symmetric
tensor of a matrix 315

C Derivatives of recursive kinematic relations for RTdyn0 and RTdyn1317

C.1 Expressions of
(
ḃy
i

)
z
for RTdyn0 . . . . . . . . . . . . . . . . . . . . . 317

C.2 Expressions of
(
ḃz
i

)
z
for RTdyn1 . . . . . . . . . . . . . . . . . . . . . 318

iv



Contents

D Semi-recursive index-1 DAE formulation 321
D.1 Direct sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
D.2 Adjoint variable sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 322

D.2.1 Approach 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
D.2.2 Approach 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

E List of publications 329

F Resumo estendido 331

v





List of Figures

1.1 Types of coordinates for MBS modeling. . . . . . . . . . . . . . . . . . 2
1.2 Differentiation techniques for the sensitivity analysis of MBS. . . . . . . 6

2.1 Open chain systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Revolute and prismatic joints in an open chain . . . . . . . . . . . . . . 18
2.3 Cardan joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Cylindrical joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Spherical joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Floating joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Planar joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Revolute joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Prismatic joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Six body open chain mechanism . . . . . . . . . . . . . . . . . . . . . . 51
2.11 NR algorithm for the semi-recursive dynamics of open-loop systems . . 57
2.12 Flowchart for the fully-recursive dynamics of open-loop systems. . . . . 62

4.1 Flowchart for the sensitivity analysis of the fully-recursive dynamics of
open-loop systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1 Flowchart of the initialization process for the sensitivity analysis of
semi-recursive ALI3-P formulations. . . . . . . . . . . . . . . . . . . . . 180

6.1 Stages of the generation of a topological model. . . . . . . . . . . . . . 210
6.2 Stages of the implementation of the sensitivity analysis described in

this document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.1 Five-bar mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.2 Position, velocity and acceleration of point 2 of the five-bar mechanism. 229
7.3 Five-bar objective functions integrated forward in time. . . . . . . . . . 231
7.4 Five-bar objective functions integrated backward in time. . . . . . . . . 232
7.5 Sensitivity analysis of the objective function Ψ1 using the DDM. . . . . 233
7.6 Sensitivity analysis of the objective function Ψ2 using the DDM. . . . . 234
7.7 Sensitivity analysis of the objective function Ψ3 using the DDM. . . . . 235
7.8 Sensitivity analysis of the objective function Ψ1 using the AVM. . . . . 236
7.9 Sensitivity analysis of the objective function Ψ2 using the AVM. . . . . 237
7.10 Sensitivity analysis of the objective function Ψ3 using the AVM. . . . . 238

vii



List of Figures

7.11 Spatial slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . 241
7.12 Dynamic simulation of spatial slider crank without spring under bench-

mark conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.13 Dynamic simulation of spatial slider crank with a spring force. . . . . . 246
7.14 Evolution of the each of the spatial-slider-crank objective functions over

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.15 Forward sensitivity analysis of the objective function Ψ1 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.16 Forward sensitivity analysis of the objective function Ψ2 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.17 Forward sensitivity analysis of the objective function Ψ3 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.18 Adjoint sensitivity analysis of the objective function Ψ1 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.19 Adjoint sensitivity analysis of the objective function Ψ2 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.20 Adjoint sensitivity analysis of the objective function Ψ3 for the spatial

slider crank mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.21 Four-wheeled vehicle, depicting the points and vectors used to define

the model in MBSLIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.22 Kinematic joints, bodies and constraints of the topological model . . . 257
7.23 Driving function for the steering rack. . . . . . . . . . . . . . . . . . . . 258
7.24 Graphical interface for the simulation of the buggy vehicle. . . . . . . . 259
7.25 Position, velocity and acceleration of point 1 belonging to the chassis. . 260
7.26 Trajectory of point 1 in the XY plane and roll of the chassis in the

double lane change maneuver . . . . . . . . . . . . . . . . . . . . . . . 261
7.27 Evolution of the objective function over time on a step descent maneuver.262
7.28 Gradient of the step-descent objective function using forward semi-

recursive sensitivity formulations. . . . . . . . . . . . . . . . . . . . . . 263
7.29 Gradient of the step-descent objective function using adjoint semi-

recursive sensitivity formulations. . . . . . . . . . . . . . . . . . . . . . 264
7.30 Evolution of the objective function over time on a double-lane-change

maneuver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.31 Gradient of the double-lane-change objective function using forward

semi-recursive sensitivity formulations. . . . . . . . . . . . . . . . . . . 267
7.32 Gradient of the double-lane-change objective function using adjoint

semi-recursive sensitivity formulations. . . . . . . . . . . . . . . . . . . 268
7.33 Evolution of objective function value per optimization iteration with

the four algorithms available on fmincon for the step-descent maneuver.272
7.34 Evolution of the acceleration of the Z coordinate of point 1 over time

on a step descent maneuver for the original and the optimized set of
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.35 Evolution of objective function value per optimization iteration with
the Z-component of the center of mass as parameter. . . . . . . . . . . 275

viii



List of Figures

7.36 Evolution of the roll rate over time on a double lane change maneuver
for the original and the optimized set of parameters. . . . . . . . . . . . 275

7.37 Model of bicycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
7.38 Torque applied on the rear wheel and handlebar modeled through spline.277
7.39 Reference velocity and roll angle for the dynamic simulation of the

bicycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.40 Graphical interface for the simulation of the bicycle. . . . . . . . . . . . 279
7.41 Reference velocity and roll angle for the dynamic simulation of the

bicycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.42 Sensitivity of fully-recursive formulation with an index-1 enforcement

of constraints for a RTdyn0 accumulation. . . . . . . . . . . . . . . . . 282
7.43 Fulfillment of constraints at position, velocity and acceleration levels. . 283
7.44 Constraints sensitivities at position, velocity and acceleration levels. . . 283
7.45 Evolution of the objective function over time. . . . . . . . . . . . . . . 284
7.46 Objective function gradient obtained by means of semi-recursive for-

ward sensitivity formulations. . . . . . . . . . . . . . . . . . . . . . . . 285
7.47 Objective function gradient obtained by means of semi-recursive adjoint

sensitivity formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.48 Dynamic response of the bicycle after the optimization with L-BFGS-

B algorithm with high, low and medium accuracy compared with the
desired velocity and roll angle. . . . . . . . . . . . . . . . . . . . . . . . 289

7.49 Detail of the swivel link in the anchor chain, with kinematic joints
identified as “C” (Cardan), “R” (revolute) and “F” (floating). . . . . . 290

7.50 Detail of the anchor chain tip, with kinematic joints identified as “C”
(Cardan), and “R” (revolute). . . . . . . . . . . . . . . . . . . . . . . . 290

7.51 Simulation of the lifting anchor maenuver. . . . . . . . . . . . . . . . . 291

ix





List of Tables

7.1 Coefficients of spring-damper forces acting on the five-bar linkage . . . 227

7.2 Configuration parameters for each formulation. . . . . . . . . . . . . . . 228

7.3 CPU time of relative coordinates formulations compared with the equiv-
alent formulation in natural coordinates. . . . . . . . . . . . . . . . . . 230

7.4 Gradient of objective function Ψ1 . . . . . . . . . . . . . . . . . . . . . 239

7.5 Gradient of objective function Ψ2 . . . . . . . . . . . . . . . . . . . . . 239

7.6 Gradient of objective function Ψ3 . . . . . . . . . . . . . . . . . . . . . 240

7.7 CPU time of relative coordinates formulations compared with the equiv-
alent one in natural coordinates. . . . . . . . . . . . . . . . . . . . . . . 240

7.8 Study of models generated by the elimination of different joints on the
spatial slider crank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.9 Coefficients of spring-damper forces acting on the spatial slider crank . 243

7.10 Configuration parameters for each formulation in the dynamic simula-
tion of the spatial slider crank. . . . . . . . . . . . . . . . . . . . . . . . 244

7.11 CPU time of relative coordinates formulations compared with the equiv-
alent formulation in natural coordinates. . . . . . . . . . . . . . . . . . 244

7.12 CPU time of relative coordinates forward sensitivity formulations com-
pared with the equivalent formulation in natural coordinates. . . . . . . 247

7.13 CPU time of semi-recursive adjoint sensitivity formulations compared
with the equivalent formulation in natural coordinates. . . . . . . . . . 253

7.14 Coefficients of spring forces acting on the five-bar linkage . . . . . . . . 255

7.15 Coefficients of vehicle tire forces. . . . . . . . . . . . . . . . . . . . . . 256

7.16 CPU time of relative coordinates formulations compared with the equiv-
alent one in natural coordinates. . . . . . . . . . . . . . . . . . . . . . . 259

7.17 CPU time of semi-recursive dynamic formulations compared with the
equivalent natural coordinate formulation in a double lane-change ma-
neuver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

7.18 CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the step-descent maneuver . . 265

7.19 CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the step-descent maneuver
with Md

ẑ evaluated each 2 time steps. . . . . . . . . . . . . . . . . . . . 266

xi



List of Tables

7.20 CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the double-lane-change ma-
neuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7.21 Optimization results for the step-descent maneuver using the fmincon
tool of Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.22 Optimization results for the double-lane-change maneuver using the
fmincon tool of Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7.23 Optimization results for the double-lane-change maneuver with the Z
local coordinate of the center of mass of the chassis as parameter. . . . 275

7.24 Coefficients of tire forces in the bicycle model. . . . . . . . . . . . . . . 277
7.25 CPU time of relative coordinates sensitivity formulations compared

with the equivalent formulation in natural coordinates. . . . . . . . . . 280
7.26 CPU time of semi-recursive sensitivity formulations compared with the

equivalent one in natural coordinates. . . . . . . . . . . . . . . . . . . . 284
7.27 CPU time comparative among sensitivity formulations with different

numbers of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.28 Optimization results for different parameterizations of the L-BFGS-B

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.29 CPU time of relative coordinates sensitivity formulations compared

with the equivalent formulation in natural coordinates for the lift an-
chor maneuver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

xii



Acronyms

AD Automatic (or Algorithmic) Differentiation.

ALI3-P Augmented Lagrangian index-3 with Projections.

AVM Adjoint Variable Method.

CAVM Continuous Adjoint Variable Method.

CoM Center of Mass.

DAE Differential Algebraic Equation.

DAVM Discrete Adjoint Variable Method.

DDM Direct Differentiation Method.

DoF Degrees of Freedom.

EoM Equations of Motion.

LIM Laboratorio de Ingenieŕıa Mecánica.

MBD Multibody Dynamics.

MBS Multibody Systems.

MBSLIM Multibody Systems in Laboratorio de Ingenieŕıa Mecánica.

MCAE Mechanical Computer Aided Engineering.

ND Numerical Differentiation.

NR Newton-Raphson.

ODE Ordinary Differential Equation.

SQP Sequential Quadratic Programming.

TRR Trust Region Reflective.

xiii





Chapter 1

Introduction

1.1 Motivation

The steady increase in the capabilities of personal computers during last decades
has made it possible to address the solution of complex numerical problems in several
areas of knowledge, with a special impact on the dynamic simulation of multibody sys-
tems (MBS). Computational improvements have changed the objectives of mechanical
engineers in this field, moving the focus from efficient real-time dynamic simulations
to the optimization of MBS.

Two main problems can be distinguished in the optimization of MBS, depending
on the objective of the optimization: optimal design, where the topology, dimensions,
masses and inertia of the mechanism are sought in order to minimize a given objective
function; and optimal control, where the aim is to obtain a sequence of controls over
time, usually forces, such as a given objective function is minimum. A sensitivity
analysis is mandatory if any of those problems are faced with gradient based opti-
mization methods, being the requirements of optimal control especially restrictive in
terms of computational time in some particular applications.

Recently, some multibody research works have been devoted to the formulation of
new fast and accurate techniques to perform the sensitivity analysis of the dynamic
response of a MBS. The result of this sensitivity analysis offers a measure of the
variation of the behavior of a model with respect to a set of parameters, which is
essential for any gradient-based optimization. The execution of this analysis could
involve high complexity and a huge computational effort, being this one of the reasons
why this calculation is not generally supported by commercial analysis software.

There are different differentiation techniques which can be used to obtain the
sensitivity analysis of a system, from numerical methods based on perturbations, to
complex analytical methods based on the differentiation of the dynamic expressions,
going through automatic differentiation. In general, analytical approaches are usually
the fastest and most accurate, but due to their complexity, they have not been gen-
erally implemented in multibody packages nor used in Mechanical Computer Aided
Engineering programs (MCAE).

The computational effort dedicated to sensitivity analysis is related to the multi-

1



1. Introduction

body model that describe the mechanism in study, as well as to the formulation used
to obtain the dynamic response. Models based on relative coordinates usually lead to
the fastest dynamic simulations, although they involve more complex computations
than other models.

During the past few years, the Laboratorio de Ingenieŕıa Mecánica (LIM) of the
University of A Coruña has been studying, developing, implementing and testing
new analytical computations for the sensitivity analysis of several well-known multi-
body formulations [1–4], all programmed in the general multibody simulation library
MBSLIM [5] for natural coordinates models. The algorithms obtained have been
successfully used in the optimization of the design of different multibody models, and
into other optimal control problems.

The sensitivity analysis of the dynamics of relative coordinate models have not
been generally and systematically studied yet, despite frequently delivering the best
dynamic performance in terms of computational cost. The present work intends to
shed light on the generality and validity of relative coordinate modeling for both
dynamic and sensitivity analyses.

1.2 State of the art

1.2.1 Multibody modeling

Multibody
system

Reference point
coordinates

Natural
coordinates

Relative
coordinates

Figure 1.1: Types of coordinates for MBS modeling.

The possibilities in the field of dynamic simulation of MBS are multiple and di-
verse. A first classification can be done regarding the parameterization of the multi-
body model. In this sense, three major categories can be identified according to the
coordinates which define the motion: reference point coordinates, natural coordinates
and relative coordinates.

Reference point coordinates (also referred to as point of reference or Cartesian
coordinates) arise from the definition of the configuration of a rigid body by means of
the position and orientation of a reference frame attached to the body with respect
to an inertial reference frame. Kinematic joints between bodies are imposed through
kinematic constraints. This approach is probably the most widely spread in the
multibody community and it is the foundation of different commercial multibody

2



1.2. State of the art

packages such as Automatic Dynamic Analysis of Mechanical Systems, commonly
known as ADAMS [6,7].

Implementations of reference point coordinate models differ on how the orientation
of the body-attached frames is measured. Some authors use a minimal parameteri-
zation with 3 angles along with an additional algorithm to handle singularities, like
in ADAMS. Others avoid the singularities by resorting to non-minimal dependent
parameters, such as the 9 components of the direction cosine matrix, to 4 dependent
parameters or to quaternions [8]. Nowadays, Euler parameters are perhaps the most
extended option in this sense. A third possibility is related to the use of Lie Groups
as a means to avoid global parameterization of orientations [9].

Garcia de Jalón et al. introduced in [10] a new set of coordinates that has changed
the classical perspective of multibody modeling. These new so called natural coor-
dinates stem from the previous works by Garcia de Jalón et al. [11, 12] and Serna et
al. [13] in which basic coordinates were developed as an evolution of reference point
coordinates. Basic coordinates exploit the kinematic joint conditions, such as the
sharing of a point or a vector between bodies, in order to reduce the total number of
coordinates and constraints of the system. Natural coordinates widen the advantages
of basic coordinates by parameterizing the motion with Cartesian coordinates of points
and unitary vectors. The great variety of works based on these coordinates since 1986
evidences the advantages of this modeling technique. In [14], Garćıa de Jalón reviews
the most important contributions in the field of natural coordinates modeling until
2007. However, the world keeps spinning, and since then, we can remark several new
interesting works referred to Real-time simulation [15,16], performance assessment of
different formulations [17] or flexible multibody simulation [18,19], among others.

Relative coordinates have been traditionally used to describe the kinematic motion
of open-loop systems due to the reduced number of coordinates generated and the di-
rect identification of joint coordinates and degrees of freedom. Many authors date the
inception of relative coordinate modeling applied to multibody dynamics in the late
70’s and early 80’s, reaching maturity with the acknowledged work of Featherstone in
1983 [20]. Nevertheless, they had been used beforehand in different multibody pro-
grams such as IMP (Integrated Mechanisms Program) [21], DAMN (Dynamic Anal-
ysis of Mechanical Networks) [22] or DYMAC (Dynamics of Machinery) [23, 24], to
mention a few.

In the middle of the 70’s, multibody researchers centered their efforts in the de-
velopment of efficient techniques to evaluate the dynamics of rigid MBS. Stepanenko
and Vukobratovic [25] presented a method for the evaluation of the inverse dynam-
ics applied to anthropomorphic manipulators, which was extended and reformulated
in subsequent works [26, 27]. Vukobratovic and collaborators derived the equations
of motion (EoM) from D’Alembert’s principle and generated a recursive algorithm
for the inverse dynamics problem. In 1979, a work from Waters [28] in which the
generalized forces vector in open-loop relative coordinate models was calculated as
a recursion from the tips to the base body came to light. At the same time, Arm-
strong [29] developed a recursive method for open-loop systems with spherical joints
of O(n) complexity, which means that the number of operations grows linearly with

3



1. Introduction

the number of rigid bodies.

In parallel, Luh et al. developed in [30] an efficient method for the recursive
solution of the inverse dynamic problem in terms of the Newton-Euler equations.
Walker and Orin [31] reviewed some contributions in the field of recursive inverse
dynamics and used them to build different methods for the forward solution of the
equations of motion. The core of this work relies on method 3, in which a recursive
method for the composition of the inertia matrix is outlined. Hollerbach [32] also
developed a different O(n) recursive method for the solution of the inverse dynamics
problem using the Lagrangian method instead of the Newton-Euler equations.

Those previous works can be gathered into a group of fully-recursive formulations,
in which both the accumulation processes and the solution of the equations of motion
are recursively executed. A different approach consists in the generation of the set
of equations by means of recursive evaluations and accumulations but with a global
(instead of recursive) solution of the whole system. Jerkovsky is considered as the
pioneer on these semi-recursive methods thanks to his work [33]. Wherein, Jerkovsky
presented a detailed method for the generation of the equations of motion in a “primi-
tive” form in terms of reference points and angular magnitudes for each body regarded
as free, and then he imposes a velocity transformation to include the constraints re-
quired by joints and closed-loops. Moreover, this work delivers a review on the most
prominent new studies on the dynamics of MBS up to its publication date.

Those and other papers established the foundations for the method of articulated-
body inertias, firstly introduced by Featherstone in 1983 [20]. The articulated-body
inertia method sets forth a technique to accumulate masses and inertia of groups of
bodies connected through kinematic joints. Although the method was originally de-
veloped for revolute and prismatic joints, it has been demonstrated to be applicable
to joints with more than one degree of freedom (DoF) [34]. The relevance of Feath-
erstone’s work relies on the systematic procedure presented, on the simplicity of the
accumulation procedures with straightforward matrix expressions and on the general
application to any rigid multibody model. This publication constitutes one of the
basis of the present thesis document.

The interest on relative coordinate formulations and recursive methods does not
decay in the following years. Bae and Haug presented the trilogy of papers devoted
to the fully-recursive solution of the dynamics of any MBS including closed loops in
a general fashion [35–37]. This formalism was extended also to flexible multibody
systems in posterior works [38–40]. Kim and Vanderploeg [41] explored the rela-
tion between reference point coordinates (therein called Cartesian coordinates) and
relative coordinates in the framework of the semi-recursive method based on veloc-
ity transformations. In 1993, Nikravesh published a work [42] on the semi-recursive
generation and solution of a general closed-loop system using a second velocity trans-
formation related to cut-joint constraints. One peculiarity of this paper is the use of
the term“natural coordinates” as equivalent to “relative coordinates”.

In 1991, Jain devoted his work [43] to review and unify the different recursive
algorithms published until that moment for open-loop systems. In this publication,
Jain classifies recursive algorithms into O(n), O(n2) and O(n3) methods depending

4



1.2. State of the art

on the number of elemental operations required by each one.

Later on, Avello et al. [44] presented a semi-recursive method based on velocity
projections for Real-time simulation applying parallelization techniques.

Jiménez developed in his PhD thesis [45] a deep study on relative coordinate for-
mulations, referring two different compositions of the equations of motion based on
a semi-recursive approach using two sets of reference points, and a third formulation
referred to a fully-recursive approach. The two sets of reference points considered
in this thesis were the center of mass (CoM) of each body, which delivers the so
called formulation RTdyn0, and the global origin of the inertial frame, which leads to
the formulation that Jiménez identified as RTdyn1. This notation has been used by
other authors [46], and will be maintained in the present thesis document. Moreover,
Jiménez introduced two methods to solve the constrained dynamics of closed-loop
systems, which are an independent coordinates formulation based on velocity trans-
formations and a penalty approach.

In 1997, Negrut et al. [47] studied sparsity in relative coordinate formulations
paying special attention to the effect of the spanning tree structure into the dynamic
expressions, to the factorization of the EoM and to parallelization opportunities in
semi-recursive algorithms. Bae et al. explored in [48] the composition of kinematic
and dynamic magnitudes in recursive methods based on velocity transformations, and
the results obtained in their work were later expanded to flexible bodies in [49]. Other
authors continued the pursuit of Real-time simulation by combining recursive methods
with new techniques such as the decomposition of complex multibody models into
simpler subsystems [50], by the reformulation of loop-closure constraints including
virtual bodies in order to obtain O(n + m) methods [51, 52] or by fully-recursive
formulations with a penalized enforcement of constraints [53].

The listed works prove that recursive methods offer a general solution for any
multibody system by reducing it to an open-loop system (or spanning tree) subjected
to a series of kinematic constraints. The solution of the constrained system can be
reached using one of the multiple schemes applied to natural and reference point
coordinates. In that regard, semi-recursive methods have been combined with the
Matrix R formulation (also referred to as coordinate partitioning method) in [45,46,
54–56] and more recently in [57], with the penalty approach in [45, 46] or with the
Augmented Lagrangian index-3 formulation with velocity and acceleration projections
(ALI3-P) in [58–61]. This last formulation has shown to outperform the previous ones
in different numerical problems [17], but as it was stated in [53], the performance of
each formulation and coordinate modeling is case dependent.

1.2.2 Sensitivity analysis

The sensitivity analysis of a multibody system dynamics (MBD) entails the de-
termination of the effect of a set of parameters, such as masses, inertia, coefficients
of forces or geometrical specifications, on the dynamic response. The sensitivity anal-
ysis of MBS can be categorized according to the differentiation procedure used to
differentiate each term involved in the equations of motion.

5



1. Introduction

Differentiation
methods

Numerical
differentiation

Automatic
differentiation

Symbolic
differentiation

Analytical
differentiation

Figure 1.2: Differentiation techniques for the sensitivity analysis of MBS.

The simplest differentiation method consists in numerical differentiation (ND),
which is based on the numerical perturbation of the parameters in order to approxi-
mate the derivative of the objective function by means of its variation using a finite
difference scheme or similar. This method is perhaps the most widely extended, not
only in multibody dynamics but in several other different fields, since it offers a result
of an objective function derivative with a minimum implementation effort and with
a scheme applicable to any numerical problem. However, this technique suffers from
two issues: first, it is extremely dependent on the magnitude of the perturbations
used which yields the so called “step-size dilemma” [62], i.e. high perturbations lead
to bad results and low perturbations to the incorporation of numerical errors; and
second, the computational effort is directly proportional to the number of parame-
ters. Despite its problems, this method has been used combined with semi-analytical
differentiation in works such as [63] or [64], and it is commonly used as test method
for analytical implementations.

The problem of selecting the most appropriate perturbation value minimizing both
truncation and subtraction cancellation errors can be dodged thanks to the use of
complex variables [62]. The use of complex algebra allows very small perturbations
without incurring into errors related to the numerical ill conditioning of subtractions.
Despite these properties, this method has not been generally applied to the differen-
tiation of MBS due to the need to extend the definition of any kinematic or dynamic
magnitude to complex variables.

A second technique used in the sensitivity analysis of MBS, whose presence in
sensitivity problems has exploded in the past few years thanks to the development
and expansion of new math packages, is the automatic differentiation method (AD)
(also called algorithmic differentiation method). Automatic differentiation is founded
on the decomposition of complex computations into elemental operations with known
direct analytical expressions for their derivatives, hence the derivatives of the origi-
nal complex function can be computed automatically from the elemental ones using
derivative procedures as the chain rule. This method offers high accuracy with low
computational expense. Even though its implementation is substantially more compli-
cated than numerical methods, the fact that the derivatives of elemental operations
are not managed directly, avoiding possible errors, make it a suitable method for
obtaining accurate derivatives with a low programming effort [65].

Several automatic differentiation libraries have been developed in the last decades

6



1.2. State of the art

for different languages, such as ADIFOR [66] for Fortran 77 or ADOL-C [67] and
ADIC2 [68] for C and C++. It is also worth to mention the automatic differentiation
capabilities of the Eigen library, such as the AutoDiff package based on a data type
replacement. The list of automatic differentiation tools is much longer and nowadays
is still increasing. The listed libraries have been successfully used in the sensitivity
analysis of the dynamics of MBS in different cases. Dürrbaum et al. compared the
performance of ADOL-C against a symbolic differentiation software in [69], giving
as result a better performance of the symbolic program. Callejo and collaborators
explored the automatic differentiation for the dynamics of MBS in different works
[65, 70, 71]. Ambrosio et al. applied ADIFOR for the optimization of flexible MBS
in [72]. The list of works comprising automatic differentiation is steady growing,
specially in those problems where analytical differentiation is unmanageable.

The third possibility consists in symbolic differentiation, supported by symbolic
calculus. Nowadays, this technique is more common for comparison and validation
purposes of analytical derivatives [69], but it still is a frequently used method in the
multibody community. Symbolic differentiation is usually a computationally expen-
sive calculation, therefore it is commonly harnessed as a preprocessing tool whose
results are implemented as analytical functions.

The fourth differentiation path used in sensitivity analysis consists in the analytical
differentiation of the EoM describing the dynamic response of the system. Analytical
approaches are usually the best option to achieve fast and accurate solutions, since
they use the exact analytical derivatives of the original expressions. The method
requires a huge implementation effort owing to that the derivative of every term
included in the dynamics have to be developed, programmed and tested. Nevertheless,
the enormous relevance of sensitivity accuracy and efficiency in optimization problems
justifies the implementation effort. In fact, the recent increase of publications related
to analytical sensitivity analyses proves this. Our approach is to implement analytical
for the core but we do not close the possibility of using other techniques for some non-
critical parts of the software.

The sensitivity analysis of the EoM of a multibody system can be accomplished
following two different approaches, which are the direct differentiation method (DDM)
and the adjoint variable method (AVM). The application of the DDM to the EoM of
a MBS delivers a system of equations in which the unknowns are the sensitivities of
the variables of the original dynamic problem. The simplicity of the DDM has made
many authors to resort to this method in problems involving a sensitivity analysis,
which converts it in the most spread option in the multibody community.

An increase in the number of sensitivity parameters in a sensitivity analysis entails
a loss of efficiency of the DDM because the number of systems of equations to be
solved is p times the number of systems solved in the dynamics, being p the number
of parameters. The AVM solves this problem by the reformulation of the sensitivity
analysis through the definition of a new Lagrangian function composed of the objective
function and the dynamic EoM pre-multiplied by a set of new variables, namely the
adjoint variables. Thanks to this transformation, the number of systems of equations
is independent of the number of parameters, which makes it the ideal method for

7



1. Introduction

highly parameterized sensitivity problems.

The theory behind sensitivity analysis was mature previous to the beginning of its
application to MBS, which justifies that both DDM and AVM have been applied from
the very first dynamic sensitivity analysis. In the late 70’s and early 80’s, Haug, Arora
and Rousselet made public some works related to the sensitivity analysis of structural
problems [73–77]. Despite the gap between structural and multibody dynamics, these
publications are regarded as precursors and have paved the way to the sensitivity
analysis of the dynamics of rigid and flexible MBS.

Later on, several sensitivity analyses of the dynamics of MBS came to light. Some
of the first analytic works on the sensitivity analysis of the dynamics of MBS were
developed by Haug’s group in the middle 80’s [78, 79]. The main difference among
those works is referred to the type of mechanisms considered, but the theoretical basis
is equivalent. In those works, the authors consider the sensitivity analysis of a set
of first order differential equations as an introductory step to the sensitivity analysis
of the classical form of the index-3 Lagrange EoM, corresponding to a second order
DAE system. However, both approaches (first and second order differential-equation
systems) are equally important in multibody dynamics, since several multibody for-
mulations can be categorized in one of these two groups. This work, therefore, founded
the base for the sensitivity analysis of any dynamic formulation encompassing all the
spectrum of continuous sensitivity analysis, i.e. from the DDM to the AVM.

A novel approach for the solution of the sensitivity problem based on the coordi-
nate partitioning method presented in [80] was developed by Mani and Haug in [81].
In this work, the coordinate partitioning method is applied to the direct and adjoint
sensitivity equations previously obtained from an index-1 Lagrange formulation by
means of the singular value decomposition method (SVD). The option of developing
a different adjoint formulation from the basis of the coordinate partitioning method
applied to the dynamics is unexplored there.

In 1990, Ashrafiuon and Mani developed a study [82] that is closely related to the
subject of the current thesis, which is the sensitivity analysis of a semi-recursive for-
mulation. In this case, because “a general purpose computer program for design sensi-
tivity analysis of spatial systems is extremely difficult to develop, too complicated, and
computationally inefficient” [82], the authors computed the sensitivity analysis of the
index-1 Lagrange formulation studied through symbolic differentiation. Despite the
author’s arguments, the present document thesis will prove that this general purpose
computer program for the sensitivity analysis of the dynamics of relative coordinate
models, though complex, is achievable and could be highly efficient.

In 1992, Bestle ans Seybold [83] published a work on the adjoint sensitivity analysis
of an index-1 Lagrange formulation considering an integral objective function whose
upper time limit depends on the final states. The DDM is omitted in this case as
the authors regarded the AVM more computational efficient for the applications they
were interested in. In 1997, Dias and Pereira explored the direct sensitivity analysis
of an index-1 formulation applied to flexible multibody systems in the sense of the
component mode synthesis method [84]. In this work, the authors resorted to symbolic
and numerical differentiation [85].

8



1.2. State of the art

In the meantime, Pagalday and Avello investigated in [86] the sensitivity analysis
of the EoM of a MBS in the framework of design optimization. They start from
three different solutions for the constrained dynamics: the Lagrangian formulation
combined with Baumgarte stabilization; the penalty formulation, which emerges from
the substitution of the Lagrange multipliers of the former formulation by a penalized
term; and the so called Augmented Lagrangian penalty formulations, which combine
the solution of the two previous formulations by means of the inclusion of an update
loop of the Lagrange multipliers with a penalized term. The DDM applied to these
three formulations is presented in this publication along with a series of numerical
examples executed with symbolic differentiation tools.

One of the most challenging stages in the generation of an analytical sensitivity
analysis is referred to the assessment of the derivatives of each kinematic and dynamic
term with respect the states and the parameters. The performance of this process
will strongly determine the global accuracy and efficiency of the method. The number
of works treating this subject in multibody dynamics is relatively reduced. We can
highlight the work [87], in which Serban and Haug studied the differentiation of the
dynamics of reference point coordinate models in which orientation has been param-
eterized through Euler parameters. In the same line, Wang et al. presented in [88] a
detailed description of the required terms for the direct sensitivity analysis of MBS
modeled with reference point coordinates and with dynamics described by a set of
EoM reduced to a “state-space” ODE system in the framework of the assessment of
an implicit numerical integrator on stiff vehicle models..

In 2000, Schulz and Brauchli set forth two sensitivity-analysis schemes for the
dynamics of MBS with non-smooth collisions [89]. The main contribution of this
work is the description of a method to account for discontinuities in continuous by
definition differentiation schemes such as the DDM and AVM (considering the MBD
as continuous expressions). Other works [90, 91] zeroed in on the implementation of
the sensitivity calculations [90], developing new algorithms (DASPK3.0 and DASP-
KADJOINT) for the efficient sensitivity analysis of any up to index-2 DAE (using the
DDM and AVM respectively).

In [92], the AVM applied to implicit, semi-explicit and explicit ODE along with
index-1 and index-2 DAE is studied in terms of its derivation procedure and the
stability of the resulting adjoint equations. The stability of the adjoint equations
has been also studied by Schaffer for index-3 DAE in [93, 94], who also devoted the
work [95] to the deep study of the AVM applied to the Hiller–Anantharaman stabilized
index-1.

Sensitivity analysis methods can be further classified according to the order be-
tween differentiation and discretization. Frequently, differentiate-then-discretize tech-
niques are denoted as continuous methods, while discretize-then-differentiate approaches
are identified as discrete methods. In DDM, continuous and discrete methods nor-
mally yield equivalent expressions, but in AVM, the composition of the adjoint equa-
tions could be significantly different. Studies on the discrete adjoint variable method
(DAVM) can be found in [96], for Runge-Kutta integrators; [97] for the implicit
Hilber–Hughes–Taylor (HHT) numerical integrator; or [98] for the generalized-alpha

9



1. Introduction

integrator.

Despite the great advantages of relative coordinate modeling, the number of works
related to the sensitivity analysis of relative coordinate dynamic formulations is really
reduced. In addition to the commented work by Ashrafiuon [82], Anderson and Hsu
explored this path with the sensitivity analysis of fully-recursive formulations consid-
ering open-loop chains in [99,100]. Those developments were later used in the recur-
sive direct sensitivity analysis of flexible MBS [101]. Later, Gutiérrez et al. explored
in [102] the DDM of semi-recursive formulations using the independent-coordinate
Maggi’s formulation. In that work, analytical, numerical and automatic differentia-
tion are compared for two numerical experiments modeled through a semi-recursive
approach based on the selection of the global origin of coordinates as reference point
for each body.

Nowadays, researches on the sensitivity analysis of the dynamics of MBS are more
frequent and they study topics related to recent developments in the field of multibody
dynamics, such as the use of Lie-group algebra, non-smooth contact, flexible multi-
body simulation or Real-time dynamics, but also other issues as second-order sensi-
tivities or parallel computation. Sonneville and Brüls recently published a work [103]
referred to the sensitivity analysis of rigid MBS modeled with reference-point coor-
dinates under a Lie group formalism. Other authors zeroed in on solving classical
issues of continuous analytical approaches, such as the inclusion of discontinuities in
the continuous AVM. In this regard, Corner et al. [104] consistently included inequal-
ity constraints emerging from non-smooth contact in a continuous adjoint variable
formalism though jump sensitivity matrices. Serban studied in [105] second order
sensitivities of multibody dynamics described by an ODE system though parallel
computing combining analytical and automatic differentiation methods.

Recently reviewed formulations for sensitivity analysis are the Hamiltonian index-2
DAE [106], independent-coordinate Matrix R formulations [1, 107], the ALI3-P for-
mulation [3,4], the index-3 Lagrange formulation, the index-1 Lagrange approach and
the penalty formulation [2].

Due to the complexity stemmed from the differentiation of dynamic magnitudes
required in any analytical sensitivity analysis, relative coordinate models are usually
dodged so as to reduce the implementation effort. For the best of the author’s knowl-
edge, the purely analytical sensitivity analysis of general semi-recursive methods for
constrained multibody systems modeled in joint coordinates has not been addressed
yet. In fact, the analytical differentiation complexity of this type of problems has been
circumvented by several authors by combining analytical and automatic differentia-
tion procedures. In the present thesis document, the sensitivity analysis equations
of semi-recursive methods will be described using dependent and independent coor-
dinate formulations in a general fashion for a wide range of kinematic joints and for
any topology of the mechanism using the analytical differentiation method.

10



1.3. Objectives

1.2.3 Optimization

“Optimization is an important tool in decision science and in the analysis of phys-
ical systems”, [108]. It has attracted the attention of researchers for years in diverse
fields of knowledge, and it has been gaining relevance in the field of MBS since the
appearance of the first multibody numerical formulations.

The first works involving the optimization of MBS were focused in the kinematic
synthesis of mechanisms in order to carry out specific tasks or maneuvers. In [109], a
review of the most prominent works on kinematic synthesis is presented. These first
works paved the way for the application of optimization techniques to the dynamics
of MBS.

The optimization of the dynamic response of a MBS seeks to obtain an optimal
value of a group of parameters which minimizes a given objective function dependent
on this dynamic performance. In this sense, dynamic optimization is significantly
more complicated than kinematic synthesis since the type of parameters affecting the
system is greater and the dynamic expressions are more demanding.

Optimization problems are usually approached using the derivatives of the objec-
tive function as a means to compute the optimal increments in the set of parameters
by the optimization algorithm. This is commonly known as gradient-based optimiza-
tion. The evaluation of the gradient of a given function dependent on the dynamics of
a MBS requires a sensitivity analysis. In fact, the inception of most of the sensitivity
studies commented in the previous section was due to optimization problems.

Regarding the target of the optimization, two optimization problems can be dis-
tinguished: design optimization and optimal control. Design optimization is referred
to the problem of discovering what are the optimal values of some constant design
magnitudes that minimize a given objective function. The seek of optimal control is
as old as design optimization, but in this case the aim of the problem is to determine
the set of controls that deliver an optimal dynamic performance of a MBS.

The number of works referred to optimal control and design is unfathomable and
still growing nowadays, since they are still open problems and highly case-dependent.

One of the most resorted books in optimal design is [110] (or one of its editions).
It constitutes an educational approach to design optimization and establishes the
fundamentals to transform any design problem into an optimization problem. It
also reviews the solution of constrained and unconstrained optimizations through
numerical examples. Out of the field of mechanical systems, several optimization
books can be pointed out, such as the monographs from Nocedal and Wright [108],
Fletcher [111] or Betts [112].

1.3 Objectives

The aim of the present thesis is the study of recursive formulations and the develop-
ment of their analytical sensitivity analyses. This general objective can be decomposed
into a series of intermediate objectives listed below:

11



1. Introduction

� Review and generalization of recursive multibody dynamic formulations, includ-
ing fully-recursive and semi-recursive formulations.

� Implementation of recursive methods for the dynamic analysis of multibody
models in MBSLIM.

� Development of sensitivity analysis of recursive multibody formulations.

� Study of continuous and discrete sensitivity analysis approaches.

� Development, implementation and solution of different industrial problems of
special interest.

� Performance assessment of the sensitivity analysis of recursive methods.

� Application of recursive methods to optimization problems.

1.4 Thesis structure

The present document has been divided into 8 chapters:
Chapter 1 is devoted to the introduction including the motivation, the state of

the art and objectives of the thesis, offering a background of the sensitivity analysis
of multibody models.

Chapter 2 presents the kinematic relations between bodies connected by different
types of joints and their composition in order to define the kinematic relations between
all the bodies of a kinematic system. These expressions are defined in terms of an
arbitrary reference point, and then particularized to two cases of study: RTdyn0 and
RTdyn1. Besides, two different accumulation procedures are detailed, leading to a
semi-recursive and a fully-recursive method. The solution of unconstrained multibody
systems with these two accumulations is unfolded in this chapter as well.

In Chapter 3 the semi-recursive equations are combined with a set of kinematic
constraints. First, the kinematic problems of initial position, velocity and acceler-
ation in relative coordinates are introduced. Second, the dynamic analysis of con-
strained topological systems is accomplished with an independent-coordinate formu-
lation, namely semi-recursive Matrix R. Third, a dependent-coordinate formulation
based on an augmented Lagrangian index-3 scheme with projections is introduced.
At last, the computation of the derivatives of the constraint vector required in the
previous formulations is presented.

Chapter 4 introduces the sensitivity analysis of unconstrained open-loop systems
for two different schemes: the semi-recursive approach and the fully-recursive method.
In the second part of the chapter, the assessment of the derivative of each term related
to masses, forces and the kinematics of the system is introduced and particularized
for RTdyn0 and RTdyn1. This chapter exposes the derivatives of the expressions
introduced in chapter 2.

Chapter 5 develops the sensitivity analysis of the kinematic and dynamic prob-
lems introduced in chapter 3 with two different techniques: the DDM and the AVM. In

12



1.4. Thesis structure

the sensitivity analysis of the semi-recursive ALI3-P formulation, two different adjoint
methods are presented following a continuous and a discrete approach.

Chapter 6 outlines the implementation work accomplished, emphasizing some
algorithmic optimizations which yield a significant reduction on the computational
expense of the described methods.

Chapter 7 gathers the set of numerical experiments with which the previous
dynamic and sensitivity formulations have been proved. Each numerical experiment
begins with the description of the model and the maneuver executed, followed by
the dynamic results and then the solution of the sensitivity analysis with different
formulations, zeroing in on the accuracy and computational time. Moreover, some
optimization problems are accomplished employing some of the sensitivity analyses
described in these document.

Chapter 8 closes the document with the conclusions and the future research lines
opened by this work.

Furthermore, additional appendices are included in order to enhance the compre-
hension of different parts of the document. They encompass intermediate calculations
and mathematical properties of some operators used along the thesis.

13





Chapter 2

Topological formulations for the
dynamics of open-loop systems

Relative coordinate models are defined by a set of kinematic joints in a particular
sequence composing a kinematic chain. A kinematic joint is defined by R. Feather-
stone as “a kinematic constraint between two bodies”, [113], being the constraints
limitations in the relative motion. In open-loop systems modeled with minimal rel-
ative coordinates, the relative motion is implicitly defined by joint relations, hence
no additional constraint equations are needed. Considering also the sequence of kine-
matic joints, the kinematics of each body of the multibody system can be completely
described.

The EoM of a relative coordinate model can be obtained from the combination of
its kinematic expressions with the mass and inertia of each body and the forces to
which the mechanism is subjected. The methods for the calculation of the dynamics
of relative coordinate models presented in this chapter are topological recursive meth-
ods based on the articulated inertia method of [34] with the variations and notation
employed in [46] and the particular expressions derived in [54]. An improved version
of the formulation is developed here for open-loop systems not attached to the ground.

z1

z2

z3

z4

z1

z2

z3

Figure 2.1: Open chain systems

The current chapter is divided in three sections: first, seven types of joints are
studied in terms of the relative motion allowed and the kinematic relations between

15



2. Topological formulations for the dynamics of open-loop systems

bodies; in the second section, a series of joint-dependent kinematic recursive rela-
tions is developed in order to establish a method for the sequential evaluation of the
kinematics of any open-loop system; the third section is devoted to the dynamics of
open-loop systems using a fully-recursive and a semi-recursive approach. Addition-
ally, two particular formulations are developed taking advantage of the effects that
the selection of reference points has on the semi-recursive equations of motion.

2.1 Kinematics

Relative coordinate modeling usually constitutes the most natural and efficient
method to describe the kinematics of a multibody system. However, despite the
reduced number of coordinates, the generation of the equations of motion is not direct
and other set of intermediate coordinates (as Cartesian coordinates) is needed.

The use of these intermediate coordinates encompasses a double kinematic problem
that has to be addressed both in kinematic and dynamic analyses: first, it is neces-
sary to calculate positions, velocities and accelerations of the intermediate Cartesian
coordinates from the relative coordinates in order to generate the EoM; second, a
coordinate transformation takes the equations from Cartesian to relative coordinates,
which is carried out by means of recursive kinematic relations based on the topology
of the system. In this section, the first problem is described.

In the following derivations, bodies will be numbered with superscripts i − 1, i,
i + 1, etc. while points (vectors) belonging to a body will be named with subscripts
j−1, j, j+1, etc. and, if needed, with the superscript of the body to which it belongs.
For example, point rj is the point j (of body i) expressed in global coordinates, which
is the same as rij which explicitly indicates that point j belongs to body i. The same
notation holds for velocities and accelerations, for example, ṙj = ṙij is the velocity of
point j of body i.

An optional upper bar indicates local coordinates in the reference frame of the
body, thus point r̄j = r̄ij is the point j (of body i) expressed in the local reference

frame of the body. It is obvious that ˙̄rj = ˙̄r
i
j = 0 because point j belongs to body i.

For angular velocity vectors and matrices the notation is slightly different: a sub-
script indicates angular velocity of the body, for example, ω̃i and ωi indicate angular
velocity of body i in the global reference frame and upper bar indicates again local
coordinates in the reference frame of the body. For example, ˜̄ωi and ω̄i indicate
angular velocities of body i in the local reference frame of the body. Moreover, a
superscript indicates relative angular velocities, for example, ωi−1

i and ω̃i−1
i indicate

relative angular velocity of body i with respect to body i − 1 in the global reference
frame while ω̄i−1

i and ˜̄ω
i−1
i angular velocity of body i with respect to body i − 1 in

the local reference frame of body i− 1.

Using the equations of the rigid body, the position of a point j and a vector j,
both belonging to body i, can be expressed in terms of their local coordinates, and

16



2.1. Kinematics

the position of a reference point i in the same body, as follows,

rij = rii +Ai

(
r̄ij − r̄ii

)
⇒ rj = ri +Ai

(
r̄j − r̄i

)
(2.1)

ui
j = Aiū

i
j ⇒ uj = Aiūj (2.2)

Observe that matrix Ai is the rotation matrix of body i and it is, by definition,
an orthogonal matrix, AT

i Ai = AiA
T
i = I3. Therefore, the following inverse relations

hold,

r̄j = r̄i +AT
i

(
rj − ri

)
(2.3)

ūj = AT
i uj (2.4)

The velocities of the same entities can be expressed by,

ṙij = ṙii + Ȧi

(
r̄j − r̄i

)
+Ai

(
̸ ˙̄rj− ̸ ˙̄ri

)
= ṙii + ȦiA

T
i

(
rj − ri

)
⇒ ṙj = ṙi + ω̃i

(
rj − ri

)
(2.5)

u̇j = Ȧiūj +Ai ̸ ˙̄uj = ȦiA
T
i uj ⇒ u̇j = ω̃iuj (2.6)

Taking into account the following definitions and properties,

ω̃i = ȦiA
T
i (2.7)

ω̃u = ω ∧ u (2.8)

ω̃ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.9)

ω =
[
ωx ωy ωz

]T
(2.10)

where ω̃ is the skew-symmetric angular velocity matrix, ω is the angular velocity
vector and u any point or vector.

The velocities of a point j and a vector j, both belonging to body i can be expressed
then,

ṙj = ṙi + ωi ∧
(
rj − ri

)
(2.11)

u̇j = ωi ∧ uj (2.12)

The accelerations of the same magnitudes can be obtained taking derivatives in
the previous expressions,

r̈j = r̈i + ω̇i ∧
(
rj − ri

)
+ ωi ∧

(
ṙj − ṙi

)
(2.13)

üj = ω̇i ∧ uj + ωi ∧ u̇j (2.14)

and replacing the velocities calculated before, the final expressions become:

r̈j = r̈i + ω̇i ∧
(
rj − ri

)
+ ωi ∧

(
ωi ∧

(
rj − ri

))
(2.15)

üj = ω̇i ∧ uj + ωi ∧ (ωi ∧ uj) (2.16)

Once given the previous definitions, the description of the set of joint types con-
sidered in the present work can be tackled.

17



2. Topological formulations for the dynamics of open-loop systems

2.1.1 Revolute joint kinematics

A revolute joint is generated when two bodies share one point and one vector,
being the rotation around the shared vector the only motion allowed. The angle
described by this rotation is measured by the relative coordinate zk that defines the
joint, as it is shown in Figure 2.2.

zk+
1

X̄i−1

Ȳi−1

Z̄i−1

rj−1

rj

rj+1

X

Y

Z

rj+2
riG

ri+1
G

wj

zk

uj vj

i
i -1

i+1
uj+1vj+1

X̄ i

Ȳ i

Z̄ i

X̄i+1

Ȳi+1

Z̄i+1

Figure 2.2: Revolute and prismatic joints in an open chain

Given the point rj and unit vector wj belonging to revolute joint i, shared by
bodies i− 1 and i, equations (2.1) and (2.2) hold,

rj = rj−1 +Ai−1

(
r̄i−1
j − r̄i−1

j−1

)
(2.17)

wj = Ai−1w̄
i−1
j (2.18)

where Ai−1 is the rotation matrix of body i− 1.
The rotation matrix of body i can be written in terms of the rotation matrix of

the preceding body in the kinematic chain, and the relative rotation matrix,

Ai = Ai−1A
i−1
i (2.19)

Moreover, the relative rotation matrix Ai−1
i is composed of two rotations as well,

Ai−1
i = A1A2, (2.20)

the second one, A2 is a single rotation around the axis of the revolute joint, w̄i
j of

magnitude ϕ = zk, while the first term, A1, is a constant rotation that makes vectors
w̄i−1

j and w̄i
j coincident. There are infinite rotations that lead to concurrent vectors

18



2.1. Kinematics

w̄i−1
j and w̄i

j , being the one of interest that one which makes another pair of vectors

perpendicular to the axis, ūi−1
j and v̄i

j, coincident too:

A1 =
[
w̄i−1

j ūi−1
j w̄i−1

j ∧ ūi−1
j

] [
w̄i

j v̄i
j w̄i

j ∧ v̄i
j

]−1
= X̄i−1

(
X̄i
)−1

(2.21)

These newly added pair of vectors ūi−1
j and v̄i

j belonging to bodies i − 1 and i,
respectively, also define the measurement of the joint angle zk. Nevertheless, they do
not need to exist themselves, they can be the projection on the normal joint plane of
other vectors. Observe that all the magnitudes of the previous expression are local
coordinates (constant in rigid bodies), thus A1 could be calculated only once when
the model is defined.

Besides, A2 can be written in terms of a single rotation zk around the axis of the
revolute joint w̄i

j, according to [8],

A2 = cos zk I+ (1− cos zk) w̄
i
j

(
w̄i

j

)T
+ ˜̄w

i
j sin zk (2.22)

The position of point rj+1, and the vector belonging to the prismatic pair in
element i in connection with the next body i+ 1 are given again by (2.1) and (2.11),

rj+1 = rj +Ai

(
r̄ij+1 − r̄ij

)
(2.23)

uj+1 = Aiū
i
j+1 (2.24)

where r̄ij+1, r̄
i
j and ūi

j+1 are expressed in the local frame of body i, and the velocities
of the mentioned entities, can be calculated as in (2.11) and (2.12)

ṙj+1 = ṙj + ωi ∧
(
rj+1 − rj

)
(2.25)

u̇j+1 = ωi ∧ uj+1 (2.26)

The angular velocity of body i is:

ωi = ωi−1 + żkwj (2.27)

Finally, the positions and velocities of additional points and vectors of body i
(maybe required for evaluation of forces or constraints) can be calculated by means
of the rigid body equations for positions and velocities of points and vectors given by
(2.1), (2.2), (2.11) and (2.12).

2.1.2 Prismatic joint kinematics

The prismatic joint, as the revolute joint, has one degree of freedom, but in this
case it is associated to a translation instead of a rotation. In terms of natural or fully
Cartesian coordinates, this type of joint is defined, in the simplest case, by two bodies
sharing 2 vectors, and with a constraint of alignment of 2 points (one of each body)
along one of these vectors. The relative motion of these two points is measured by a
translation coordinate zk+1.

19



2. Topological formulations for the dynamics of open-loop systems

Let us focus on Figure 2.2 to study the joint. The position of the point belonging
to the prismatic joint in element i+ 1 is:

rj+2 = rj+1 + zk+1uj+1 (2.28)

For any other point of body i + 1, as the CoM, for instance, its position can be
expressed using the equations of the rigid body introduced before,

ri+1
G = rj+2 +Ai+1

(
r̄i+1
G − r̄i+1

j+2

)
(2.29)

and again the rotation matrix Ai+1, of body i + 1 can be expressed in terms of the
rotation matrix of i,

Ai+1 = AiA
i
i+1 (2.30)

For a prismatic joint connecting bodies i and i + 1, the relative rotation matrix
Ai

i+1 is constant and therefore it can be calculated when the joint is defined and used
in simulation time. In order to completely define the joint, at least two vectors in
each body are needed: the vector of the axis in each body ūi

j+1, ū
i+1
j+1 and one extra

coincident vector v̄i
j+1, v̄

i+1
j+1.

Ai
i+1 =

[
ūi
j+1 v̄i

j+1 ūi
j+1 ∧ v̄i

j+1

] [
ūi+1
j+1 v̄i+1

j+1 ūi+1
j+1 ∧ v̄i+1

j+1

]−1
= X̄i

(
X̄i+1

)−1

(2.31)
Due to the constant relative orientation, the angular velocities of bodies i− 1 and

i coincide:
ωi+1 = ωi (2.32)

In order to calculate velocities of points of body i+ 1, the velocity of ṙj+2 should
be calculated as reference point for the distribution of velocities,

ṙj+2 = ṙj+1 + żk+1uj+1 + zk+1u̇j+1 = ṙj+1 + żk+1uj+1 + zk+1ωi+1 ∧ uj+1 (2.33)

where equation (2.12) has been used.
Finally, the positions and velocities of additional points and vectors belonging to

body i + 1 can be calculated by means of the rigid body equations for positions and
velocities of points and vectors given by (2.1), (2.2), (2.11) and (2.12).

2.1.3 Cardan joint kinematics

Observing Figure 2.3, it can be deduced that the kinematics of the Cardan joint is
equivalent to the kinematics of two consecutive revolute joints. The first revolute joint
is defined by the point rj shared by bodies i− 1 and i and the vector wj = wi−1

j ; the
rotation zk1 around the vector of the revolute joint is measured by the angle between
vectors zk1 = ̸ {uj,vj} in the direction of wj. The second revolute joint is defined
by the same point rj and the vector wj+1 = wi

j+1; the rotation zk2 around the vector
of the revolute joint is measured by the angle between vectors zk2 = ̸ {uj+1,vj+1} in
the direction of wj+1.

20



2.1. Kinematics

X

Y

Z

rj

i -1

X̄ i−
1

Ȳi−1

Z̄i−1

ri−1

ri

riGri−1
G

0

i

wj = uj+1

uj
vj = wj+1

zk1

zk2

zk2

X̄ i

Ȳ
i

Z̄
i

vj+1

Figure 2.3: Cardan joint

Since rj belongs to body i, the position of any point of body i, and in particular
the reference point ri, can be expressed analogously to the case of the revolute joint,

ri = rj +Ai

(
r̄ii − r̄ij

)
(2.34)

Global positions of Cardan vectors can be obtained in accordance with the body
in which they are defined:

wj = Ai−1w̄
i−1
j (2.35)

uj = Ai−1ū
i−1
j (2.36)

wj+1 = Aiw̄
i
j+1 (2.37)

vj+1 = Aiv̄
i
j+1 (2.38)

The rotation matrix of body i shares also the same expression (2.19),

Ai = Ai−1A
i−1
i (2.39)

The relative rotation matrix Ai−1
i is composed of other three rotations matrices:

one related to each revolute joint plus one constant rotation matrix enforcing the local
axes of the bodies to be coincident.

Ai−1
i = A1

k1A
2A3

k2 (2.40)

21



2. Topological formulations for the dynamics of open-loop systems

Rotation matrices A1
k1 and A3

k2 constitute single rotations around the respective
axes of the revolute joints, w̄i−1

j of magnitude zk1, and w̄i
j+1 of magnitude zk2:

A1
k1 = cos zk1 I+ (1− cos zk1) w̄

i−1
j

(
w̄i−1

j

)T
+ ˜̄w

i−1
j sin zk1 (2.41)

A3
k2 = cos zk2 I+ (1− cos zk2) w̄

i
j+1

(
w̄i

j+1

)T
+ ˜̄w

i
j+1 sin zk2 (2.42)

while the second term, A2, is a constant rotation matrix which matches w̄i
j+1 with

ūi−1
j , and vector v̄i

j+1 with w̄i−1
j , respectively:

A2 =
[
ūi−1
j w̄i−1

j ūi−1
j ∧ w̄i−1

j

] [
w̄i

j+1 v̄i
j+1 w̄i

j+1 ∧ v̄i
j+1

]−1
= X̄i−1

(
X̄i
)−1

(2.43)
Observe that all the magnitudes of the previous expression are local coordinates,
therefore A2 has to be calculated only once when the model is defined.

Velocity relations for Cardan joints hold:

ṙi = ṙj + ωi ∧
(
ri − rj

)
(2.44)

ẇj = ωi−1 ∧wj (2.45)

u̇j = ωi−1 ∧ uj (2.46)

ẇj+1 = ωi ∧wj+1 (2.47)

v̇j+1 = ωi ∧ vj+1 (2.48)

ωi = ωi−1 + żk1wj + żk2wj+1 (2.49)

2.1.4 Cylindrical joint kinematics

The cylindrical joint is a kinematic joint with two degrees of freedom which allows
a relative motion around and along one vector. In fact, its kinematics is equivalent
to the kinematics of one prismatic joint plus a revolute joint. This type of joint is
described by 2 relative coordinates (one angular and other translational), and it is
equivalent to two bodies sharing one vector with a constraint of alignment of two
points (one of each body) along it.

In accordance with the cylindrical joint displayed in Figure 2.4, points rj and rj+1

of body i can be determined as:

rj = rj−1 + zk1wj (2.50)

rj+1 = rj +Ai

(
r̄ij+1 − r̄ij

)
(2.51)

where Ai is given by equation (2.19). Therefore,

rj+1 = rj−1 + zk1wj +Ai

(
r̄ij+1 − r̄ij

)
(2.52)

The velocities of points j and j + 1,

ṙj = ṙj−1 + żk1wj + ωi−1 ∧ zk1wj (2.53)

ṙj+1 = ṙj + ωi ∧
(
rj+1 − rj

)
(2.54)

22



2.1. Kinematics

X

Y

Z

zk2

rj

i -1

i

X̄ i−
1

Ȳi−1

Z̄i−1

X̄i

Ȳi

Z̄i

ri−1

ri

riG

ri−1
G

0

zk1

rj+1

wj

rj−1

Figure 2.4: Cylindrical joint

Since the relative change in orientation is due to the rotation coordinate, the
angular velocity holds an identical equation to the revolute joint, (2.27):

ωi = ωi−1 + żk2wj (2.55)

Removing the velocity of point j in (2.53) and (2.54), the expression of point j+1
in terms of j − 1 can be obtained,

ṙj+1 = ṙj−1 + żk1wj + ωi−1 ∧ zk1wj + ωi ∧
(
rj+1 − rj

)
(2.56)

However, equation (2.56) is not strictly necessary for the kinematics, because once
calculated rj, ṙj, Ai and ωi, the general expressions for velocities of points and vectors
hold: (2.1), (2.2), (2.11) (or (2.54)) and (2.12).

2.1.5 Spherical joint kinematics

The spherical joint is analog to two bodies sharing one point, and therefore three
relative rotations are allowed while relative translation is prevented. In Figure 2.5, a
spherical joint is displayed relating the motion of bodies i− 1 and i.

If the kinematics of body i− 1 are known, and regarding that the point identified
as j in Figure 2.5 is shared between i− 1 and i, the position and velocity of any point
rigidly attached to body i can be determined by:

rj+1 = rj +Ai

(
r̄ij+1 − r̄ij

)
(2.57)

23



2. Topological formulations for the dynamics of open-loop systems

X

Y

Z

X̄i−1

Ȳi−1

Z̄i−1

i -1
i

X̄i

Ȳi

Z̄i

rj
rj−1

rj+1

Figure 2.5: Spherical joint

ṙj+1 = ṙj + ω̃i

(
rj+1 − rj

)
(2.58)

where the rotation matrix can be obtained as the product of the rotation matrix of the
previous body by a relative rotation matrix referred to the joint, as it was established
for the revolute joint in (2.19):

Ai = Ai−1A
i−1
i (2.59)

Analogously, the relations for angular velocities can be expressed as follows:

ωi = ωi−1 + ω
i−1
i (2.60)

wherein ωi−1
i is the relative angular velocity of body i with respect to body i − 1

expressed in the global reference frame.
The three relative rotations can be parameterized by means of Euler angles or

roll-pitch-yaw angles, for instance, but any parameterization with three parameters
presents singular configurations. In order to avoid any risk of singular configurations,
Euler parameters can be chosen to model the spherical joint [114]. The relative
rotation matrix between two bodies can be obtained from a set of Euler parameters
by means of:

Ai−1
i =

(
2e20 − 1

)
I+ 2

(
ēēT + e0˜̄e

)
(2.61a)

e0 = cos
ϕ

2
(2.61b)

ē =

ē1ē2
ē3

 = ūi−1 sin
ϕ

2
(2.61c)

where ϕ is the angle of rotation around the axis ūi−1.

24



2.1. Kinematics

Only three out of the four Euler parameters p̄ =
[
e0 ēT

]T
are independent, since

they are subjected to the following normalization constraint equation:

p̄Tp̄− 1 = e0
2 + ēTē− 1 = 0 (2.62)

Defining Ē =
[
−ē ˜̄e+ e0I

]
and Ḡ =

[
−e −˜̄e+ e0I

]
the expression of the rela-

tive rotation matrix can be simplified,

Ai−1
i = ĒḠT = ēēT + ˜̄e˜̄e+ 2e0˜̄e+ e0

2I = 2ēēT −
(
ēTē
)
I+ 2e0˜̄e+ e0

2I =(
e0

2 − ēTē
)
I+ 2

(
ēēT + e0˜̄e

)
=
(
2e0

2 − 1
)
I+ 2

(
ēēT + e0˜̄e

) (2.63)

where the identity ãb̃ = baT −
(
aTb

)
I was used. Moreover, it can be easily proved

that matrices Ē and Ḡ satisfy the following relations,

Ēp̄ = Ḡp̄ = 0 (2.64)

ĒĒT = ḠḠT = I3 (2.65)

ĒTĒ = ḠTḠ = I4 − p̄p̄T (2.66)

Some relations of the time derivatives of Euler parameters bring,

˙̄EĒT = −Ē ˙̄E
T

(2.67)

˙̄G
T
Ḡ = −ḠT ˙̄G (2.68)

p̄T ˙̄p = ˙̄p
T
p̄ = e0ė0 + ˙̄e

T
ē = 0 (2.69)

Ē ˙̄p = − ˙̄Ep̄ = Ḡ ˙̄p = − ˙̄Gp̄ (2.70)

˙̄EḠT = Ē ˙̄G
T

(2.71)

Then the time derivative of the relative rotation matrix,

Ȧi−1
i = ˙̄EḠT + Ē ˙̄G

T
= 2Ē ˙̄G

T
= 2 ˙̄EḠT (2.72)

and the relative angular velocity,

˜̄ω
i−1
i = Ȧi−1

i

(
Ai−1

i

)T
= 2 ˙̄EḠTḠĒT = 2 ˙̄E

(
I4 − p̄p̄T

)
ĒT = 2 ˙̄EĒT = −2Ē ˙̄E

T
(2.73)

where identities (2.66), (2.64) and (2.67) have been used.

Direct calculation of ˜̄E ˙̄p and Ē ˙̄E
T
leads to the following result,

˜̄E ˙̄p =
˜[

−ē ˜̄e+ e0I
] [ė0

˙̄e

]
= −ė0˜̄e+ ˜̄̃e ˙̄e+ e0

˙̄̃e = −ė0˜̄e+ ˜̄e ˙̄̃e− ˙̄̃e˜̄e+ e0
˙̄̃e =

− ė0˜̄e+ ˜̄e ˙̄̃e− ē ˙̄e
T
+ ˙̄e

T
ēI+ e0

˙̄̃e = −ė0˜̄e+ ˜̄e ˙̄̃e− ē ˙̄e
T − e0ė0I+ e0

˙̄̃e =

−
(
ē ˙̄e

T − ˜̄e ˙̄̃e+ ė0˜̄e− e0
˙̄̃e+ e0ė0I

)
= −

[
−ē ˜̄e+ e0I

] [ − ˙̄e
T

− ˙̄̃e+ ė0I

]
= −Ē ˙̄E

T

(2.74)

25



2. Topological formulations for the dynamics of open-loop systems

where the following properties of skew-symmetric matrices were observed, ˜̃ab = ãb̃−
b̃ã and b̃ã = abT +

(
bTa

)
I (see appendix B) and ˙̄e

T
ē = −e0ė0.

Therefore, the final expression for the relative angular velocity matrices and their
relative angular velocity dual vectors, in the local frame of body i−1 and in the global
frame, respectively, are,

˜̄ω
i−1
i = −2Ē ˙̄E

T
= 2 ˜̄E ˙̄p (2.75)

ω̄i−1
i = 2Ē ˙̄p (2.76)

ωi−1
i = Ai−1ω̄

i−1
i = 2Ai−1Ē ˙̄p = 2E ˙̄p (2.77)

E = Ai−1Ē (2.78)

The inverse relation for ˙̄p can be obtained multiplying by Ē,

˙̄p =
1

2
ĒTω̄i−1

i =
1

2
ĒTAT

i−1ω
i−1
i =

1

2
ETωi−1

i (2.79)

Finally, with the position (and velocity) of the reference point j and the rotation
matrix (and angular velocity) of body i, the positions (or velocities) of any point and
vector of body i can be calculated by (2.1) and (2.2) (or by (2.11) and (2.12)).

2.1.6 Floating joint kinematics

There are different forms to manage relative coordinate models unconnected to the
ground. One possibility is to reformulate the set of expressions for this particular case,
considering the reference point coordinates of one of the bodies of the model. The
approach addressed here consists in considering a “fictional” joint which is equivalent
to the lack of joint, but which allows to extend the joint modeling formalism to the
case of floating multibody models.

Due to the unconstrained motion between a body i and the ground, the floating
joint is defined by 3 translations and 3 rotations (DoF of the rigid body). In order
to keep consistency, the three translations are modeled by three elemental prismatic
joints aligned with the global axes of coordinates while the three rotations are de-
scribed by one elemental spherical joint in terms of Euler parameters, as it can be
seen in Figure 2.6:

� The first prismatic joint is aligned with the global X axis, with rj = 0, uj =

ū0
j =

[
1 0 0

]T
and rj+1 = r = 0+ zk1uj.

� The second prismatic joint is aligned with the global Y axis, with rj = r,

vj = v̄0
j =

[
0 1 0

]T
and rj+1 = s = r+ zk2vj.

� The third prismatic joint is aligned with the global Z axis, with rj = s, wj =

w̄0
j =

[
0 0 1

]T
and rj+1 = t = s+ zk3wj.

� The spherical joint is attached to the end point of the last prismatic joint and
to the center of gravity of the first body in the chain rj = t = riG.

26



2.1. Kinematics

Z

0

Y

X

Z̄i

Ȳi

X̄i

ri

i

z k1

zk2

vj

w
j

u j

riG

z k
3

Figure 2.6: Floating joint

The rotation matrices satisfy the following equation,

Ai = A0A
0
i = A0

i (2.80)

regarding that the rotation matrix of the ground (fixed body), A0 = I3, will be always
considered the identity.

Similarly, relations for angular velocities can be expressed as follows,

ωi = ω0 + ω
0
i = ω0

i (2.81)

because the angular velocity of the ground is always null, ω0 = 0.
Again, Euler parameters can be chosen to model the elemental spherical joint:

Ai = A0
i =

(
2e20 − 1

)
I+ 2

(
ēēT + e0˜̄e

)
(2.82a)

e0 = cos
ϕ

2
(2.82b)

ē =

ē1ē2
ē3

 = ū0 sin
ϕ

2
= u sin

ϕ

2
= e (2.82c)

where ϕ is the angle of rotation around the axis ū0, which matches the global u in

this case. Observe also that p̄ =
[
e0 ēT

]T
=
[
e0 eT

]T
= p, Ē = E and Ḡ = G in

this case.

27



2. Topological formulations for the dynamics of open-loop systems

The time derivative of the relative rotation matrix holds:

Ȧi = 2 ˙̄EḠT = 2ĖGT (2.83)

and the angular velocity:
ωi = 2Eṗ (2.84)

The inverse relation for ṗ can be obtained multiplying by E,

ṗ =
1

2
ETωi (2.85)

2.1.7 Planar joint kinematics

The planar joint displayed in Figure 2.7 is equivalent to the relative motion of
two bodies sharing one vector and with the translation prevented along the shared
vector direction. The resulting relative motion is equivalent to a free 2D motion in
the normal plane to the shared vector, with 3 degrees of freedom. This type of joint is
very advantageous for the solution of planar mechanisms, instead of using a floating
joint with 3 constraint equations.

Z

0
Y

X

Z̄i−1

Ȳi−1

X̄i−1

Z̄i

Ȳi

X̄i

ri−1

ri

ii− 1

ri−1
G

riG

zk1

zk2

zk3

uj

wj

vj

Figure 2.7: Planar joint

The behavior of the planar joint is analogous to the concatenation of two prismatic
joints and a revolute joint:

� The first prismatic joint is aligned with a vector uj normal to the revolute vector
wj, and with rj = ri−1

G and and rj+1 = r = ri−1
G + zk1uj.

28



2.2. Recursive kinematic relations

� The second prismatic joint is aligned with a vector vj normal to uj and wj, and
with rj = r and and rj+1 = s = r+ zk2vj.

� The revolute joint is attached to the end point of the last prismatic joint and
to the center of gravity of the body i, with rj = s = ri+1

G , and with the shared
vector wj as the axis of rotation.

The relative rotation matrix in this case is the same of the revolute joint, since
the prismatic joints prevent rotation. As it has been presented in subsection 2.1.1,
the rotation matrix of a revolute joint is composed of a constant rotation matrix and
a second matrix corresponding to a single rotation around the revolute axis:

Ai−1
i = A1A2 (2.86)

In this case, the vectors defining the prismatic joints can be used to determine A1:

A1 =
[
w̄i−1

j ūi−1
j w̄i−1

j ∧ ūi−1
j

] [
w̄i

j v̄i
j w̄i

j ∧ v̄i
j

]−1
= X̄i−1

(
X̄i
)−1

(2.87)

The matrix A2 can be calculated with the expressions of a single rotation around
a vector w̄i

j.

A2 = cos (zk3) I+ (1− cos (zk3)) w̄
i
j

(
w̄i

j

)T
+ ˜̄w

i
j sin (zk3) (2.88)

The position of any point rj+1 and vector vj+1 belonging to body i is given by:

rj = ri−1 + zk1uj + zk2vj (2.89)

rj+1 = rj +Ai

(
r̄ij+1 − r̄ij

)
(2.90)

uj+1 = Aiū
i
j+1 (2.91)

and their velocities can be calculated with:

ṙj = ṙi−1 + żk1uj + ωi−1 ∧ zk1uj + żk2vj + ωi−1 ∧ zk2vj (2.92)

ṙj+1 = ṙj + ωi ∧
(
rj+1 − rj

)
(2.93)

The angular velocity of body i has, consequently, the same expression as the revolute
joint:

ωi = ωi−1 + żk3wj (2.94)

2.2 Recursive kinematic relations

The kinematic relations derived before are useful to generate the EoM in Carte-
sian coordinates from the primary (relative) coordinates of the system. In this section,
additional recursive relations are developed so as to take the EoM back to relative co-
ordinates. The kinematic equations of this section are provided in the following order:
first, the general expressions of the kinematics of the relative motion; and secondly,

29



2. Topological formulations for the dynamics of open-loop systems

the particular expressions for the different types of kinematic joints introduced in the
previous section.

Since many important MBS like vehicles are not attached to the ground and can
move to very large distances from the origin of coordinates, a special treatment for the
floating joints (introduced in subsection 2.1.6) is going to be described here, different
than the classical approach thought (and better suited) for robotic systems attached
to the ground.

The recursive relations are obtained for any set of reference points, and then
applied to two particular reference sets, giving as a result two versions of the EoM.
The first version, described and identified in [45] as RTdyn0, relates velocities and
accelerations of the CoM of consecutive bodies, while the second one, more extended,
used in [35, 36, 46, 54, 115] (among others) and named as RTdyn1 in [45], relates
velocities and accelerations of the point of consecutive bodies coincident with the
global origin of coordinates in each time step.

The notation described in section 2.1 has to be extended here. The advantage of
the formulations described in this document relies on writing the kinematics recur-
sively. Thus, the kinematics of each body, i, can be written in terms of the kinematics
of the previous body in the kinematic chain, i−1. In the following derivations, bodies
will be numbered with superscripts i−1, i, i+1, etc. while points (vectors) belonging
to the bodies will be named with subscripts i − 1, i, i + 1, etc. and, if needed, with
the superscript of the body indicating belonging to that body. For example, point
ri is the point i (of body i) expressed in global coordinates, which is the same as rii
which explicitly indicates that point i belongs to body i. The same notation holds for
velocities and accelerations, for example, ṙi = ṙii is the velocity of point i of body i.
On the other hand ṙi,i−1

i indicates relative velocity of point i of body i with respect
to body i− 1 expressed in the global reference frame.

An upper bar indicates local coordinates in the reference frame of the body, thus
point r̄i = r̄ii is the point i (of body i) expressed in local coordinates of body i. It is

obvious that ˙̄ri = ˙̄r
i
i = 0, because point i belongs to body i, while ˙̄r

i,i−1
i is the relative

velocity of point i (of body i) with respect to the reference frame of body i − 1 and
expressed in the reference frame of body i− 1.

The notation for angular velocities is the same indicated in section 2.1.
For a point i in body i and a point i− 1 in body i− 1 the general expressions of

the relative motion are the following,

rii = ri−1
i−1 +

(
rii − ri−1

i−1

)
= ri−1

i−1 +Ai−1

(
r̄i,i−1
i − r̄i−1

i−1

)
(2.95)

ṙii = ṙi−1
i−1 + ωi−1 ∧

(
ri − ri−1

)
+Ai−1

(
˙̄r
i,i−1
i − ̸ ˙̄ri−1

i−1

)
⇒ ṙi = ṙi−1 + ωi−1 ∧

(
ri − ri−1

)
+ ṙi,i−1

i

(2.96)

where the following equations have been employed for (2.96) (see (2.7), (2.8)),

ω̃i−1 = Ȧi−1A
T
i−1 (2.97)

r̄i,i−1
i − r̄i−1

i−1 = AT
i−1

(
ri − ri−1

)
(2.98)

ṙi,i−1
i = Ai−1 ˙̄r

i,i−1
i (2.99)

30



2.2. Recursive kinematic relations

Using the distribution of velocities, in the rigid body i−1 with the reference point
i− 1, see (2.1), the previous expressions can be written in the following way,

ṙi = ṙii = ṙi−1
i + ṙi,i−1

i (2.100a)

ṙi−1
i = ṙi−1 + ωi−1 ∧

(
ri − ri−1

)
(2.100b)

where (2.100b) is the velocity of point i as belonging to body i − 1, and ṙi,i−1
i is the

relative velocity of point i of body i with respect to body i− 1, both expressed in the
global reference frame.

The same relation (2.100) can be verified for any other point i+ 1 of body i:

ṙi+1 = ṙii+1 = ṙi−1
i+1 + ṙi,i−1

i+1 (2.101)

The distribution of (global) velocities in the rigid bodies i and i−1 allow to relate
the absolute velocities of points i and i+1 attached to bodies i and i−1 respectively:

ṙii+1 = ṙii + ωi ∧
(
ri+1 − ri

)
(2.102)

ṙi−1
i+1 = ṙi−1

i + ωi−1 ∧
(
ri+1 − ri

)
(2.103)

and the distribution of relative velocities with respect to body i− 1:

˙̄r
i,i−1
i+1 = ˙̄r

i,i−1
i + ω̄i−1

i ∧
(
r̄i−1
i+1 − r̄i−1

i

)
(2.104)

where ω̄i−1
i is the relative angular velocity of body i with respect to body i − 1 and

all the magnitudes are expressed in the reference frame of body i− 1.
Of course the distribution of relative velocities has to be true also expressing all

the magnitudes in the global reference frame,

ṙi,i−1
i+1 = ṙi,i−1

i + ωi−1
i ∧

(
ri+1 − ri

)
(2.105)

Adding equations (2.103) and (2.105), subtracting (2.102) and taking into account
(2.100) and (2.101),

ṙi−1
i+1 + ṙi,i−1

i+1 − ṙii+1 = ṙi−1
i +

(
ωi−1 + ω

i−1
i − ωi

)
∧
(
ri+1 − ri

)
+ ṙi,i−1

i − ṙii ⇒
0 =

(
ωi−1 + ω

i−1
i − ωi

)
∧
(
ri+1 − ri

)
(2.106)

Since the previous relation has to be satisfied for any points i and i+1, the relation
for angular velocities holds:

ωi = ωi−1 + ω
i−1
i (2.107)

Taking derivatives in (2.100), a similar relation for accelerations is obtained,

r̈i = r̈i−1 + ω̇i−1 ∧
(
ri − ri−1

)
+ ωi−1 ∧

(
ṙi − ṙi−1

)
+ r̈i,i−1

i + ωi−1 ∧ ṙi,i−1
i (2.108)

where the following relation, derived from (2.99), has been used:

dṙi,i−1
i

dt
= Ȧi−1 ˙̄r

i,i−1
i +Ai−1¨̄r

i,i−1
i = Ȧi−1A

T
i−1ṙ

i,i−1
i + r̈i,i−1

i (2.109)

31



2. Topological formulations for the dynamics of open-loop systems

Replacing (2.96) in (2.108) and taking into account (2.97) and (2.8), the final
relation for relative accelerations is obtained,

r̈i = r̈ii = r̈i−1
i + r̈i,i−1

i + 2ωi−1 ∧ ṙi,i−1
i (2.110a)

r̈i−1
i = r̈i−1 + ω̇i−1 ∧

(
ri − ri−1

)
+ ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
(2.110b)

where r̈i−1
i is the acceleration of point i with body i − 1 and r̈i,i−1

i is the relative
acceleration of point i of body i in its relative motion with respect to body i− 1. The
last term 2ωi−1 ∧ ṙi,i−1

i represents the Coriolis or complementary acceleration.
Similarly, taking derivatives in (2.107):

ω̇i = ω̇i−1 +Ai−1 ˙̄ω
i−1
i + Ȧi−1ω̄

i−1
i = ω̇i−1 +α

i−1
i + Ȧi−1A

T
i−1ω

i−1
i (2.111)

where ˙̄ω
i−1
i is the relative angular acceleration of body i with respect to body i − 1

expressed in the reference frame of body i− 1.
Again, taking into account expressions (2.97) and (2.8), the relative relations for

angular accelerations are obtained:

ω̇i = ω̇i−1 +α
i−1
i + ωi−1 ∧ ωi−1

i (2.112)

It is important to remark that αi−1
i stands for the relative acceleration of body i

with respect to body i − 1 in the global reference frame, which is not the temporal

derivative of the relative angular velocity, αi−1
i ̸= dωi−1

i

dt
, but the transformation of the

relative angular acceleration to global coordinates, αi−1
i = Ai−1 ˙̄ω

i−1
i = Ai−1

dω̄i−1
i

dt
.

Gathering velocity equations (2.100) together with angular velocity equations
(2.107) and acceleration equations (2.110) together with angular acceleration equa-
tions (2.112) in the same expressions:[

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
ṙi,i−1
i

ωi−1
i

]
⇒ Vi = Bv

iVi−1 + bv
i żi (2.113)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ r̈i,i−1

i + 2ωi−1 ∧ ṙi,i−1
i

αi−1
i + ωi−1 ∧ ωi−1

i

]
⇒ V̇i = Bv

i V̇i−1 + bv
i z̈i + Ḃv

iVi−1 + ḃv
i żi = Bv

i V̇i−1 + bv
i z̈i + dv

i

(2.114)

Observe that terms Bv
i and Ḃv

i are general for any type of joint:

Bv
i =

[
I r̃i−1 − r̃i
0 I

]
, (2.115)

Ḃv
i =

[
0 ˙̃ri−1 − ˙̃ri
0 0

]
=

[
0 −ω̃i−1 ∧

(
ri − ri−1

)
− ˙̃r

i,i−1

i

0 0

]
(2.116)

but terms bv
i żi and bv

i z̈i+ ḃv
i żi are particular for each type of kinematic joint because

they depend on the relative velocities and accelerations ṙi,i−1
i , ωi−1

i , r̈i,i−1
i and αi−1

i

32



2.2. Recursive kinematic relations

which have to be parameterized in terms of the relative (joint) coordinates velocities
and accelerations, żi, z̈i, which is attained in future sections:

bv
i żi =

[
ṙi,i−1
i

ωi−1
i

]
, (2.117)

bv
i z̈i + ḃv

i żi =

[
r̈i,i−1
i + ωi−1 ∧ ṙi,i−1

i

αi−1
i + ωi−1 ∧ ωi−1

i

]
⇒ (2.118)

bv
i z̈i + dv

i =

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ r̈i,i−1

i + 2ωi−1 ∧ ṙi,i−1
i

αi−1
i + ωi−1 ∧ ωi−1

i

]
(2.119)

V̇i = Bv
i V̇i−1 + bv

i z̈i + Ḃv
iVi−1 + ḃv

i żi = Bv
i V̇i−1 + bv

i z̈i + dv
i (2.120)

In general, the recursive relations can be simplified in the following set of equations,
valid for any type of joint:

Vi = Bv
iVi−1 + bv

i żi (2.121a)

V̇i = Bv
i V̇i−1 + bv

i z̈i + dv
i (2.121b)

Bv
i =

[
I r̃i−1 − r̃i
0 I

]
(2.121c)

Ḃv
i =

[
0 ˙̃ri−1 − ˙̃ri
0 0

]
(2.121d)

dv
i = Ḃv

iVi−1 + ḃv
i żi (2.121e)

where for each type of joint, the solely joint-dependent terms needed are bv
i and ḃv

i .
Observe that this scheme of calculation allows a general and simple implementation,
with a common structure for every joint type and with only one particular term
required for each type of joint (bv

i ) and its time derivative (ḃv
i ), whose expressions

involve a reduced set of arithmetic operations with the entities that define the joint.
For instance, it will be shown for a prismatic joint in section 2.2.2 that the term bv

i

only requires the position of the vector defining the joint.
The RTdyn0 approach, with the CoM of each body as reference point, will be

noted with the arrays of linear and angular velocities and accelerations as Yi and
Ẏi respectively, and the related terms with the superscript y. Therefore, the general
expressions become:

Yi = By
iYi−1 + by

i żi (2.122a)

Ẏi = By
i Ẏi−1 + by

i z̈i + dy
i (2.122b)

By
i =

[
I r̃i−1

G − r̃iG
0 I

]
(2.122c)

Ḃy
i =

[
0 ˙̃r

i−1

G − ˙̃r
i

G

0 0

]
(2.122d)

dy
i = Ḃy

iYi−1 + ḃy
i żi (2.122e)

33



2. Topological formulations for the dynamics of open-loop systems

The recursive relations for the RTdyn1 version, selecting the origin of coordinates
as the reference point of each body in each time step, will be identified with the
following notation:

Zi = Bz
iZi−1 + bz

i żi (2.123a)

Żi = Bz
i Żi−1 + bz

i z̈i + dz
i (2.123b)

Bz
i =

[
I 0
0 I

]
(2.123c)

Ḃz
i =

[
0 ˙̃r

i−1

0 − ˙̃r
i

0

0 0

]
(2.123d)

dz
i = Ḃz

iZi−1 + ḃz
i żi (2.123e)

Behold that although Bz
i is always constant and equal to the identity, its time

derivative Ḃz
i is not null. This condition is related to the relative motion of the

reference point inside the local reference frame of the body, which makes the velocity
of this reference point different depending on the motion of each body.

2.2.1 Revolute joint recursive equations

X
Y

Z

zk

rj

i -1
i

X i−1

Y i−1

Zi−1

Xi

Yi

Zi

ri-1

ri

riGri−1
G

0

Figure 2.8: Revolute joint.

The angular velocities of both bodies are related by (2.27), recalled here:

ωi = ωi−1 + żkwj (2.124)

which is equivalent to equation (2.107) particularized for ωi−1
i = żkwj.

34



2.2. Recursive kinematic relations

Regarding (2.113) and (2.114), it is apparent that the only terms required to
calculate the recursive relations between bodies are the relative linear and angular
velocities and accelerations of one body with respect to the previous one. These
terms can be directly obtained by considering the body i−1 as fixed, and applying the
distribution of velocities and accelerations of the rigid body to body i. Accordingly:

ṙi ≠ ṙj + ωi ∧
(
ri − rj

)
= żkwj ∧

(
ri − rj

)
(2.125)

Thus, the relative velocity of point i of body i with respect to body i− 1 is:

ṙi,i−1
i = żkwj ∧

(
ri − rj

)
(2.126)

while the relative angular velocity is,

ωi−1
i = żkwj (2.127)

Similar relations can be obtained for accelerations. Considering the first body
fixed, the acceleration of any point belonging to body i can be obtained as:

r̈i ≠ r̈j +αi ∧
(
ri − rj

)
+ ωi ∧

(
ṙi − ṙj

)
= αi ∧

(
ri − rj

)
+ ωi ∧

[
ωi ∧

(
ri − rj

)]
=

z̈kwj ∧
(
ri − rj

)
+ (żkwj) ∧

[
(żkwj) ∧

(
ri − rj

)]
(2.128)

and therefore:

r̈i,i−1
i = z̈kwj ∧

(
ri − rj

)
+ (żkwj) ∧

[
(żkwj) ∧

(
ri − rj

)]
(2.129)

in which the relative angular acceleration:

αi−1
i = z̈kwj (2.130)

Gathering the velocity equations (2.113), (2.126) and (2.127) and the acceleration
expressions (2.114), (2.129) and (2.130) in two single expressions,[

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
wj ∧

(
ri − rj

)
wj

]
żk (2.131)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
wj ∧

(
ri − rj

)
wj

]
z̈k

+

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ (żkwj + 2ωi−1) ∧

[
żkwj ∧

(
ri − rj

)]
ωi−1 ∧ żkwj

] (2.132)

Therefore, recalling (2.121), the following relations for the joint-dependent recur-
sive terms result:

bv
i =

[
wj ∧

(
ri − rj

)
wj

]
(2.133a)

ḃv
i =

[
ẇj ∧

(
ri − rj

)
+wj ∧

(
ṙi − ṙj

)
ẇj

]
(2.133b)

35



2. Topological formulations for the dynamics of open-loop systems

Observe that from (2.132) a particular expression of dv
i for this type of joint can

be achieved, which is equal to the general expression for any type of joint:

dv
i =

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ (żkwj + 2ωi−1) ∧

[
żkwj ∧

(
ri − rj

)]
ωi−1 ∧ żkwj

]
=

Ḃv
iVi−1 + ḃv

i żi

(2.134)

In the calculation of the dynamics of open chain systems, the particular expressions
of dv

i could be more convenient and faster, but since the term ḃv
i is needed, the general

expression (2.121e) is more suitable.
The previous recursive expressions can be particularized for different choices of

the reference points. Choosing the reference points coincident with the CoM of each
body, ri = riG, ri−1 = ri−1

G ,

by
i =

[
wj ∧

(
riG − rj

)
wj

]
(2.135a)

ḃy
i =

[
ẇj ∧

(
riG − rj

)
+wj ∧

(
ṙiG − ṙj

)
ẇj

]
(2.135b)

The second approach for the recursive relations consists in selecting the points
of the bodies coincident with the origin of coordinates at each instant as reference
points, ri = ri0 = 0, ri−1 = ri−1

0 = 0:

bz
i =

[
rj ∧wj

wj

]
(2.136a)

ḃz
i =

[
rj ∧ ẇj +wj ∧

(
ṙi0 − ṙj

)
ẇj

]
(2.136b)

2.2.2 Prismatic joint recursive equations

Recalling (2.32), the angular velocities of two bodies related by a prismatic joint
are equal, ωi = ωi−1.

In this case, the relative velocity of a point i of body i with respect to the previous
body i− 1 is straightforward to obtain. Considering body i− 1 as fixed, a rotation is
prevented by the prismatic joint, and only one translation along the axis of the joint
is allowed. Moreover, the vector defining the joint is shared between bodies, and since
it belongs to body i− 1 and it is considered as fixed, the vector does not vary and its
velocity is null. Therefore, the relative velocity can be expressed as:

ṙi,i−1
i = żkuj (2.137)

The impossibility of rotation entails that the angular accelerations of body i are
also identical to the ones of the previous body i− 1 in the kinematic chain:

ω̇i = ω̇i−1 (2.138)

36



2.2. Recursive kinematic relations

zk

Xi-1

Yi-1

Zi-1

rj
rj+1

X

Y

Z

riG

vj

X i

Y i

Z i

uj

ri-1G

i -1

i

ri-1

ri

Figure 2.9: Prismatic joint.

The relative acceleration of a point i of body i with respect to body i− 1 can be
obtained applying the same procedure used for velocities. The body i− 1 is regarded
as fixed, so it is the vector defining the axis of the joint. Hence:

r̈i,i−1
i = z̈kuj (2.139)

The velocity and acceleration recursive relations can be gathered in the following
vectors: [

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
uj

0

]
żk (2.140a)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
uj

0

]
z̈k +

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ 2ωi−1 ∧ żkuj

0

]
(2.140b)

arriving at the final joint-dependent recursive expressions for this joint type:

bv
i =

[
uj

0

]
(2.141a)

ḃv
i =

[
u̇j

0

]
(2.141b)

The particular expression of dv
i obtained from (2.140b) takes the form:

dv
i =

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
+ 2ωi−1 ∧ żkuj

0

]
(2.142)

37



2. Topological formulations for the dynamics of open-loop systems

which coincides with the general expression (2.121e).
Note that the expressions of bv

i and ḃv
i do not involve the position or velocity of

the reference point, and therefore they are also valid for RTdyn0 and RTdyn1:

bv
i = by

i = bz
i =

[
uj

0

]
(2.143a)

ḃv
i = ḃy

i = ḃz
i =

[
u̇j

0

]
(2.143b)

2.2.3 Cardan joint recursive equations

The recursive expressions for the Cardan joint of Figure 2.3 can be obtained con-
sidering two consecutive revolute joints with the respective axes mentioned in section
2.1.3. Thus, the recursive expressions for the first revolute joint, assuming a reference
point ri1, lead to,

Vi1 = Bv
i1Vi−1 + bv

i1żk1 (2.144a)

V̇i1 = Bv
i1V̇i−1 + bv

i1z̈k1 + dv
i1 (2.144b)

bv
i1 =

[
wj ∧

(
ri1 − rj

)
wj

]
(2.144c)

dv
i1 = Ḃv

i1Vi−1 + ḃv
i1żk1 (2.144d)

And the second revolute joint,

Vi = Bv
i2Vi1 + bv

i2żk2 (2.145a)

V̇i = Bv
i2V̇i1 + bv

i2z̈k2 + dv
i2 (2.145b)

bv
i2 =

[
wj+1 ∧

(
ri − rj

)
wj+1

]
(2.145c)

dv
i2 = Ḃv

i2Vi1 + ḃv
i2żk2 (2.145d)

Therefore,

Vi = Bv
i2Vi1 + bv

i2żk2 = Bv
i2 (B

v
i1Vi−1 + bv

i1żk1) + bv
i2żk2 = Bv

iVi−1 + bv
i żi (2.146a)

V̇i = Bv
i2V̇i1 + bv

i2z̈k2 + dv
i2 = Bv

i2

(
Bv

i1V̇i−1 + bv
i1z̈k1 + dv

i1

)
+ bv

i2z̈k2 + dv
i2 =

Bv
i V̇i−1 + bv

i z̈i + dv
i

(2.146b)

where, żi =
[
żk1 żk2

]T
, z̈i =

[
z̈k1 z̈k2

]T
.

The term Bv
i can be calculated from (2.146b):

Bv
i = Bv

i2B
v
i1 =

[
I r̃i1 − r̃i
0 I

] [
I r̃i−1 − r̃i1
0 I

]
=

[
I r̃i−1 − r̃i
0 I

]
(2.147)

(2.148)

38



2.2. Recursive kinematic relations

Similarly, bv
i is:

bv
i =

[
Bv

i2b
v
i1 bv

i2

]
=

[
wj ∧

(
ri − rj

)
wj+1 ∧

(
ri − rj

)
wj wj+1

]
(2.149)

and its time derivative:

ḃv
i =

[(
Bv

i2ḃ
v
i1 + Ḃv

i2b
v
i1

)
ḃv
i2

]
=[

ẇj ∧
(
ri − rj

)
+wj ∧

(
ṙi − ṙj

)
ẇj+1 ∧

(
ri − rj

)
+wj+1 ∧

(
ṙi − ṙj

)
ẇj ẇj+1

]
(2.150)

Using (2.146a), (2.146b), (2.144d) and (2.145d), the general expression of dv
i

(2.121e) can be reached:

dv
i =Bv

i2d
v
i1 + dv

i2 = Bv
i2

(
Ḃv

i1Vi−1 + ḃv
i1żk1

)
+ Ḃv

i2Vi1 + ḃv
i2żk2 =

Bv
i2

(
Ḃv

i1Vi−1 + ḃv
i1żk1

)
+ Ḃv

i2 (B
v
i1Vi−1 + bv

i1żk1) + ḃv
i2żk2 =(

Bv
i2Ḃ

v
i1 + Ḃv

i2B
v
i1

)
Vi−1 +

(
Bv

i2ḃ
v
i1 + Ḃv

i2b
v
i1

)
żk1 + ḃv

i2żk2 =(
Bv

i2Ḃ
v
i1 + Ḃv

i2B
v
i1

)
Vi−1 +

[(
Bv

i2ḃ
v
i1 + Ḃv

i2b
v
i1

)
ḃv
i2

]
żi =

Ḃv
iVi−1 + ḃv

i żi

(2.151)

The particularization of the previous expressions for RTdyn0 with ri = riG, ri−1 =
ri−1
G is forthright:

by
i =

[
wj ∧

(
riG − rj

)
wj+1 ∧

(
riG − rj

)
wj wj+1

]
(2.152a)

ḃy
i =

[
ẇj ∧

(
riG − rj

)
+wj ∧

(
ṙiG − ṙj

)
ẇj+1 ∧

(
riG − rj

)
+wj+1 ∧

(
ṙiG − ṙj

)
ẇj ẇj+1

]
(2.152b)

The joint-dependent recursive expressions for RTdyn1, with ri = ri−1 = 0, become:

bz
i =

[
rj ∧wj rj ∧wj+1

wj wj+1

]
(2.153a)

ḃz
i =

[
−ẇj ∧ rj +wj ∧

(
ṙi0 − ṙj

)
−ẇj+1 ∧ rj +wj+1 ∧

(
ṙi0 − ṙj

)
ẇj ẇj+1

]
(2.153b)

2.2.4 Cylindrical joint recursive equations

The angular velocities of both bodies are related by (2.55), recalled here:

ωi = ωi−1 + żk2wj (2.154)

39



2. Topological formulations for the dynamics of open-loop systems

which is equivalent to equation (2.107) particularized for ωi−1
i = żk2wj.

The relative velocity of a point i belonging to body i with respect to body i − 1
can be obtained, once again, considering body i− 1 as fixed, but is easier to calculate
it as the combination of the relative velocities of a revolute and a prismatic joint,
yielding:

ṙi,i−1
i = ṙi,i−1

j + ωi−1
i ∧

(
ri − rj

)
= żk1wj + żk2wj ∧

(
ri − rj

)
(2.155)

The relative angular acceleration is, then, the addition of the contributions of a
revolute and a prismatic joint:

αi−1
i = wj z̈k2 (2.156)

Analogously, the relative linear acceleration takes the form:

ṙi,i−1
i = żk1wj + żk2wj ∧

(
ri − rj

)
(2.157)

Gathering the velocity equations (2.113), (2.155) and (2.154) and the acceleration
expressions (2.114), (2.157) and (2.156) in two single expressions,[

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
wj wj ∧

(
ri − rj

)
0 wj

]
żi (2.158)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
wj wj ∧

(
ri − rj

)
0 wj

]
z̈i+[

ωi−1 ∧
[
ωi−1 ∧

(
ri − ri−1

)]
+ (żk2wj + 2ωi−1) ∧

[
żk2wj ∧

(
ri − rj

)]
+ 2ωi−1 ∧ żk1wj

ωi−1 ∧ żk2wj

]
(2.159)

where żi =
[
żk1 żk2

]T
, z̈i =

[
z̈k1 z̈k2

]T
.

From (2.158), the joint-dependent recursive relations for the cylindrical joint can
be identified:

bv
i =

[
wj wj ∧

(
ri − rj

)
0 wj

]
(2.160a)

ḃv
i =

[
ẇj ẇj ∧

(
ri − rj

)
+wj ∧

(
ṙi − ṙj

)
0 ẇj

]
(2.160b)

The previous recursive expressions can be particularized for different selections of
the reference points. Choosing the reference points coincident with the CoM of each
body (RTdyn0), ri = riG, ri−1 = ri−1

G ,

by
i =

[
wj wj ∧

(
riG − rj

)
0 wj

]
(2.161a)

ḃy
i =

[
ẇj ẇj ∧

(
riG − rj

)
+wj ∧

(
ṙiG − ṙj

)
0 ẇj

]
(2.161b)

40



2.2. Recursive kinematic relations

The application of ri = ri0 = 0, ri−1 = ri−1
0 = 0 of the RTdyn1 approach leads to

the following recursive relations:

bz
i =

[
wj rj ∧wj

0 wj

]
(2.162a)

ḃz
i =

[
ẇj rj ∧ ẇj +wj ∧

(
ṙi0 − ṙj

)
0 ẇj

]
(2.162b)

2.2.5 Spherical joint recursive equations

Figure 2.5 represents two bodies, i − 1 and i, connected through a spherical
joint. According to section 2.1.5, the angular velocities of both bodies are related
by (2.60),(2.76) and (2.77).

The relative velocity of a point i contained in body i with respect to the previous
body can be easily obtained considering body i − 1 as fixed. The shared point j
between the bodies is fixed as well, and its velocity null:

ṙi,i−1
i = ωi−1

i ∧
(
ri − rj

)
= 2Ai−1Ē ˙̄p ∧

(
ri − rj

)
= 2E ˙̄p ∧

(
ri − rj

)
(2.163)

Angular accelerations can be determined from (2.60),(2.76) and (2.77):

ω̇i = ω̇i−1 + 2Ai−1

(
Ē¨̄p+ ˙̄E ˙̄p

)
+ 2Ȧi−1Ē ˙̄p (2.164)

since,

˙̄E ˙̄p =
[
− ˙̄e ˙̄̃e+ ė0I

] [ė0
˙̄e

]
= −ė0 ˙̄e+ ˙̄̃e ˙̄e+ ė0 ˙̄e = 0 (2.165)

and,
2Ȧi−1Ē ˙̄p = Ȧi−1A

T
i−12Ai−1Ē ˙̄p = ω̃i−12E ˙̄p = ωi−1 ∧ 2E ˙̄p (2.166)

therefore the final expression for the recursive angular accelerations takes the following
simple form,

ω̇i = ω̇i−1 + 2E¨̄p+ ωi−1 ∧ 2E ˙̄p (2.167)

Observe that the previous expression fits the general expression (2.112),

ω̇i = ω̇i−1 +α
i−1
i + ωi−1 ∧ ωi−1

i (2.168a)

αi−1
i = Ai−1 ˙̄ω

i−1
i = 2Ai−1Ē¨̄p = 2E¨̄p (2.168b)

ωi−1
i = 2Ai−1Ē ˙̄p = 2E ˙̄p (2.168c)

thus finally arriving at expression (2.112) particularized for the spherical joint.
Applying the same procedure used for relative velocities, the relative linear ac-

celeration of a point i belonging to a body i with respect to the previous one i − 1
yields:

r̈i,i−1
i = αi−1

i ∧
(
ri − rj

)
+ ωi−1

i ∧
(
ωi−1

i ∧
(
ri − rj

))
=

2E¨̄p ∧
(
ri − rj

)
+ 2E ˙̄p ∧

(
2E ˙̄p ∧

(
ri − rj

)) (2.169)

41



2. Topological formulations for the dynamics of open-loop systems

The velocity and acceleration recursive relations can be gathered in the following
vectors. [

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
2
(
r̃j − r̃i

)
E

2E

]
˙̄p (2.170a)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
2
(
r̃j − r̃i

)
E

2E

]
¨̄p+

[
ωi−1 ∧

(
ωi−1 ∧

(
ri − ri−1

))
0

]
+[

2E ˙̄p ∧
(
2E ˙̄p ∧

(
ri − rj

))
+ 2ωi−1 ∧

(
2E ˙̄p ∧

(
ri − rj

))
ωi−1 ∧ 2E ˙̄p

]
(2.170b)

Therefore, the joint-dependent recursive expressions for this joint become:

bv
i =

[
2
(
r̃j − r̃i

)
E

2E

]
(2.171a)

ḃv
i =

[
2
(
˙̃rj − ˙̃ri

)
E+ 2

(
r̃j − r̃i

)
Ė

2Ė

]
(2.171b)

dv
i =

[
ωi−1 ∧

(
ωi−1 ∧

(
ri − ri−1

))
+
(
2ωi−1 + 2E ˙̄p

)
∧
(
2E ˙̄p ∧

(
ri − rj

))
ωi−1 ∧ 2E ˙̄p

]
(2.171c)

with zi = p̄ for the spherical joint.
The term ḃv

i can be simplified using the expressions of the angular velocities in
the local reference frame of body i:

ḃv
i =

2 ( ˙̃rj − ˙̃ri
)
E+ 2

(
r̃j − r̃i

) (
ω̃i−1E+Ai−1

˙̄E
)

2
(
ω̃i−1E+Ai−1

˙̄E
)  =

[
2ω̃i

(
r̃j − r̃i

)
E

2ω̃iE

]
(2.172)

where the identities E = Ai−1Ē and Ȧi−1Ē = Ȧi−1A
T
i−1Ai−1Ē = ω̃i−1E have been

used and the last form of ḃv
i has been obtained by identifying terms in ḃv

i
˙̄p,

ḃv
i
˙̄p =

[
2E ˙̄p ∧

(
2E ˙̄p ∧

(
ri − rj

))
+ ωi−1 ∧

(
2E ˙̄p ∧

(
ri − rj

))
ωi−1 ∧ 2E ˙̄p

]
=[(

ωi−1 + 2E ˙̄p
)
∧
(
2E ˙̄p ∧

(
ri − rj

))
ωi−1 ∧ 2E ˙̄p

]
=

[
ωi ∧

(
2E ˙̄p ∧

(
ri − rj

))
ωi ∧ 2E ˙̄p

]
=[

ωi ∧
((
r̃j − r̃i

)
2E ˙̄p

)
ωi ∧ 2E ˙̄p

]
=

[
2ω̃i

(
r̃j − r̃i

)
E

2ω̃iE

]
˙̄p

(2.173)

Observe that, since ˙̄E ˙̄p = 0, the general expression of dv
i (2.121e) is analog to

(2.171c).
Choosing the reference points coincident with the CoM of each body (RTdyn0),

ri = riG, ri−1 = ri−1
G ,

by
i =

[
2
(
r̃j − r̃iG

)
E

2E

]
(2.174a)

ḃy
i =

[
2
(
˙̃rj − ˙̃r

i

G

)
E+ 2

(
r̃j − r̃iG

)
Ė

2Ė

]
=

[
2ω̃i

(
r̃j − r̃iG

)
E

2ω̃iE

]
(2.174b)

42



2.2. Recursive kinematic relations

The expressions for the second approach (RTdyn1) with ri = ri0 = 0, ri−1 = ri−1
0 =

0 result simpler,

bz
i =

[
2r̃jE
2E

]
(2.175a)

ḃz
i =

[
2
(
˙̃rj − ˙̃r

i

0

)
E+ 2r̃jĖ

2Ė

]
=

[
2ω̃ir̃jE
2ω̃iE

]
(2.175b)

2.2.6 Floating joint recursive equations

As introduced in section 2.1.6, the floating joint is regarded as a formalism to
relate the motion of a free-in-space MBS to the ground by means of a “fictional”
joint. Three elemental prismatic joints and an elemental spherical joint represent the
6 DoF of the rigid body.

Taking into account that linear and angular velocities and accelerations of the
ground are null, the recursive velocities of body i can be determined using the expres-
sions of the prismatic and spherical joints:

Vi = bv
i żi =

[
ṙi
ωi

]
=

[
I3 2 (r̃iG − r̃i)E
0 2E

]
żi (2.176a)

V̇i = bv
i z̈i + dv

i =

[
r̈i
ω̇1

]
=

[
I3 2 (r̃iG − r̃i)E
0 2E

]
z̈i +

[
2E ˙̄pi ∧

(
2E ˙̄pi ∧ (ri − riG)

)
0

]
(2.176b)

where zi =
[
riG ˙̄pi

]T
and Bv

i = I6. Note also that the vectors of the prismatic joints
composing this joint are aligned with the axis of the global reference frame, then
[uj vj wj] = I3.

The time derivatives of the recursive terms describing this particular joint take
the form:

Ḃv
i = 06 (2.177)

ḃv
i =

[
0 2

(
˙̃r
i

G − ˙̃ri

)
E+ 2 (r̃iG − r̃i) Ė

0 2Ė

]
=

[
0 2

(
˙̃r
i

G − ˙̃ri

)
E+ 2 (riG − r̃i)

˙̄E

0 2 ˙̄E

]
(2.178)

where the identities A0 = I3, E = A0Ē = Ē and Ė = ˙̄E have been used.

Note that, the expression of dv
i obtained from (2.176b) is equivalent to (2.121e)

according to ˙̄E ˙̄p = 0

The particularization for ri = riG (RTdyn0), leads to the following straightforward

43



2. Topological formulations for the dynamics of open-loop systems

expressions:

by
i =

[
I3 0
0 2E

]
(2.179a)

dy
i =

[
0
0

]
(2.179b)

ḃy
i =

[
0 0

0 2 ˙̄E

]
(2.179c)

For the choice ri = 0 (RTdyn1),

bz
i =

[
I3 2r̃iGE
0 2E

]
(2.180a)

ḃz
i =

[
0 2

(
˙̃r
i

G − ˙̃r
i

0

)
E+ 2r̃iGĖ

0 2Ė

]
(2.180b)

dz
i =

[
−2E ˙̄pi ∧

(
2E ˙̄pi ∧ riG

)
0

]
(2.180c)

From a computational perspective, it can be inferred from (2.179) and (2.180) that
the floating joint is better suited for the RTdyn0 approach.

2.2.7 Planar joint recursive equations

Planar joints can be regarded as a concatenation of two elemental prismatic joints
and an elemental revolute joint, as introduced in section 2.1.7. Since prismatic joints
prevent rotation, the relation between angular velocities of the bodies connected by
this joint is described by the relative angular velocity of the elemental revolute joint,
as presented in (2.94).

Analogously, the relative velocity of a point i of body i with respect to body i− 1
can be assessed using the relative expressions of each one of the commented elemental
joints. Therefore, this relative velocity takes the form:

ṙi,i−1
i = ṙi,i−1

j + ωi−1
i ∧

(
ri − rj

)
= żk1uj + żk2vj + żk3wj ∧

(
ri − rj

)
(2.181)

An equivalent procedure can be applied to linear and angular accelerations. Using
(2.94), the relative angular acceleration yields:

αi−1
i = wj z̈k3 (2.182)

Applying the same procedure used for relative velocities, the relative linear ac-
celeration of a point i belonging to a body i with respect to the previous one i − 1
becomes:

r̈i,i−1
i = z̈k1uj + z̈k2vj + z̈k3wj ∧

(
ri − rj

)
+ (żk3wj) ∧

[
(żk3wj) ∧

(
ri − rj

)]
(2.183)

44



2.2. Recursive kinematic relations

Considering that rj = riG, and gathering linear and angular velocity equations
(2.113), (2.113),(2.181) and (2.94) and acceleration expressions (2.114), (2.183) and
(2.182) the following relations can be obtained:[

ṙi
ωi

]
=

[
I r̃i−1 − r̃i
0 I

] [
ṙi−1

ωi−1

]
+

[
uj vj wj ∧ (ri − riG)
0 0 wj

]
żi (2.184)[

r̈i
ω̇i

]
=

[
I r̃i−1 − r̃i
0 I

] [
r̈i−1

ω̇i−1

]
+

[
uj vj wj ∧ (ri − riG)
0 0 wj

]
z̈i

+

[
(żk3wj + 2ωi−1) ∧

[
żk3wj ∧

(
ri − rj

)]
+ 2ωi−1 ∧ (żk1uj + żk2vj)

ωi−1 ∧ żk3wj

]
+

[
ωi−1 ∧

[
ωi−1 ∧

(
ri − ri−1

)]
0

] (2.185)

where żi =
[
żk1 żk2 żk3

]T
, z̈i =

[
z̈k1 z̈k2 z̈k3

]T
.

Comparing (2.184) and (2.185) with the general recursive expressions (2.121a) and
(2.121b), the following joint-dependent recursive relations can be identified:

bv
i =

[
uj vj wj ∧ (ri − riG)
0 0 wj

]
(2.186a)

ḃv
i =

[
u̇j v̇j ẇj ∧ (ri − riG) +wj ∧ (ṙi − ṙiG)
0 0 ẇj

]
(2.186b)

Particularizing (2.160a) and (2.186b) for RTdyn0, with the set of reference points
coincident with the CoM of each body ri = riG, ri−1 = ri−1

G :

by
i =

[
uj vj 0
0 0 wj

]
(2.187a)

ḃy
i =

[
u̇j v̇j 0
0 0 ẇj

]
(2.187b)

The RTdyn1 version, selecting the points of the bodies coincident with the origin
of coordinates at each instant of time as reference points, ri = ri0, ri−1 = ri−1

0 , delivers:

bz
i =

[
uj vj −wj ∧ riG
0 0 wj

]
(2.188a)

ḃz
i =

[
u̇j v̇j −ẇj ∧ riG −wj ∧ ṙiG
0 0 ẇj

]
(2.188b)

A special simplified case of this joint emerges in a planar mechanisms with none
of its bodies linked to the ground by any kinematic joint. In this sense, a planar joint
is added to the mechanism assuming the role of the floating joint. It should be noted
that the floating joint could work as the planar joint for this type of mechanisms, but
the reduced number of joint coordinates and the absence of joint constraints (as the

45



2. Topological formulations for the dynamics of open-loop systems

Euler parameter normalization constraint required by floating joints) make this type
of joint more convenient. The modeling of a planar mechanism is usually tackled, for
the sake of simplicity, in the normal plane of one of the vectors composing the global
reference frame. If the plane in which the planar mechanism is modeled is normal to
the vector z, for example, the expression of bv

i would be:

bv
i =

[[
1 0 0

]T [
0 1 0

]T [
0 0 1

]T ∧ (ri − riG)

0 0
[
0 0 1

]T
]

(2.189)

Note that the resulting expressions for this simplified case allow both a simpler
model generation and fewer calculations. The fact that all the vectors defining the
joint are constant conveys a significant time saving during computation too.

2.3 Kinematic analysis of minimal relative coordi-

nate models

The kinematics of any MBS can be fully described by the set of joint coordinates
associated to its relative coordinate model. In the case of open-loop systems modeled
with minimal coordinates, joint coordinates compose a set of DoF of the system.
However, paying attention to the implementation, a different definition of the DoF
can be required by the user, including coordinates of points and vectors1. Hence, the
kinematic and recursive relations presented in previous sections are insufficient for
completely determining the kinematics of any body for a given set of DoF values, and
a two-stage iterative problem has to be addressed.

In the following subsections, the initial position problem, the kinematic velocity
problem and the kinematic acceleration analysis are addressed for relative coordinate
models with minimal coordinates. The finite displacements problem is not developed
here, since it can be solved with the initial position problem equations.

2.3.1 Initial position problem

The process begins with an initial approximate solution of the joint coordinates,
which could be supplied by the user or computed by means of the initial approximate
position of the points and vectors of each body. With these values, the approximate
value of all the points and vectors of the model can be computed recursively, from the
base of the mechanism till the tips.

The second step involves the imposition of the DoF. If the set of joint coordinates
does not include the degrees of freedom specified by the user, the following equation
has to be solved:

B{n}∆z{n+1} = d−
(
zi
){n}

(2.190)

1Since the definition of mechanisms in MBSLIM is given in natural coordinates, it is quite typical
to use some of these coordinates. For full integration of the topological formulations in MBSLIM
supporting DoF not belonging to the joint coordinates vector is mandatory.

46



2.3. Kinematic analysis of minimal relative coordinate models

in which ∆z{n+1} is the increment in the joint coordinates, d is the set of desired

values of the degrees of freedom in positions2, (zi)
{n}

is the current value of the
degrees of freedom at iteration n and B{n} is a matrix describing the relation between
the positions of the degrees of freedom and the joint coordinates3, whose expression
is:

B =
∂zi

∂z
(2.191)

being z the set of joint coordinates and zi the array of DoF. This matrix B will be
revisited in future chapters, in which its relevance will be evidenced. It can be proved
that, for a proper selection of degrees of freedom, the matrix B has a left inverse, thus
(2.190) has a solution.

After solving each iteration of (2.190), the values of zi have to be computed recur-
sively from the new set of joint coordinates. This process have to be repeated until
convergence, this is, until the norm of ∆z{n+1} is lower than a given tolerance.

Behold that d and zi are equal as soon as (2.190) converges. In this sense, zi and
d can be regarded as interchangeable values after the problem is solved, but it should
be bore in mind that they have different meanings.

2.3.2 Velocity problem

Minimal relative coordinate models have all their velocities fully defined by the
set of velocities of the joint coordinates, but, similarly to what happens in positions,
if the selection of DoF does not match the joint coordinates, a new step has to be
added to the velocity problem.

First, the velocities of the joint coordinates have to be determined satisfying the
following equation:

Bż = ḋ (2.192)

in which B is a matrix relating the variation of DoF with respect to joint coordinates
as proposed in (2.191), ż are the velocities of the minimal joint coordinates and d the
desired velocity values of the DoF. It should be remarked that (2.192) is only valid
for a proper selection of DoF, for which matrix B has a left inverse.

Behold that in this problem, the velocity values of the DoF, żi, before the solution
of (2.192) do not play any role because the relation between joint-coordinate velocities
and the desired DoF velocities ḋ, is linear.

Once (2.192) is computed, the recursive relations can be applied to the relative
coordinate model in order to obtain the kinematics of each body. Observe that it is
not an iterative process as the position problem.

2.3.3 Acceleration problem

The kinematic acceleration analysis of minimal coordinate problems suffers from
the issues commented in the previous sections for position and velocity problems when

2Do not confuse with dv
i , an elemental term of the recursive accumulation.

3Do not confuse with Bv
i , an elemental term of the recursive accumulation.

47



2. Topological formulations for the dynamics of open-loop systems

the set of DoF does not coincide with the joint coordinates array. The problem can
be solved for a proper selection of DoF with an additional computation:

Bz̈ = d̈− Ḃż (2.193)

Herein, B and Ḃ are the matrix defined in (2.191) and its time derivative, respectively,
z̈ the accelerations of the joint coordinates, d̈ the accelerations of the DoF and ż the
velocities of the joint coordinates.

Analogously to the velocity problem of section 2.3.2, the acceleration values of the
DoF, z̈i, prior to the solution of (2.193) are not involved in the kinematic acceleration
problem since it is linear on joint coordinate accelerations.

Point and vector accelerations along with angular accelerations can be computed
recursively from the base of the mechanism to the tips using the recursive relations
presented in section 2.2.

2.4 Equations of motion for unconstrained open-

loop systems

In this section, the general equations of motion for any reference point are derived
using two different procedures: the semi-recursive method and the fully-recursive
method. Different algorithms of solution for the sets of equations generated are pro-
posed, two for the semi-recursive approach and one for the fully-recursive approach.
Finally, the equations of motion are particularized for two sets of reference points,
leading to the RTdyn0 and RTdyn1 formulations presented in [45].

2.4.1 Semi-recursive method

Semi-recursive methods involve both recursive calculations based on the topology
of the mechanism as well as non-recursive or global procedures. The semi-recursive
method here presented, and thoroughly described in [45], uses a recursive method
to compute the kinematics of the open-loop system, while the rest of the stages for
the generation of the EoM are solved by means of global methods. The recursive
evaluation of the kinematics has a direct impact on the generation of the mass matrix
of the system and the generalized forces vector, as it will be patent in the following
developments.

Let us begin by applying the virtual power principle to a multibody system com-
posed of nb bodies,

nb∑
i=1

Y∗T
i

[
MiẎi −Qi

]
= 0 (2.194a)

nb∑
i=1

[
ṙi∗G
ω∗

i

]([
miI3 0
0 JG

i

] [
r̈iG
ω̇i

]
−
[

fi
nG
i − ωi ∧ JG

i ωi

])
= 0 (2.194b)

48



2.4. Equations of motion for unconstrained open-loop systems

where the star indicates virtual velocities, JG
i is the inertia tensor in the CoM, fi is

the external forces vector over the body and nG
i is the external torque vector with

respect to the CoM. Note that if fi is applied in a different point than the CoM, it
will generate a torque equal to:

nG
i =

(
r̃j − r̃iG

)
fi (2.195)

Returning to (2.194), observe that all the magnitudes are expressed in the global
reference frame. The inertia tensor referred to global axes can be expressed in terms
of the local inertia tensor (which is constant), as:

JG
i = AiJ̄

G
i A

T
i (2.196)

The general recursive relations are not written in terms ofYi but ofVi =
[
ṙTi ωT

i

]T
.

The following kinematic relations hold, between the reference point in body i, ri = rii
and the CoM, riG,

Y∗
i =

[
ṙi∗G
ω∗

i

]
=

[
I r̃i − r̃iG
0 I

] [
ṙ∗i
ω∗

i

]
= Dv

iV
∗
i (2.197)

Ẏi =

[
r̈iG
ω̇i

]
=

[
I r̃i − r̃iG
0 I

] [
r̈i
ω̇i

]
+

[
ωi ∧ (ωi ∧ (riG − ri))

0

]
= Dv

i V̇i + evi (2.198)

Applying the previous relations to the virtual power equations (2.194a),

nb∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
= 0 (2.199)

Mv
i = (Dv

i )
TMiD

v
i =

[
I 0

r̃iG − r̃i I

] [
miI 0
0 JG

i

] [
I r̃i − r̃iG
0 I

]
=[

miI −mi (r̃
i
G − r̃i)

mi (r̃
i
G − r̃i) JG

i −mi (r̃
i
G − r̃i) (r̃

i
G − r̃i)

] (2.200)

Qv
i = (Dv

i )
T (Qi −Mie

v
i ) =

[
I 0

r̃iG − r̃i I

] [
fi −miωi ∧ (ωi ∧ (riG − ri))

nG
i − ωi ∧ JG

i ωi

]
=[

fi −miωi ∧ (ωi ∧ (riG − ri))
nG
i − ωi ∧ JG

i ωi + (riG − ri) ∧ [fi −miωi ∧ (ωi ∧ (riG − ri))]

] (2.201)

Defining,

Mv =


Mv

1 0 . . . 0
0 Mv

2 . . . 0
...

...
. . .

...
0 0 0 Mv

nb

 ; Qv =


Qv

1

Qv
2
...

Qv
nb

 ; V =


V1

V2
...

Vnb

 (2.202)

the dynamics equations can be grouped in matrix form:

V∗T
[
MvV̇ −Qv

]
= 0 (2.203)

49



2. Topological formulations for the dynamics of open-loop systems

It will be proved in the following lines the subsequent linear relations of virtual
velocities and real velocities and accelerations,

V = Rvż (2.204)

V∗ = Rvż∗ (2.205)

V̇ = Rvz̈ + Ṙvż (2.206)

where z =
[
z1

T z2
T . . . znb

T
]
∈ Rn with n the total number of joint coordinates.

Then equation (2.203) becomes:(
ż∗TRvT

) [
Mv

(
Rvz̈ + Ṙvż

)
−Qv

]
= ż∗T

[
RvTMv

(
Rvz̈ + Ṙvż

)
−RvTQv

]
=

ż∗T
[(
RvTMvRv

)
z̈ −RvT

(
Qv −MvṘvż

)]
= 0

(2.207)

Or, more compactly:

ż∗T
[
Mdz̈ −Qd

]
= 0 (2.208a)

Md = RvTMvRv (2.208b)

Qd = RvT
(
Qv −MvṘvż

)
(2.208c)

Since we are dealing with open-loop systems, joint coordinates can be considered
DoF of the system4 and their virtual velocities chosen arbitrarily, to arrive at the
following ODE system of equations of motion:

Mdz̈ = Qd (2.209)

The EoM (2.209) involve the calculation of matrix Rv and vector Ṙvż. Their
assessment will be explained for the open-loop system of Figure 2.10, but the process
is general for any multibody system.

Applying (2.113) recursively to the six body mechanism and comparing with
(2.204) gives us,

V =


V1

V2

V3

V4

V5

V6

 =


bv
1 0 0 0 0 0

Bv
2b

v
1 bv

2 0 0 0 0
Bv

3B
v
2b

v
1 Bv

3b
v
2 bv

3 0 0 0
Bv

4b
v
1 0 0 bv

4 0 0
Bv

5B
v
4b

v
1 0 0 Bv

5b
v
4 bv

5 0
Bv

6B
v
4b

v
1 0 0 Bv

6b
v
4 0 bv

6




ż1
ż2
ż3
ż4
ż5
ż6

 = Rvż (2.210)

4A special case of non-minimal joint coordinates is the spherical joint modeled with Euler pa-
rameters, where only three out of the four parameters are DoF. In order to use the formulation for
open-loop systems with these joints, three parameters must be chosen as DoF and the other one ex-
pressed in terms of them. Otherwise the formulation for closed-loop systems should be used, adding
the corresponding normalization constraint for the Euler parameters of each spherical (or floating)
joint.

50



2.4. Equations of motion for unconstrained open-loop systems

5

6

3

1

4

2

z1

z2

z3

z4

z5

z6

Figure 2.10: Six body open chain mechanism

Thus it is proved expression (2.204) and terms in Rv can be expressed as,

Rv =


bv
1,1 0 0 0 0 0

bv
2,1 bv

2,2 0 0 0 0
bv
3,1 bv

3,2 bv
3,3 0 0 0

bv
4,1 0 0 bv

4,4 0 0
bv
5,1 0 0 bv

5,4 bv
5,5 0

bv
6,1 0 0 bv

6,4 0 bv
6,6

 =


bv
1 0 0 0 0 0

Bv
2b

v
1 bv

2 0 0 0 0
Bv

3B
v
2b

v
1 Bv

3b
v
2 bv

3 0 0 0
Bv

4b
v
1 0 0 bv

4 0 0
Bv

5B
v
4b

v
1 0 0 Bv

5b
v
4 bv

5 0
Bv

6B
v
4b

v
1 0 0 Bv

6b
v
4 0 bv

6


(2.211)

Observe that terms bv
i,j can be obtained recursively by means of the following

relations,

bv
i,i = bv

i (2.212a)

bv
i,j = Bv

ib
v
h,j; i > j (2.212b)

bv
i,j = 0; i < j (2.212c)

where h is the parent body of i, i.e. the preceding body in the kinematic chain.
Therefore these relations are calculated recursively, traversing the rows of the matrix,
from the root to the leaves of the mechanism. Note that the previous relations imply
that bv

i,j = 0 if j is not an ancestor of i.

51



2. Topological formulations for the dynamics of open-loop systems

Matrix Rv can be divided in the following matrices with scarce interest for this
formulation but useful for the fully-recursive formulation derived later,

Rv =


I6 0 0 0 0 0
Bv

2 I6 0 0 0 0
Bv

3B
v
2 Bv

3 I6 0 0 0
Bv

4 0 0 I6 0 0
Bv

5B
v
4 0 0 Bv

5 I6 0
Bv

6B
v
4 0 0 Bv

6 0 I6




bv
1 0 0 0 0 0
0 bv

2 0 0 0 0
0 0 bv

3 0 0 0
0 0 0 bv

4 0 0
0 0 0 0 bv

5 0
0 0 0 0 0 bv

6

 = TvRv
d (2.213)

The vector Ṙvż can be analogously obtained from the recursive application of
(2.114) to the six body mechanism and through its comparison with (2.206):

Ṙvż =


dv
1

dvΣ
2

dvΣ
3

dvΣ
4

dvΣ
5

dvΣ
6

 =


dv
1

dv
2 +Bv

2d
v
1

dv
3 +Bv

3 (d
v
2 +Bv

2d
v
1)

dv
4 +Bv

4d
v
1

dv
5 +Bv

5 (d
v
4 +Bv

4d
v
1)

dv
6 +Bv

6 (d
v
4 +Bv

4d
v
1)

 =


dv
1

dv
2 +Bv

2d
v
1

dv
3 +Bv

3d
vΣ
2

dv
4 +Bv

4d
v
1

dv
5 +Bv

5d
vΣ
4

dv
6 +Bv

6d
vΣ
4

 (2.214)

Observe that each body receives recursively the contributions with the dv
i terms

from the parent body in the kinematic chain by means of the following recursive
equation:

dvΣ
i = dv

i +Bv
id

vΣ
h (2.215)

where h is again the parent body of i, this is the preceding body in the kinematic
chain and dv

i is defined by (2.121e).

With the help of the recursive kinematic expressions defined before, the mass
matrix of the system,

Md = RvTMvRv =

bvT
1 MvΣ

1 bv
1 bvT

2,1M
vΣ
2 bv

2 bvT
3,1M

v
3b

v
3 bvT

4,1M
vΣ
4 bv

4 bvT
5,1M

v
5b

v
5 bvT

6,1M
v
6b

v
6

bvT
2 MvΣ

2 bv
2,1 bvT

2 MvΣ
2 bv

2 bvT
3,2M

v
3b

v
3 0 0 0

bvT
3 Mv

3b
v
3,1 bvT

3 Mv
3b

v
3,2 bvT

3 Mv
3b

v
3 0 0 0

bvT
4 MvΣ

4 bv
4,1 0 0 bvT

4 MvΣ
4 bv

4 bvT
5,4M

v
5b

v
5 bvT

6,4M
v
6b

v
6

bvT
5 Mv

5b
v
5,1 0 0 bvT

5 Mv
5b

v
5,4 bvT

5 Mv
5b

v
5 0

bvT
6 Mv

6b
v
6,1 0 0 bvT

6 Mv
6b

v
6,4 0 bvT

6 Mv
6b

v
6


(2.216a)

MvΣ
4 = Mv

4 +BvT
5 Mv

5B
v
5 +BvT

6 Mv
6B

v
6 (2.216b)

MvΣ
2 = Mv

2 +BvT
3 Mv

3B
v
3 (2.216c)

MvΣ
1 = Mv

1 +BvT
2 MvΣ

2 Bv
2 +BvT

4 MvΣ
4 Bv

4 (2.216d)

52



2.4. Equations of motion for unconstrained open-loop systems

The mass matrix can be expressed in compact form as follows:

Md(i, j) =RvTMvRv(i, j) = bvT
i MvΣ

i bv
i,j; i > j, (2.217a)

Md(i, i) =RvTMvRv(i, i) = bvT
i MvΣ

i bv
i , (2.217b)

Md(i, j) =RvTMvRv(i, j) = bvT
j,iM

vΣ
j bv

j ; i < j, (2.217c)

MvΣ
i = Mv

i +

ni
s∑

s=1

BvT
s MvΣ

s Bv
s (2.217d)

with ni
s the number of children of body i. Observe that each body receives a recursive

contribution of accumulated masses from its children, therefore equation (2.217d)
implies an accumulation of masses from the leaves to the root of the branches.

Similarly, the vector of generalized forces becomes:

RvT
(
Qv −MvṘvż

)
=



bvT
1 bvT

2,1 bvT
3,1 bvT

4,1 bvT
5,1 bvT

6,1

0 bvT
2 bvT

3,2 0 0 0

0 0 bvT
3 0 0 0

0 0 0 bvT
4 bvT

5,4 bvT
6,4

0 0 0 0 bvT
5 0

0 0 0 0 0 bvT
6





Qv
1 −Mv

1d
v
1

Qv
2 −Mv

2d
vΣ
2

Qv
3 −Mv

3d
vΣ
3

Qv
4 −Mv

4d
vΣ
4

Qv
5 −Mv

5d
vΣ
5

Qv
6 −Mv

6d
vΣ
6

 =



bvT
1 QvΣ

1

bvT
2 QvΣ

2

bvT
3 Q3Σ

v

bvT
4 QvΣ

4

bvT
5 QvΣ

5

bvT
6 QvΣ

6


(2.218a)

QvΣ
6 = Qv

6 −Mv
6d

vΣ
6 (2.218b)

QvΣ
5 = Qv

5 −Mv
5d

vΣ
5 (2.218c)

QvΣ
4 = Qv

4 −Mv
4d

vΣ
4 +BvT

5 QvΣ
5 +BvT

6 QvΣ
6 (2.218d)

QvΣ
3 = Qv

3 −Mv
3d

vΣ
3 (2.218e)

QvΣ
2 = Qv

2 −Mv
2d

vΣ
2 +BvT

3 QvΣ
3 (2.218f)

QvΣ
1 = Qv

1 −Mv
1d

v
1 +BvT

2 QvΣ
2 +BvT

4 QvΣ
4 (2.218g)

The vector of generalized forces can be expressed in compact form as follows,

Qd
i =RvT

i

(
Qv −MvṘvż

)
= bvT

i QvΣ
i , (2.219a)

QvΣ
i = Qv

i −Mv
id

vΣ
i +

ni
s∑

s=1

BvT
s QvΣ

s (2.219b)

where ni
s is again the number of children of body i. Behold that forces, alike masses,

are accumulated from the leaves of the mechanisms to the root through a recursive
contribution from each children’s body.

The construction of the general mass matrix and generalized forces vector of a
relative coordinate model in the framework of a semi-recursive method constitutes
the bulk of the evaluation of the dynamics of open-loop systems. However, once
posed the equations of motion, they have to be numerically solved, for what two
methods are proposed.

53



2. Topological formulations for the dynamics of open-loop systems

2.4.1.1 Fixed point solution

The ODE presented in (2.209) can be directly solved using a fixed point scheme
in accelerations. In the case of unconstrained open-loop systems, or which is the
same, open-loop systems with independent minimal coordinates, the mass matrix Md

always has an inverse for physically well defined problems. Thus, the accelerations of
the relative coordinates can be directly obtained as:

z̈ =
[
Md
]−1

Qd (2.220)

Once the accelerations are known, positions and velocities can be obtained from
a numerical integrator. In the MBSLIM multibody library, there are multiple numer-
ical integration possibilities, such as Hilbert-Hughes-Taylor integrator, generalized-α
integrator or the implicit Newmark’s family integrators, being the latest the option
currently explored. The Newmark’s family unfold a method to compute positions and
velocities from accelerations based on the time step h and two additional parameters
γ and β, which govern its stability, accuracy and energy conservation:

zn+1 = zn + hżn +
h2

2
{(1− 2β) z̈n + 2βz̈n+1} (2.221a)

żn+1 = żn + h {(1− γ) z̈n + γz̈n+1} (2.221b)

This type of numerical integrator is applied to ODEs and DAEs in a predictor-
corrector scheme. Once computed the states for a time step, a prediction of the states
at the following time step is required. For a Newmark’s integrator, the predictor stage
implemented takes the form:

zn+1 = zn + hżn +
h2

2
z̈n (2.222a)

żn+1 = żn + hz̈n (2.222b)

Behold that the predictor selected is independent of the values of γ and β. Re-
garding (2.221), those coefficients represent scalar factors penalizing the weight of
current and past accelerations in the framework of an implicit rule of integration. On
the contrary, the predictor constitutes an explicit step, and therefore, γ and β do not
play any role there.

2.4.1.2 Newton-Raphson solution

The general method used by default in MBSLIM to solve (2.209) involves a
Newton-Raphson (NR) method primarily due to the reuse of the scheme applied to
constrained systems. Moreover, the NR method is more robust than the fixed-point
scheme in some problems involving contact or very stiff forces.

Similarly to section 2.4.1.1, a Newmark’s family integrator with a fixed time step
is used in this section, due to its simplicity and its good behavior in the integration
of DAEs and ODEs, specially in terms of accuracy, stability and energy conservation.

54



2.4. Equations of motion for unconstrained open-loop systems

The properties and performance of this integrator applied to multibody systems are
profusely studied in [54]. Velocities and accelerations can be expressed in terms of
positions by applying a Newmark’s family integrator with the following relations:

żn+1 =
γ

βh
zn+1 + ˆ̇zn; ˆ̇zn = −

(
γ

βh
zn +

(
γ

β
− 1

)
żn +

(
γ

2β
− 1

)
hz̈n

)
(2.223a)

z̈n+1 =
1

βh2
zn+1 + ˆ̈zn; ˆ̈zn = −

(
1

βh2
zn +

1

βh
żn +

(
1

2β
− 1

)
z̈n

)
(2.223b)

where the subscript indicates the time step.

If the previous coefficients are selected as β =
1

4
and γ =

1

2
, the particular

expressions of the implicit trapezoidal rule are obtained.
Now, let us recall here (2.209), identifying its dependencies:

Md (z) z̈ = Qd (z, ż, t) (2.224)

Then, the application of the NR scheme in positions yields:

d

dz

(
Mdz̈ −Qd

)
∆z = Qd −Mdz̈ (2.225)

Expanding the derivative:(
∂Md

∂z
z̈ +Md∂z̈

∂z
− ∂Qd

∂z
− ∂Qd

∂ż

∂ż

∂z

)
∆z = Qd −Mdz̈ (2.226)

where forces are assumed to be exclusively dependent on z, ż and the time and masses
on z and the time.

Looking at the expressions of the Newmark’s family integrator (2.223), the follow-
ing relations among positions, velocities and accelerations are obtained:

żn+1 =
γ

βh
zn+1 + ˆ̇zn ⇒ ∂ż

∂z
=

γ

βh
(2.227a)

z̈n+1 =
1

βh2
zn+1 + ˆ̈zn ⇒ ∂z̈

∂z
=

1

βh2
(2.227b)

Now, substituting (2.227) in (2.226), and scaling it by βh2:

βh2
(
∂Md

∂z
z̈ +Md 1

βh2
− ∂Qd

∂z
− ∂Qd

∂ż

γ

βh

)
∆z = βh2

(
Qd −Mdz̈

)
(2.228)

A Newton-Raphson iterative scheme of solution of a nonlinear system can be
tackled with an approximate tangent matrix instead of an exact one with a mini-
mum impact on convergence or number of iterations, as discussed in [54]. However,
the determination of the terms which can be neglected varies with the system, and
has to be carefully studied prior to any general solution. In this particular case, the

55



2. Topological formulations for the dynamics of open-loop systems

effect of
∂Md

∂z
is negligible, thus it can be eliminated from the composition of the tan-

gent matrix without impairing convergence but lightening the computational burden.
Consequently, the new Newton-Raphson scheme becomes:(

Md + βh2K+ γhC
)
∆z = βh2

(
Qd −Mdz̈

)
(2.229)

being K = −∂Q
d

∂z
the equivalent stiffness matrix of the mechanism and C = −∂Q

d

∂ż
the equivalent damping matrix. Moreover, these two derivatives of the generalized
forces vector can be calculated approximately too, but this will be addressed in a
future chapter discussing the implementation of the presented methods in MBSLIM.

The algorithm used to solve the dynamics of topological multibody models with a
semi-recursive approach in the multibody library MBSLIM is depicted in Figure 2.11.
Each one of the stages of this flowchart is described below.

1. Solution of the initial position and velocity problems. If the selection of degrees
of freedom matches the joint coordinates, the position and velocity values of the
joint coordinates are directly the values of the degrees of freedom. Otherwise,
equations (2.190) and (2.192) have to be resorted to determine the values of
the joint coordinates. After that, positions and velocities of points and vectors
can be recursively updated, and then the recursive relations described in section
2.2 can be computed to allow the accumulation of forces and masses for the
dynamic acceleration problem.

2. Solution of the dynamic problem of accelerations. Since there is no constraint
in the model, the accelerations can be directly obtained from (2.209).

3. Prediction of positions using (2.222a) and prediction of velocities and accelera-
tions with (2.223).

4. Assessment of points and vectors, and the recursive relations of each joint.

5. Accumulation and assembly of forces and masses to compose the approximated
tangent matrix and residual.

6. Solution of equation (2.229).

7. Updating of velocities and accelerations by means of (2.227).

8. Evaluation of error. There are different possible measurements of error, being
the 2-norm of the increment in the positions ∆z the one implemented. If the
error is higher than a specified tolerance, return to step 4.

9. Time loop. If t < tend, return to step 3.

56



2.4. Equations of motion for unconstrained open-loop systems

t = t0

1.Initialization

- Points and vectors.
- Recursive relations.

2.Initial acceleration

- Solution of z̈ from (2.209).

3.Predictor
- Prediction of z, ż and z̈.
- Correction terms: (2.223).

4.Upgrading

- Points and vectors.
- Recursive relations.

5.Masses and forces

- Masses: (2.208b).
- Forces: (2.208c).

6.Determination of ∆z

- Solution of ∆z from (2.229).

7.Update ż and z̈

- By means of (2.227).

∥ ∆z ∥>tol

t ≤ tend

ite=ite+1

t=t+h

End

no

yes

no

yes

Figure 2.11: NR algorithm for the semi-recursive dynamics of open-loop systems

57



2. Topological formulations for the dynamics of open-loop systems

2.4.2 Fully-recursive method

The fully-recursive method presented in this section is a generalization of the
fully-recursive formulations presented in [116]5, named RTdyn2 formulation in [45]
and equivalent to the formulation derived in [35] for open-loop systems. The starting
point of the present development is valid for any set of reference points, while the
previous works use the particular case of each reference point placed at the origin of
coordinates. For this reason, this formulation is not referred to as RTdyn2, but as a
general fully-recursive approach.

The development of the fully-recursive expressions starts with the virtual power
equations (2.203). Splitting the last two terms:

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[
Mv

nb−1V̇nb−1 −Qv
nb−1

]
+V∗T

nb

[
Mv

nb
V̇nb

−Qv
nb

]
= 0

(2.230)

Equations (2.113) and (2.114) for i = nb:

V∗
nb

= Bv
nb
V∗

nb−1 + bv
nb
ż∗nb

(2.231)

V̇nb
= Bv

nb
V̇nb−1 + bv

nb
z̈nb

+ dv
nb

(2.232)

Applying the previous recursive relations to the last term in (2.230)

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[
Mv

nb−1V̇nb−1 −Qv
nb−1

]
+
(
Bv

nb
V∗

nb−1 + bv
nb
ż∗nb

)T [
Mv

nb
V̇nb

−Qv
nb

]
=

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[
Mv

nb−1V̇nb−1 −Qv
nb−1

]
+V∗T

nb−1B
vT
nb

[
Mv

nb
V̇nb

−Qv
nb

]
+ż∗Tnb

bvT
nb

[
Mv

nb

(
Bv

nb
V̇nb−1 + bv

nb
z̈nb

+ dv
nb

)
−Qv

nb

]
= 0

(2.233)

Taking into account that the joint coordinates are assumed to be independent,
the factor affected by the virtual velocity ż∗nb

has to vanish, resulting in the following
equation, [

bvT
nb
Mv

nb
bv
nb

]
z̈nb

= bvT
nb

[
Qv

nb
−Mv

nb

(
Bv

nb
V̇nb−1 + dv

nb

)]
(2.234)

5In [116] the reference point is always the origin while the expressions provided here are general,
for any reference point.

58



2.4. Equations of motion for unconstrained open-loop systems

Assuming a non-singular leading matrix in (2.234)6

z̈nb
=
[
bvT
nb
Mv

nb
bv
nb

]−1
bvT
nb

[
Qv

nb
−Mv

nb

(
Bv

nb
V̇nb−1 + dv

nb

)]
(2.236)

The remaining terms in equation (2.233) become,

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[
Mv

nb−1V̇nb−1 +BvT
nb
Mv

nb
V̇nb

−Qv
nb−1 −BvT

nb
Qv

nb

]
= 0

(2.237)
which, after replacing (2.232),

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[(
Mv

nb−1 +BvT
nb
Mv

nb
Bv

nb

)
V̇nb−1 +BvT

nb
Mv

nb
bv
nb
z̈nb

−Qv
nb−1 −BvT

nb

(
Qv

nb
−Mv

nb
dv
nb

)]
= 0

(2.238)

and (2.236),

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

[(
Mv

nb−1 +BvT
nb
Mv

nb
Bv

nb

)
V̇nb−1

+BvT
nb
Mv

nb
bv
nb

([
bvT
nb
Mv

nb
bv
nb

]−1
bvT
nb

[
Qv

nb
−Mv

nb

(
Bv

nb
V̇nb−1 + dv

nb

)])
−Qv

nb−1 −BvT
nb

(
Qv

nb
−Mv

nb
dv
nb

)]
= 0

(2.239)

Grouping terms,

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

{[
Mv

nb−1 +BvT
nb

(
I6 −Mv

nb
bv
nb

[
bvT
nb
Mv

nb
bv
nb

]−1
bvT
nb

)
Mv

nb
Bv

nb

]
V̇nb−1

−Qv
nb−1 −BvT

nb

(
I6 −Mv

nb
bv
nb

[
bvT
nb
Mv

nb
bv
nb

]−1
bvT
nb

) (
Qv

nb
−Mv

nb
dv
nb

)}
= 0

(2.240)

6It is important to remark that the leading matrix (2.234) is not always invertible. The most
common case is when joint nb is a spherical (or floating) joint modeled with non-minimal joint
coordinates like the Euler parameters proposed along this work. In these cases the following equation
derived from the normalization constraint (2.62) completes system (2.234) to reach full rank.

p̄T ˙̄p = 0 ⇒ ˙̄p
T ˙̄p+ p̄T ¨̄p = 0 ⇒ p̄T ¨̄p = − ˙̄p

T ˙̄p (2.235)

59



2. Topological formulations for the dynamics of open-loop systems

We arrive at the following expression not dependent on the accelerations z̈nb

nb−2∑
i=1

V∗T
i

[
Mv

i V̇i −Qv
i

]
+V∗T

nb−1

{
M̂v

nb−1V̇nb−1 − Q̂v
nb−1

}
= 0 (2.241)

M̂v
nb−1 = Mv

nb−1 +BvT
nb
Knb

Mv
nb
Bv

nb
(2.242)

Q̂v
nb−1 = Qv

nb−1 +BvT
nb
Knb

(
Qv

nb
−Mv

nb
dv
nb

)
(2.243)

Knb
= I6 −Mv

nb
bv
nb

[
bvT
nb
Mv

nb
bv
nb

]−1
bvT
nb

(2.244)

Observe that the previous expression is extended only to the first nb − 1 bodies
and the effect of body nb is taken into account by means of the articulated inertia
M̂v

nb−1 and forces Q̂v
nb−1. This same procedure can be extended recursively towards

the root of the kinematic tree, giving rise to the following expressions for body i,

M̂v
i−1 = Mv

i−1 +BvT
i KiM̂

v
iB

v
i (2.245a)

Q̂v
i−1 = Qv

i−1 +BvT
i Ki

(
Q̂v

i − M̂v
id

v
i

)
(2.245b)

Ki = I6 − M̂v
ib

v
i

[
bvT
i M̂v

ib
v
i

]−1

bvT
i (2.245c)

z̈i =
[
bvT
i M̂v

ib
v
i

]−1

bvT
i

[
Q̂v

i − M̂v
i

(
Bv

i V̇i−1 + dv
i

)]
(2.245d)

2.4.2.1 Generalized forces applied directly on joint coordinates

The previous set of equations and recursive accumulation have to be modified and
extended for the case of forces or torques applied directly on kinematic joints. Let
us consider for example the case of a mechanism with a revolute joint and a motor
coupled to it and generating a specific torque which varies with time. This torque can
be directly applied to the joint coordinate zi instead of assembling it on the reference
point coordinates Vi of body i.

Returning to (2.230), an additional term appears if generalized forces are directly
applied on the joints:

nb∑
i=1

(
V∗T

i

[
Mv

i V̇i −Qv
i

]
− ż∗Ti Qz

i

)
= 0 (2.246)

Applying the same scheme of accumulation introduced in 2.4.2, the general ex-
pressions including this type of forces are:

M̂v
i−1 = Mv

i−1 +BvT
i KiM̂

v
iB

v
i (2.247a)

Q̂v
i−1 = Qv

i−1 +BvT
i

(
Ki

(
Q̂v

i − M̂v
id

v
i

)
+Kz

iQ
z
i

)
(2.247b)

Kz
i = −M̂v

ib
v
i

[
bvT
i M̂v

ib
v
i

]−1

(2.247c)

Ki = I6 +Kz
ib

vT
i (2.247d)

z̈i =
[
bvT
i M̂v

ib
v
i

]−1 (
bvT
i

[
Q̂v

i − M̂v
i

(
Bv

i V̇i−1 + dv
i

)]
+Qz

i

)
(2.247e)

60



2.4. Equations of motion for unconstrained open-loop systems

where Qzi
i are the forces and\or torques directly applied to the relative coordinates of

joint i. The new term Kz
i , which allows the accumulation of these forces and torques,

is in fact a part of the already introduced accumulation matrix Ki, so no further
computations are needed, only the storage of a new matrix.

2.4.2.2 Algorithm

A possible solution procedure begins with the accumulation of masses and forces
from the leaves towards the root and the determination of the acceleration of the first
body, z̈1. From the root, equations (2.114) can be applied recursively towards the

leaves in order to calculate all the accelerations z̈ =
[
z̈1 z̈2 · · · z̈i · · · z̈nb

]T
=[

z̈1 z̈2 · · · z̈n
]T
. After each acceleration is known, the time-stepping equations can

be applied (for example, Newmark’s equations) to obtain velocities and positions from
accelerations. These equations can be applied in a loop until convergence.

It should be remarked that this formulation is specially well suited to be solved
in a fixed-point scheme with an integrator which requires accelerations and returns
positions and velocities.

The solution process outlined in Figure 2.12 consists in the following steps:

1. Prediction of positions zn+1, velocities żn+1 and accelerations z̈n+1 of the states
from the former instant of time zn, żn and z̈n using (2.222).

2. Forward recursive kinematics from the root to the leaves, in order to determine
positions and velocities of points and vectors required for the composition of
the equations of motion by means of (2.121) and the recursive position relations
introduced in section 2.1.

3. Backward recursive accumulation of masses and forces with (2.247).

4. Forward solution of accelerations z̈n+1 by means of (2.247e). This process re-
quires to update the recursive terms Bv

i , b
v
i , d

v
i and the vector of accelerations

V̇i just after the solution of each joint acceleration in order to determine the
accelerations of the following joint in the kinematic chain.

5. Iterate from step 2 to 4 until convergence. Once the error is below a demanded
tolerance, proceed to the following step.

6. Return to step 1 until t = tfin.

2.4.3 Specific semi-recursive formulations

The expressions and algorithms introduced in sections 2.4.1 and 2.4.2 are valid for
any set of reference points. However, there are two particular selections of reference
points that enhance these methods due to the inclusion of different simplifications
in the accumulation process or in the computation of elemental forces and masses.
These two sets of reference points lead to the RTdyn0 and RTdyn1 formulations.

61



2. Topological formulations for the dynamics of open-loop systems

Initial z, ż and z̈

1.Predictor
- Prediction of z, ż and z̈.
- Correction terms: (2.223).

i=0

2.Forwards: kinematics

- Points and vectors.
- Recursive relations.

i = nb?

3.Backwards: masses and forces

- Equations (2.247).

i = 0?

4.Forwards: solution of z̈

- Solution of z̈ from (2.247e).
- Update of V̇i.

i = nb?

∥ ∆z ∥<tol ?

t ≥ tend?

ite=ite+1

t=t+h

i=i+1

i=i-1

i=i+1

End

yes

no

yes

no

yes

no

yes

no

yes
no

Figure 2.12: Flowchart for the fully-recursive dynamics of open-loop systems.

Traditionally, RTdyn1 has delivered better performance than RTdyn0 formulations
in terms of efficiency, but it has been proved that it entails some drawbacks, such as

62



2.4. Equations of motion for unconstrained open-loop systems

the addition of numerical errors when the mechanism moves away from the origin.
Moreover, the set of reference points used in RTdyn1 is regarded as less natural
than RTdyn0, since each reference point is considered rigidly attached to the body
to which it makes reference at each instant of time, but it moves inside the local
reference frame of the body between different instants of time, while in RTdyn0 the
reference point is always fixed in the local reference frame of the body. Bearing
in mind sensitivity analysis implications, both methods have been considered and
implemented in MBSLIM.

2.4.3.1 RTdyn0

The RTdyn0 formulation results from choosing the CoM of each body as reference
point ri = riG. The recursive kinematics equations are those derived in section 2.2
for the Y and Ẏ vectors and the general equations developed in section 2.4 have a
simplified form thanks to that Dv

i becomes Dy
i = I and evi becomes eyi = 0. Following

the scheme introduced in section 2.4.1, the elemental mass matrix My
i and elemental

generalized forces vector Qy
i referred to body i take the form:

My
i = (Dy

i )
T MiD

y
i =

[
I 0

r̃iG − r̃iG I

] [
miI 0
0 JG

i

] [
I r̃iG − r̃iG
0 I

]
=

[
miI 0
0 JG

i

]
= Mi

(2.248)

Qy
i = (Dy

i )
T (Qi −Mie

y
i ) =

[
I 0

r̃iG − r̃iG I

] [
fi −miωi ∧ (ωi ∧ (riG − r̃iG))

nG
i − ωi ∧ JG

i ωi

]
=[

fi
nG
i − ωi ∧ JG

i ωi

]
= Qi

(2.249)

Then, equation (2.203) becomes:

Y∗T
[
MyẎ −Qy

]
= 0 (2.250)

with

My =


My

1 0 . . . 0
0 My

2 . . . 0
...

...
. . .

...
0 0 0 My

nb

 ; Qy =


Qy

1

Qy
2
...

Qy
nb

 ; Y =


Y1

Y2
...

Ynb

 (2.251)

which is identical to (2.194a), as expected.
Equations (2.205) become,

Y = Ryż (2.252)

Y∗ = Ryż∗ (2.253)

Ẏ = Ryz̈ + Ṙyż (2.254)

63



2. Topological formulations for the dynamics of open-loop systems

where, again, z =
[
z1

T z2
T . . . znb

T
]
∈ Rn with n the total number of joint

coordinates.
And equations (2.208b) and (2.208c) have the following form,

Md = RyTMyRy (2.255)

Qd = RyT
(
Qy −MṘyż

)
(2.256)

The recursive calculation of terms in RTdyn0 is identical to that presented for the
general formulation, just replacing v with y.

The application of RTDyn0 to the fully-recursive approach imply the use of the
particular expressions of the recursive relations of each joint particularized for the
CoM of each body as reference point and the use of My

i and Qy
i as elemental mass

matrix and elemental generalized forces vector for each body. This formulation is
referred to as fully-recursive RTdyn0 or RTdyn0-FR.

2.4.3.2 RTdyn1

The RTdyn1 formulation results from the selection of the point coincident with
the global origin of coordinates as reference point ri = ri0. The recursive kinematics
equations are those derived in section 2.2 for the Z and Ż vectors. The equations
of this formulation were thoroughly described in [54] but the formulation will be
summarized here again.

The following kinematic relations hold, between the reference point, ri0, and the
CoM, riG,

Y∗
i =

[
ṙi∗G
ω∗

i

]
=

[
I −r̃iG
0 I

] [
ṙi0
ω∗

i

]
= DiZ

∗
i (2.257)

Ẏi =

[
r̈iG
ω̇i

]
=

[
I −r̃iG
0 I

] [
r̈i0
ω̇i

]
+

[
ωi ∧ (ωi ∧ riG)

0

]
= DiŻi + ei (2.258)

Applying the previous relations to the virtual power equations (2.194a),

nb∑
i=1

Z∗T
i

[(
DT

i MiDi

)
Żi −DT

i (Qi −Miei)
]
= 0 (2.259)

where,

Mz
i = DT

i MiDi =

[
I 0
r̃iG I

] [
miI 0
0 JG

i

] [
I −r̃iG
0 I

]
=

[
miI −mir̃

i
G

mir̃
i
G JG

i −mir̃
i
Gr̃

i
G

]
(2.260)

Qz
i = DT

i (Qi −Miei) =

[
I 0
r̃iG I

]([
fi

nG
i − ωi ∧ JG

i ωi

]
−
[
miI 0
0 JG

i

] [
ωi ∧ (ωi ∧ riG)

0

])
=

[
fi −miωi ∧ (ωi ∧ riG)

nG
i − ωi ∧ JG

i ωi + riG ∧ [fi −miωi ∧ (ωi ∧ riG)]

]
(2.261)

64



2.4. Equations of motion for unconstrained open-loop systems

Defining,

Mz =


Mz

1 0 . . . 0
0 Mz

2 . . . 0
...

...
. . .

...
0 0 0 Mz

nb

 ; Qz =


Qz

1

Qz
2
...

Qz
nb

 ; Z =


Z1

Z2
...

Znb

 (2.262)

The dynamics equations can be grouped in matrix form,

Z∗T
[
MzŻ −Qz

]
= 0 (2.263)

In RTdyn1, the following linear relations of virtual velocities and real velocities
and accelerations hold:

Z = Rzż (2.264)

Z∗ = Rzż∗ (2.265)

Ż = Rzz̈ + Ṙzż (2.266)

where, again, z =
[
z1

T z2
T . . . znb

T
]
∈ Rn with n the total number of joint

coordinates and nb the number of bodies (or joints).
Then equation (2.263) becomes,

ż∗T
[(
RzTMzRz

)
z̈ −RzT

(
Qz −MzṘzż

)]
= 0 (2.267)

Similarly, the final ODE system of equations of motion (2.209), becomes,(
RzTMzRz

)
z̈ = RzT

(
Qz −MzṘzż

)
(2.268)

The equations of motion (2.268) involve a new matrix Rz and a new vector Ṙzż.
Recalling the six-body mechanism of Figure 2.10, the evaluation of these terms

is set forth for this particular mechanism as a means to clarify the accumulation
process. The recursive application of the relations (2.123a) and (2.123b) to the six-
body mechanism yields the following matrix equation:

Z =


Z1

Z2

Z3

Z4

Z5

Z6

 =


bz
1 0 0 0 0 0

bz
1 bz

2 0 0 0 0
bz
1 bz

2 bz
3 0 0 0

bz
1 0 0 bz

4 0 0
bz
1 0 0 bz

4 bz
5 0

bz
1 0 0 bz

4 0 bz
6




ż1
ż2
ż3
ż4
ż5
ż6

 = Rzż (2.269)

Observe the recursive nature of the previous expression, and that the evaluation of
the relative relation (2.123a) for all bodies of a multibody system leads to the previ-
ously introduced matrix equation (2.264). Matrix Rz can be divided in the following

65



2. Topological formulations for the dynamics of open-loop systems

matrices (with scarce interest for the studied formulations):

Rz =


I6 0 0 0 0 0
I6 I6 0 0 0 0
I6 I6 I6 0 0 0
I6 0 0 I6 0 0
I6 0 0 I6 I6 0
I6 0 0 I6 0 I6




bz
1 0 0 0 0 0
0 bz

2 0 0 0 0
0 0 bz

3 0 0 0
0 0 0 bz

4 0 0
0 0 0 0 bz

5 0
0 0 0 0 0 bz

6

 (2.270)

For accelerations, comparing equation (2.266) with the recursive application of
(2.123a):

Ṙzż =


dz
1

dzΣ
2

dzΣ
3

dzΣ
4

dzΣ
5

dzΣ
6

 =


dz
1

dz
2 + dz

1

dz
3 + dz

2 + dz
1

dz
4 + dz

1

dz
5 + dz

4 + dz
1

dz
6 + dz

4 + dz
1

 =


dz
1

dz
2 + dz

1

dz
3 + dzΣ

2

dz
4 + dz

1

dz
5 + dzΣ

4

dz
6 + dzΣ

4

 (2.271)

Observe that, again, each body receives recursively the contributions with the dz
i

terms from the parent body in the kinematic chain.

With the help of the recursive kinematic expressions defined before, the mass
matrix of the system takes the form:

Md = RzTMzRz =
bzT
1 MzΣ

1 bz
1 bzT

1 MzΣ
2 bz

2 bzT
1 Mz

3b
z
3 bzT

1 MzΣ
4 bz

4 bzT
1 Mz

5b
z
5 bzT

1 Mz
6b

z
6

bzT
2 MzΣ

2 bz
1 bzT

2 MzΣ
2 bz

2 bzT
2 Mz

3b
z
3 0 0 0

bzT
3 Mz

3b
z
1 bzT

3 Mz
3b

z
2 bzT

3 Mz
3b

z
3 0 0 0

bzT
4 MzΣ

4 bz
1 0 0 bzT

4 MzΣ
4 bz

4 bzT
4 Mz

5b
z
5 bzT

4 Mz
6b

z
6

bzT
5 Mz

5b
z
1 0 0 bzT

5 Mz
5b

z
4 bzT

5 Mz
5b

z
5 0

bzT
6 Mz

6b
z
1 0 0 bzT

6 Mz
6b

z
4 0 bzT

6 Mz
6b

z
6


(2.272a)

MzΣ
4 = Mz

4 +Mz
5 +Mz

6 (2.272b)

MzΣ
2 = Mz

2 +Mz
3 (2.272c)

MzΣ
1 = Mz

1 +MzΣ
2 +MzΣ

4 (2.272d)

66



2.4. Equations of motion for unconstrained open-loop systems

and the vector of generalized forces,

Qd = RzT
(
Qz −MzṘzż

)
=


bzT
1 QzΣ

1

bzT
2 QzΣ

2

bzT
3 QzΣ

3

bzT
4 QzΣ

4

bzT
5 QzΣ

5

bzT
6 QzΣ

6

 (2.273)

QzΣ
6 = Qz

6 −Mz
6

(
Ṙzż

)
6

(2.274)

QzΣ
5 = Qz

5 −Mz
5

(
Ṙzż

)
5

(2.275)

QzΣ
4 = Qz

4 −Mz
4

(
Ṙzż

)
4
+QzΣ

5 +QzΣ
6 (2.276)

QzΣ
3 = Qz

3 −Mz
3

(
Ṙzż

)
3

(2.277)

QzΣ
2 = Qz

2 −Mz
2

(
Ṙzż

)
2
+QzΣ

3 (2.278)

QzΣ
1 = Qz

1 −Mz
1

(
Ṙzż

)
1
+QzΣ

2 +QzΣ
4 (2.279)

In the fully-recursive approach, the same expressions and accumulations intro-
duced in 2.4.2.1 can be used when the origin of coordinates is selected as reference
point, but with two main changes: Bz

i becomes the identity, so it can be eliminated
from the accumulative expressions; and (2.260) and (2.261) have to be used as the
expressions of the elemental mass matrix and generalized forces vector for each body.
This fully-recursive formulation is similar to the one identified as RTdyn2 by Jimenez
in [45], but due to the particular consideration of forces directly assembled on rel-
ative coordinates, and for the sake of clarity, this formulation is here referred to as
fully-recursive RTDyn1 or RTDyn1-FR.

This selection of reference points seems to lead to the simplest accumulation pos-
sible, but there is one important drawback, as it was commented before: as the
mechanisms move away from the origin, recursive relations such as bv

i are worse nu-
merically conditioned. For instance, let us recall the expressions of bv

i for the revolute
joint for an arbitrary reference point (2.133a):

bv
i =

[
wj ∧

(
ri − rj

)
wj

]
(2.280)

Observe that if the reference point is rigidly attached to the body, the term ri − rj
is equivalent to a vector with a fixed norm, and any change in the mechanism only
modifies its orientation. However, if the reference point ri is not rigidly fixed to body
i, then the 2-norm of the vector ri − rj varies along with the orientation, being its
magnitude directly affected by the mechanism motion. Since bv

i is one of the basic
pieces required to accumulate masses and forces and to compute the forward kine-
matics of open-loop systems, small numerical errors could lead to important problems
during the simulation and on a sensitivity analysis.

67



2. Topological formulations for the dynamics of open-loop systems

It is important to remark that both RTdyn0 and RTdyn1 formulations theoreti-
cally lead to the exact same equations, so it can be deduced that there is an unique
analytical set of dynamic expressions that could be reached without explicitly involv-
ing any reference point. In the implementation in MBSLIM, the reference points have
been eliminated from some analytical expressions, but for other terms, their presence
is convenient in order to simplify some calculations, and their elimination could lead
to an entangled code which could result more inefficient.

68



Chapter 3

Topological formulations for the
dynamics of closed-loop systems

The description of a multibody system by means of a joint coordinate model
usually leads to the minimum possible number of coordinates. In a joint coordinate
model, constraints of relative motion between bodies are internally enforced by means
of the kinematic recursive relations imposed by each joint. The presence of this
recursive kinematics encompasses a minimization of the number of constraints required
in those models, although there are multiple cases in which constraints have to be
considered. The most obvious case is referred to closed-loop systems. In that case,
the coordinates of the kinematic chain are no longer independent, but they have
additional constraints of motion. This problem is generally addressed by means of
cutting a joint and imposing of a loop-closure constraint. Depending on the joint
being eliminated, the set of constraint equations required varies.

Another issue that entails the fulfillment of a constraint is the particular modeling
of spherical and floating joints by means of Euler parameters. As commented in section
2.1.5, this non-minimal parameterization of rotations is subjected to a normalization
constraint.

Besides, relative coordinate models could be subjected to driving constraints or
kinematic relations not described by a joint. It is also possible to include constraints
stemming from the combination of a kinematic or dynamic multibody problem with
other of different nature.

In order to tackle any multibody system in terms of a joint coordinate model
independently of its topology in a general manner, the kinematics and dynamics of
constrained joint coordinate models are studied in this chapter, which is structured
as follows. In section 3.1, a method for the evaluation of the kinematics of closed-loop
multibody systems modeled in relative coordinates is described, including the case of
any set of natural coordinates as degrees of freedom. In section 3.2, the Matrix R
method [117] is applied to the the semi-recursive formulation for open-loop systems
presented in chapter 2. As a result, a formulation for closed-loop systems in inde-
pendent coordinates is achieved, which has been deeply described and tested in past
years [54, 55, 118]. As primary novelty, this formulation is extended for supporting a

69



3. Topological formulations for the dynamics of closed-loop systems

definition of degrees of freedom out from the vector of dependent joint coordinates,
which allows, for example, to define degrees of freedom in natural coordinates, in-
stead of joint coordinates. Finally, in section 3.3, the Augmented Lagrangian index-3
formulation with velocity and acceleration projections is combined with the semi-
recursive formulation for open-loop systems presented in chapter 2, generating the so
called RTdyn0-ALI3-P and RTdyn1-ALI3-P formulations for closed-loop systems. As
a result of the implementation and generalization of these formulations, a paper was
published [60].

3.1 Kinematics for non-minimal relative coordinates

“The kinematic analysis of a mechanical system concerns the motion of the system
independent of forces that produce the motion”, [114]. In this sense, the kinematic
analysis encompasses the solution of the initial position problem, the finite displace-
ment problem along with the kinematic velocity and acceleration analysis. These
problems involve purely geometrical considerations without including the effect of
inertia or the forces applied to the mechanism.

Any multibody system modeled in natural (or reference point) coordinates entails
a set of constraints referred to geometrical considerations, relating the positions, ve-
locities or accelerations of the points and vectors of the model. On the contrary, not
all the relative coordinate models require a set of constraints to be fully defined, as
it occurs in open-loop systems with minimal coordinates. In that case, if the rel-
ative joint coordinates are selected as the set of degrees of freedom of the system,
the kinematics of every body of each kinematic chain can be fully determined from
the kinematics of the preceding body in the kinematic chain by relatively simple and
systematic operations with the relative coordinates vector of the system.

However, most of the mechanisms studied and modeled in Mechanical Engineering
have, in one way or another, constraints limiting the motion and complementing
the definition of the multibody model. The presence of constraint equations into
a multibody model indicates that the number of coordinates being used is larger
than the number of degrees of freedom, thus the combination of the kinematic-joint
recursive relations and the constraint equations must be addressed.

The kinematic problems previously mentioned, i.e. the initial position problem,
finite displacements problem, velocity analysis and kinematic acceleration analysis,
involve at least four phases or steps in what concerns to joint coordinate models:

1. Assessment of points and vectors from relative coordinates: the kine-
matic constraints are usually expressed in terms of positions, velocities or accel-
erations of points and vectors, and therefore, it is mandatory to update these
values prior to any constraint evaluation. Furthermore, points and vectors are
as well needed in the recursive relations introduced in 2.2, which are essential
for the kinematics evaluation of the each body.

2. Recursive kinematic relations: in the current kinematic development, the
recursive relations compose the bulk of the kinematics evaluation. These recur-

70



3.1. Kinematics for non-minimal relative coordinates

sive terms describe the relative motion between bodies, and therefore, they are
present in every accumulation, assembly and derivative referred to the whole
mechanism. In kinematic analyses, these terms are involved in the recursive
kinematics of the open-loop system but also in the derivatives of the constraint
vector.

3. Constraints vector and derivatives: once assessed positions, velocities and/or
accelerations of the points and vectors defining the constraints, the constraint
vector evaluation is straightforward. On the contrary, constraint derivatives are
not as easy to obtain, and a new set of derivatives of positions, velocities and
accelerations of points and vectors with respect to relative coordinates have to
be resorted to. The derivatives needed in each kinematic problem will be speci-
fied in the following sections, but their calculation will be explained in detail in
chapter 4.

4. Composition of the problem and solution: each constrained kinematic
problem requires the constraints vector at position, velocity or acceleration le-
vels along with some partial derivatives, depending on the kinematic problem
regarded. In general, since the constrained kinematic problems are expressed
in terms of joint-coordinates, only these are updated and a new evaluation of
the first step must be executed for points and vectors assessment. Depending
on the type of problem, an iterative scheme could be needed, and the validity
of the solution will be related to the existence of an error lower than a given
tolerance.

In the following lines, the three main kinematic problems are briefly described (the
finite displacements problem is assimilated to the initial position problem). The in-
terest of the description of constrained kinematic problems in joint coordinate models
is double: first, it manifests that joint coordinate modeling is general enough to pose
and solve any dynamic or kinematic problem; and second, some of the listed kine-
matic problems are required by some dynamic formulations such as the topological
semi-recursive Matrix R of section 3.2. The three constrained kinematic problems
have been implemented in the MBSLIM general purpose multibody library as general
kinematic formulations.

3.1.1 Initial position problem

The initial position problem seeks to determine the relative coordinates at position
level from a given set of values of the DoF of the mechanism, or which is the same,
to establish the vector of dependent coordinates that satisfies the system of nonlinear
constraint equations for a given set of DoF. It must be noted that the scheme of
solution presented here and implemented in MBSLIM is the method described in [117],
but particularized to relative coordinates.

The objective of the initial position problem is to nullify the vector of constraints
Φ ∈ Rm (being m the number of constraint equations) for a given set of values of the

71



3. Topological formulations for the dynamics of closed-loop systems

independent coordinates zi:
Φ (q, z, t) = 0 (3.1)

where q is the vector of natural coordinates, including points and vectors of the
model, z is the vector of dependent relative coordinates and t is the time. Expression
(3.1) represents a system of nonlinear equations, which in general cannot be solved
analytically due to the complexity of the equations, and has to be computed numer-
ically. One of the most resorted approaches to solve these type of equations is the
Newton-Raphson method, widely spread in multitude of nonlinear problems due to
its simplicity and its quadratic convergence in the neighborhood of the solution. The
Newton-Raphson method is based on the expansion of (3.1) in a Taylor series around
a given initial approximated solution z0:

Φ (q (z) , z, t) ∼= Φ
(
q0, z0

)
+Φẑ

(
q0, z0

) (
z − z0

)
= 0 (3.2)

where Φẑ ∈ Rm×n is the Jacobian matrix for the constraint equations:

Φẑ =
∂Φ

∂q

∂q

∂z
+
∂Φ

∂z
= Φqqz +Φz (3.3)

From (3.3) it can be observed that Φẑ is not exactly a partial derivative, and for
this reason the subscript ẑ is used. This notation will be extended in the subsequent
sensitivity chapters.

Equation (3.2) can be reformulated as:

Φẑ

(
qj, zj

)
∆zj+1 = −Φ

(
qj, zj

)
(3.4)

being zj+1 a better approximation of the solution of (3.1) than zj, with j and j + 1
as the iteration numbers1. Behold that equation (3.13) cannot be solved because it is
rank deficient in the number of degrees of freedom of the system. Moreover, observe
that no reference has been made to the imposition of the values of the degrees of
freedom yet. For this sake, a new constant matrix B ∈ Rd×n composed of “1”s and
“0”s is considered2 according to [117], being d the number of DoF of the multibody
system. This matrix is constant in time, straightforward to calculate with a given set
of independent coordinates, and satisfies the following relations:

zi = Bz (3.5a)

żi = Bż (3.5b)

z̈i = Bz̈ (3.5c)

With these assumptions, the initial position problem can be finally expressed as:[
Φj

ẑ

B

]
∆zj+1 =

[
−Φj

0

]
(3.6a)

zj+1 = zj +∆zj+1 (3.6b)

1Sometimes, the Newton-Raphson scheme could provide a solution for one iteration that is further
from the real solution than the result of the previous iteration. However, these “steps back” do not
compromise the convergence of the method.

2Do not confuse with Bv
i , an elemental term of the recursive accumulation.

72



3.1. Kinematics for non-minimal relative coordinates

In the MSBLIM implementation, in order to include the possibility of redundant
constraints, a least-squares problem is solved. Both sides of (3.6a) are pre-multiplied
by the transpose of the leading matrix in (3.6a), generating a non-singular symmetric
system matrix: [

ΦjT
ẑ BT

] [Φj
ẑ

B

]
∆zj+1 =

[
ΦjT

ẑ BT
] [−Φj

0

]
(3.7)

and simplifying: (
ΦjT

ẑ Φj
ẑ +BTB

)
∆zj+1 = −ΦjT

ẑ Φj (3.8)

The finite displacement problem is very similar to the initial position problem
needed to start the dynamics satisfying the constraint equations. In fact, the system
of nonlinear equations is identical owing to that both problems are referred to the
fulfillment of a series of constraints in positions with a given set of DoF.

The philosophical difference between the finite displacement problem and the ini-
tial position problem manifests in kinematic simulations: the initial position problem
is regarded as an instant problem, whose purpose is to determine the initial values
of the dependent coordinates, while the finite displacement analysis seeks to deter-
mine the position of the multibody system at each time step for a given time interval.
However, this distinction does not involve any procedure difference, and in fact, both
problems are addressed with the same algorithm in MBSLIM.

3.1.2 Kinematic velocity analysis

The velocity problem aims to obtain the set of velocities ż such that:

Φ̇ (q (z) , q̇ (z, ż) , z, ż, t) = Φẑż+Φt =0 (3.9)

Differentiating (3.1) with respect to time and completing with equation (3.5b),
velocity equations can be rewritten as:[

Φẑ

B

]
ż =

[
−Φt

ḋ

]
≡
[
b

ḋ

]
(3.10)

with ḋ representing the desired values of the DoF at velocity level, and where the
notation b ≡ −Φt is introduced in accordance with the classical compact notation of
this problem3, as presented in [117]. This notation will be reused also in the dynamic
formulations developed in subsequent sections. On this occasion, the velocity problem
is solved by means of a linear system of equations and, unlike the position problem,
does not need to be iterated.

3Do not confuse with bv
i , an elemental term of the recursive accumulation

73



3. Topological formulations for the dynamics of closed-loop systems

3.1.3 Kinematic acceleration analysis

In the acceleration problem, the set of constraints in accelerations have to be
fulfilled by z̈:

Φ̈ (q (z) , q̇ (z, ż) , q̈ (z, ż, z̈) , z, ż, z̈, t) = 0 (3.11)

Similarly to section 3.1.2, the equations of the acceleration analysis can be found
differentiating (3.1) twice with respect to time and completing with equation (3.5c):[

Φẑ

B

]
z̈ =

[
−Φ̇t − Φ̇ẑż

d̈

]
≡
[
c

d̈

]
(3.12)

with d̈ the desired values of the DoF accelerations.
Here again, c ≡ −Φ̇t − Φ̇ẑż is introduced to compact notation in this expression

and in further dynamic developments. It is important to note that, though no new
derivatives appeared in the velocity analysis with respect to the position problems, in
the acceleration problem there is a new term that involve derivatives with respect to
z, which is Φ̇ẑ:

Φ̇ẑ = Φ̇qqz +Φqq̇z + Φ̇z (3.13)

wherein the relation Φq = Φ̇q̇ has been used.
Thus, c can be rewritten as:

c = −Φ̇t −
(
Φ̇qqz +Φqq̇z + Φ̇z

)
ż (3.14)

In general, Φ̇ is expressed in terms of positions and velocities of points, vectors,
angles, distances and/or the time, and consequently, the assessment of the derivatives
Φ̇q, Φ̇z and Φ̇t (all with respect to the explicit dependencies of each constraint) are
straightforward to obtain. On the contrary, the derivatives of the natural coordinates
q̇z and qz depend on the topology of the mechanism and their evaluation is more
challenging, as it will be explained in sections 3.6 and 3.7.

3.1.4 Topological kinematics with natural coordinates as de-
grees of freedom

In closed-loop systems, the degrees of freedom of a mechanism can be identified
more directly with a set of Cartesian coordinates rather than joint coordinates. In
order to support natural coordinates as DoF (a requirement in MBSLIM models
definition), a reformulation of the previous kinematic problems should be faced. For
simplicity, hereinafter the dependent relative coordinates are denoted as z and the
independent coordinates (natural or relative) are identified as zi.

For the kinematic analyses, the constraints vector and its Jacobian matrix have
to be evaluated, but also the values of the DoF must be enforced. Following the
developments of section 3.1.1, the imposition of DoF can be addressed by means of a
new matrix B: [

Φ
{n}
ẑ

B{n}

]
∆z{n+1} =

[
−Φ{n}

d− (zi)
{n}

]
(3.15)

74



3.2. Semi-recursive Matrix R formulations

in which ∆z{n+1} is the increment in the joint coordinates, d represents the set of

desired positions of the DoF, (zi)
{n}

denotes the current value of the DoF at iteration
n and B{n} is a matrix describing the relation between joint coordinates and DoF
given by (2.191).

If the degrees of freedom are selected from the relative coordinates vector z, the
matrix B will be constant and composed by ”1”s and ”0”s. Behold that equation
(2.191) makes possible to use degrees of freedom out from the relative coordinates
vector, but it will result in a more complex matrix B. Knowing that z defines com-
pletely the kinematics of a mechanism, and that any kinematic magnitude can be
obtained as a function of these coordinates (applying the theorem of the implicit
function), it can be said that:

zi = f(z) (3.16)

Therefore, the term B can be generalized as:

B =
∂f(z)

∂z
(3.17)

With this approach, any kinematic magnitude can be used as degree of freedom

as long as the matrix

[
Φẑ

B

]
is not singular which is guaranteed if a proper selection

of degrees of freedom is made, from the kinematic point of view.
As an example, let us consider the coordinates of a point rj as 3 degrees of freedom.

In this case, the term B would be:

B =
∂rj
∂z

(3.18)

which can be computed using expressions of section 3.6.
These expressions could be extended to kinematic problems in velocities and ac-

celerations using the same definition of the B matrix, but in those problems the
derivatives of this matrix with respect to time must be considered too.[

Φẑ

B

]
ż =

[
b

ḋ

]
, (3.19a)[

Φẑ

B

]
z̈ =

[
c

d̈− Ḃż

]
(3.19b)

Note that expressions (3.19a) and (3.19b) are equivalent to (3.10) and (3.12) if the
set of DoF is contained in z.

3.2 Semi-recursive Matrix R formulations

The formulation presented in this section was originally introduced by Garćıa de
Jalón and Bayo in [16] and later applied to semi-recursive methods in [45], [46] and
more recently in [54], [55] and [118]. As long as the method is profusely described in

75



3. Topological formulations for the dynamics of closed-loop systems

those works, only the main structure of the formulation is outlined. A new notation
is employed here so as to avoid possible misunderstandings between the R matrix of
the semi-recursive method and the projection matrix RΦ of this formulation.

In this approach, a second velocity transformation (Matrix R transformation) is
carried out in order to remove some dependent coordinates from the full set of depen-
dent ones. Let us consider a multibody system modeled with n relative coordinates
subjected to m constraints and with d DoF. A vector of independent coordinates
zi ∈ Rd can be selected such as the dependent velocities, accelerations and virtual
displacements can be expressed in terms of the independent ones by means of matrices
RΦ ∈ Rn×d and SΦ ∈ Rn×m:

ż = RΦżi + SΦb (3.20a)

z̈ = RΦz̈i + SΦc (3.20b)

ż∗ = RΦż∗i (3.20c)

being b and c the terms related to the temporal constraints derivatives described in
sections 3.1.2 and 3.1.3 respectively.

Behold that in the present formulation zi represents a set of differential variables
with a different meaning than d in kinematic problems.

The expressions of the semi-recursive Matrix R formulation can be derived from
the virtual power principle applied to a multibody system. Let us recall here the
open-loop equation (2.207):

ż∗T
[(
RvTMvRv

)
z̈ −RvT

(
Qv −MvṘvż

)]
= 0 (3.21)

which can be rewritten using the notation Md and Qd introduced in (2.208b) and
(2.208c) according to (2.208a) as:

ż∗T
[
Mdz̈ −Qd

]
= 0 (3.22)

Using (3.20) in (3.22), and taking into account that the virtual velocities ż∗i are
independent, one obtains(

RΦTMdRΦ
)
z̈i = RΦT

(
Qd −MdSΦc

)
(3.23)

which are the general Matrix R equations for closed loops or non-minimal joint coor-
dinates.

With an appropriate selection of degrees of freedom, matrices RΦ and SΦ can
be calculated as a part of the inverse of the leading matrix of any of the kinematic
problems previously introduced:[

SΦ RΦ
] [ Φẑ

B

]
= In (3.24)

For the general case of redundant constraints, matricesRΦ and SΦ can be obtained
by means of a least-squares problem:[

ΦT
ẑΦẑ +BTB

] [
SΦ RΦ

]
=
[
ΦT

ẑ BT
]

(3.25)

76



3.3. Semi-recursive ALI3-P formulations

3.2.1 Non-constant B matrix

In the previous Matrix R developments, matrix B was assumed to be constant,
which indicates that the vector of independent coordinates is contained in the de-
pendents one. As it was introduced in section 3.1.4, the selection of the degrees of
freedom of a mechanism is one of the most entangled parts in a kinematics analysis,
and this complexity is translated to independent-coordinates forward dynamics for-
mulations such as the Matrix R formulation. As commented above, in some cases a
degree of freedom of a mechanism is better described by a coordinate of a point or a
vector than by a joint coordinate, especially in closed-loop systems. For this reason,
a generalization of the equations of the previous section is devised, bearing in mind
that the use of natural coordinates as degrees of freedom may difficult and slow down
the computation of the dynamic problem.

If matrix B is considered as variable and dependent on the kinematics of the sys-
tem, the calculation of the acceleration of the joint coordinates with the matrices RΦ

and SΦ requires additional terms. Considering the equations of the kinematics in
accelerations for a non-constant B matrix (3.19b) and the expressions of the accel-
eration of the dependent coordinates in terms of RΦ and SΦ (3.20b), the following
relation is reached:

z̈ = RΦ
(
z̈i − Ḃż

)
+ SΦc (3.26)

Moreover, the non-constant B matrix induces changes in the general dynamic
expressions (3.23):(

RΦTMdRΦ
)
z̈i = RΦT

(
Qd −Md

(
SΦc−RΦḂż

))
(3.27)

Comparing (3.23) and (3.27), it can be deduced that the first expression is prefe-
rable and computationally more efficient, but the possibility of selecting the DoF from
a wider number of variables makes the second approach especially interesting for the
MBSLIM implementation, in which the multibody models as well as their DoF are
described mainly in terms of points and vectors (natural coordinates). Behold also
that (3.23) represents a particular case of the more general expression (3.27).

3.3 Semi-recursive ALI3-P formulations

The Augmented Lagrangian Index-3 formulation with velocity and acceleration
projections (ALI3-P) constitutes a forward dynamics formulation which combines high
accuracy at position, velocity and acceleration levels with a reduced computational
time. From the seminal work by Bayo and Ledesma [119], the ALI3-P equations
have been applied in the framework of global [53, 120] and topological formulations
[54, 60, 120] ( [60] constitutes a result from the present work) in the field of rigid
body dynamics. Moreover, these formalisms have been extended to flexible multibody
systems [121–123], and its capabilities have been exploited for real time simulation
[123,124]. In this section, the application of the ALI3-P formalism to a semi-recursive

77



3. Topological formulations for the dynamics of closed-loop systems

accumulation scheme in the framework of joint coordinate models is studied as an
update of the method presented in [120].

In ALI3-P formulations, the equations of motion are formulated with dependent
coordinates, in contrast with the semi-recursive Matrix R formulation of section 3.2.
This dependent-coordinate formulation eliminates the need of a selection of degrees of
freedom along with the evaluation of the matrix B, but it has also its shortcomings.
Firstly, a set of Lagrange multipliers λ ∈ Rm has to be added, increasing the number
of variables of the problem. Secondly, the resulting expressions constitute a set of
Differential Algebraic Equations (DAE) instead of the set of Ordinary Differential
Equations (ODE) yielded by the semi-recursive Matrix R formulation.

The ALI3-P scheme is based upon the union of an index-3 augmented Lagrangian
scheme (with imposition of constraints at position level) with one projection of state
velocities onto the manifold Φ̇ = 0 and another acceleration projection onto Φ̈ = 0.
Even though the augmented Lagrangian part of the algorithm guarantees the fulfill-
ment of the constraints at position level, if it is evaluated alone without any numerical
dissipation, it will introduce increasing errors and instabilities due to the violation of
the constraints at velocity and accelerations levels. It should be highlighted that the
ALI3 equations of motion (without projections) are equivalent to the classical index-3
DAE, thus their instabilities are the same. The purpose of projections in this case is
double since they limit the violation of the time derivatives of the constraints and, as
a consequence, they stabilize the index-3 DAE, allowing long simulations.

The first step of this formulation is the solution of the augmented Lagrangian
system in the form:

Mdz̈∗ +ΦT
ẑ

(
λ∗{i+1} +αΦ

)
= Qd (3.28a)

λ∗{i+1} = λ∗{i} +αΦ{i+1}; i > 0 (3.28b)

where i = 0, 1, 2, ..., α ∈ Rm×m is a diagonal matrix that contains the penalty factors
associated with the constraints, i is the iteration index of the approximate Lagrange
multipliers λ∗ ∈ Rm, Md ∈ Rn×n is the mass matrix referred to joint-coordinates,
Qd ∈ Rn denotes the vector of generalized forces, Φ ∈ Rm is the constraint vector
and Φẑ ∈ Rm×n its Jacobian matrix.

The Lagrange multipliers of the augmented Lagrangian formulation converge to the
values of the Lagrange multipliers of the original index-3 DAE for i → ∞. However,
as soon as the constraint violation is low enough, both sets of Lagrange multipliers
become almost identical.

The initialization of the Lagrange multipliers at each time step can be faced with
different schemes. One option is to start from null values, as indicated in [125]. An-
other option, which is the one regarded for the MBSLIM implementation, consists in
using the Lagrange multiplier values of the previous time step to initiate the iteration
in the current time step. This last update method has been described in [120], and as
the authors declare, it usually offers fewer iterations than the former method. Despite
that, this method has an important shortcoming related to redundant constraints. If

78



3.3. Semi-recursive ALI3-P formulations

there are redundant constraints, some of the Lagrange multipliers would be unde-
termined, and it was experimentally observed that the upgrading scheme could lead
to increasing values of the Lagrange multipliers which could eventually entail a nu-
merical ill conditioning of the problem. In order to limit the increase in the values
of the Lagrange multipliers, the initialization of the Lagrange multipliers has been
substituted by:

λ
∗{0}
j = ϖλ∗

j−1 : ϖ < 1.0 (3.29)

being j the index of the time step, and ϖ a scaling factor that delivers good results
for values from 0.95 to 0.994.

The first combination of an augmented Lagrangian scheme with projection meth-
ods is attributed to Bayo and Ledesma in their celebrated work [119]. In this paper,
the authors presented a different version of the augmented Lagrangian problem than
the one revisited here, which involved a term composed of the weighted combination
of the constrains vector at position, velocity and acceleration levels. Moreover, they
introduced three different projections at position, velocity and acceleration levels.

Projection techniques are founded on a minimization problem of the form:

minxV =
1

2
(x− x∗)T P̄ (x− x∗) s. t. g (x, t) = 0 (3.30)

wherein x are the projected magnitudes, x∗ the unprojected ones, P̄ a projection
matrix and g a set of constraints which specify the manifold in which x∗ is projected.

This type of problem can be tackled applying the augmented Lagrangian method
for the combination of the objective function being minimized and the constraints to
which the problem is subjected, leading to an unconstrained minimization problem
with the form:

minxV
∗ =

1

2
(x− x∗)T P̄ (x− x∗)+

1

2
gTαg + gTτ (3.31)

in which gx is the Jacobian of g with respect to x, α is a penalty factor and τ is a
set of Lagrange multipliers.

Now, differentiating (3.31) and equating to zero (first-order necessary condition),
the following equation emerges:

P̄ (x− x∗) + gT
xαg + gT

xτ = 0 (3.32)

which regarding the dependencies of g, (3.32) represents in general a nonlinear system
of equations. In the cases regarded in the ALI3-P formulation, the set of equations
generated during velocity and acceleration projections are linear, which significantly
reduces the computational effort devoted to that formulation stage.

For the sake of clarity, let us consider now velocity projections. For projections
onto the manifold Φ̇ = 0 in joint coordinate models, the minimization problem be-
comes:

minżV =
1

2
(ż− ż∗)T P̄ (ż− ż∗) s. t. Φ̇ (z, ż, t) = 0 (3.33)

4Acknowledgments to Dr. Emilio Sanjurjo Maroño, which detected the issue and proposed the
new updating method.

79



3. Topological formulations for the dynamics of closed-loop systems

The application of the augmented Lagrangian method to (3.33) according to (3.32)
yields:

P̄ (ż− ż∗) +ΦT
ẑ ςαΦ̇+ΦT

ẑσ = 0 (3.34)

in which ς is a new penalty term associated to the penalty matrix α of the augmented
Lagrangian part of the ALI3-P formulation (introduced in equation (3.28)). The
reason of adding a new penalty factor can be justified regarding that some terms can
be directly reused from the augmented Lagrangian stage of the ALI3-P formulation.

As described in [119], there are different options to solve (3.34):

� Augmented Lagrangian method:

The application of the augmented Lagrangian method to the equation (3.34)
yields an iterative solution algorithm with the form:(

P̄+ ςΦT
ẑαΦẑ

)
ż = P̄ż∗ −ΦT

ẑ

(
σ{i+1} + ςαb

)
(3.35a)

σ{i+1} = σ{i} + ςαΦ̇ (3.35b)

with b described in section 3.1.2. Behold that this scheme of solution is es-
pecially robust, supporting the use of redundant constraints or semi-definite
positive matrices without any reformulation. Moreover, the solution is efficient,
since the system matrix only has to be evaluated and factorized once per pro-
jection.

� Classical Lagrange method:

The solution of (3.34) can be expressed in the form of the classical Lagrange
method, with: [

P̄ ΦT
ẑ

Φẑ 0

] [
ż
σ

]
=

[
P̄ (ż− ż∗)−ΦT

ẑ (σ + ςαΦt)
0

]
(3.36)

Behold that, although the iterative nature of (3.35) is avoided with (3.36), this
system of equations involve more equations and numerical problems related to
redundancy.

� Penalty method:

Since the purpose of velocity projections is to keep the fulfillment of Φ̇ = 0 under
determined acceptable orders (constraints cannot be exactly compelled with a
projection technique [126]), this can be achieved with a penalty formulation
with an appropriate selection of the projection penalty factor ς:(

P̄+ ςΦT
ẑαΦẑ

)
ż = P̄ż∗ −ΦT

ẑ ςαb (3.37)

80



3.3. Semi-recursive ALI3-P formulations

In the MBSLIM multibody library, both penalty and augmented Lagrangian meth-
ods have been implemented.

The process for the achievement of the acceleration projection equations is analog
to the one unfolded for velocity projections. The minimization problem related to a
projection onto the manifold Φ̈ = 0 takes the form:

minz̈V =
1

2
(z̈− z̈∗)T P̄ (z̈− z̈∗) s. t. Φ̈ (z, ż, z̈, t) = 0 (3.38)

The solution of (3.38) by means of the augmented Lagrangian method yields:

(
P̄+ ςΦT

ẑαΦẑ

)
z̈ = P̄z̈∗ −ΦT

ẑ

(
κ{i+1} + ςαc

)
(3.39a)

κ{i+1} = κ{i} + ςαΦ̈ (3.39b)

being c a sum of terms appearing in second derivative of the constraint vector with
respect to time, already commented in section 3.1.3.

If a penalty formulation is used for the projection instead of an augmented La-
grangian one, a computationally less demanding non-iterative scheme can be obtained.
For non-iterative velocity projections, equation (3.37) apply, while non-iterative ac-
celeration projection become:(

P̄+ ςΦT
ẑαΦẑ

)
z̈ = P̄z̈∗ −ΦT

ẑ ςαc (3.40)

Observe that the notation is deliberately compacted, using Φẑ, b and c instead of
its expanded expressions. With this notation, each term of the semi-recursive projec-
tions can be directly related to the equivalent term in Cartesian coordinate formula-
tions [119,120]. It should be pointed out that despite the similarities between relative
and Cartesian coordinates, velocity and acceleration projections in joint coordinate
models involve in general less constraint equations but more complex derivatives.

This formulation has been implemented in the MBSLIM multibody library with
the possibilities of selection of different penalty factors α and ς, and different schemes
of projection solution (iterative or augmented Lagrangian projections and non-iterative
or penalty projections). Nonetheless, only the mass matrix has been considered as
projection matrix, primarily due to the fact that it is already computed in the solution
of the augmented Lagrangian system.

Moreover, mass matrices have a series of properties that make them ideal for pro-
jection purposes. First, they are symmetric and semi-definite positive, which opens
the possibility of using efficient symmetric solvers. And second, the resulting pro-
jections are unconditionally dissipative, i.e. they do not incorporate spurious energy,
as it was demonstrated in [127] for positive definite mass matrices. Behold that this
dissipative condition can be easily extended to semi-definite mass matrices since a
variation on the additional “massless” variables do not change the kinetic energy of
the system.

81



3. Topological formulations for the dynamics of closed-loop systems

In general, velocity projections are sufficient to stabilize an index-3 formulation,
but numerical experiments proved that acceleration projections improve the conver-
gence rate at a minimum additional expense, regarding that the factorization of the
velocity projection system matrix can be directly reused in the acceleration problem.
Additionally, projections can be executed only under certain conditions of the con-
straint time derivatives violation, which contributes to minimize the computational
effort without damaging accuracy or stability.

3.4 Semi-recursive penalty formulation

The solution of ALI3-P formulations using an implicit numerical integrator such
as Newmark requires an initial value of the state accelerations in order to compute
the corrector terms and to predict the set of positions, velocities and accelerations
at the following instant of time. However, the ALI3-P scheme is not well posed to
be solved at acceleration level, thus it is convenient to resort to other formulations
for initialization purposes. Moreover, an initialization of the Lagrange multipliers,
though it is not essential, is convenient to reduce the number of iterations of the
augmented Lagrangian scheme during its first evaluation or to have an estimation of
the Lagrange multipliers if needed, for example, for constraints reactions calculation.

The penalty formulation proposed by Bayo et al. [125] presents a solution for the
dynamics of a multibody system by substituting the Lagrange multipliers of the clas-
sical Lagrange’s index-1 formulation by a penalized term including the constraints
vector in positions, velocities and accelerations. The resulting system takes the form
of an ODE system (opposed to the classical Lagrange’s formulation) with the state
accelerations as unique unknowns. This problem is particularly convenient for the
initialization of ALI3-P formulations due to its simplicity, its good fulfillment of con-
straints in positions, velocities and accelerations, and due to the fact that the La-
grange multipliers can be approximated from the constraints penalty term. It should
be remarked that this initialization of the Lagrange multipliers is a good estimation,
even though it does not provide the exact Lagrange multipliers of the augmented
Lagrangian formulation.

Because the penalty formulation is exclusively intended here for initialization pur-
poses, it will not be described in detail as the previous formulations, but just outlined.
This formulation can be easily applied to relative coordinate models, yielding the fol-
lowing expression:

Mdz̈+ΦT
ẑα
(
Φ̈+ 2ΩξΦ̇+ Ω2Φ

)
= Qd (3.41)

Unlike the notation presented in [125], here the damping coefficient originally
denoted as µ is renamed as ξ in order to eliminate possible misunderstandings with
the set of adjoint variables described in the following chapters. The ODE (3.41) can
be directly solved using a fixed point scheme in accelerations. Behold that the ODE
system (3.41) is transformed into a set of algebraic equations in initial acceleration

82



3.5. Topological constraints

problems, where the dependent coordinates vector is already known at position and
velocity levels thanks to the kinematic initial position and velocity problems.

In fact, the use of a penalty formulation to initialize the accelerations is very similar
to an index-1 scheme according to the imposition of constraints in the formulation,
since both approaches at this particular initial time are basically incorporating the
satisfaction of Φ̈. Besides, the penalty formulation is equal to the first iteration of
an index-1 formulation if the index-1 system of equations is solved via an augmented
Lagrangian scheme with the same penalty factor α, provided that the kinematic
problems in positions and velocities are already solved.

Equation (3.41) can be reformulated so as to simplify notation by means of:

M̆z̈ = Q̆ (3.42)

in which:

M̆ = Md +ΦT
ẑαΦẑ (3.43a)

Q̆ = Qd −ΦT
ẑα
(
Φ̇ẑż+ Φ̇t + 2ΩξΦ̇+ Ω2Φ

)
(3.43b)

where the leading matrix of the system M̆ is symmetric and always has inverse. The
value of α used in the MBSLIM implementation is equal to the one used for ALI3-P,
while the other coefficients are Ω = 10 and ξ = 1 by default.

The penalty formulation does not explicitly involve Lagrange multipliers, but the
approximated index-3 augmented Lagrangian multipliers can be estimated with the
help of the following expression, introduced in [125]:

λ∗ ≈ α
(
Φ̈+ 2ΩξΦ̇+ Ω2Φ

)
(3.44)

An improved method for the solution of this penalty formulation included as well
in [125], based on the explicit incorporation of the Lagrange multipliers into the
equations of motion through an iterative augmented Lagrangian scheme in order to
eliminate the round-off errors caused by the non-infinite penalty term α, has not been
considered here for two reasons: first, the round-off error is usually very small and
only becomes relevant when it is accumulated in time, hence if the problem is solved
exclusively at the initial time, the error generated can be neglected; and second,
augmented Lagrangian iterations are sought to be avoided in order to simplify the
subsequent sensitivity analyses and made initialization procedures as straightforward
as possible without any loss of accuracy.

3.5 Topological constraints

In joint coordinate models, it is common to express constraint equations as a rela-
tion of points and vectors rather than joint coordinates. Let us consider for instance
a constraint of coincidence of two points belonging to different bodies. The constraint

83



3. Topological formulations for the dynamics of closed-loop systems

equation in terms of Cartesian coordinates is forthright, while to express it in terms of
joint coordinates is infeasible in a general manner. For this reason, an additional set
of coordinates comprising positions of points and vectors is regarded as intermediate
dependencies of a general constraint equation. Following the developments of chapter
2, it was established that joint-coordinates along with the recursive joint-dependent
kinematic relations allow to determine the kinematics of any rigid body, thus the
coordinates of a point or a vector belonging to it.

Regarding the particular implementation of joint coordinate models in MBSLIM,
the use of this intermediate set of coordinates, in addition to the simplification of
constraints, allows us to reuse the constraint equations already defined in MBSLIM
in terms of Cartesian coordinates, and what is more important, to take advantage of
the constraint derivatives already developed and tested.

Back into the constraint derivatives (3.3) and (3.13) required in the dynamics
and kinematic analyses presented in former sections, it can be observed that the
evaluation of constraint derivatives with respect to joint coordinates can be addressed
by the direct application of the chain rule. In those expressions, constraint derivatives
can be decomposed in partial derivatives of the constraint vector with respect to
positions of points and vectors (Φq, Φ̇q) and joint-coordinates (Φz, Φ̇z), and other
terms describing the derivative of the state of points and vectors with respect to the
joint coordinates (qz, q̇z). Those last terms correspond to topological derivatives
as long as they depend exclusively on the topology of the mechanism, and they are
independent of the constraint equations. A first direct evaluation of qz and q̇z will
be presented in section 3.6, while a more efficient evaluation will be tackled in section
4.5.

In relative coordinate models, there is a set of constraint equations that are directly
related to the generation of the model, namely loop-closure constraints and the Euler
parameters normalization constraint. In this section, the analytical expression of these
constraint equations along with their partial derivativesΦq, Φ̇q, Φz, Φ̇z are presented.
The loop-closure constraint equations for each type of joint eliminated along with
the normalization constraint of the Euler parameters have been implemented in the
MBLSIM multibody library in the form they are presented below.

3.5.1 Euler parameters normalization constraint

The problem of singular configurations of any orientation or rotation paramete-
rization by means of three coordinates is an issue which even today is investigated
by the multibody community. In order to get rid of singular configurations and the
reparameterization problems they imply, other orientation coordinates can be resorted
to. In the present document and in the MBSLIM implementation, Euler parameters
are used.

Euler parameters conform a four-coordinate parameterization of a rotation, and
since only three out of four coordinates are independent, they have to comply with
an additional constraint. In this case, this constraint subjects the vector of four
parameters to have unitary norm, or which is the same, to be normalized.

84



3.5. Topological constraints

Φ = p̄Tp̄− 1 = 0 (3.45)

Observe that this constraint depends exclusively on z, therefore Φq = 0, Φ̇q = 0
and the only nonzero derivatives are:

Φz = 2p̄T (3.46)

Φ̇z = 2 ˙̄pT (3.47)

For each spherical or floating joint present in a multibody model, in the case they
are parameterized with Euler parameters, an additional normalization constraint shall
be incorporated to the model.

3.5.2 Spherical joint: loop-closure constraint

An ideal spherical joint is equivalent to two bodies sharing one point. In the case
of an opening procedure of a closed loop resulting with a cut of an spherical joint,
the removed spherical joint must be replaced by a set of constraints that reproduce
its behavior. Since this joint allows three degrees of freedom, it is logical to impose
three independent constraint equations.

Let us consider that the spherical joint depicted in Figure 2.5 has to be removed
and substituted by a loop-closure constraint. In that case, the shared point j will
be regarded as two different points belonging to two different bodies, whose positions
will be ri−1

j and rij. The constraint in this case will measure the deviation between
the coordinates of these two points:

Φ = rij − ri−1
j (3.48)

Observe that these constraints directly depend on q, therefore Φz = 0, Φ̇z = 0,
and

Φq =
[
I3 −I3

]
(3.49)

Φ̇q = 0 (3.50)

considering q =
[
rij ri−1

j

]
.

3.5.3 Revolute joint: loop-closure constraint

The revolute joint, as it is displayed in Figure 2.8, is defined by one point and one
vector shared between two bodies. In the case of a revolute joint removal resulting
from an opening-of-the-closed-loop process, some additional constraints must enforce
the coincidence of these points (Φ1) and vectors (Φ2). The proposed 6 constraint
equations take the form:

Φ1 = rij − ri−1
j (3.51)

Φ2 = vi
j − vi−1

j (3.52)

85



3. Topological formulations for the dynamics of closed-loop systems

In the case of (3.52), only two out of the three equations are independent since
the constraint imposes the parallelism between two unit vectors. It should be pointed
out that the possibility of redundant constraints is supported in every calculation
developed and implemented in the present work, including kinematics, dynamics and
sensitivities. Therefore, redundancy does not represent a problem, but it allows the
use of simpler expressions with straightforward derivatives.

The constraints depend directly on q, therefore Φz = 0, Φ̇z = 0 and the only
nonzero derivatives are,

(Φ1)q =
[
I3 −I3 03 03

]
(3.53)

(Φ2)q =
[
03 03 I3 −I3

]
(3.54)(

Φ̇1

)
q
= 0 (3.55)(

Φ̇2

)
q
= 0 (3.56)

wherein q =
[
rij ri−1

j vi
j vi−1

j

]
.

3.5.4 Cylindrical joint: loop-closure constraint

A cylindrical joint is equivalent to two bodies sharing a vector and with a condition
of alignment of two points along this vector, each one belonging to each body. Looking
at Figure 2.4 where this joint type is displayed, the shared vector is wj and the points
aligned rij and ri−1

j−1. When this type of joint has to be eliminated, one constraint
of vector coincidence (Φ1) and another one of point alignment along this vector(Φ2)
have to be added to the model.

Φ1 = wi
j −wi−1

j (3.57)

Φ2 = wi
j ∧
(
rij − ri−1

j−1

)
(3.58)

Regard that (3.57) and (3.58) are expressed in terms of points and vectors, thus
Φz = 0, Φ̇z = 0 and:

(Φ1)q =
[
I3 −I3 03 03

]
(3.59)

(Φ2)q =
[(
rij − ri−1

j−1

)T
03

(
wi

j

)T −
(
wi

j

)T]
(3.60)(

Φ̇1

)
q
= 0 (3.61)(

Φ̇2

)
q
=
[(
ṙij − ṙi−1

j−1

)T
03

(
ẇi

j

)T −
(
ẇi

j

)T]
(3.62)

in which q =
[
wi

j wi−1
j rij ri−1

j−1

]
.

86



3.5. Topological constraints

3.5.5 Prismatic joint: loop-closure constraint

The prismatic joint can be seen as a particularization of the cylindrical joint,
where the rotation around the joint axis is impeded. In addition to cylindrical joint
constraints, the rotation must be prevented, and there are different possibilities for
that. In this case, the rotation is avoided by means of a coincidence constraint between
two additional vectors not aligned with the axis of the joint, each one contained in
each of the bodies related by the joint.

In brief, the prismatic joint can by substituted by 3 constraint sets: one Φ1 of
coincidence of the vectors (one belonging to each body) defining the axis of the joint;
a second constraint Φ2 of alignment of two points along the vector of the joint; and a
third one Φ3 of coincidence of other two vectors used to define the constant rotation
matrix Ai

i+1 (see equation (2.31)).

Φ1 = ui
j − ui−1

j (3.63)

Φ2 = ui
j ∧
(
rij − ri−1

j−1

)
(3.64)

Φ3 = vi
j − vi−1

j (3.65)

For these constraints, Φz = 0, Φ̇z = 0 and:

(Φ1)q =
[
I3 −I3 03 03 03 03

]
(3.66)

(Φ2)q =
[(
rij − ri−1

j−1

)T
03

(
ui
j

)T −
(
ui
j

)T
03 03

]
(3.67)

(Φ3)q =
[
03 03 03 03 I3 −I3

]
(3.68)(

Φ̇1

)
q
= 0 (3.69)(

Φ̇2

)
q
=
[(
ṙij − ṙi−1

j−1

)T
03

(
u̇i
j

)T −
(
u̇i
j

)T
03 03

]
(3.70)(

Φ̇3

)
q
= 0 (3.71)

considering q =
[
ui
j ui−1

j rij ri−1
j−1 vi

j vi−1
j

]
.

3.5.6 Cardan joint: loop-closure constraint

The Cardan or universal joint constraint equations stem from the perpendicularity
of the two axis defining the joint and from the sharing of a point (see section 2.1.3).
Regarding the notation introduced in Figure 2.3, the perpendicular vectors are de-
noted as wj and wj+1 and the two points generated by the shared point, once the
joint is eliminated, are identified as rij and ri−1

j .

Φ1 = rij − ri−1
j (3.72)

Φ2 = wT
j wj+1 (3.73)

87



3. Topological formulations for the dynamics of closed-loop systems

These constraints depend explicitly on points and vectors, therefore Φz = 0,
Φ̇z = 0 and:

(Φ1)q =
[
I3 −I3 03 03

]
(3.74)

(Φ2)q =
[
03 03 wT

j+1 wT
j

]
(3.75)(

Φ̇1

)
q
= 0 (3.76)(

Φ̇2

)
q
=
[
03 03 ẇT

j+1 ẇT
j

]
(3.77)

(3.78)

wherein q =
[
rij ri−1

j wj wj+1

]
.

3.5.7 Planar joint: loop-closure constraint

The planar joint, depicted in Figure 2.7, is defined by a vector shared between two
bodies along with a point-in-plane constraint. The constraints needed to describe the
joint allowed motion are, accordingly, a constraint of coincidence for the vectors and
a condition of perpendicularity between the vector of the joint and the vector defined
by the point belonging to the plane in the first body and the point of the second body
moving in the plane, so these two points are forced to be in a plane normal to the
vector of the joint.

Φ1 = wi
j −wi−1

j (3.79)

Φ2 = wiT
j

(
rij − ri−1

j−1

)
(3.80)

The constraints are calculated in terms of q, so Φz = 0, Φ̇z = 0 and:

(Φ1)q =
[
I3 −I3 03 03

]
(3.81)

(Φ2)q =
[(
rij − ri−1

j−1

)T
03 wiT

j −wiT
j

]
(3.82)(

Φ̇1

)
q
= 0 (3.83)(

Φ̇2

)
q
=
[(
ṙij − ṙi−1

j−1

)T
03 ẇiT

j −ẇiT
j

]
(3.84)

with q =
[
wi

j wi−1
j rij ri−1

j−1

]
.

3.6 Topological derivatives: qz

The most direct evaluation of the derivatives of the position of a point or a vector
with respect to the relative coordinates in positions involve the consideration of the
following identity:

∂rj
∂z

=
∂ṙj
∂ż

(3.85)

88



3.6. Topological derivatives: qz

This equivalence can be easy proved considering the dependencies of positions and
velocities of any point or vector. Let us consider a point j, whose velocity can be
calculated as:

ṙj =
drj
dt

=
∂rj
∂z

ż (3.86)

Observe that the position of a point does not depend explicitly on time. If the
previous expression is differentiated with respect to ż:

∂ṙj
∂ż

=
∂rj
∂z

(3.87)

An analog derivation is valid for the equivalent derivative of vectors.

Using (3.85) and the distribution of velocities in a rigid body, (2.11) and (2.12),

∂rj
∂z

=
∂ṙj
∂ż

=
∂ṙi
∂ż

+
∂ωi

∂ż
∧
(
rj − ri

)
=
[
I r̃i − r̃j

] ∂Vi

∂ż
(3.88)

∂uj

∂z
=
∂u̇j

∂ż
=
∂ωi

∂ż
∧ uj =

[
0 −ũj

] ∂Vi

∂ż
(3.89)

where ri is the reference point in body i and Vi =
[
ṙTi ωi

T
]T
.

Now, recalling here the recursive relations (2.204):

V = Rvż ⇒ Vi = Rv
i ż ⇒ ∂Vi

∂ż
= Rv

i (3.90)

where Rv
i are the six rows of the full matrix Rv corresponding to body i.

Then, the kinematic term qz can be built from the derivatives
∂rj
∂z

of points and

∂uj

∂z
of vectors, by applying the following expressions:

∂rj
∂z

=
∂ṙj
∂ż

=
[
I r̃i − r̃j

]
Rv

i (3.91)

∂uj

∂z
=
∂u̇j

∂ż
=
[
0 −ũj

]
Rv

i (3.92)

Behold that, since equations (3.91) and (3.92) depend explicitly on the reference
point selected, they have different expressions for the versions RTdyn0 and RTdyn1.
For the RTdyn0 formulation, equations (3.91) and (3.92) become:

∂rj
∂z

=
∂ṙj
∂ż

=
[
I r̃iG − r̃j

]
Ry

i (3.93)

∂uj

∂z
=
∂u̇j

∂ż
=
[
0 −ũj

]
Ry

i (3.94)

89



3. Topological formulations for the dynamics of closed-loop systems

In the case of reference points coincident with the origin of coordinates (RTdyn1),
equations (3.91) and (3.92) take the form:

∂rj
∂z

=
∂ṙj
∂ż

=
[
I −r̃j

]
Rz

i (3.95)

∂uj

∂z
=
∂u̇j

∂ż
=
[
0 −ũj

]
Rz

i (3.96)

A special case is the derivative of the position of the reference point with respect
to the relative coordinates in the RTdyn1 formulation. Since this position is always
constant and equal to the origin of coordinates, it does not vary with any value of
the joint coordinates, thus its derivative is always null. Behold that, in this case, the
expression presented in (3.91) is incorrect for this type of point:

∂rzi
∂z

̸= ∂ṙzi
∂ż

(3.97)

In section 4.5.1, a more efficient evaluation of derivatives of positions of points
and vectors with respect to relative coordinates will be developed. However, these
simplified expressions will be derived from the ones presented in this section, so both
approaches and derivative expressions will be equally valid.

3.7 Topological derivatives: q̇z

The evaluation of q̇z can be carried out by simply taking temporal derivatives of
equations (3.91) and (3.92).

∂ṙj
∂z

=
[
0 ˙̃ri − ˙̃rj

]
Rv

i +
[
I r̃i − r̃j

]
Ṙv

i (3.98)

∂u̇j

∂z
=
[
0 − ˙̃uj

]
Rv

i +
[
0 −ũj

]
Ṙv

i (3.99)

It turns out the need for an extra term, not derived before, Ṙv, whose composition
will be attained in section 3.8.

Note that the temporal derivative of qz is equivalent to the partial derivative of
q̇ with respect to z. In order to explain this relation, let us differentiate with respect
to time the derivative of the position of a point with respect to z:

d

dt

(
∂rj
∂z

)
=

∂

∂z

(
∂rj
∂z

)
ż+

∂

∂t

(
∂rj
∂z

)
=

∂

∂z

(
∂rj
∂z

)
ż (3.100)

in which
∂rj
∂z

does not depend explicitly on time. Now, let us consider the derivative

of the velocity of a point with respect to z:

∂ṙj
∂z

=
∂

∂z

(
∂rj
∂z

ż

)
=

∂

∂z

(
∂rj
∂z

)
ż (3.101)

90



3.8. Evaluation of Ṙ

Expressions (3.100) and (3.101) can be easily extended to vectors too, resulting
equivalent relations. From eq (3.100) and (3.101), the following identity can be de-
duced:

q̇z =
dqz

dt
(3.102)

This relation will be extremely useful in the differentiation of the equations of
motion, tackled in the sensitivity chapters 4 and 5.

A second strategy for calculating q̇z consist in taking partial derivatives in the
equations of distribution of velocities in a rigid body, (2.11) and (2.12),

∂ṙj
∂z

=

[
0

∂r̃i
∂z

−
∂r̃j
∂z

]
Vi +

[
I r̃i − r̃j

] ∂Vi

∂z
(3.103)

∂u̇j

∂z
=

[
0 −∂ũj

∂z

]
Vi +

[
0 −ũj

] ∂Vi

∂z
(3.104)

Both strategies should be equivalent and lead to the same expressions.

The expressions above are valid for any point or vector contained in a body (fixed
in the local reference frame), but cannot be applied to other floating entities, like
the reference point in RTdyn1 formulations. In this case, since (3.91) is incorrect for
points fixed in the global frame, it cannot be differentiated with respect to time for
that point types.

Likewise in the calculation of qz , an expression independent of the reference points
can be reached for q̇z . Those simplified and more efficient expressions will be set forth
in section 4.5.2.

3.8 Evaluation of Ṙ

In section 3.7, the need of Ṙv has been made apparent for the assessment of the
derivatives of Cartesian velocities with respect to the relative coordinates in positions.
Even though this derivative can be solved without the computation of Ṙv, as it will
be explained in section 4.5.2, this matrix will come up in other several occasions, and
consequently, it will need to be evaluated.

Let us consider here again the mechanism of figure 2.10, whose matrix Rv was
previously assembled in (2.211). The matrix Ṙv corresponds to its time derivative,
thus:

Ṙv =



ḃv
1,1 0 0 0 0 0

ḃv
2,1 ḃv

2,2 0 0 0 0

ḃv
3,1 ḃv

3,2 ḃv
3,3 0 0 0

ḃv
4,1 0 0 ḃv

4,4 0 0

ḃv
5,1 0 0 ḃv

5,4 ḃv
5,5 0

ḃv
6,1 0 0 ḃv

6,4 0 ḃv
6,6


(3.105)

where the terms ḃv
i,j can be obtained recursively with the same logic applied to the

91



3. Topological formulations for the dynamics of closed-loop systems

calculation of the bv
i,j terms:

ḃv
i,i = ḃv

i (3.106a)

ḃv
i,j = Ḃv

ib
v
h,j +Bv

i ḃ
v
h,j; i > j (3.106b)

ḃv
i,j = 0; i < j (3.106c)

where h is the parent body of i, i.e. the preceding body in the kinematic chain. These
relations are calculated recursively, traversing the rows of the matrix, from the root
to the leaves of the mechanism.

The previous assembly (3.105) is valid for any of the semi-recursive methods pre-
sented, but it can be further simplified for RTdyn1:

Ṙz =



ḃz
1,1 0 0 0 0 0

ḃz
2,1 ḃz

2,2 0 0 0 0

ḃz
3,1 ḃz

3,2 ḃz
3,3 0 0 0

ḃz
4,1 0 0 ḃz

4,4 0 0

ḃz
5,1 0 0 ḃz

5,4 ḃz
5,5 0

ḃz
6,1 0 0 ḃz

6,4 0 ḃz
6,6


(3.107)

where ḃz
i,j can be obtained recursively as:

ḃz
i,i = ḃz

i (3.108a)

ḃz
i,j = Ḃz

ib
z
h,j + ḃz

h,j; i > j (3.108b)

ḃz
i,j = 0; i < j (3.108c)

in which, again, h is the parent body of i.
It is important to remark that the complete evaluation and assembly of both Rv

or Ṙv is avoided in the MBSLIM implementation. As it was presented in section
2.4.1, the mass matrix and generalized forces vector can be easily assembled without
computing these two matrices, and with regard to the point and vector derivatives
described in previous sections, these matrices are not needed in their totality, but only
a few rows of them.

92



Chapter 4

Sensitivity analysis of
unconstrained open-loop systems

In this chapter, the sensitivity analysis of the unconstrained open-loop dynamic
formulations described in chapter 2 is addressed using the direct differentiation method.
As a result, a semi-recursive and a fully-recursive forward sensitivity formulations have
been achieved. First, the general form of the semi-recursive topological sensitivity for-
mulation is introduced and then the derivatives of the mass matrix and generalized
forces vector are presented. In fully-recursive sensitivity formulations, the focus is
placed upon recursivity and the accumulation process.

Both semi-recursive and fully-recursive formulations have been differentiated con-
sidering an arbitrary selection of reference points, thus the expressions presented in
this chapter are general in this regard. In addition, each derivative involved in these
sensitivity formulations has been also particularized for the cases of RTdyn0 and
RTdyn1, delivering more direct and simplified expressions.

Special attention has been paid to the derivatives of the recursive kinematic rela-
tions, which are described for each of the joint types included in chapter 2. Moreover,
the derivatives of Cartesian coordinates have been deeply studied in order to enhance
the computational efficiency of both semi-recursive and fully-recursive sensitivity for-
mulations.

As it has been made apparent in chapter 2, semi-recursive and fully-recursive dy-
namic formulations require a series of accumulation and assembly operations that
involve products of different kinematic and dynamic magnitudes. An expression in-
volving a concatenation of products entails an explosion of terms in its derivatives
(applying the chain rule of differentiation), which have to be carefully handled and
inspected in order to avoid repetitions and maximize efficiency. In the current chapter,
differentiation is accomplished according to this criterion.

Every derivative expression included in this chapter has been analytically obtained
and then implemented and tested in the MBSLIM general purpose multibody library
[5].

93



4. Sensitivity analysis of unconstrained open-loop systems

4.1 Introduction to sensitivity analysis on joint co-

ordinates

First of all, let us consider a vector of objective functions1 ψ ∈ Ro expressed in
terms of the relative coordinates z, ż and z̈, a set of natural coordinates q, q̇, q̈ and
a set of parameters ρ ∈ Rp, being p the number of parameters of the system:

ψ =

∫ tF

t0

g (z, ż, z̈,q, q̇, q̈,ρ) dt (4.1)

wherein g ∈ Ro is a known vector of functions dependent on the parameters and the
instant values of the states.

Considering the explicit dependencies of (4.1), the gradient of the vector of objec-
tive functions takes the form:

ψ′ = ∇ψT =

∫ tF

t0

(gzz
′ + gż ż

′ + gz̈ z̈
′ + gqq

′ + gq̇q̇
′ + gq̈q̈

′ + gρ) dt (4.2)

where the derivatives of g are known, z′, ż′ and z̈′ represent the sensitivities of the
relative coordinates and q′, q̇′ and q̈′ are the sensitivities of the natural coordinates
on which the objective function depends.

Since the model is completely defined by the set of relative coordinates, any natural
coordinate (i.e. the position, velocity and acceleration of any point or vector of the
model) can be computed using relative coordinates. Therefore:

q′ =
dq

dρ
=
∂q

∂z

∂z

∂ρ
+
∂q

∂ρ
= qzz

′ + qρ (4.3a)

q̇′ =
dq̇

dρ
=
∂q̇

∂z

∂z

∂ρ
+
∂q̇

∂ż

∂ż

∂ρ
+
∂q̇

∂ρ
= q̇zz

′ + qz ż
′ + q̇ρ (4.3b)

q̈′ =
dq̈

dρ
=
∂q̈

∂z

∂z

∂ρ
+
∂q̈

∂ż

∂ż

∂ρ
+
∂q̈

∂z̈

∂z̈

∂ρ
+
∂q

∂ρ
= q̈zz

′ + 2q̇z ż
′ + qz z̈

′ + q̈ρ (4.3c)

where the following identities have been considered:

q̇ż = qz (4.4a)

q̈z̈ = qz (4.4b)

q̈ż = 2q̇z (4.4c)

Expressions (4.4a) and (4.4b) are almost straightforward, but (4.4c) needs further
explanation. The natural coordinates accelerations are the time derivative of the

1Not all of them need to be objective functions, some of them could be design or optimization
constraints for which the gradient with respect to the parameters is also needed.

94



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

velocities and the second time derivative of the positions:

q̇ (z, ż) =
d

dt
(q (z)) =

∂q

∂z
ż (4.5a)

q̈ (z, ż, z̈) =
d2

dt2
(q (z)) =

(
∂2q

∂z2
ż

)
ż +

(
∂q

∂z

)
z̈ (4.5b)

Now, differentiating (4.5a) with respect to z and (4.5b) with respect to ż:

∂q̇

∂z
=
∂2q

∂z2
ż (4.6a)

∂q̈

∂ż
= 2

∂2q

∂z2
ż (4.6b)

Equation (4.4c) is followed from (4.6b).
Another important conclusion is that q, this is, points and vectors, can depend

directly on different parameters, as the local coordinates of a point or a length of
a body, for instance, and accordingly, a set of partial derivatives with respect to ρ
will appear during the sensitivity analysis. However, the derivatives qρ, q̇ρ and q̈ρ

have known expressions based on the rigid body equations and the recursive relations
between bodies, hence their calculation is straightforward.

Once identified all the dependencies and derivatives of the natural coordinates
with respect to relative, expressions (4.3) can be substituted in (4.2), and regrouping:

ψ′ =

∫ tF

t0

(gẑz
′ + gˆ̇zż

′ + gˆ̈zz̈
′ + gρ̂) dt (4.7)

where:

gẑ = gz + gqqz + gq̇q̇z + gq̈q̈z (4.8a)

gˆ̇z = gż + gq̇qz + 2gq̈q̇z (4.8b)

gˆ̈z = gz̈ + gq̈qz (4.8c)

gρ̂ = gqqρ + gq̇q̇ρ + gq̈q̈ρ + gρ (4.8d)

It must be pointed out that all the terms appearing in (4.8) have known ex-
pressions, since the derivatives of g are known and qz , q̇z and q̈z can be computed
following the topology of the mechanism as explained in sections 3.6 and 3.7. There-
fore, in (4.7), z′, ż′ and z̈′ are the unique unknown matrices, which can be obtained
differentiating the equations of motion with respect to the set of parameters.

4.2 Forward sensitivity of semi-recursive EoM for

open-loop systems

In the sensitivity analysis of the dynamics, specially in topological models, sev-
eral different derivatives and concatenations of products appear, which can make the

95



4. Sensitivity analysis of unconstrained open-loop systems

resulting expressions difficult to understand. For the sake of clarity, a new rule of
differentiation and notation is used. Given a function f dependent on z, ż, z̈, q, q̇, q̈
and ρ, the following derivative is considered.

fx̂ =
∂f

∂q

∂q

∂x
+
∂f

∂q̇

∂q̇

∂x
+
∂f

∂q̈

∂q̈

∂x
+
∂f

∂x
= fqqx + fq̇q̇x + fq̈q̈x + fx (4.9)

being x any of the dependencies of f . This derivative involves all the derivatives of
the function f with respect to the natural coordinates as well as their derivatives with
respect to the set of variables x being considered. Thus, for instance, the equivalent
derivatives with respect to the positions, velocities and accelerations of the relative
coordinates, and the derivatives with respect to the set of parameters of this function
f will be:

fẑ = fqqz + fq̇q̇z + fq̈q̈z + fz (4.10a)

fˆ̇z = fqqż + fq̇q̇ż + fq̈q̈ż + fż = fq̇q̇ż + fq̈q̈ż + fż (4.10b)

fˆ̈z = fqqz̈ + fq̇q̇z̈ + fq̈q̈z̈ + fz̈ = fq̈q̈z̈ + fz̈ (4.10c)

fρ̂ = fqqρ + fq̇q̇ρ + fq̈q̈ρ + fρ (4.10d)

Observe that with this notation, the total derivative can be expressed as:

df

dx
= fx̂ + fẑzx + fˆ̇zżx + fˆ̈zz̈x + fρ̂ρx (4.11)

The notation introduced in (4.9) can be extended to derivatives of vectors, matrices
or tensors of any dimension. In this case, a tensor F ∈ Rn1×n2×...×nr of r dimensions
is considered. Let us define the derivative of this tensor in accordance with (4.9) as:

Fx̂ =
∂F

∂q

∂q

∂x
+
∂F

∂q̇

∂q̇

∂x
+
∂F

∂q̈

∂q̈

∂x
+
∂F

∂x
= Fqqx + Fq̇q̇x + Fq̈q̈x + Fx (4.12)

where the following tensor products appear: Fqqx = Fq ⊗r+1 qx, Fq̇q̇x = Fq̇ ⊗r+1 q̇x

and Fq̈q̈x = Fq̈ ⊗r+1 q̈x
2.

Let us start here from the compact expression of the equations of motion (2.209).
Considering a set of parameters ρ ∈ Rp determining the dynamic behavior of a system,
the effect of them in the equations of motion can be computed by differentiating
(2.209) with respect to the set of parameters:(

Md
ẑz

′ +Md
ρ̂

)
z̈ +Mdz̈′ −

(
Qd

ẑz
′ +Qd

ˆ̇z
ż′ +Qd

ρ̂

)
= 0 (4.13)

in which the following are tensor products:
(
Md

ẑz
′) z̈ =

(
Md

ẑ ⊗3 z
′)⊗2 z̈ and Md

ρ̂z̈ =

Md
ρ̂ ⊗2 z̈.
Gathering terms, (

Md
ẑz̈ +K

)
z′ +Cż′ +Mdz̈′ = Qd

ρ̂ −Md
ρ̂z̈ (4.14)

2Operator ⊗r+1 represents a tensor product of mode r + 1, i.e the product is executed on the
r + 1 dimension of the tensor.

96



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

wherein

K = −Qd
ẑ (4.15a)

C = −Qd
ˆ̇z

(4.15b)

Matrices K and C are respectively the equivalent stiffness and the damping ma-
trices of the mechanism. Similarly to subscript ẑ, the new terms with the subscript
ρ̂ gather derivatives with respect to ρ and with respect to natural coordinates.

The final expression obtained (4.14) is an ODE system, like the system of equations
from which it has been derived. Consequently, it can be solved by means of any of the
techniques used for this type of systems. In the current implementation of MBSLIM,
the system is solved using a Newmark’s family integrator, with the relative positions
sensitivities, z′, as the main variables.

The methodology used to solve the sensitivity analysis of the dynamics of a multi-
body system has to take into account the initialization process which involves the
determination of positions, velocities and accelerations of the states along with their
sensitivities at the initial instant of time. If joint coordinates are selected as degrees of
freedom in unconstrained open-loop systems, there is no need to solve any initializa-
tion problem at position and velocity levels since the values of the degrees of freedom
match the values of the coordinates vector. Accordingly, the sensitivities of the states
at position and velocity levels are equal to the sensitivities of the degrees of freedom.
Both initial accelerations and their sensitivities can be computed using the same set
of equations valid for any other instant of time, which are (2.209) for the dynamics
and (4.14) for the sensitivities.

The algorithm implemented in MBSLIM to evaluate the sensitivity of the uncon-
strained open-loop semi-recursive formulation is outlined below. For a given time
step:

1. Dynamic analysis by means of (2.209).

2. Assessment of the derivatives of masses Md
ẑ and Md

ρ̂ and forces K, C and Qd
ρ̂

with the expressions of sections 4.2.1 and 4.2.2.

3. Computation of the integrator correction terms. In the case of a Newmark’s
integrator, correction terms can be obtained from the extension of (2.223) to
sensitivities:

ˆ̇z
′
n = −

(
γ

βh
z′n +

(
γ

β
− 1

)
ż′n +

(
γ

2β
− 1

)
hz̈′n

)
(4.16a)

ˆ̈z
′
n = −

(
1

βh2
z′n +

1

βh
ż′n +

(
1

2β
− 1

)
z̈′n

)
(4.16b)

being h the time step and γ and β two parameters of the integrators of the
Newmark family. The equations of the implicit trapezoidal rule can be obtained
as a particularization of the Newmark integrator with γ = 0.5 and β = 0.25.

97



4. Sensitivity analysis of unconstrained open-loop systems

4. Composition of the sensitivity system applying the numerical integrator to
(4.14). In the case o the Newmark integrator:(

Md + γhCd + βh2
(
Md

ẑz̈ +Kd
))

z′ = βh2
(
Qd

ρ̂ −Md
ρ̂z̈ −Cdˆ̇z′ −Md ˆ̈z′

)
(4.17)

5. Solution of (4.17) for z′.

6. Numerical differentiation of velocity and acceleration sensitivities with:

ż′n+1 =
γ

βh
z′n+1 + ˆ̇z

′
n (4.18a)

z̈′n+1 =
1

βh2
z′n+1 + ˆ̈z

′
n (4.18b)

7. Evaluation of the instant value ψ̇′ (ti) of the objective function gradient in ex-
pression (4.7), using the sensitivities of the states already computed.

8. Numerical integration of the gradient. Considering the trapezoidal rule as time
integrator, the integral (4.7) can be discretized by means of:

ψ′ (ti) = ψ
′ (ti−1) +

h

2

(
ψ̇′ (ti−1) + ψ̇

′ (ti)
)

(4.19)

Behold that (4.14) constitutes a set of p systems of equations, all with the same
leading matrix. Despite the fact that the leading matrix has to be factorized only once
per time step, for a large number of parameters the direct differentiation method would
be inefficient, and the use of the adjoint variable formulations, presented in chapter 5,
is suggested. In that chapter, the adjoint method will be addressed for the sensitivity
analysis of constrained multibody systems, and the developments presented there will
be also applicable to the open-loop adjoint sensitivity equations. For the sake of
brevity and clarity, the adjoint problem will be omitted for open-loop systems.

4.2.1 Semi-recursive mass matrix derivatives

As described in section 2.4.1, masses and inertia referred to the reference point
of each body are accumulated from the tips of the mechanism to the base following
the topology of the multibody model. The result is the general mass matrix of the
mechanism, which depends on both the joint coordinates and on a set of parameters
that remain constant during the dynamic simulation (masses, inertia referred to the
local reference frame, local coordinates, etc.). Considering the implicit dependencies
of the mass matrix in a given instant of time, its derivatives with respect to the
parameters can be obtained as:

dMd

dρ
= Md

ẑz
′ +Md

ρ̂ (4.20)

98



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

Observing (2.208b), the mass matrix can be regarded as the projection of Mv onto
the joint-coordinates manifold. However, matrix products of the mass matrix by the
topological matrix R are not really accomplished since a more efficient partial accu-
mulation procedure (2.217) is employed instead. The derivative of Md with respect
to z or ρ using (4.9) can be obtained as the assembly of the derivatives of each of its
internal blocks, with the form:(

Md(i, j)
)
x̂
=
(
bvT
i

)
x̂
MΣ

i b
v
i,j + bvT

i

(
MΣ

i

)
x̂
bv
i,j + bvT

i MΣ
i

(
bv
i,j

)
x̂
; i > j, (4.21a)(

Md(i, i)
)
x̂
=
(
bvT
i

)
x̂
MΣ

i b
v
i + bvT

i

(
MΣ

i

)
x̂
bv
i + bvT

i MΣ
i

(
bv
i

)
x̂
, (4.21b)(

Md(i, j)
)
x̂
=
(
bvT
j,i

)
x̂
MΣ

i b
v
i + bvT

j,i

(
MΣ

i

)
x̂
bv
i + bvT

j,iM
Σ
i

(
bv
i

)
x̂
; i < j. (4.21c)

with(
MΣ

i

)
x̂
=
(
Mv

i +

ni
s∑

j=1

(
Bv

s
TMvΣ

s Bv
s

))
x̂
=

=
(
Mv

i

)
x̂
+

ni
s∑

s=1

((
Bv

s
T
)
x̂
MvΣ

s Bv
s +Bv

s
T
(
MvΣ

s

)
x̂
Bv

s +Bv
s
TMvΣ

s

(
Bv

s

)
x̂

)
(4.22)

being x the dependency considered (relative coordinates, z, or parameters, ρ), ni
s

is the number of children of body i (according to section 2.4.1), Bv
s ∈ R6×6 is the

transformation matrix from body s to body s− 1 defined in (2.115), and(
bv
i,i

)
x̂
=
(
bv
i

)
x̂

(4.23a)(
bv
i,j

)
x̂
=
(
Bv

i

)
x̂
bv
h,j +Bv

i

(
bv
h,j

)
x̂
; i > j (4.23b)(

bv
i,j

)
x̂
= 0; i < j (4.23c)

wherein h is the parent body of i, i.e. the preceding body in the kinematic chain (see
section 2.4.1), and the derivatives of bv

i and Bv
i with respect to relative coordinates

and parameters (the two possible dependencies of these terms), will be tackled in
sections 4.4.3 and 4.4.6 for bv

i and 4.4.8 and 4.4.11 for Bv
i respectively.

The derivative
(
Md(i, j)

)
x̂
involves a set of matrix and tensor products that need

to be computed at each time step, at each iteration and nj × nj times per iteration,
being nj the number of kinematic joints. In fact, this brings about the derivative of
Md to be one of the most time consuming terms during the sensitivity analysis. For
this reason, some simplifications should be applied.

Considering the symmetry of the general mass matrix Md, and the consequent
symmetry with respect to the first and second dimension of its derivatives, it can be
established that: {(

Md
)
x̂

}
(i, j, k) =

{(
Md
)T
x̂

}
(j, i, k) (4.24)

99



4. Sensitivity analysis of unconstrained open-loop systems

being j, i, k indices of joints. Using this relation, only (nj−1)×nj/2 terms
{(

Md
)
x̂

}
i,j,k

need to be calculated, and the rest could be directly assembled with the transpose of
the symmetric term.

From (4.21) and (4.22), it can be seen that the derivatives involved in the differ-
entiation of the mass matrix can be gathered into derivatives of recursive kinematic

relations
(
bv
i,j

)
x̂
,
(
Bv

s

)
x̂
and derivatives of elemental mass matrices. The derivative

of the recursive kinematic terms will be set forth in section 4.4, while elemental mass
matrices derivatives will be tackled here.

In a general formulation for any reference point, the elemental mass matrix of
a body can be expressed as the product of a mass matrix referred to the CoM by
a correction matrix Dv

i , as it was introduced in (2.200). Applying the chain rule

for differentiation, the tensor
(
Mv

i

)
ẑ
∈ R6×6×n , result of the application of the

differentiation rule explained in (4.9), to the elemental mass matrix expression (2.200)
with respect to the relative coordinates, can be calculated as:(

Mv
i

)
ẑ
= mi

((
DvT

i

)
ẑ
Dv

i + (Dv
i )

T
(
Dv

i

)
ẑ

)
+

[
0 0

0
(
JG
i

)
ẑ

]
(4.25)

where (
JG
i

)
ẑ
=
(
Ai

)
z
J̄G
i A

T
i +AiJ̄

G
i

(
AT

i

)
z

(4.26a)

(
Dv

i

)
ẑ
=

0 ∂r̃i
∂z

− ∂r̃iG
∂z

0 0

 (4.26b)

in which partial derivatives of rotation matrices will be described in section 4.4.1 and
partial derivatives of points with respect to joint coordinates have been unfolded in
section 3.6. Behold that, in the case of position derivatives of points and vectors, the

differentiation rule
(
ri

)
ẑ
is equivalent to

∂ri
∂z

, thus both notations will be considered

along the document according to what is more descriptive in each case.
Observe in (4.25) that some simplifications are considered, as the decomposition

of the mass matrix into mass and inertia terms, and the elimination of the derivatives
of the terms not dependent on the relative coordinates.

Considering now the differentiation with respect to the parameters of the system,

the tensor
(
Mv

i

)
ρ̂
∈ R6×6×p can be calculated as:

(
Mv

i

)
ρ̂
=
∂mi

∂ρ

(
(Dv

i )
TDv

i

)
+mi

((
DvT

i

)
ρ̂
Dv

i + (Dv
i )

T
(
Dv

i

)
ρ̂

)
+

([
0 0

0
(
JG
i

)
ρ̂

])
(4.27)

in which
(
JG
i

)
ρ̂
is determined by differentiating (2.196):(
JG
i

)
ρ̂
=
(
Ai

)
ρ
J̄G
i A

T
i +Ai

(
J̄G
i

)
ρ̂
AT

i +AiJ̄
G
i

(
AT

i

)
ρ

(4.28)

100



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

with
(
Ai

)
ρ
studied in section 4.4.2, and

(
Dv

i

)
ρ̂
can be reached by taking derivatives

on the expression of Dv
i from (2.197):

(
Dv

i

)
ρ̂
=

0 ∂r̃i
∂ρ

− ∂r̃iG
∂ρ

0 0

 (4.29)

wherein point position derivatives
∂ri
∂ρ

and
∂riG
∂ρ

will be addressed in section 4.5.7.

The evaluation of the mass matrix derivative can take different forms depending on
the set of reference points selected for the accumulation process and for the description
of the recursive kinematic relations. It should be pointed out that the mass matrix is
independent of the set of reference points selected although, since the accumulation
process relies on them, the composition of the mass matrix (and its derivatives) can
differ. Considering the derivative of the mass matrix in the sense of the RTdyn0
formulation described in 2.4.3.1, with the CoM as reference point for each body, the
following simplifications apply:

Dy
i = I (4.30a)(

Dy
i

)
ẑ
= 0 (4.30b)(

Dy
i

)
ρ̂
= 0 (4.30c)

The RTdyn1 approach, however, yields a different set of simplifications:

Bz
i = I (4.31a)(

Bz
i

)
ẑ
= 0 (4.31b)(

Bz
i

)
ρ̂
= 0 (4.31c)

Behold that the RTdyn0 approach simplifies the derivatives of each elemental mass
matrix (4.25), while the RTdyn1 version increases the efficiency of the accumulation
of (4.22). Although the simplifications delivered by the two approaches are simi-
lar, the efficient accumulation of RTdyn1 makes this approach less computationally
demanding in this context.

The need to compute the derivative of the mass matrix in a sensitivity analysis
constitutes one of biggest drawbacks of joint coordinate modeling when it is com-
pared with models based on other set of coordinates, such as natural coordinates. A
natural or fully-Cartesian coordinates model leads to a constant mass matrix [14],
thus its derivative is null with respect to the states and constant with respect to the
parameters. This fact could imply that joint coordinate modeling is less appropriate
for sensitivity analysis than natural coordinate modeling, but the reduced number of
coordinates and the efficiency of the dynamics can make this analytical sensitivity
competitive in terms of computational time.

101



4. Sensitivity analysis of unconstrained open-loop systems

4.2.2 Semi-recursive generalized forces derivatives

Taking derivatives of the generalized forces vector with respect to relative coor-
dinates or with respect to the system parameters is a particularly complex task in
semi-recursive formulations due to the number of terms involved, the variety of forces
and the fact that the elemental derivatives of each force are usually expressed in terms
of natural coordinates, and they must be transformed to relative coordinates.

First of all, the elemental force vector for each body can be decomposed in 2 terms,
one depending on each external force applied to the body and another one including
the velocity dependent forces of the body related to its inertia. Recalling expression
(2.201), the elemental force can be reformulated as:

Qv
i =

ni
f∑

j=1

Qv
i,j

(e) +Qv
i
(I) (4.32a)

Qv
i,j

(e) =

[
fj

nG
j + (r̃iG − r̃i) fj

]
(4.32b)

Qv
i
(I) =

[
−miω̃i (ω̃i (r

i
G − ri))

−ω̃iJ
G
i ωi − (r̃iG − r̃i) (miω̃i (ω̃i (r

i
G − ri)))

]
(4.32c)

being ni
f the number of external forces applied to the body i. Behold that vector

products have been substituted by matrix products with the skew-symmetric operator
(̃·) (see appendix B) in order to compact notation.

Thanks to this division, the terms related to each external force fj can be evaluated
separately from the inertial component of the elemental force, which only has to be
calculated once per iteration for each body.

Finally, the previous terms have to be assembled in order to build the vector of
generalized forces Qd:

Qd
i =RvT

i

(
Qv −MvṘvż

)
= bvT

i QvΣ
i , (4.33a)

QvΣ
i = Qv

i −Mv
id

vΣ
i +

ni
s∑

s=1

BvT
s QvΣ

s (4.33b)

where ni
s is again the number of children of body i.

4.2.2.1 Stiffness matrix K

The equivalent stiffness matrix is defined as the derivative Ki = −
(
Qd

i

)
ẑ
, deliv-

ering a measure of the variation of the forces with the variation of the position of the
mechanism.

It can be derived following the aforementioned procedure of division of the gener-

102



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

alized forces vector. Taking derivatives on (4.33a) and (4.33b):

Ki = −
(
Qd

i

)
ẑ
= bvT

i KvΣ
i −

(
bvT
i

)
ẑ
QvΣ

i , (4.34a)

KvΣ
i = −

(
QvΣ

i

)
ẑ
= Ki

v +
(
Mv

i

)
ẑ
dvΣ
i +Mv

i

(
dvΣ
i

)
ẑ
+

ni
s∑

s=1

(
BvT

s KvΣ
s −

(
BvT

s

)
ẑ
QvΣ

s

)
(4.34b)

where ni
s is again the number of children of body i. The derivative of the accumulated

kinematic term dvΣ
i involved in (4.34b) will be described in detail in section 4.4.13.

Before addressing the analytical expressions of the elemental force derivatives in-
volved in (4.34b), it is convenient to introduce the derivatives of the position and
velocity of a point and the angular velocity. The derivative of the position and veloc-
ity of a point and the derivative of the angular velocity of a body can be calculated
making use of the recursive relations presented in (2.204). Decomposing the grouped
term V into linear and angular velocities and particularizing it to a body i:

Vi =

[
ṙvi
ωi

]
= Rv

i ż (4.35)

and hence:

ṙvi =
[
I 0

]
Rv

i ż (4.36a)

ωi =
[
0 I

]
Rv

i ż (4.36b)

Using (4.36b), the derivatives of the angular velocity with respect to the relative
coordinates in positions, can be easily obtained as:(

ωi

)
ẑ
=
[
0 I

] (
Rv

i

)
ẑ
ż (4.37)

Developing and expanding (4.37) (see appendix A), the final expression can be
highly simplified avoiding the calculation of tensors of order 3:(

ωi

)
ẑ
=
[
0 I

] (
Rv

i

)
ẑ
ż =

[
0 I

]
Ṙv

i −
[
0 ω̃i

]
Rv

i (4.38)

Observe that expression(4.38) is valid for both the RTdyn0 and RTdyn1 EoM
considering the corresponding Ry

i and Ṙy
i , or R

z
i and Ṙz

i matrices instead of Rv
i and

Ṙv
i . Behold also that

∂Rv
i

∂z
ż ̸= Ṙv

i . In the appendix A, the development of this

derivative is accomplished.
Besides, the expressions for the derivatives of points and vectors considered in the

current development are the ones already introduced in section 3.6.
The definition of a force is usually addressed in terms of positions and velocities

of points, vectors, angles and distances. The two latest entities can be assimilated

103



4. Sensitivity analysis of unconstrained open-loop systems

to joint-coordinates, but points and vectors require a special treatment, this is, a
conversion to joint coordinates.

In order to simplify notation, let us first consider the derivative of a force and
a torque with respect to the joint-coordinates vector by means of the differentiation
rule (4.9): (

fj

)
ẑ
=
∂fj
∂q

qz +
∂fj
∂q̇

q̇z +
∂fj
∂z

(4.39a)(
fj

)
ˆ̇z
=
∂fj
∂q̇

qz +
∂fj
∂ż

(4.39b)(
nG
j

)
ẑ
=
∂nG

j

∂q
qz +

∂nG
j

∂q̇
q̇z +

∂nG
j

∂z
(4.39c)(

nG
j

)
ˆ̇z
=
∂nG

j

∂q̇
qz +

∂nG
j

∂ż
(4.39d)

where q and q̇ represent positions and velocities of the points and vectors in which
force fj depends. Behold that derivatives with respect to joint coordinates at position
level involve the derivatives of the force with respect to velocities of points and vectors,

whereas the derivative
(
fj

)
ˆ̇z
is more direct.

Once defined the elemental derivatives of all the terms appearing in (4.32), the
derivative ofQv

i with respect to z can be addressed. For the brevity, some intermediate
operations are eliminated, and only the simplified result is presented.

Ki
v = −

(
Qv

i

)
ẑ
=

ni
f∑

j=1

Kv
i,j

(e) +Kv
i
(I) (4.40a)

Kv
i,j

(e) =

 −
(
fj

)
ẑ

f̃j

([
I r̃i − r̃j

]
Rv

i −
∂ri
∂z

)
−
(
nG
j

)
ẑ
+
(
r̃i − r̃j

) (
fj

)
ẑ

 (4.40b)

Kv
i
(I) =

 tẑ

(r̃iG − r̃i) tẑ − t̃

([
I r̃i − r̃iG

]
Rv

i −
∂ri
∂z

)
+

[
0(

ω̃iJ
G
i − J̃G

i ωi

)(
ωi

)
ẑ
+ ω̃i

(
JG
i

)
ẑ
ωi

] (4.40c)

where

t = miω̃i

(
ω̃i

(
riG − ri

))
(4.41a)

tẑ = miω̃iω̃i

([
I r̃i − r̃iG

]
Rv

i −
∂ri
∂z

)
−mi

(
h̃− ω̃i

(
r̃i − r̃iG

))(
ωi

)
ẑ

(4.41b)

h = ω̃i

(
riG − ri

)
(4.41c)

104



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

Once calculated the elemental stiffness matrices for each body, they have to be
assembled following the same scheme of the dynamics, already presented in (4.33a)
and (4.33b). In the previous expressions, all the force-dependent terms are known,

and the derivatives of the recursive kinematic terms
(
bv
i

)
ẑ
,
(
BvT

s

)
ẑ
and

(
dvΣ
i

)
ẑ
will

be described in detail in sections 4.4.3, 4.4.8 and 4.4.13, respectively. The stiffness
evaluation proposed involves elemental mass matrix derivatives, which could entail a
repetition of calculations. Consequently, efficiency could be improved with a storage
and reuse of these terms.

The stiffness matrix is particularly time demanding in semi-recursive methods.
Similarly to the evaluation of the generalized forces vector, the particular versions
RTdyn0 and RTdyn1 encompass a series of simplifications that imply a reduction in
the stiffness matrix computational expense. First, let us study the RTdyn0 approach.
As presented in section 2.4.3.1, the composition of the elemental generalized forces
vector has the simplest possible form (2.249), thus the elemental stiffness matrix for
each body becomes:

Ki
y = −

(
Qd

i

)
ẑ
=

ni
f∑

j=1

Ky
i,j

(e) +Ky
i
(I) (4.42a)

Ky
i,j

(e) =

 −
(
fj

)
ẑ

f̃j
[
0 r̃iG − r̃j

]
Ry

i −
(
nG
j

)
ẑ
+
(
r̃iG − r̃j

) (
fj

)
ẑ

 (4.42b)

Ky
i
(I) =

[
0(

ω̃iJ
G
i − J̃G

i ωi

)(
ωi

)
ẑ
+ ω̃i

(
JG
i

)
ẑ
ωi

]
(4.42c)

Comparing (4.42) and (4.40), a significant reduction in the computational cost of
the inertial stiffness term can be observed. The assembly equations of the general
version of the stiffness matrix (4.34a) and (4.34b) are analog to the RTdyn0 version
described by:

Ki = byT
i KyΣ

i −
(
bvT
i

)
ẑ
QyΣ

i , (4.43a)

KyΣ
i = Ki

y +
(
My

i

)
ẑ
dyΣ
i +My

i

(
dyΣ
i

)
ẑ
+

ni
s∑

s=1

(
ByT

s KyΣ
s −

(
ByT

s

)
ẑ
QyΣ

s

)
(4.43b)

being ni
s is the number of children of body i.

In the RTdyn1 version, the stiffness matrix assessment is slightly different due to
the particular type of point that is used as reference point. A reference point of a body
coincident with the origin of coordinates at each time step has a series of properties:

� The position ri0 in the global reference frame is fixed.

� The position r̄i0 in the local reference frame of body i varies over time.

105



4. Sensitivity analysis of unconstrained open-loop systems

� Any derivative of the global position is always null.

� The assumptions for point derivatives presented in section 3.6 are invalid for
this point type:

∂ri0
∂z

̸= ∂ṙi0
∂ż

(4.44)

Taking derivatives on (2.261) following the scheme of division into external and
inertial components of the elemental generalized forces vector introduced in (4.32),
the elemental stiffness expressions for RTdyn1 become:

Ki
z = −

(
Qd
)
ẑ
=

ni
f∑

j=1

Kz
i,j

(e) +Kz
i
(I) (4.45a)

Kz
i,j

(e) =

 −
(
fj

)
ẑ

f̃j
[
I −r̃j

]
Rz

i −
(
nG
j

)
ẑ
− r̃j

(
fj

)
ẑ

 (4.45b)

Kz
i
(I) =

[
tẑ

r̃iGtẑ + t̃
[
−I r̃iG

]
Rz

i +
(
ω̃iJ

G
i − J̃G

i ωi

)(
ωi

)
ẑ
+ ω̃i

(
JG
i

)
ẑ
ωi

]
(4.45c)

where

t = miω̃i

(
ω̃ir

i
G

)
(4.46a)

tẑ = miω̃iω̃i

[
I −r̃iG

]
Rv

i −mi

( ˜̃ωiriG + ω̃ir̃
i
G

)(
ωi

)
ẑ

(4.46b)

The application of the relation Bz
i = I, derived from the definition of the RTdyn1

approach, to the assembly equations of the stiffness matrix (4.34a) and (4.34b) brings
about important simplifications:

Ki = bzT
i KzΣ

i −
(
bzT
i

)
ẑ
QzΣ

i , (4.47a)

KzΣ
i = Ki

z +
(
Mz

i

)
ẑ
dzΣ
i +Mz

i

(
dzΣ
i

)
ẑ
+

ni
s∑

s=1

KzΣ
s (4.47b)

Both RTdyn0 and RTdyn1 approaches entail a series of particularizations that
allow a significant reduction in the computational expense of the stiffness matrix
evaluation comparing with the general expressions for any reference point (4.40),
(4.34a) and (4.34b).

In addition to the different expressions reached for both versions, there are a set
of forces that are worth to be considered separately: gravitational forces. For general
multibody systems with constant mass and constant gravitational acceleration, partial
derivatives of gravitational forces with respect to the position or velocity states of the
model are null. However, the momentum in the reference point generated by the

106



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

gravitational force applied in the CoM of a body can vary even though the force is
constant since the length of the arm is different. If the reference point belongs to
the body, which means that the point is fixed in the local reference frame of body i,
then the length ∥ ri − riG ∥ is constant. This is the case of RTdyn0, where even this
distance becomes 0. On the contrary, in RTdyn1 the reference point is fixed in the
global reference frame, but it changes its position in the local one, which causes that
the arm of the force increases or decreases its length when the relative coordinates in
positions change. The additional term required in RTdyn1 for gravitational forces can

be readily obtained as a particularization of (4.45) with
(
fj

)
ẑ
= 0 and

(
nG
j

)
ẑ
= 0.

4.2.2.2 Damping matrix C

The variation of the generalized forces vector with respect to joint-coordinate
velocities can be gathered in a matrix C ∈ Rn×n equivalent to the damping matrix of
structural problems. Hereinafter, for the sake of clearness, this matrix will be denoted
as damping matrix.

The evaluation of the damping matrix will be firstly described for a general semi-
recursive formulation with an arbitrary selection of reference points, and then the
particular expressions for RTdyn0 and RTdyn1 will be presented.

Let us begin with the derivative of the angular velocity with respect to joint-
coordinate velocities. Recalling the angular velocity recursive expression (4.36b), its
derivative can be immediately determined as:(

ωi

)
ˆ̇z
=
[
0 I

]
Rv

i (4.48)

Besides, recalling the partial derivatives of forces and torques (4.39) and taking
derivatives on (4.32) with respect to joint-coordinate velocities:

Ci
v = −

(
Qd

i

)
ˆ̇z
=

ni
f∑

j=1

Cv
i,j

(e) +Cv
i
(I) (4.49a)

Cv
i,j

(e) = −
[

I
r̃j − r̃i

](
fj

)
ẑ
−

[
0(

nG
j

)
ẑ

]
(4.49b)

Cv
i
(I) =

0 −mi

(
h̃− ω̃i (r̃i − r̃iG)

)
0 ω̃iJ

G
i − J̃G

i ωi−mi (r̃
i
G − r̃i)

(
h̃− ω̃i (r̃i − r̃iG)

)Rv
i (4.49c)

with

h = ω̃i

(
riG − ri

)
(4.50)

The elemental damping matrices of each body have now to be assembled in order to
build the damping matrix of the mechanism. Recalling the scheme of forces assembly

107



4. Sensitivity analysis of unconstrained open-loop systems

introduced in (4.33a) and (4.33b), the general damping matrix is obtained as:

Ci = bvT
i CvΣ

i , (4.51a)

CvΣ
i = Ci

v +Mv
i

(
dvΣ
i

)
ˆ̇z
+

ni
s∑

s=1

BvT
s CvΣ

s (4.51b)

being ni
s the number of children of body i. In this case, the unique recursive kinematic

derivative required is
(
dvΣ
i

)
ˆ̇z
, which will be introduced in section 4.4.14.

Equations (4.49), (4.51a) and (4.51b) describe the damping matrix of the equations
of motion of a system composed through a semi-recursive method with an arbitrary
selection of reference points. However, efficiency can be improved for the two specific
formulations reviewed in this document, RTdyn0 and RTdyn1.

Considering the CoM of each body as reference point (RTdyn0), (4.49) becomes:

Ci
y = −

(
Qd

i

)
ˆ̇z
=

ni
f∑

j=1

Cy
i,j

(e) +Cy
i
(I) (4.52a)

Cy
i,j

(e) = −
[

I
r̃j − r̃iG

](
fj

)
ẑ
−

[
0(

nG
j

)
ẑ

]
(4.52b)

Cy
i
(I) =

[
0 0

0 ω̃iJ
G
i − J̃G

i ωi

]
Ry

i (4.52c)

Analogously to what happens with the stiffness matrix, in RTdyn0 the resulting
elemental damping matrices related to the inertial terms are notably simplified. The
assembly procedure for this specific approach takes the form:

Ci = byT
i CyΣ

i , (4.53a)

CyΣ
i = Ci

y +My
i

(
dyΣ
i

)
ˆ̇z
+

ni
s∑

s=1

ByT
s CyΣ

s (4.53b)

in which ni
s denotes the number of children of body i.

In the RTdyn1 approach, the elemental damping matrices take the form:

Ci
z = −

(
Qd

i

)
ˆ̇z
=

ni
f∑

j=1

Cz
i,j

(e) +Cz
i
(I) (4.54a)

Cz
i,j

(e) = −
[
I
r̃j

](
fj

)
ẑ
−

[
0(

nG
j

)
ẑ

]
(4.54b)

Cz
i
(I) =

0 −mi

( ˜̃ωiriG + ω̃ir̃
i
G

)
0 ω̃iJ

G
i − J̃G

i ωi−mir̃
i
G

( ˜̃ωiriG + ω̃ir̃
i
G

)Rz
i (4.54c)

108



4.2. Forward sensitivity of semi-recursive EoM for open-loop systems

In this case, the assembly is also simplified:

Ci = bzT
i CzΣ

i , (4.55a)

CzΣ
i = Ci

z +Mz
i

(
dzΣ
i

)
ˆ̇z
+

ni
s∑

s=1

CzΣ
s (4.55b)

The enhancement in the computational effort required to evaluate the damping
matrix in RTdyn0 or RTdyn1 approaches highly depends on the model, and it is diffi-
cult to determine which approach is more efficient for any multibody model. Despite
the important simplification on the assembly process brought by the RTdyn1 formu-
lation, its higher complexity in the evaluation of elemental damping matrices referred
to each body could entail a loss of efficiency compared to the RTdyn0 approach. In
general, numerical results have proved both RTdyn0 and RTdyn1 versions to yield
similar results in terms of computational time for damping matrix assessments, being
the RTdyn0 accumulation method slightly more efficient.

4.2.2.3 Evaluation of Qd
ρ̂

Partial derivatives with respect to any set of parameters are conditioned by the
type of parameters and the type of forces considered. Moreover, the computational
effort is strongly affected by the type of parameters selected, depending on whether
they affect or not the topology of the mechanism, this is, the sequence, type and
definition of each joint.

If a parameter is selected such as it only affects a coefficient of a force, for exam-
ple, only the partial derivative of this force and its assembly will be needed for the
evaluation of Qd

ρ̂. The opposite case consists in the selection of a local coordinate of
a point or vector as parameter defining one joint, in which case the evaluation of the
derivatives of each one of the points and vectors used to compute each force will be
required , but also the derivatives of the assembly itself, involving the accumulation of
derivatives of the joint-dependent terms, such as bv

i or B
v
i , for instance. Furthermore,

the derivatives of the inertial terms of the forces will be required as well, entailing an
important computational effort, specially in RTdyn1 formulations.

Similarly to (4.39), notation can be clarified by using the compact notation pre-
sented at the beginning of section 4.2. Thus, consider the derivative of a force and a
torque with respect to a parameters array ρ ∈ Rp by means of the differentiation rule
(4.9):

(
fj

)
ρ̂
=
∂fj
∂q

qρ +
∂fj
∂q̇

q̇ρ +
∂fj
∂ρ

(4.56a)(
nG
j

)
ρ̂
=
∂nG

j

∂q
qρ +

∂nG
j

∂q̇
q̇ρ +

∂nG
j

∂ρ
(4.56b)

109



4. Sensitivity analysis of unconstrained open-loop systems

Applying now the rule of differentiation defined in (4.9) to the generalized forces
vector expressions (4.32):

(
Qd

i

)
ρ̂
=

ni
f∑

j=1

(
Qv

i,j
(e)
)
ρ̂
+
(
Qv

i
(I)
)
ρ̂

(4.57a)

(
Qv

i,j
(e)
)
ρ̂
=


(
fj

)
ρ̂

f̃j

(
∂rj
∂ρ

− ∂ri
∂ρ

)
+
(
nG
j

)
ρ̂
+
(
r̃j − r̃i

) (
fj

)
ρ̂

 (4.57b)

(
Qv

i
(I)
)
ρ̂
=

 tρ̂

(r̃iG − r̃i) tρ̂ + t̃

(
∂ri
∂ρ

− ∂riG
∂ρ

)
−
(
ω̃iJ

G
i − J̃G

i ωi

)(
ωi

)
ρ̂
− ω̃i

(
JG
i

)
ρ̂
ωi


(4.57c)

where

t = −miω̃i

(
ω̃i

(
riG − ri

))
(4.58a)

tρ̂ = −miω̃iω̃i

(
∂riG
∂ρ

− ∂ri
∂ρ

)
−mi

(
h̃− ω̃i

(
r̃i − r̃iG

))(
ωi

)
ρ̂

(4.58b)

h = ω̃i

(
riG − ri

)
(4.58c)

Partial derivatives of forces can take different expressions depending on the type
of parameter or force. Nevertheless, partial derivatives of the position of points j and

i,
∂rj
∂ρ

and
∂ri
∂ρ

, with respect to the sensitivity parameters can be determined following

the topology of the system, and regarding that the unique set of parameters that can
influence the position of a point are local coordinates of points and vectors affecting
the topology or the own point definition. These cases will be studied in detail in
section 4.5.7.

Furthermore, derivative
(
JG
i

)
ρ̂
can be directly determined from (4.28), and

(
ωi

)
ρ̂

can be calculated taking derivatives on the semi-recursive expression (4.36b):(
ωi

)
ρ̂
=
[
0 I

] (
Rv

i

)
ρ̂
ż (4.59)

Regarding the composition of the topological matrixR in terms of elemental blocks
(2.212), its derivative can be directly expressed in terms of partial derivatives of the
kinematic recursive terms bv

i and Bv
i :(
bv
i,i

)
ρ̂
=
(
bv
i

)
ρ̂

(4.60a)(
bv
i,j

)
ρ̂
=
(
Bv

i

)
ρ̂
bv
h,j +Bv

i

(
bv
h,j

)
ρ̂
; i > j (4.60b)(

bv
i,j

)
ρ̂
= 0; i < j (4.60c)

110



4.3. Forward sensitivity of fully-recursive EoM for open-loop systems

in which derivatives
(
bv
i

)
ρ̂
and

(
Bv

i

)
ρ̂
will be respectively described in sections 4.4.6

and 4.4.11.
Following the assembly of the dynamics, presented in (4.33a) and (4.33b), the

complete derivative of the generalized forces vector takes the form:(
Qd

i

)
ρ̂
= bvT

i

(
QvΣ

i

)
ρ̂
+
(
bvT
i

)
ρ̂
QvΣ

i , (4.61a)

(
QvΣ

i

)
ρ̂
=
(
Qv

i

)
ρ̂
+
(
Mv

i

)
ρ̂
dvΣ
i +Mv

i

(
dvΣ
i

)
ρ̂
+

ni
s∑

s=1

(
BvT

s

(
QvΣ

s

)
ρ̂
+
(
BvT

s

)
ρ̂
QvΣ

s

)
(4.61b)

Comparing this derivative with the expressions of the stiffness matrix, several
analogies can be observed, both in the elemental derivatives and in the assembly.
Harnessing these similarities, the structure of computation of the stiffness matrix can
be easily extended or reused to compute the derivatives with respect to any parameter,
and therefore, the implementation effort can be significantly reduced.

Due to the wide range of types of parameters that could determine a dynamic sim-
ulation, a semi-analytical approach may be convenient in some cases, i.e. to compute
derivatives with respect to parameters by means of numerical methods or automatic
differentiation. In the MBSLIM implementation, analytical methods are the preferred
option and only a few derivatives related to splines have been programmed with au-
tomatic differentiation.

4.3 Forward sensitivity of fully-recursive EoM for

open-loop systems

The fully-recursive approach for the dynamics solution of open-loop systems with
no additional constraints is specially well suited for large concatenations of bodies in
a single chain. In that case, if the semi-recursive accumulation is used, the result-
ing mass matrix will be fully dense, and with a rank equal to the number of joint
coordinates. On the contrary, the fully-recursive approach dodges the assembly and
factorization of this matrix by the recursive accumulation and dynamic evaluation of
each joint separately.

The advantages of this formulation of the EoM can be extended to sensitivity
analysis, where there is no need to differentiate matrices of the size of the system, but
only elemental terms related to each body and each joint.

The general expressions (2.247) including the possibility of forces applied directly
on joint coordinates are used for the development of the sensitivity expressions. The
application of the direct differentiation method to (2.247) has to follow the dynamics
solution procedure. Remember that recursive dynamic formulations involve three
stages (see stages 2 to 4 of flowchart 2.12), one related to the forward evaluation of
the kinematics, a second stage for the backward accumulation of masses and forces,
and a third one for the forward solution of the equations of motion. In this case, the

111



4. Sensitivity analysis of unconstrained open-loop systems

kinematic derivatives do not have to be assembled recursively but on demand, and
only the second and third stages have to be differentiated. Therefore, the forward
fully-recursive sensitivity formulation can be divided in 2 phases:

1. Accumulation of forces and masses, from the leaves to the root.

Firstly, the masses and forces must be accumulated from the leaves of the mech-
anism to the base, incorporating the effects of these forces and inertia in each of
the bodies of the kinematic chain. Taking derivatives in (2.247), the following
accumulation of sensitivities is obtained:(

M̂v
i−1

)
ẑ
=
(
Mv

i−1

)
ẑ
+
(
BvT

i

)
ẑ
KiM̂

v
iB

v
i +BvT

i

(
Ki

)
ẑ
M̂v

iB
v
i

+BvT
i Ki

(
M̂v

i

)
ẑ
Bv

i +BvT
i KiM̂

v
i

(
Bv

i

)
ẑ

(4.62a)

(
Q̂v

i−1

)
ẑ
=
(
Qv

i−1

)
ẑ
+
(
BvT

i

)
ẑ

(
Ki

(
Q̂v

i − M̂v
id

v
i

)
+Kz

iQ
z
i

)
+BvT

i

(
Ki

)
ẑ

(
Q̂v

i − M̂v
id

v
i

)
+BvT

i

(
Kz

i

)
ẑ
Qz

i

+BvT
i

(
Ki

((
Q̂v

i

)
ẑ
−
(
M̂v

i

)
ẑ
dv
i − M̂v

i

(
dv
i

)
ẑ

)
+Kz

i

(
Qz

i

)
ẑ

) (4.62b)

being the derivatives of the accumulation matrices:(
Ki

)
ẑ
=
(
Kz

i

)
ẑ
bvT
i +Kz

i

(
bvT
i

)
ẑ

(4.63a)(
Kz

i

)
ẑ
= −

(
M̂v

i

)
ẑ
bv
i

[
bvT
i M̂v

ib
v
i

]−1

− M̂v
i

(
bv
i

)
ẑ

[
bvT
i M̂v

ib
v
i

]−1

−M̂v
ib

v
i

(
−
[
bvT
i M̂v

ib
v
i

]−1 {(
bvT
i

)
ẑ
M̂v

ib
v
i + bvT

i

(
M̂v

i

)
ẑ
bv
i

+bvT
i M̂v

i

(
bv
i

)
ẑ

}[
bvT
i M̂v

ib
v
i

]−1
) (4.63b)

Regrouping terms on (4.63b) and identifying recursive expressions from (2.247),(
Kz

i

)
ẑ
can be reformulated as:

(
Kz

i

)
ẑ
= −

{
Kz

i

(
bvT
i

)
ẑ
M̂v

ib
v
i +Ki

(
M̂v

i

)
ẑ
bv
i +KiM̂

v
i

(
bv
i

)
ẑ

}[
bvT
i M̂v

ib
v
i

]−1

(4.64)

The derivatives with respect to velocities yield:(
M̂v

i−1

)
ˆ̇z
= 0 (4.65a)(

Q̂v
i−1

)
ˆ̇z
=
(
Qv

i−1

)
ˆ̇z
+BvT

i

(
Ki

((
Q̂v

i

)
ˆ̇z
− M̂v

i

(
dv
i

)
ˆ̇z

)
+Kz

i

(
Qz

i

)
ˆ̇z

)
(4.65b)(

Ki

)
ˆ̇z
= 0 (4.65c)

112



4.3. Forward sensitivity of fully-recursive EoM for open-loop systems

The accumulated masses and forces are independent of the accelerations of the
states, so these derivatives are always zero.

Observe that all the terms are presented directly after differentiation (except(
Kz

i

)
ẑ
in (4.64)), but the expressions can be further simplified regarding the

symmetry and the internal structure of the matrices, and also by grouping and
reusing terms.

Considering that since a parameter could be any mass, inertia, local coordinate
or any force coefficient, the derivative of the accumulated masses and forces with
respect to them can be obtained as:(

M̂v
i−1

)
ρ̂
=
(
Mv

i−1

)
ρ̂
+
(
BvT

i

)
ρ̂
KiM̂

v
iB

v
i +BvT

i

(
Ki

)
ρ̂
M̂v

iB
v
i

+BvT
i Ki

(
M̂v

i

)
ρ̂
Bv

i +BvT
i KiM̂

v
i

(
Bv

i

)
ρ̂

(4.66a)

(
Q̂v

i−1

)
ρ̂
=
(
Qv

i−1

)
ρ̂
+
(
BvT

i

)
ρ̂

(
Ki

(
Q̂v

i − M̂v
id

v
i

)
+Kz

iQ
z
i

)
+BvT

i

(
Ki

)
ρ̂

(
Q̂v

i − M̂v
id

v
i

)
+BvT

i

(
Kz

i

)
ρ̂
Qz

i

+BvT
i

(
Ki

((
Q̂v

i

)
ρ̂
−
(
M̂v

i

)
ρ̂
dv
i − M̂v

i

(
dv
i

)
ρ̂

)
+Kz

i

(
Qz

i

)
ρ̂

) (4.66b)

wherein the derivatives of the accumulation matrices take the form:(
Ki

)
ρ̂
=
(
Kz

i

)
ρ̂
bvT
i +Kz

i

(
bvT
i

)
ρ̂

(4.67a)(
Kz

i

)
ρ̂
= −

(
M̂v

i

)
ρ̂
bv
i

[
bvT
i M̂v

ib
v
i

]−1

− M̂v
i

(
bv
i

)
ρ̂

[
bvT
i M̂v

ib
v
i

]−1

−M̂v
ib

v
i

(
−
[
bvT
i M̂v

ib
v
i

]−1
{(

bvT
i

)
ρ̂
M̂v

ib
v
i + bvT

i

(
M̂v

i

)
ρ̂
bv
i

+bvT
i M̂v

i

(
bv
i

)
ρ̂

}[
bvT
i M̂v

ib
v
i

]−1
) (4.67b)

Analogously to (4.64),
(
Kz

i

)
ρ̂
can be reformulated as:

(
Kz

i

)
ẑ
= −

{
Kz

i

(
bvT
i

)
ρ̂
M̂v

ib
v
i +Ki

(
M̂v

i

)
ρ̂
bv
i +KiM̂

v
i

(
bv
i

)
ρ̂

}[
bvT
i M̂v

ib
v
i

]−1

(4.68)

Observe that several matrix and tensor products appear, but most of them can
be easily simplified looking to the expressions of the individual derivative of each
elemental term. Similarly, the same terms are recalled in different expressions,
so the derivatives can be calculated once and then stored. Other simplification
consists in the calculation of the derivative of any symmetric matrix by only
evaluating and assembling the terms of the main diagonal and one of the superior
or inferior triangular part of the resulting tensor.

113



4. Sensitivity analysis of unconstrained open-loop systems

2. Solution of the sensitivities, from the root to the leaves.

For the sake of clarity, let us transform (2.247e):

z̈i =
[
bvT
i M̂v

ib
v
i

]−1

Hi (4.69a)

Hi = bvT
i

[
Q̂v

i − M̂v
i

(
Bv

i V̇i−1 + dv
i

)]
+Qz

i (4.69b)

Taking derivatives with respect to ρ, and using equation (4.11):

z̈′i =
(
z̈i

)
ẑ
z′ +

(
z̈i

)
ˆ̇z
ż′ +

(
z̈i

)
ˆ̈z
z̈′ +

(
z̈i

)
ρ̂

(4.70)

In (4.70), the terms
(
z̈i

)
ẑ
,
(
z̈i

)
ˆ̇z
and

(
z̈i

)
ˆ̈z
measure the variation of the accel-

eration of the joint i with the changes in positions, velocities and accelerations
in the rest of the coordinates of the model. These derivatives can be calculated
from (4.69) as:(

z̈i

)
ẑ
=
([

bvT
i M̂v

ib
v
i

]−1)
ẑ
Hi +

[
bvT
i M̂v

ib
v
i

]−1 (
Hi

)
ẑ

(4.71a)

(
z̈i

)
ˆ̇z
=
[
bvT
i M̂v

ib
v
i

]−1 (
Hi

)
ˆ̇z

(4.71b)(
z̈i

)
ˆ̈z
=
[
bvT
i M̂v

ib
v
i

]−1 (
Hi

)
ˆ̈z

(4.71c)(
z̈i

)
ρ̂
=
([

bvT
i M̂v

ib
v
i

]−1)
ρ̂
Hi +

[
bvT
i M̂v

ib
v
i

]−1 (
Hi

)
ρ̂

(4.71d)

Observe that although this sensitivity is obtained from a fully-recursive formu-
lation, the dependencies now are more mixed and linked, so in the calculation
of each of the derivatives above, the derivatives with respect to all the relative
coordinates must be considered, and not only the ones associated to each joint.

The new derivatives of Hi introduced in (4.71) have the following expressions:(
Hi

)
ẑ
=
(
bvT
i

)
ẑ

[
Q̂v

i − M̂v
i

(
Bv

i V̇i−1 + dv
i

)]
+
(
Qz

i

)
ẑ
+

bvT
i

[(
Q̂v

i

)
ẑ
−
(
M̂v

i

)
ẑ

(
Bv

i V̇i−1 + dv
i

)
−M̂v

i

((
Bv

i

)
ẑ
V̇i−1 +Bv

i

(
V̇i−1

)
ẑ
+
(
dv
i

)
ẑ

)] (4.72a)

(
Hi

)
ˆ̇z
= bvT

i

[(
Q̂v

i

)
ˆ̇z
− M̂v

i

(
dv
i

)
ˆ̇z

]
+
(
Qz

i

)
ˆ̇z

(4.72b)(
Hi

)
ˆ̈z
= −bvT

i M̂v
iB

v
i

(
V̇i−1

)
ˆ̈z

(4.72c)

114



4.3. Forward sensitivity of fully-recursive EoM for open-loop systems(
Hi

)
ρ̂
=
(
bvT
i

)
ρ̂

[
Q̂v

i − M̂v
i

(
Bv

i V̇i−1 + dv
i

)]
+
(
Qz

i

)
ρ̂
+

bvT
i

[(
Q̂v

i

)
ρ̂
−
(
M̂v

i

)
ρ̂

(
Bv

i V̇i−1 + dv
i

)
−M̂v

i

((
Bv

i

)
ρ̂
V̇i−1 +Bv

i

(
V̇i−1

)
ρ̂
+
(
dv
i

)
ρ̂

)] (4.72d)

Observe that (4.70) can be easily solved applying a fixed point scheme in ac-
celerations, and the sensitivities of positions and velocities can be obtained by
means of a numerical integrator. Looking at the sensitivities of the accelera-

tions, the term
(
Hi

)
ˆ̈z
is zero for the derivatives with respect to the coordinates

from the joint i− 1 to the joints of the leaves of the chain.

The forward sensitivity analysis of fully-recursive formulations applied to open-
loop systems can be solved with the following algorithm, implemented in the MBSLIM
multibody library:

1. Computation of the dynamics with a fully-recursive scheme.

2. Computation of corrector terms of the integrator by means of (4.16).

3. Accumulation of derivatives of forces and masses, from the leaves to the root,
using (4.62), (4.63), (4.65) and (4.66).

4. Solution of z̈′i, of body i, using (4.70), starting from the base body.

5. Correction of the sensitivities of positions and velocities for joint i by means of
a Newmark’s family integrator:

z′n+1 = z′n + hż′n +
h2

2

{
(1− 2β) z̈′n + 2βz̈′n+1

}
(4.73a)

ż′n+1 = ż′n + h
{
(1− γ) z̈′n + γz̈′n+1

}
(4.73b)

6. Update of derivatives of V̇i.

7. Repeat step 4 to 6 until the tips of the mechanism are reached.

8. Return to step 1 if t < tfin.

The biggest drawback of the fully-recursive expressions in the dynamics relies on
the concatenation of products of 6 × 6 matrices, as Ki or M̂v

i , and this problem is
increased adding a new dimension in those matrices during the sensitivity analysis,
generating concatenations of tensor products. Some of these products can be simpli-
fied decomposing them in smaller structures, like Bv

i , but others cannot be simplified.
In this sense, the semi-recursive approach allows more simplifications during the

assembly, but large single-chain systems are still better suited to be solved with the
fully-recursive approach, for both dynamic and sensitivity problems.

115



4. Sensitivity analysis of unconstrained open-loop systems

t = t0

Initial z′, ż′ and z̈′

Predictor
- Prediction of z′, ż′ and z̈′.
- Correction terms: (2.223).

Kinematic derivatives

- Points and vectors.
- Recursive relations.

Backward accumulation of
masses and forces derivatives

Equations (4.62).

Forward solution of z̈′

- Solution of z̈ from (4.69).

Update z′ and ż′

- By means of (2.223).

error>tol

t ≤ tend

ite=ite+1

t=t+h

End

no
yes

no

yes

Figure 4.1: Flowchart for the sensitivity analysis of the fully-recursive dynamics of
open-loop systems.

4.4 Derivatives of recursive kinematic relations

One of the most significant differences between global and topological formulations
is the presence of kinematic joint relations needed for the assemblies and accumula-
tions in topological models. These magnitudes are expressed in terms of positions and
velocities of points and vectors as well as Euler parameters, which means that joint

116



4.4. Derivatives of recursive kinematic relations

related terms vary with respect to the relative coordinates and other parameters, thus
their derivatives have to be computed when a sensitivity analysis is addressed. In the
case of partial derivatives with respect to parameters, they are null unless a local
coordinate affecting the topology of the model is selected as sensitivity parameter.

Among all the recursive kinematic relations involved in the formulations described
in this work, two categories could be identified: the terms dependent on the type of
joint, and the ones whose calculation is invariant for any type of joint. Ai, b

v
i and

ḃv
i would be the terms found in the first class, whereas the second category would be

composed of Bv
i , Ḃ

v
i and dv

i .

4.4.1 Evaluation of (Ai)z

The rotation matrix is directly involved in the evaluation of different kinematic
and dynamic terms, such as in the evaluation of the global position of a point (2.1) or a
vector (2.2), in the kinematic relations of spherical joints (2.171a) (through term E) or
in the evaluation of the inertia tensor in global coordinates (2.196). Since the relative
orientation of a body varies with joint coordinates, the derivative of a rotation matrix
with respect to the relative states is explicitly required in any dynamic sensitivity
analysis.

Regarding (2.19), it can be said that the rotation matrix of a body can be cal-
culated as the product of the rotation matrix of the previous body in the kinematic
chain by a relative rotation matrix dependent on the joint governing the motion be-
tween these two bodies. Starting from this expression, the derivative of the rotation
matrix of a body can be calculated as:

(Ai)z =
∂Ai−1

∂z
Ai−1

i +Ai−1
∂Ai−1

i

∂z
(4.74)

In the previous expression, the concatenation and assembly of relative rotation ma-
trices is needed to obtain the rotation matrices of each body, and the same procedure
may be done to calculate its derivatives.

Equation (4.74) involves a concatenation and assembly of the derivatives of subse-
quent relative rotation matrices. The differentiation can be significantly simplified by
reformulating the procedure. For the sake of clearness, let us consider an open-loop
system composed of 3 bodies and the ground, with 3 joints of any kind connecting
the bodies. The rotation matrix of body 3 can be expressed as:

A3 = A2A
2
3 = A1A

1
2A

2
3 = A0

1A
1
2A

2
3 (4.75)

Considering only relative rotation matrices, the derivative of A3 with respect to z
becomes:

∂Ai

∂z
=
∂A0

1

∂z
A1

2A
2
3 +A0

1

∂A1
2

∂z
A2

3 +A0
1A

1
2

∂A2
3

∂z
(4.76)

117



4. Sensitivity analysis of unconstrained open-loop systems

Observe that (4.77) only involves derivatives of relative rotation matrices, which
are exclusively dependent on the set of coordinates describing the joint. Considering
the recursive composition of rotation matrices, (4.77) can be transformed into:

∂Ai

∂z
=
∂A0

1

∂z
AT

1A3 +A1
∂A1

2

∂z
AT

2A3 +A2
∂A2

3

∂z
AT

3A3 (4.77)

regarding that

A0
1 = A1 (4.78a)

A0
1A

1
2 = A2 (4.78b)

A1
2A

2
3 =

(
A0

1

)T
A0

1A
1
2A

2
3 = AT

1A3 (4.78c)

A2
3 = AT

2A2A
2
3 = AT

2A3 (4.78d)

AT
3A3 = I (4.78e)

Thus, from the previous example, the following expression for the derivative of
any rotation matrix with respect to relative coordinates in compact form is achieved:

(Ai)z =

(
i∑

j=1

Aj−1

∂Aj−1
j

∂z
Aj

T

)
Ai (4.79)

Observe in (4.79) that the derivatives are highly simplified since they are expressed
directly in terms of relative rotation matrices. Moreover, the relative rotation matrix
derivatives related to a particular joint with respect to any relative coordinate different
from those of the joint are all null. In this sense, the differentiation process is more
direct than (4.74).

Applying the matrix transpose properties, expression (4.79) can be reformulated
to calculate the partial derivative of the transpose of the rotation matrix:

(
AT

i

)
z
= AT

i

(
i∑

j=1

Aj

∂
(
Aj−1

j

)T
∂z

AT
j−1

)
(4.80)

Each type of joint involves a different expression for its relative rotation matrix,
thus they have to be studied separately for each joint. In the following lines, the
derivatives with respect to relative coordinates in positions are presented. In the cases
in which differentiation does not involve a particular difficulty or a reformulation, final
results will be directly introduced.

� Revolute joint

The relative rotation matrix of a revolute joint (2.20) is described by the product
of a constant matrix A1 by the rotation matrix of a single rotation of value

118



4.4. Derivatives of recursive kinematic relations

zi around the vector defining the joint. Differentiating expression (2.20) and
reusing (2.22), the following derivative is obtained:

∂Ai−1
i

∂zi
= A1

(
− sin(zi) I+ sin(zi)w̄

i
j

(
w̄i

j

)T
+ ˜̄w

i
j cos(zi)

)
(4.81)

with A1 defined in (2.21).

� Prismatic joint

Prismatic joints only allow relative translational motion and prevent relative ro-
tation. Concerning to (2.30) and (2.31), the relative rotation matrix is constant,
thus its derivative is null.

∂Ai−1
i

∂zi
= 03×3 (4.82)

� Spherical joint

The particular spherical joint modeling introduced in chapter 2 by means of
Euler parameters presents a series of issues into the differentiation process that
have to be carefully handled in order to keep consistency.

The kinematic relations for a spherical joint were reached under the assumption
of normalized Euler parameters, which means that expressions of angular ve-
locities and accelerations are subjected to this condition too. In order to keep
consistency, the rotation matrix parameterized by means of Euler parameters

p̄ =
[
e0 e1 e2 e3

]T
=
[
e0 ē

]T
, with p̄ ∈ R4 and ē ∈ R3, must be computed

subjected to the normalization constraint:

Ai−1
i = ĒḠT +

(
1− p̄Tp̄

)
ĒḠT = ĒḠT

(
2− p̄Tp̄

)
(4.83)

in which Ē and Ḡ have been defined in section 2.1.5. Behold that, as long as
the normalization constraint is fulfilled at position level, equations (4.83) and
(2.63) are identical. Considering (4.83), the derivative of the rotation matrix
takes the form:

∂Ai−1
i

∂p̄
=

(
∂Ē

∂p̄
ḠT + Ē

∂ḠT

∂p̄

)(
2− p̄Tp̄

)
+ 2ĒḠT

(
p̄T
)

(4.84)

In (4.84), partial derivatives of Ē and Ḡ are determined by:

∂Ē

∂e0
=
[
0 I

]
(4.85a)

∂Ē

∂e1
=
[
h h̃

]
; with h =

[
1 0 0

]
(4.85b)

∂Ē

∂e2
=
[
h h̃

]
; with h =

[
0 1 0

]
(4.85c)

∂Ē

∂e3
=
[
h h̃

]
; with h =

[
0 0 1

]
(4.85d)

119



4. Sensitivity analysis of unconstrained open-loop systems

∂Ḡ

∂e0
=
[
0 I

]
(4.86a)

∂Ḡ

∂e1
=
[
h −h̃

]
; with h =

[
1 0 0

]
(4.86b)

∂Ḡ

∂e2
=
[
h −h̃

]
; with h =

[
0 1 0

]
(4.86c)

∂Ḡ

∂e3
=
[
h −h̃

]
; with h =

[
0 0 1

]
(4.86d)

It should be remarked that the rotation matrix can be expressed by different
arithmetic operations of Euler parameters regarding the fulfillment of the nor-
malization condition, as demonstrated by equations (2.61) and (2.63), and each
one of these expressions would lead to different derivatives. In fact, there are
also multiple configurations of the Euler parameters that lead to exactly the
same rotation matrix since the four parameters are not independent. Conse-
quently, depending on how the Euler parameters are handled in velocity and
acceleration expressions, a different formula for the rotation matrix could be
convenient.

The particular derivative presented stemmed from several numerical experi-
ments in which several derivative identities between positions and velocities
of different dynamic and kinematic terms were verified.

� Cylindrical joint

In the cylindrical joint, only the coordinate related to the rotation around the
vector defining the joint contributes to the change the rotation matrix:

∂Ai−1
i

∂zi1
= 03×3 (4.87)

∂Ai−1
i

∂zi2
= A1

(
− sin zi2 I+ sin zi2w̄

i
j

(
w̄i

j

)T
+ ˜̄w

i
j cos zi2

)
(4.88)

� Cardan joint

The relative rotation matrix of a Cardan joint is the result of the product of
three rotation matrices, as shown in (2.40). Taking derivatives on (2.40) and
(2.41), this term takes the form:

∂Ai−1
i

∂z
=
∂A1

k1

∂z
A2A3

k2 +A1
k1A

2∂A
3
k2

∂z
(4.89)

wherein

∂A1
k1

∂zi1
= − sin zi1 I+ sin zi1w̄

i−1
j

(
w̄i−1

j

)T
+ ˜̄w

i−1
j cos zi1 (4.90)

∂A3
k2

∂zi2
= − sin zi2 I+ sin zi2w̄

i
j+1

(
w̄i

j+1

)T
+ ˜̄w

i
j+1 cos zi2 (4.91)

120



4.4. Derivatives of recursive kinematic relations

� Floating joint

The three first coordinates of the floating joint coincide with the position of the
CoM of the first body of the kinematic chain. The derivative of the rotation
matrix with respect to these is null due to the fact that the motion described
by these coordinates is only translational.

∂Ai−1
i

∂riG
= 03×3×3 (4.92)

Besides, the derivatives with respect to the Euler parameters of the floating joint
are identical to the ones presented for the spherical joint (4.84).

� Planar joint

The planar joint is internally composed of 2 prismatic and one revolute joint.
Regarding that prismatic joints prevent orientation changes, the derivatives of
the rotation matrix with respect to the two first coordinates of the joint are null.
On the other hand, the derivative with respect to the third angular coordinate
is:

∂Ai−1
i

∂zk3
= A1

(
− sin zk3 I+ sin zk3w̄

i
j

(
w̄i

j

)T
+ ˜̄w

i
j cos zk3

)
(4.93)

4.4.2 Evaluation of (Ai)ρ

The number of parameters that can explicitly affect a rotation matrix can be
reduced to the local coordinates of a point or a vector that defines the orientation of
a body or a kinematic joint. More precisely, if only vector coordinates are considered
in the definition of any relative rotation axis (as implemented in MBSLIM), then only
local coordinates of vectors will affect rotation matrices. In that case, the casuistic of
partial derivatives of a rotation matrix with respect to parameters is reduced to the
case in which a local coordinate of a vector defining a joint is defined as parameter.

Although the derivatives of each relative rotation matrix with respect to each pa-
rameter must be calculated individually, the following assembly (equivalent to (4.79))
is needed:

(Ai)ρ =

(
i∑

j=1

Aj−1

∂Aj−1
j

∂ρ
Aj

T

)
Ai (4.94)

During the assessment of each
∂Aj−1

j

∂ρ
, the constant rotation matrices involved in

the calculation of the relative ones, described in chapter 2 and which remain constant

in the calculation of
∂Aj−1

j

∂z
, must be considered and differentiated too.

The particular expressions for the partial derivative for each type of joint are omit-
ted here for the sake of brevity. They can be directly obtained by taking derivatives
on each relative rotation matrix expression in combination with equation (4.94).

121



4. Sensitivity analysis of unconstrained open-loop systems

4.4.3 Evaluation of (bv
i )ẑ

Each type of joint has different recursive kinematic expressions, but regarding the
entities used to express bv

i , some patterns can be detected and harnessed in order to
gather terms and reuse structures of computation. Basically, the derivatives of bv

i with
respect to the relative coordinates can be divided in two types: the ones exclusively
dependent on points and vectors, and the ones involving also Euler parameters.

As a means to simplify the notation and make the final expressions more clear, a
decomposition of the term bv

i is considered. Firstly, bv
i is assumed to be composed

of 2ni
j arrays bvj,k

i ∈ R3 (being ni
j the number of coordinates of joint i). With this

consideration, the term bv
i of a spherical joint, for instance, can be expressed as:

bv
i =

[
bv1,1
i bv1,2

i bv1,3
i bv1,4

i

bv2,1
i bv2,2

i bv2,3
i bv2,4

i

]
(4.95)

A second decomposition into arrays bvj
i ∈ R6 will be also considered, with each

array bvj
i being the j-th column of matrix bv

i . Observe that both definitions are
related by means of:

bvj
i =

[
bv1,j
i

bv2,j
i

]
(4.96)

Accordingly, the term bv
i of the spherical joint can be expressed with this notation

as:

bv
i =

[
bv1
i bv2

i bv3
i bv4

i

]
(4.97)

These two divisions of bv
i make possible a differentiation of arrays instead of ma-

trices and they allow to take derivatives separately on the linear part of the term
(three first rows) and on the angular part (fourth to sixth rows). The present nota-
tion intends to make the differentiation more readable and to reflect the close relation
of the term bv

i with its own derivatives.
Furthermore, it is convenient to extend the properties of the skew symmetric

matrix of a vector to the skew symmetric tensor of a matrix. The description and
properties of this operation are presented in appendix B.

For the brevity and the sake of clearness, only a few of the expressions are fully
explained, and in other cases only the final expressions are presented. First, the
expression for any reference point is described, and then the particularizations for
RTdyn0 and RTdyn1 are introduced.

� Revolute joint

Taking derivatives on the revolute joint expression of bv
i for any reference point

(2.133a), the following expression is reached:

(bv
i )ẑ =

w̃j

(
∂ri
∂z

−
∂rj
∂z

)
+
(
r̃j − r̃i

) ∂wj

∂z
∂wj

∂z

 (4.98)

122



4.4. Derivatives of recursive kinematic relations

The derivatives of global positions of points and vectors with respect to relative
coordinates introduced in section 3.6 can be now applied:

(bv
i )ẑ =

w̃j

(
∂ri
∂z

−
[
I r̃i − r̃j

]
Rv

i

)
+
(
r̃j − r̃i

) [
0 −w̃j

]
Rv

i[
0 −w̃j

]
Rv

i

 (4.99)

Note that the position of the reference point is not differentiated due to the
diverse types of points that could be selected as reference points, each one of
them with a different variation with respect to the relative coordinates. This is
evidenced in RTdyn0 and RTdyn1 semi-recursive accumulations. On the first
formulation, the reference point is fixed in the local reference frame of each body
and moves with it, hence the derivative expressions presented in 3.6 apply to this
point. The RTdyn1 version, on the contrary, uses a point which is fixed in the
global reference frame, so its global position is always constant and its derivative
is zero. The sake of the general formulation for any set of reference points is
to obtain a series of expressions that could be applied to any reference point
selection and which are universally valid for any of them. In the sensitivities,
the same philosophy is kept.

Equation (4.99) can be regrouped as:

(bv
i )ẑ =

[(
w̃j

(
−r̃i + r̃j

)
+
(
r̃j − r̃i

)
(−w̃j)

) [
0 I

]
Rv

i

−w̃j

[
0 I

]
Rv

i

]
+

w̃j

(
∂ri
∂z

−
[
I 0

]
Rv

i

)
0


(4.100)

Now, let us consider the following property of the skew symmetric matrix, with
u ∈ R3 and v ∈ R3:

ũṽ = ṽũ+
(˜̃uv) (4.101)

Applying (4.101) to (4.100):

(bv
i )ẑ =

[(
w̃j

(
−r̃i + r̃j

)
− w̃j

(
r̃j − r̃i

)
+ skew

((
r̃j − r̃i

)
(−wj)

)) [
0 I

]
Rv

i

−w̃j

[
0 I

]
Rv

i

]
+w̃j

(
∂ri
∂z

−
[
I 0

]
Rv

i

)
0

 =

[
skew

((
r̃j − r̃i

)
(−wj)

) [
0 I

]
Rv

i

−w̃j

[
0 I

]
Rv

i

]
+

w̃j

(
∂ri
∂z

−
[
I 0

]
Rv

i

)
0


(4.102)

being skew() the skew symmetric matrix of the vector between parenthesis (see
appendix B).

123



4. Sensitivity analysis of unconstrained open-loop systems

At this point, considering that ũv = −ṽu (see appendix B), equation (4.102)
takes the form:

(bv
i )ẑ =

[
skew

(
w̃j

(
rj − ri

))
−w̃j

] [
0 I

]
Rv

i +

w̃j

(
∂ri
∂z

−
[
I 0

]
Rv

i

)
0

 (4.103)

Comparing expressions (2.133a) and (4.103), the first addend of (4.103) can be
computed as the skew symmetric matrix of the linear and angular parts of bv

multiplied by a term related to the topology of the mechanism. Therefore, the
derivative of the recursive term bv with respect to the relative coordinates can
be finally expressed as:

(bv
i )ẑ =

[
b̃v1,1
i

b̃v2,1
i

] [
0 −I

]
Rv

i +

[
w̃j

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
(4.104)

The collection of terms developed in this derivative has two purposes: first, the
achievement of simple expressions dependent on the same term being differen-
tiated; and second, the separation of the derivative of the reference point from
the rest of the expression, so that it can be easily substituted. The scheme of
differentiation and grouping of terms presented here will be used in the following
types of joints.

RTdyn0: The derivative of the reference point, as it is rigidly attached to a
body, is, in this case:

∂riG
∂z

=
[
I 0

]
Ry

i (4.105)

Therefore, the derivative of by has the simplest expression:

(by
i )ẑ =

[
b̃y1,1
i

b̃y2,1
i

] [
0 −I

]
Ry

i (4.106)

RTdyn1: In this case, the derivative of the reference point global position is
null, and the final expression is slightly more complex than the RTdyn0 version:

(bz
i )ẑ =

[
b̃z1,1
i

b̃z2,1
i

] [
0 −I

]
Rz

i +

[
w̃j

0

] [
−I 0

]
Rz

i (4.107)

� Prismatic joint

This type of joint has the simplest expression for bv
i , with only a vector defining

this term, without products or sums of terms, and with the same expression for
any set of reference points. The derivative of expression (2.133a) yields:

(bv
i )ẑ =

[
ũj

0

] [
0 −I

]
Rv

i =

[
b̃v1,1
i

0

] [
0 −I

]
Rv

i (4.108)

124



4.4. Derivatives of recursive kinematic relations

Note that the expression of bv, and thus bv1,1
i too, does not include a reference

point, and consequently, equation (4.108) apply for both RTdyn0 and RTdyn1
versions, but with the corresponding topological matrix Ry or Rz.

� Cardan joint

The derivative of the term bv
i of a Cardan joint with respect to the relative

coordinates can be readily calculated from the expressions of the revolute joint,
but 3 considerations must be taken into account: first, the two vectors defining
the joint belong to different bodies; second, the point defining the joint is shared
between the two bodies of the joint; and third, the relative motions of the
two elemental revolute joints are coupled, this is, the rotation around the first
revolute joint determines the global position of the axis of the second rotation.
Let us recall (2.149):

bv
i =

[
wj ∧

(
ri − rj

)
wj+1 ∧

(
ri − rj

)
wj wj+1

]
=
[
bv1
i bv2

i

]
(4.109)

The point defining the joint, rj, is shared by the two bodies connected by the
joint, and therefore, two different expressions for its derivative are possible, using
expression (3.91):

∂rj
∂z

=
[
I r̃i−1 − r̃j

]
Rv

i−1 (4.110a)

∂rj
∂z

=
[
I r̃i − r̃j

]
Rv

i (4.110b)

Expanding terms, it could be proved that the two expressions are exactly the
same, so the selection of one or other is made only regarding a notation criterion
and with the aim of simplifying the analytical expressions. In this particular
case, the point rj is differentiated as belonging to body i due to the fact that
it appears in the expression of bi in a subtraction with the reference point ri,
contained in body i. With this consideration, the derivatives of both points are
expressed in terms Rv

i , simplifying the final expression.

Similarly to the cylindrical joint differentiation procedure, the term bi will be
divided in two parts, having each one an expression equivalent to the revolute
joint. As it was commented before, the derivative of the term related to second
revolute joint bv2

i is identical to (4.104), but the first term will be different since
the point ri and vector wj belong to different bodies.

First of all, the following relation between Rv
i and Rv

i−1, derived form the as-
sembly expressions of Rv (2.211) and (2.212), has to be introduced:

Rv
i = Bv

iR
v
i−1 + bv0

i (4.111)

where the new term bv0
i in (4.111) is a matrix of dimensions 6 × n composed

of zeros and with the term bv
i assembled in the position of joint i coordinates,

125



4. Sensitivity analysis of unconstrained open-loop systems

being n the number of joint-coordinates.

bv0
i =

[
0 ... 0 bv

i 0 ... 0
]

(4.112)

Now, taking derivatives of bv1
i considering equation (4.112) and bearing in mind

that wj belongs to the first body and the points are contained in the second
body, the following derivative is achieved:

(
bv1
i

)
ẑ
=

[
b̃v1,1
i

b̃v2,1
i

] [
0 −I

]
Rv

i−1 +

[
w̃j

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
w̃j

(
r̃i − r̃j

)
0

] [
0 −I

]
bv0
i

(4.113)

With the exposed conditions, different expressions could have been obtained,
but for the sake of clearness and uniformity, the derivative is presented with an
analog structure to the revolute joint plus a correction term.

The derivative of the second revolute joint takes the form:

(
bv2
i

)
ẑ
=

[
b̃v1,2
i

b̃v2,2
i

] [
0 −I

]
Rv

i+

[
w̃j+1

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
(4.114)

Depending on the selection of the reference points, these expressions can be
reformulated.

RTdyn0: For the case of the center of mass of each body as reference point,
the following derivatives are obtained:

(
by1
i

)
ẑ
=

[
b̃y1,1
i

b̃y2,1
i

] [
0 −I

]
Ry

i−1 +

[
w̃j

(
r̃iG − r̃j

)
0

] [
0 −I

]
by0
i (4.115)

(
by2
i

)
ẑ
=

[
b̃y1,2
i

b̃y2,2
i

] [
0 −I

]
Ry

i (4.116)

RTdyn1: The selection of the set of reference points matching the global origin
of coordinates at each instant of time yields:

(
bz1
i

)
ẑ
=

[
b̃z1,1
i

b̃z2,1
i

] [
0 −I

]
Rz

i−1+

[
w̃j

0

] [
−I 0

]
Rz

i +

[
−w̃j r̃j

0

] [
0 −I

]
bz0
i

(4.117)

(
bz2
i

)
ẑ
=

[
b̃z1,2
i

b̃z2,2
i

] [
0 −I

]
Rz

i +

[
w̃j+1

0

] [
−I 0

]
Rz

i (4.118)

126



4.4. Derivatives of recursive kinematic relations

� Cylindrical joint

The cylindrical joint can be described as the combination of a prismatic and a
revolute joint. In fact, the expression of bv

i (2.160a) can be divided into two
separated parts: one related to a relative rotation, and other to a translation.

bv
i =

[
wj wj ∧

(
ri − rj

)
0 wj

]
=
[
bv1
i bv2

i

]
(4.119)

The rotation part has the same formula as the term bv
i of the revolute joint, while

the translation component is equivalent to the term bv
i of the prismatic joint.

Therefore, since there is no coupling between rotation and translational motions,
their derivatives are identical to the ones of the mentioned joints described by
equations (4.104) and (4.108):

(
bv1
i

)
ẑ
=

[
b̃v1,1
i

0

] [
0 −I

]
Rv

i (4.120)

(
bv2
i

)
ẑ
=

[
b̃v1,2
i

b̃v2,2
i

] [
0 −I

]
Rv

i +

[
ũj

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
(4.121)

Observe that the uncoupled relative motion and the internal description of the
cylindrical joint through elemental relative and prismatis joints allow a reuse
of code in a general implementation, preventing also the inclusion of errors.
Similarly to the previous joints, the general expression can be particularized for
the two specific accumulations.

RTdyn0:

(
by1
i

)
ẑ
=

[
b̃y1,1
i

0

] [
0 −I

]
Ry

i (4.122)

(
by2
i

)
ẑ
=

[
b̃y1,2
i

b̃y2,2
i

] [
0 −I

]
Ry

i (4.123)

RTdyn1:

(
bz1
i

)
ẑ
=

[
b̃z1,1
i

0

] [
0 −I

]
Rz

i (4.124)

(
bz2
i

)
ẑ
=

[
b̃z1,2
i

b̃z2,2
i

] [
0 −I

]
Rz

i +

[
ũj

0

] [
−I 0

]
Rz

i (4.125)

127



4. Sensitivity analysis of unconstrained open-loop systems

� Spherical joint

The spherical joint is a special case among all the joints included in this work.
The term bv

i for spherical joints is defined not only as a function of points
and vectors, but also of a set of parameters measuring the angular orientation.
Furthermore, the Euler parameters used appear in bv

i through a term E, which
involves the rotation matrix of the previous body. This causes that two different
schemes of computation of the derivatives will be present in this term: on the
one hand, the differentiation of the reference point and the point defining the
joint, given by (3.91) and expressed in terms of Rv; and on the other hand,
the derivatives of the rotation matrix Ai−1, calculated by (4.79) and which are
expressed by means of partial derivatives of relative rotation matrices. This can
be seen in the general expression of the derivative of bv

i with respect to the
relative coordinates:

(bv
i )ẑ = 2

Ẽ
(
∂ri
∂z

+
[
−I r̃j − r̃i

]
Rv

i

)
+
(
r̃j − r̃i

)(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)


(4.126)

where the term
∂Ē

∂z
solely depends on the Euler parameters of the joint and Ẽ

is the skew symmetric tensor3 of matrix E. The partial derivatives of Ē with
respect to each of the Euler parameters have been described in equations (4.85).

The derivatives of revolute and prismatic joints described above have been re-
formulated so as to gather terms multiplied by the topological matrix Rv, since
any of the partial derivatives of points and vectors defining the joint can be for-
mulated as expressions involving this matrix (see (3.91)). However, in the case
of a spherical joint, the derivative of the rotation matrix (explicitly required in
the derivative of bv

i ) is not described in terms of this topological matrix, thus
the gathering of terms presented for previous joints cannot be applied here.

A different possibility for the evaluation of this derivative could be the use of
the derivative of the position of a point with respect to the relative coordinates
based on the recursive calculation of the positions of points and vectors, instead
of the expressions in velocities. To clarify this point, let us consider an open-
loop multibody system composed of 2 bodies and the ground, whose relative
motion is described by 2 spherical joints. The position of any point at the tip
of the kinematic chain can be computed as:

r2 = r0 +A1 (r̄1 − r̄0) +A2 (r̄2 − r̄1) (4.127)

3The skew symmetric tensor of a matrix is an operation equivalent to the skew symmetric matrix
of a vector. The resulting tensor is composed of the skew symmetric matrices of the columns of the
original matrix. The operation is described in appendix B.

128



4.4. Derivatives of recursive kinematic relations

being 0 and 1 the points defining the joints and 2 a point on body 2. The
derivative of point 2 with respect to the relative coordinates can be calculated
in terms of derivatives of rotation matrices as:

∂r2
∂z

=
∂A1

∂z
(r̄1 − r̄0) +

∂A2

∂z
(r̄2 − r̄1) (4.128)

Observe that this notation does not allow significant simplifications in (4.126).
Moreover, it include terms of local coordinates in the derivatives, which would
lead to more complexity in the general expressions. Those were the main reasons
for avoiding this method of differentiation and for selecting the one presented
in section 3.6 .

The derivative of the reference point can be substituted for the two specific ref-
erence point selections, producing similar expressions without meaningful sim-
plifications in any of them.

RTdyn0: Applying the derivative of the global position of the reference point
(CoM) of the RTdyn0 accumulation (3.93) to equation (4.126), the following
expression is reached:

(by
i )ẑ = 2

Ẽ
[
0 r̃j − r̃i

]
Ry

i +
(
r̃j − r̃i

)(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
 (4.129)

RTdyn1: In this accumulation, each reference point is selected as fixed in
the global reference frame (coincident with the origin of coordinates), thus the
derivative of its global position is null. This yields the following derivative of
bz
i :

(bz
i )ẑ = 2

Ẽ
[
−I r̃j − r̃i

]
Rz

i +
(
r̃j − r̃i

)(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
(
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
 (4.130)

� Floating joint

The floating joint is a very particular type of joint due to the fact that one of
the bodies is always the ground. Other peculiarities are the use of fixed vectors
to describe the three possible translations and the use of Euler parameters to
measure its angular motion. Accordingly, the part of the derivative of bv

i related
to translations is always null and the part related to the angular motion has the
same expression already obtained for the spherical joint:

(bv
i )ẑ = 2

03×3×n
˜̄E

(
∂ri
∂z

+
[
I r̃iG − r̃i

]
Rv

i

)
+ (r̃iG − r̃i)

∂Ē

∂z

03×3×n
∂Ē

∂z

 (4.131)

129



4. Sensitivity analysis of unconstrained open-loop systems

It must be remarked that the rotation matrix of the first body of the joint Ai−1

along with its derivative disappear form the expressions of the floating joint
because the first body is the ground, and its rotation matrix is considered fixed
and equal to the identity, thus its derivative with respect to relative coordinates
is null.

RTdyn0: The particular selection of the origin of the internal spherical joint in
the definition of the floating joint, coincident with the CoM of the second body
of the joint, makes the expression of bv

i particularly simple for RTdyn0, as well
as its derivative:

(by
i )ẑ = 2

03×3×n 03×4×n

03×3×n
∂Ē

∂z

 (4.132)

RTdyn1: In this case, the expression is slightly more complex than in the case
of the RTdyn0 formulation:

(bz
i )ẑ = 2

03×3×n
˜̄E
[
I r̃iG

]
Rv

i + r̃iG
∂Ē

∂z

03×3×n
∂Ē

∂z

 (4.133)

� Planar joint

The planar joint is defined by an uncoupled sequence of prismatic and revolute
joints, and therefore, (bv

i )ẑ can be built with the derivatives of these types of
joints. Let us recall equation (2.160a), and divide it in 3 parts:

bv
i =

[
uj vj wj ∧ (ri − riG)
0 0 wj

]
=
[
bv1
i bv2

i bv3
i

]
(4.134)

The derivatives are, therefore:

(
bv1
i

)
ẑ
=

[
b̃v1,1
i

0

] [
0 −I

]
Rv

i−1 (4.135)

(
bv2
i

)
ẑ
=

[
b̃v1,2
i

0

] [
0 −I

]
Rv

i−1 (4.136)

(
bv3
i

)
ẑ
=

[
b̃v1,3
i

b̃v2,3
i

] [
0 −I

]
Rv

i +

[
w̃j

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
(4.137)

130



4.4. Derivatives of recursive kinematic relations

RTdyn0: The selection of the rotation point of the revolute joint coincident
with the CoM of the second body in the definition of the planar joint simplifies
the derivative of bv

i in this formulation. Since the derivatives with respect to the
prismatic coordinates do not depend explicitly on any reference point, equations
(4.135) and (4.136) are equally valid for RTdyn0, while (4.137) becomes:

(
by3
i

)
ẑ
=

[
0

b̃y2,3
i

] [
0 −I

]
Ry

i (4.138)

Behold that the vector or zeros appearing in (4.138) comes from the particu-
lar definition of the joint, in which the point considered as the center of the
elemental revolute joint is the center of mass of the second body.

RTdyn1: Like in the case of the floating joint, the expression of this derivative
for RTdyn1 involves more terms. Expressions (4.135) and (4.136) apply also to
this formulation, while (4.137) takes the form:

(
bz3
i

)
ẑ
=

[
b̃z1,3
i

b̃z2,3
i

] [
0 −I

]
Rz

i +

[
w̃j

0

] [
−I 0

]
Rz

i (4.139)

4.4.4 Evaluation of
(
ḃv
i

)
ẑ

In general, the partial derivative of the term ḃv
i with respect to the relative coor-

dinates in positions z can be calculated as the time derivative of the expressions of
section 4.4.3:

ḃv
i =

dbv
i

dt
⇒
(
ḃv
i

)
ẑ
=

d(bv
i )ẑ

dt
(4.140)

In order to prove (4.140), let us consider separately the temporal derivative of
(bv

i )ẑ and the derivative of ḃv
i with respect to z using (4.9):

d(bv
i )ẑ

dt
=
(
(bv

i )ẑ

)
ẑ
ż (4.141a)(

ḃv
i

)
ẑ
= ((bv

i )ẑż)ẑ =
(
(bv

i )ẑ

)
ẑ
ż (4.141b)

Behold that (4.141b) and (4.141a) are exactly the same expression, thus (4.140)
is validated.

The process of taking temporal derivatives on the expressions of section 4.4.3
is almost straightforward, and accordingly, intermediate developments are omitted
hereinafter. The commented expressions of (bv

i )ẑ are formulated in terms of global
positions of points and vectors, rotation matrices, terms related to Euler parameters

131



4. Sensitivity analysis of unconstrained open-loop systems

and the topological matrix Rv. The temporal derivatives of all these entities have
been introduced in chapter 2 (velocities of points and vectors, angular velocities and
time derivatives of Euler parameters terms) and in section 3.8 (time derivative of Rv),
hence they will be directly applied on the differentiation process.

The particular expressions for RTdyn0 and RTdyn1 are listed in appendices C.1
and C.2 respectively.

� Revolute joint

The derivative
(
ḃv
i

)
ẑ
for a revolute joint, calculated as the time derivative of

equation (4.104), takes the form:

(
ḃv
i

)
ẑ
=

[
b̃v1,1
i

b̃v2,1
i

] [
0 −I

]
Ṙv

i +

[
˙̃bv1,1
i

˙̃bv2,1
i

] [
0 −I

]
Rv

i

+

[
˙̃wj

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
w̃j

0

](
∂ṙi
∂z

−
[
I 0

]
Ṙv

i

) (4.142)

� Prismatic joint

The term
(
ḃv
i

)
ẑ
for a prismatic joint can be obtained as the time derivative of

(4.108):

(
ḃv
i

)
ẑ
=

[
˙̃bv1,1
i

0

] [
0 −I

]
Rv

i +

[
b̃v1,1
i

0

] [
0 −I

]
Ṙv

i (4.143)

� Cardan joint

The derivative of ḃv
i with respect to joint coordinates for the case of a Cardan

joint, evaluated through the temporal derivatives of (4.113) and (4.114), takes
the form: (

ḃv1
i

)
ẑ
=

[
˙̃bv1,1
i

˙̃bv2,1
i

] [
0 −I

]
Rv

i−1 +

[
b̃v1,1
i

b̃v2,1
i

] [
0 −I

]
Ṙv

i−1

+

[
˙̃wj

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
w̃j

0

](
∂ṙi
∂z

−
[
I 0

]
Ṙv

i

)
+

[
˙̃wj

(
r̃i − r̃j

)
+ w̃j

(
˙̃ri − ˙̃rj

)
0

] [
0 −I

]
bv0
i +

[
w̃j

(
r̃i − r̃j

)
0

] [
0 −I

]
ḃv0
i

(4.144)

(
ḃv2
i

)
ẑ
=

[
˙̃bv1,2
i

˙̃bv2,2
i

] [
0 −I

]
Rv

i +

[
b̃v1,2
i

b̃v2,2
i

] [
0 −I

]
Ṙv

i

+

[
˙̃wj+1

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
w̃j+1

0

](
∂ṙi
∂z

−
[
I 0

]
Ṙv

i

) (4.145)

132



4.4. Derivatives of recursive kinematic relations

� Cylindrical joint

The term of
(
ḃv
i

)
ẑ
for a cylindrical can be decomposed into derivatives of the

an elemental prismatic joint (4.143) and an elemental revolute joint (4.142),
yielding: (

ḃv1
i

)
ẑ
=

[
˙̃bv1,1
i

0

] [
0 −I

]
Rv

i +

[
b̃v1,1
i

0

] [
0 −I

]
Ṙv

i (4.146)

(
ḃv2
i

)
ẑ
=

[
˙̃bv1,2
i

˙̃bv2,2
i

] [
0 −I

]
Rv

i +

[
b̃v1,2
i

b̃v2,2
i

] [
0 −I

]
Ṙv

i

+

[
˙̃uj

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
ũj

0

](
∂ṙi
∂z

−
[
I 0

]
Ṙv

i

) (4.147)

� Spherical joint

The derivatives of the spherical joint are in general the most complex and the
ones that involve more terms among all the types of joints studied in the present

work. In the following lines, the expression of
(
ḃv
i

)
ẑ
is firstly calculated as the

time derivative of (bv
i )ẑ, and then as the partial derivative of ḃv

i :

(
ḃv
i

)
ẑ
= 2

 ˙̃E

(
∂ri
∂z

+
[
−I r̃j − r̃i

]
Rv

i

)
0


+2

Ẽ(∂ṙi∂z
+
[
0 ˙̃rj − ˙̃ri

]
Rv

i +
[
−I r̃j − r̃i

]
Ṙv

i

)
0


+2

[(
r̃j − r̃i

)
I

](
Ȧi−1

∂Ē

∂z
+
∂Ȧi−1

∂z
Ē+

∂Ai−1

∂z
˙̄E

)

+2

[(
˙̃rj − ˙̃ri

)
0

](
Ai−1

∂Ē

∂z
+
∂Ai−1

∂z
Ē

)
(4.148)

Observe that the previous scheme based on the direct differentiation of (4.126)
with respect to time produces a large expression with several concatenations of
sums of matrix and tensor products. This expression can be highly simplified
if the temporal derivative ḃv

i is calculated first and then its partial derivative is
obtained. For the clarity, let us recall expression (2.172), which computes the
term ḃv

i by means of the angular velocity of the body of the joint and the term
bv
i :

ḃv
i =

[
2ω̃i

(
r̃j − r̃i

)
E

2ω̃iE

]
=

[
ω̃i 0
0 ω̃i

]
bv
i (4.149)

133



4. Sensitivity analysis of unconstrained open-loop systems

Using (4.149), the partial derivative is highly simplified:(
ḃv
i

)
ẑ
=

[
(ω̃i)ẑ 0
0 (ω̃i)ẑ

]
bv
i +

[
ω̃i 0
0 ω̃i

]
(bv

i )ẑ (4.150)

where (bv
i )ẑ has a known expression (equation (4.126)) and (ω̃i)ẑ is the skew

symmetric tensor4 of the matrix (ωi)ẑ (with the known expression (4.38)), which
can be easily calculated, stored and reused.

� Floating joint

The derivative in the case of the floating joint can be computed analogously to
the spherical joint:(

ḃv
i

)
ẑ
=

[
(ω̃i)ẑ 0
0 (ω̃i)ẑ

]
bv
i +

[
ω̃i 0
0 ω̃i

]
∂bv

i

∂z
(4.151)

Observe that in this case, the matrices and tensors have bigger dimensions, but
note also that most of the terms are null. In fact, this derivative in RTdyn0 is
completely null (see (C.8)), since the unique dependency of ḃv

i is on the velocities
of the Euler parameters defining the motion of the joint.

� Planar joint

The derivative
(
ḃv
i

)
ẑ
for the planar joint can be directly reached taking temporal

derivatives on (4.135), (4.136) and (4.137):

(
ḃv1
i

)
ẑ
=

[
˙̃bv1,1
i

0

] [
0 −I

]
Rv

i−1 +

[
b̃v1,1
i

0

] [
0 −I

]
Ṙv

i−1 (4.152)

(
ḃv2
i

)
ẑ
=

[
˙̃bv1,2
i

0

] [
0 −I

]
Rv

i−1 +

[
b̃v1,2
i

0

] [
0 −I

]
Ṙv

i−1 (4.153)

(
ḃv3
i

)
ẑ
=

[
˙̃bv1,3
i

˙̃bv2,3
i

] [
0 −I

]
Rv

i +

[
b̃v1,3
i

b̃v2,3
i

] [
0 −I

]
Ṙv

i

+

[
˙̃wj

0

](
∂ri
∂z

−
[
I 0

]
Rv

i

)
+

[
w̃j

0

](
∂ṙi
∂z

−
[
I 0

]
Ṙv

i

) (4.154)

4The skew symmetric tensor of a matrix is an operation equivalent to the skew symmetric matrix
of a vector. The resulting tensor is composed of the skew symmetric matrices of the columns of the
original matrix. The operation is described in appendix B.

134



4.4. Derivatives of recursive kinematic relations

Although the particularization to RTdyn0 and RTdyn1 accumulations is almost
straightforward, an additional difficulty emerges in RTdyn1 expressions. As com-
mented in section 3.6, derivatives of a reference point fixed in the global reference
frame are different to the ones of a point rigidly attached to a body. It has been
stated that the derivative of the global position of a RTdyn1 reference point is always
null, but let us study the derivative of its velocity.

Since the point is fixed in the global reference frame at each instant of time, but
the body to which it is associated can move, the point have a non-zero global velocity.
Regarding that the reference point moves with the body, and considering that its
global position is constant and placed at the global origin of coordinates, its velocity
can be computed as:

ṙi0 = ṙj + ω̃i

(
ri0 − rj

)
= ṙj − ω̃irj (4.155)

being j a point defined in the rigid body i.
Now, taking derivatives on (4.155) with respect to joint coordinates, the following

expression for the derivative of the velocity of RTdyn1 reference points is obtained:

∂ṙi0
∂z

=
∂ṙj
∂z

− ω̃i

∂rj
∂z

+ r̃j

(
ωi

)
ẑ

(4.156)

Since j is a point fixed in the local reference frame of body i, the expression (3.95)
and its time derivative (3.96) are valid for this point and can be substituted in (4.156).
Applying also the analytical expression of the partial derivative of the angular velocity
with respect to relative coordinates (4.38), the following expression in terms of the
topological matrix Rz is obtained:

∂ṙi0
∂z

=
[
0 ˙̃r

i

0 − ˙̃rj

]
Rz

i +
[
I −r̃j

]
Ṙz

i − ω̃i

[
I −r̃j

]
Rz

i + r̃j

([
0 I

]
Ṙz

i −
[
0 ω̃i

]
Rz

i

)
(4.157)

Using (4.155) and simplifying, the derivative of ṙi0 can be finally described by:

∂ṙi0
∂z

=
[
I 0

]
Ṙz

i − ω̃i

[
I 0

]
Rz

i (4.158)

4.4.5 Evaluation of
(
ḃv
i

)
ˆ̇z

The derivative of the term ḃv
i is required in both kinematic and dynamic problems.

Prior to any particular developments, let us declare that, in general:(
ḃv
i

)
ˆ̇z
̸= (bv

i )ẑ (4.159)

135



4. Sensitivity analysis of unconstrained open-loop systems

Let us consider for instance the case of the reference point equal to the global
origin of coordinates used in RTdyn1. In that case, as stated in section 3.6, and
more particularly, in equation (3.97), the derivative of its global velocity with respect
to joint-coordinate velocities is different to the derivative of its global position with
respect to the joint-coordinate positions.

In this regard, the unique problematic term involved in
(
ḃv
i

)
ˆ̇z
in which the relation

˙(·)ˆ̇z = (·)ẑ is not hold is related to positions and velocities of reference points.

Accordingly, in RTdyn0: (
ḃy
i

)
ˆ̇z
= (by

i )ẑ (4.160)

Behold that this is a relevant implementation issue that makes the RTdyn0 ap-
proach more attractive than the RTdyn1 approach.

In brief, since the analytical divergence between
(
ḃv
i

)
ˆ̇z
and (bv

i )ẑ can be attributed

to the selection of the reference point, then, thanks to the separation of derivatives as-
sociated to these reference points during the derivation of (bv

i )ẑ, expressions of section

4.4.3 can be reused for
(
ḃv
i

)
ˆ̇z
with an unique modification, consisting in substituting

∂ri
∂z

by
∂ṙi
∂ż

. With a few operations, the expressions of
(
ḃv
i

)
ˆ̇z
for each joint treated in

this work can be readily obtained.

For the sake of brevity, and since the application of this change is systematic, the
final expressions with the commented substitution are skipped.

The case of RTdyn1 accumulations is still tricky for this calculation. Let us evalu-
ate the derivative of the global velocity of a point coincident with the global origin of
coordinates with respect to the joint-coordinate velocities. Taking derivatives on the
velocity expression of this particular point (4.155) with respect to joint coordinates
at velocity level:

∂ṙi0
∂ż

=
∂ṙj
∂ż

+ r̃j

(
ωi

)
ˆ̇z

(4.161)

Now, applying the derivative expressions of the velocity of a point rigidly attached
to a body (3.95) and of the angular velocity (4.48) with respect to joint-coordinate
velocities, the following analytical formula is reached:

∂ṙi0
∂ż

=
[
I −r̃j

]
Rz

i + r̃j
[
0 I

]
Rz

i =
[
I 0

]
Rz

i (4.162)

Behold that (4.162) is exactly the same expression of the derivative of the RTdyn1
reference point position as if it was rigidly attached to the body, this is, equal to
(3.95) and particularized for the case in which rj = ri0.

136



4.4. Derivatives of recursive kinematic relations

4.4.6 Evaluation of (bv
i )ρ̂

In general, the parameters of any dynamic simulation can be any of the constants
or coefficients affecting the dynamic response of the system. Depending on the type
of parameter selected, the implications in the analytical derivatives are different, ones
affecting only the elemental computation of masses and forces with respect to each
body, others related to a group of constraints, and others affecting the whole topology
of the mechanism, and therefore, the assembly and accumulation processes.

The kinematic recursive expressions relating the motion between bodies are kine-
matic expressions created by means of geometrical considerations. Therefore, the
term bv

i as well as the rest of the recursive terms ḃv
i , B

v
i , Ḃ

v
i and dv

i are exclusively
affected by geometrical considerations, which can be reduced to:

� A local coordinate of a point in the local reference frame of a body.

� A local coordinate of a vector in the local reference frame of a body.

The term (bv
i )ρ̂ can be obtained for any of the kinematic joint types described

in the present document by means of a three stage process: first, derivatives can be
taken with respect to the points and vectors that define the joint (Euler parameters
are not considered as sensitivity analysis parameters because they are variables of
the problem); the second stage consists in computing the derivative of the global
coordinates of the point or vector with respect to the parameters. Third, the derivative
of bv

i can be evaluated applying the chain rule of differentiation.

The first part of the process, consisting in taking derivatives with respect to global
coordinates of points and vectors is skipped here since the differentiation is immediate
and no significant simplifications can be achieved. The second stage is valid for any
point and vector of the model belonging to a body, and will be explained in detail in
section 4.5.7.

The decomposition of the derivation process is primarily used because of the ubiq-
uitous presence of the global coordinates of points and vectors along the assembly
of forces, masses and constraints, as well as to avoid the generation of new different
expressions for every new term involving qρ.

The derivative of the recursive terms of the revolute joint with respect to the local
coordinates of a point k of a body l is given as an example of this computation:

(bv
i )ρ̂ =

w̃j

(
∂ri
∂r̄lk

−
∂rj
∂r̄lk

)
+
(
r̃j − r̃i

) ∂wj

∂r̄lk
∂wj

∂r̄lk

 (4.163)

in which derivatives
∂ri
∂r̄lk

and
∂wj

∂r̄lk
will be addressed in section 4.5.7.

137



4. Sensitivity analysis of unconstrained open-loop systems

4.4.7 Evaluation of
(
ḃv
i

)
ρ̂

Analogously to (bv
i )ρ̂, the derivative

(
ḃv
i

)
ρ̂
can be executed in a two stage process:

first, the derivatives with respect to positions and velocities of the points and vectors
defining the joint can be computed; secondly, the partial derivatives of these positions
and velocities with respect to the parameters of the system can be evaluated; and in

third place,
(
ḃv
i

)
ρ̂
can be obtained applying the chain rule of differentiation.

For the example case of the revolute joint presented in section 4.4.6,
(
ḃv
i

)
ρ̂
be-

comes:

(
ḃv
i

)
ρ̂
=

w̃j

(
∂ṙi
∂r̄lk

−
∂ṙj
∂r̄lk

)
+ ˙̃wj

(
∂ri
∂r̄lk

−
∂rj
∂r̄lk

)
+
(
˙̃rj − ˙̃ri

) ∂wj

∂r̄lk
+
(
r̃j − r̃i

) ∂ẇj

∂r̄lk
∂ẇj

∂r̄lk


(4.164)

wherein the partial derivatives of positions and velocities of points and vectors with
respect to local coordinates of points will be addressed in section 4.5.7.

The process for reaching the derivative of ḃv
i with respect to the parameters for

every kinematic joint type is analog to the revolute joint case presented in (4.164),
and therefore, the particular expressions for each joint type will be omitted here.

4.4.8 Evaluation of (Bv
i )ẑ

Bv
i is a term required in a recursive accumulation for the translation of kinematic

relations between subsequent bodies. Its mission is to express kinematic magnitudes in
terms of the reference point of the subsequent body, thus it is essential for a kinematic
forward open-loop evaluation and for the backwards composition (or accumulation) of
masses and generalized forces vector in semi-recursive (or fully-recursive) formulations.

For simplicity, let us consider the calculation of the product of this derivative by

a given array x =
[
x1 x2

]T
with x ∈ R6 and x1,x2 ∈ R3. According to the general

analytical expression of Bv
i given by (2.121c) for any selection of reference points, its

derivative takes the form:

(Bv
i )ẑx = (Bv

i )ẑ

[
x1

x2

]
=

(∂r̃i−1

∂z
− ∂r̃i
∂z

)
x2

0

 =

x̃2

(
∂ri
∂z

−
∂ri−1

∂z

)
0

 (4.165)

Behold that no further simplifications can be applied into (4.165) since the deriva-
tive of each reference point is undetermined in a general case.

For RTdyn0 accumulations, since each reference point belongs to each body, this is,
is fixed in the local reference frame of each body, expression (3.91) can be substituted
into (4.165), producing:

(By
i )ẑx = (By

i )ẑ

[
x1

x2

]
=

[
x̃2

([
0 r̃i−1

G − r̃iG
]
Ry

i−1+
[
I 0

]
by0
i

)
0

]
(4.166)

138



4.4. Derivatives of recursive kinematic relations

Observe that the expression is already simplified using the relations of the assembly
of Ry, exposed in equations (4.111) and (4.112).

The case of RTdyn1 is completely different due to the fact that the global position
of each body in the global reference frame is fixed, thus Bz

i is constant and equal to
the identity matrix (see (2.123c)), and the derivative with respect to joint coordinates
is null.

4.4.9 Evaluation of
(
Ḃv

i

)
ẑ

Similarly to section 4.4.8, it is clearer to express this derivative multiplied by an

array x =
[
x1 x2

]T
with x ∈ R6 and x1,x2 ∈ R3. The general case for an arbitrary

selection of reference points takes the form:

(
Ḃv

i

)
ẑ
x =

(
Ḃv

i

)
ẑ

[
x1

x2

]
=


(
∂ ˙̃ri−1

∂z
− ∂ ˙̃ri
∂z

)
x2

0

 =

x̃2

(
∂ṙi
∂z

−
∂ṙi−1

∂z

)
0

 (4.167)

As commented in section 4.4.8, expression (4.167) cannot be further developed
since the derivative of the velocity of each reference point depends on the type of
point selected.

Let us consider the case of RTdyn0. If each reference point is fixed in the local
reference frame of each body, like in RTdyn0, the expression of the present derivative
will be: (

Ḃy
i

)
ẑ
x =

(
Ḃy

i

)
ẑ

[
x1

x2

]
=

[
x̃2

([
I 0

]
Ṙy

i −
[
I 0

]
Ṙy

i−1

)
0

]
(4.168)

Besides, if the reference point is fixed in the global frame, like in RTdyn1, the
derivative will change significantly. The substitution of the derivative of the velocity
of the RTdyn1 reference point given by (4.158) into (4.167) yields:

(
Ḃz

i

)
ẑ
x =

(
Ḃz

i

)
ẑ

[
x1

x2

]
=

[
x̃2

([
I 0

]
Ṙz

i −
[
ω̃i 0

]
Rz

i −
[
I 0

]
Ṙz

i−1 +
[
ω̃i−1 0

]
Rz

i−1

)
0

]
(4.169)

Note that neither RTdyn0 nor RTdyn1 is the best option to evaluate every dynamic
derivative. In this case, for example, the RTdyn1 expression is more involved than
the RTdyn0 one, but in 4.4.8, the opposite occurs.

4.4.10 Evaluation of
(
Ḃv

i

)
ˆ̇z

Regarding that the equality
(
Ḃv

i

)
ˆ̇z
= (Bv

i )ẑ cannot be assumed for an arbitrary

selection of reference points, special attention should be paid to the evaluation of

139



4. Sensitivity analysis of unconstrained open-loop systems(
Ḃv

i

)
ˆ̇z
. In brief, considering this derivative multiplied by an array x =

[
x1 x2

]T
with x ∈ R6 and x1,x2 ∈ R3, it takes the form:

(
Ḃv

i

)
ˆ̇z
x =

(
Ḃv

i

)
ˆ̇z

[
x1

x2

]
=


(
∂ ˙̃ri−1

∂ż
− ∂ ˙̃ri
∂ż

)
x2

0

 =

x̃2

(
∂ṙi
∂ż

−
∂ṙi−1

∂ż

)
0

 (4.170)

Let us briefly mention that the differentiation procedure is analog to the one
developed in sections 4.4.8 and 4.4.9, and that the substitution of the derivative of
the velocity of each particular reference point has to be addressed according to its
nature. For the specific versions of the accumulation process, equation (3.93) should
be employed in RTdyn0 and equation (4.162) in RTdyn1, yielding:(

Ḃy
i

)
ˆ̇z
x = (By

i )ẑx =

[
x̃2

([
0 r̃i−1

G − r̃iG
]
Ry

i−1+
[
I 0

]
by0
i

)
0

]
(4.171)

and (
Ḃz

i

)
ˆ̇z
x =

[
x̃2

([
I 0

]
bz0
i

)
0

]
(4.172)

wherein the recursive relations (4.111) and (4.112) have been applied

4.4.11 Evaluation of (Bv
i )ρ̂

The expression of Bv
i is formulated exclusively in terms of global positions of

reference points. Depending on whether this global position is affected or not by a
parameter, the partial derivative (Bv

i )ρ̂ takes different expressions.

The general expression of this term multiplied by an array x =
[
x1 x2

]T
with

x ∈ R6 and x1,x2 ∈ R3 takes the form:

(Bv
i )ρ̂x = (Bv

i )ρ̂

[
x1

x2

]
=

x̃2

(
∂ri
∂ρ

−
∂ri−1

∂ρ

)
0

 (4.173)

In RTdyn0 formulations,
∂ri
∂ρ

can be evaluated through expressions further dis-

cussed in section 4.5.7. On the contrary, Bv
i is the identity in the RTdyn1 version,

thus its derivative is null.

4.4.12 Evaluation of
(
Ḃv

i

)
ρ̂

Considering this derivative multiplied by an array x =
[
x1 x2

]T
with x ∈ R6 and

x1,x2 ∈ R3, it can be expressed as:(
Ḃv

i

)
ρ̂
x =

(
Ḃv

i

)
ρ̂

[
x1

x2

]
=

x̃2

(
∂ṙi
∂ρ

−
∂ṙi−1

∂ρ

)
0

 (4.174)

140



4.4. Derivatives of recursive kinematic relations

As commented in section 4.4.11, RTdyn0 expressions for
∂ri
∂ρ

will be introduced in

section 4.5.8.
The RTdyn1 case, once again, requires a particularization of this derivative. Let

us take partial derivatives with respect to a set of parameters of the expression of the
velocity of a point placed at the global origin of coordinates (4.155):

∂ṙi0
∂ρ

=
∂ṙj
∂ρ

− ω̃i

∂rj
∂ρ

+ r̃j

(
ωi

)
ρ̂

(4.175)

Since, equation (4.175) entails derivatives of other terms not considered yet, it is
easier to compute this derivative as a result of the recursive kinematics evaluation
required in both semi-recursive and fully-recursive methods. Recalling (2.123a) and
taking partial derivatives:

(Zi)ρ̂ = (Bz
i )ρ̂ Zi−1 +Bz

i (Zi−1)ρ̂ + (bz
i )ρ̂ żi (4.176)

in which:
∂ṙi0
∂ρ

=
[
I 0

]
(Zi)ρ̂ (4.177)

Behold that this process can be used likewise for any selection of reference points,
but in the case of RTdyn0 formulations, expressions developed on section 4.5.8 will
be more efficient.

4.4.13 Evaluation of (dv
i )ẑ

The term dv
i is a magnitude related to the transmission of linear and angular ac-

celerations in kinematic joints. As presented in (2.121e), its expression is independent
of the type of joint involved, even though particular expressions can be also reached
for each joint type, as presented in section 2.2. In this section and in the MBSLIM
implementation, only the generic expression has been considered, with the consequent
reduction in the implementation effort and a similar computational expense.

First of all, let us recall (2.121e) and substitute Ḃv
i by its expanded expression

(2.116) and Vi−1 by
[
ṙi ωi

]T
:

dv
i = Ḃv

iVi−1 + ḃv
i żi =

[
0 ˙̃ri−1 − ˙̃ri
0 0

] [
ṙi−1

ωi−1

]
+ ḃv

i żi =

[(
˙̃ri−1 − ˙̃ri

)
ωi−1

0

]
+ ḃv

i żi

(4.178)
Thus, term (dv

i )ẑ can be expressed as:

(dv
i )ẑ =

( ˙̃ri−1 − ˙̃ri
)
(ωi−1)ẑ − ω̃i−1

(
∂ ˙̃ri−1

∂z
− ∂ ˙̃ri
∂z

)
0

+
(
ḃv
i

)
ẑ
żi (4.179)

141



4. Sensitivity analysis of unconstrained open-loop systems

Since the derivative of each reference point velocity depends on the set of reference
points selected, only the derivative of the angular velocity (4.38) can be substituted
in (4.179):

(dv
i )ẑ =

( ˙̃ri−1 − ˙̃ri
) ([

0 I
]
Ṙv

i−1 −
[
0 ω̃i−1

]
Rv

i−1

)
− ω̃i−1

(
∂ ˙̃ri−1

∂z
− ∂ ˙̃ri
∂z

)
0


+
(
ḃv
i

)
ẑ
żi

(4.180)

Note that (4.180) cannot be further simplified without resorting to the particular

expression of
(
ḃv
i

)
ẑ
for each kinematic joint type.

In RTdyn0 accumulations, each reference point selected coincides with the center
of mass of each body. These points are fixed in the local reference frame of each body,
thus the derivative of their velocity with respect to joint coordinates in positions can
be obtained from equation (3.98). The substitution of (3.98) in (4.180) yields:

(dy
i )ẑ =

[[
ω̃i−1 0

]
Ṙy

i −
[
ω̃i−1

˙̃ri − ˙̃ri−1

]
Ṙy

i−1 +
[
0
(
˙̃ri − ˙̃ri−1

)
ω̃i−1

]
Ry

i−1

0

]
+
(
ḃy
i

)
ẑ
żi

(4.181)

The expression of this derivative in the RTdyn1 formulations is different due to
the different type of point used as reference point. Applying (4.158) to (4.179), this
derivative becomes:

(dz
i )ẑ =

[[
ω̃i−1 0

]
Ṙz

i −
[
ω̃i−1

˙̃ri − ˙̃ri−1

]
Ṙz

i−1 +
[
0
(
˙̃ri − ˙̃ri−1

)
ω̃i−1

]
Rz

i−1

0

]
+ω̃i−1

[
(ω̃i−1 − ω̃i)

[
I 0

]
Rz

i−1 − ω̃i

[
I 0

]
bz0
i

0

]
+
(
ḃz
i

)
ẑ
żi

(4.182)

Comparing (4.182) with the equivalent RTdyn0 derivative (4.181), it can be seen
that an additional term is required in RTdyn1, related to the relative motion of the
reference point in the local reference frame of each body. In fact, both expressions
can be reformulated, but the expressions presented allow a direct comparison of terms
and of the effects of the reference point selection.

In semi-recursive formulations, a term dvΣ
i emerges in the composition of the

vector of generalized forces Qd and its derivative appears during the evaluation of the

142



4.4. Derivatives of recursive kinematic relations

stiffness matrix of the model (4.34b). Taking derivatives on (2.215), the derivative of
the accumulated term dvΣ

i can be expressed as:(
dvΣ
i

)
ẑ
= (dv

i )ẑ + (Bv
i )ẑ d

vΣ
h +Bv

i

(
dvΣ
h

)
ẑ

(4.183)

being h the preceding body in the kinematic chain.
The particularization of (4.183) for RTdyn0 generates a similar expression:(

dyΣ
i

)
ẑ
= (dy

i )ẑ + (By
i )ẑ d

yΣ
h +By

i

(
dyΣ
h

)
ẑ

(4.184)

For RTdyn1, the general assembly of
(
dvΣ
i

)
ẑ
is more direct:(

dzΣ
i

)
ẑ
= (dz

i )ẑ +
(
dzΣ
h

)
ẑ

(4.185)

4.4.14 Evaluation of (dv
i )ˆ̇z

Recalling equation (2.121e), it can be regarded that dv
i depends on positions but

also on velocities of the joint coordinates vector. The derivative with respect to ż can
be expressed as:

(dv
i )ˆ̇z =

(
Ḃv

iVi−1 + ḃv
i żi

)
ˆ̇z
=

([(
˙̃ri−1 − ˙̃ri

)
ωi−1

0

]
+ ḃv

i żi

)
ˆ̇z

=( ˙̃ri−1 − ˙̃ri
)
(ωi−1)ˆ̇z − ω̃i−1

(
∂ṙi−1

∂ż
− ∂ṙi
∂ż

)
0

+
(
ḃv
i

)
ˆ̇z
żi + ḃv0

i =

( ˙̃ri−1 − ˙̃ri
) [

0 I
]
Rv

i−1 − ω̃i−1

(
∂ṙi−1

∂ż
− ∂ṙi
∂ż

)
0

+
(
ḃv
i

)
ˆ̇z
żi + ḃv0

i

(4.186)

in which ḃv0
i ∈ R6×n (with n the number of joint coordinates) is defined as:

ḃv0
i = ḃv

i

∂żi
∂ż

=
[
0 ... 0 ḃv

i 0 ... 0
]

(4.187)

For the particular reference point selection of RTdyn0, (4.186) becomes:

(dy
i )ˆ̇z =

[(
˙̃r
i−1

G − ˙̃r
i

G + ω̃i−1

(
r̃i−1
G − r̃iG

)) [
0 I

]
Ry

i−1 + ω̃i−1

[
I 0

]
by0
i

0

]
+ḃy0

i +
(
ḃy
i

)
ˆ̇z
żi

(4.188)

with by0
i given by (4.112).

143



4. Sensitivity analysis of unconstrained open-loop systems

In RTdyn1, applying (4.162) to (4.186), the following expression is obtained:

(dz
i )ˆ̇z =

[(
˙̃r
i−1

0 − ˙̃r
i

0

) [
0 I

]
Rz

i−1 + ω̃i−1

[
I 0

]
bz0
i

0

]
+ ḃz0

i +
(
ḃz
i

)
ˆ̇z
żi (4.189)

Behold that the evaluation of
(
ḃz
i

)
ˆ̇z
in RTdyn1 as it has been described in section

4.4.5 is of special relevance, whereas its substitution by (bz
i )ẑ in this formulation would

lead to erroneous expressions and results.
The accumulation term dvΣ

i originated by the semi-recursive method described in
section 2.4.1 can be differentiated with respect to joint coordinate velocities, which
yields: (

dvΣ
i

)
ˆ̇z
= (dv

i )ˆ̇z +Bv
i

(
dvΣ
h

)
ˆ̇z

(4.190)

where h is the parent body of i.
For RTdyn0, (4.190) becomes:(

dyΣ
i

)
ˆ̇z
= (dy

i )ˆ̇z +By
i

(
dyΣ
h

)
ˆ̇z

(4.191)

In the RTdyn1 version, (4.190) is reduced to:(
dzΣ
i

)
ˆ̇z
= (dz

i )ˆ̇z +
(
dzΣ
h

)
ˆ̇z

(4.192)

4.4.15 Evaluation of (dv
i )ρ̂

The recursive kinematic relation dv
i can be affected by geometrical considerations

such as local coordinates of points and vectors defining any of the preceding joints
in the kinematic chain. In this regard, its partial derivative with respect to a set of
parameters can exist, and the simplest method to compute it, is through a recursive
accumulation. Taking derivatives on (2.121e) with respect to any parameter, (dv

i )ρ̂
takes the form:

(dv
i )ρ̂ =

(
Ḃv

i

)
ρ̂
Vi−1 + Ḃv

i (Vi−1)ρ̂ +
(
ḃv
i

)
ρ̂
żi (4.193)

in which
(
Ḃv

i

)
ρ̂
has been studied in section 4.4.12 and

(
ḃv
i

)
ρ̂
in section 4.4.7.

4.5 Point and vector derivatives

Although the main variables of the topological models studied in this work are joint
coordinates, Cartesian coordinates of points and vectors are ubiquitous in the expres-
sions of kinematic relations, in the dynamic accumulations and even in the definition

144



4.5. Point and vector derivatives

of constraints. The evaluation of natural coordinates positions, velocities and accel-
erations does not constitute a significant computational effort in general problems,
but their derivatives are much more time demanding. Due to the omnipresence of
natural coordinate derivatives in any joint-coordinate sensitivity analysis, an efficient
assessment is studied and developed in this section.

Regarding the differentiation with respect to relative coordinates, the expressions
included in chapter 2 are valid and correct, and also offer accurate results. However,
they are based on a partial computation of the matrix Rv, involving products of 3×6
by 6×n matrices, and although the sparsity of the matrix Rv is considered, it implies
a computational effort that can be reduced.

Using as starting point the same expressions of the derivatives of q introduced in
section 3.6, a new set of equations involving lower order products is achieved. In addi-
tion, the expressions obtained are independent of the set of reference points selected,
allowing the use of the same expressions for RTdyn0 and RTdyn1 accumulations. Be-
hold that expressions in terms of Rv and the new expressions introduced are identical,
being the difference the computation method employed to obtain them.

On the other hand, the method for the evaluation of the derivatives with respect
to a set of parameters is totally different. The types of parameters that affect the
position, velocity or acceleration of a point or a vector are exclusively those related
to the local coordinates of other or the same point or vector in the local reference
frame of a body. Accordingly, a group of equations where the position, velocity and
acceleration of a point or a vector explicitly involves the local coordinates of points
and vectors of the mechanism have to be used to compute the derivatives. For this
reason, the expressions of chapter 2 involving rotation matrices have to be used during
these derivations.

In the following sections, the derivatives of the positions, velocities and accelera-
tions of points and vectors with respect to the relative coordinates are firstly described,
and then the derivatives with respect to any local coordinate are tackled.

4.5.1 Elemental evaluation of qz

Looking at expressions (3.93), (3.94), (3.95) and (3.96), the effect of the reference
point is evident in the derivatives of any point. Theoretically, natural coordinates are
not affected by the reference points selected since they only depend on the relative
coordinates. Therefore, it is possible to reach an expression of the derivatives of any
point or vector that do not involve the reference points. Expanding the derivatives of
natural coordinates for any reference point (3.91) and (3.92), it can be observed that
they can be computed only with the entities that define the joint (points, vectors or
Euler parameters).

Prior to the description of the general expression of the new method, it is con-
venient to introduce its fundamentals through a particular example. Consider the
calculation of the partial derivative of the coordinates of a point located in the body
number 6 of the six body mechanism of Figure 2.10, with the assumption that all the

145



4. Sensitivity analysis of unconstrained open-loop systems

joints are revolute joints. Applying (3.91):

∂rk
∂z

=
∂ṙk
∂ż

=
[
I r̃6 − r̃k

]
Rv

i =
[
I r̃6 − r̃k

] [
(Bv

6B
v
4b

v
1) 0 0 (Bv

6b
v
4) 0 bv

6

]
(4.194)

where[
I r̃6 − r̃k

]
(Bv

6B
v
4b

v
1) =

[
I r̃6 − r̃k

] [I r̃4 − r̃6
0 I

] [
I r̃1 − r̃4
0 I

] [
wj1 ∧

(
r1 − rj1

)
wj1

]
=

=
[
I r̃1 − r̃k

] [wj1 ∧
(
r1 − rj1

)
wj1

]
=
(
r̃j1 − r̃k

)
wj1

(4.195)

[
I r̃6 − r̃k

]
(Bv

6b
v
2) =

[
I r̃6 − r̃k

] [I r̃4 − r̃6
0 I

] [
wj4 ∧

(
r4 − rj4

)
wj4

]
=
(
r̃j4 − r̃k

)
wj4

(4.196)[
I r̃6 − r̃k

]
bv
6 =

[
I r̃6 − r̃k

] [wj6 ∧
(
r6 − rj6

)
wj6

]
=
(
r̃j6 − r̃k

)
wj6 (4.197)

Recalling equation 4.194, it can be seen that the final expression has no dependence
on the reference point selected, but only on the points and vectors defining the joint.

∂rk
∂z

=
[
I r̃6 − r̃k

]
Rv

i =
[(
r̃j1 − r̃k

)
wj1 0 0

(
r̃j4 − r̃k

)
wj4 0

(
r̃j6 − r̃k

)
wj6

]
(4.198)

Continuing with the calculation of qz independently of the reference points selected
in a general fashion, the elemental terms qzi are introduced. Let us consider:

qz =
[
qz1 qz2 ... qznj

]
(4.199)

where nj is the number of joints of the mechanism, and the terms qzi represent the
partial derivative of the position of a point or a vector with respect to the relative
coordinates of joint i.

In the following expressions, the terms with the subscript j are part of the defini-
tion of the joint, while the subscript k represents the point or vector being differenti-
ated.

� Revolute joint
The partial derivative of the position of a point with respect to the relative
coordinates of a revolute joint is:

∂rk
∂zi

=
(
r̃j − r̃k

)
wj (4.200)

while the partial derivative of a vector is:

∂uk

∂zi
= (−ũk)wj (4.201)

146



4.5. Point and vector derivatives

� Prismatic joint
For a point:

∂rk
∂zi

= wj (4.202)

For a vector:
∂uk

∂zi
= 0 (4.203)

� Cardan joint
For a point:

∂rk
∂zi

=
(
r̃j − r̃k

) [
wj1 wj2

]
(4.204)

For a vector:
∂uk

∂zi
= (−ũk)

[
wj1 wj2

]
(4.205)

� Cylindrical joint
For a point:

∂rk
∂zi

=
[
wj

(
r̃j − r̃k

)
wj

]
(4.206)

For a vector:
∂uk

∂zi
=
[
0 (−ũk)wj

]
(4.207)

� Spherical joint
For a point:

∂rk
∂zi

= 2
(
r̃j − r̃k

)
E (4.208)

For a vector:
∂uk

∂zi
= 2 (−ũk)E (4.209)

� Floating joint
For a point:

∂rk
∂zi

=
[
I3 2

(
r̃j − r̃k

)
E
]

(4.210)

For a vector:
∂uk

∂zi
=
[
03 2 (−ũk)E

]
(4.211)

� Planar joint
For a point:

∂rk
∂zi

=
[
uj vj (r̃iG − r̃k)wk

]
(4.212)

For a vector:
∂uk

∂zi
=
[
0 0 (−ũk)wk

]
(4.213)

147



4. Sensitivity analysis of unconstrained open-loop systems

Observe the simplicity of the resulting terms and that the matrix products involved
in any of the previous expressions are 3 × 3 by 3 × j, with j = 1, .., 4, while the
equivalent calculations presented in section 3.6 include products of 3 × 6 by 6 × j,
with j = 1, .., 7. It is important to remark also that no different expressions are
needed for any of the semi-recursive accumulations presented in this work, due to
the independence of the final expressions with respect to the set of reference points
selected.

Despite being a significant improvement into the computation of qz, the relevance
of these simplifications relies on the second derivatives qzz and q̇zz, presented in the
subsequent sections.

4.5.2 Elemental evaluation of q̇z

The partial derivative of the velocity of any point or vector can be easily assembled
with the scheme presented in the previous section. In this case, the elemental deriva-
tives can be obtained as the time derivatives of the joint expressions of the previous

section, as long as
dqz

dt
= q̇z (see (3.102)).

q̇z =
[
q̇z1 q̇z2 ... q̇znj

]
(4.214)

being nj the number of joints.

� Revolute joint
The partial derivative of the velocity of a point with respect to the relative
coordinates of a revolute joint takes the form:

∂ṙk
∂zi

=
(
˙̃rj − ˙̃rk

)
wj +

(
r̃j − r̃k

)
ẇj (4.215)

while the partial derivative of a vector becomes:

∂u̇k

∂zi
=
(
− ˙̃uk

)
wj + (−ũk) ẇj (4.216)

� Prismatic joint
For a point:

∂ṙk
∂zi

= ẇj (4.217)

For a vector:
∂u̇k

∂zi
= 0 (4.218)

� Cardan joint
For a point:

∂ṙk
∂zi

=
(
˙̃rj − ˙̃rk

) [
wj1 wj2

]
+
(
r̃j − r̃k

) [
ẇj1 ẇj2

]
(4.219)

148



4.5. Point and vector derivatives

For a vector:

∂u̇k

∂zi
=
(
− ˙̃uk

) [
wj1 wj2

]
+ (−ũk)

[
ẇj1 ẇj2

]
(4.220)

� Cylindrical joint
For a point:

∂ṙk
∂zi

=
[
ẇj

(
˙̃rj − ˙̃rk

)
wj

]
+
[
0
(
r̃j − r̃k

)
ẇj

]
(4.221)

For a vector:
∂u̇k

∂zi
=
[
0
(
− ˙̃uk

)
wj

]
+
[
0 (−ũk) ẇj

]
(4.222)

� Spherical joint
For a point:

∂ṙk
∂zi

= 2
(
˙̃rj − ˙̃rk

)
E+ 2

(
r̃j − r̃k

)
Ė (4.223)

For a vector:
∂u̇k

∂zi
= 2

(
− ˙̃uk

)
E+ 2 (−ũk) Ė (4.224)

� Floating joint
For a point:

∂ṙk
∂zi

=
[
03 2

(
˙̃rj − ˙̃rk

)
E
]
+
[
03 2

(
r̃j − r̃k

)
Ė
]

(4.225)

For a vector:
∂u̇k

∂zi
=
[
03 2

(
− ˙̃uk

)
E
]
+
[
03 2 (−ũk) Ė

]
(4.226)

� Planar joint
For a point:

∂ṙk
∂zi

=
[
u̇j v̇j

(
˙̃r
i

G − ˙̃rk

)
wk + (r̃iG − r̃k) ẇk

]
(4.227)

For a vector:
∂u̇k

∂zi
=
[
0 0

(
− ˙̃uk

)
wk + (−ũk) ẇk

]
(4.228)

The derivatives
∂ṙk
∂zi

or
∂u̇k

∂zi
can be then computed by assembling the corresponding

elemental derivatives in a matrix of 3×n, being n the number of relative coordinates.
The elemental terms are exclusively dependent on the position and velocity of the
point whose velocity is being differentiated, and the position and velocity of the points,
vectors and Euler parameters defining each one of the joints.

149



4. Sensitivity analysis of unconstrained open-loop systems

4.5.3 Elemental evaluation of q̈z

It can be proved that the partial derivative of the accelerations of any point or
vector can be also calculated differentiating once again the expressions of the previous
section with respect to time. The term q̈z is not always necessary in the dynamics or
the sensitivity analysis, but it is required if the objective function of the sensitivity
analysis is expressed in terms of accelerations of natural coordinates.

� Revolute joint
The partial derivative of the acceleration of a point with respect to the relative
coordinates of a revolute joint is:

∂r̈k
∂zi

=
(
¨̃rj − ¨̃rk

)
wj + 2

(
˙̃rj − ˙̃rk

)
ẇj +

(
r̃j − r̃k

)
ẅj (4.229)

while the partial derivative of a vector is:

∂ük

∂zi
=
(
−¨̃uk

)
wj + 2

(
− ˙̃uk

)
ẇj + (−ũk) ẅj (4.230)

� Prismatic joint
For a point:

∂r̈k
∂zi

= ẅj (4.231)

For a vector:
∂ük

∂zi
= 0 (4.232)

� Cardan joint
For a point:

∂r̈k
∂zi

=
(
¨̃rj − ¨̃rk

) [
wj1 wj2

]
+ 2

(
˙̃rj − ˙̃rk

) [
ẇj1 ẇj2

]
+
(
r̃j − r̃k

) [
ẅj1 ẅj2

]
(4.233)

For a vector:

∂ük

∂zi
=
(
−¨̃uk

) [
wj1 wj2

]
+ 2

(
− ˙̃uk

) [
ẇj1 ẇj2

]
+ (−ũk)

[
ẅj1 ẅj2

]
(4.234)

� Cylindrical joint
For a point:

∂r̈k
∂zi

=
[
ẅj

(
¨̃rj − ¨̃rk

)
wj

]
+ 2

[
0
(
˙̃rj − ˙̃rk

)
ẇj

]
+
[
0
(
r̃j − r̃k

)
ẅj

]
(4.235)

For a vector:

∂ük

∂zi
=
[
0
(
−¨̃uk

)
wj

]
+ 2

[
0
(
− ˙̃uk

)
ẇj

]
+
[
0 (−ũk) ẅj

]
(4.236)

150



4.5. Point and vector derivatives

� Spherical joint
For a point:

∂r̈k
∂zi

= 2
(
¨̃rj − ¨̃rk

)
E+ 4

(
˙̃rj − ˙̃rk

)
Ė+ 2

(
r̃j − r̃k

)
Ë (4.237)

For a vector:
∂ük

∂zi
= 2

(
−¨̃uk

)
E+ 4

(
− ˙̃uk

)
Ė+ 2 (−ũk) Ë (4.238)

Observe that the second time derivative of the term E has not been defined
before, and it can be calculated with the rotation matrix, angular velocity,
angular acceleration and the Euler parameters and its first and second time
derivatives.

Ë =
(
˜̇ωi−1 + ω̃i−1ω̃i−1

)
E+ 2ω̃i−1Ai−1

˙̄E+Ai−1
¨̄E (4.239)

� Floating joint
For a point:

∂r̈k
∂zi

=
[
03 2

(
¨̃rj − ¨̃rk

)
E
]
+
[
03 4

(
˙̃rj − ˙̃rk

)
Ė
]
+
[
03 2

(
r̃j − r̃k

)
Ë
]

(4.240)

For a vector:

∂u̇k

∂zi
=
[
03 2

(
−¨̃uk

)
E
]
+
[
03 4

(
− ˙̃uk

)
Ė
]
+
[
03 2 (−ũk) Ë

]
(4.241)

� Planar joint
For a point:

∂r̈k
∂zi

=
[
üj v̈j

(
¨̃r
i

G − ¨̃rk

)
wk + 2

(
˙̃r
i

G − ˙̃rk

)
ẇk + (r̃iG − r̃k) ẅk

]
(4.242)

For a vector:

∂u̇k

∂zi
=
[
0 0

(
−¨̃uk

)
wk + 2

(
− ˙̃uk

)
ẇk + (−ũk) ẅk

]
(4.243)

The computation of the present term is slightly more time demanding than the
previous ones because it requires the evaluation of the accelerations of the points,
vectors and the Euler parameters that define the joints of the mechanism. These
accelerations are not needed in general since all the assemblies and accumulations are
carried out by means of positions and velocities of these entities. However, if needed,
the accelerations can be computed on demand using the equations of the rigid body.

151



4. Sensitivity analysis of unconstrained open-loop systems

4.5.4 Elemental evaluation of qzz

Using the expressions presented in the previous section, the derivation of the tensor
qzz is straightforward. Let us consider the matrix qzzx, defined as the product of the
tensor qzz ∈ Rnq×n×n by a vector x ∈ Rn.

qzzx =
∂

∂z



∂q1

∂z
...
∂qi

∂z
...
∂qnq

∂z


x =

∂

∂z



∂q1

∂z1
...

∂q1

∂zj
...

∂q1

∂znj

...
∂qi

∂z1
...

∂qi

∂zj
...

∂qi

∂znj

...
∂qnq

∂z1
...

∂qnq

∂zj
...

∂qnq

∂znj


x

=



∂

∂z

(
∂q1

∂z1

)
x1 ...

∂

∂z

(
∂q1

∂zj

)
xj ...

∂

∂z

(
∂q1

∂znj

)
xnj

...
∂

∂z

(
∂qi

∂z1

)
x1 ...

∂

∂z

(
∂qi

∂zj

)
xj ...

∂

∂z

(
∂qi

∂znj

)
xnj

...
∂

∂z

(
∂qnq

∂z1

)
x1 ...

∂

∂z

(
∂qnq

∂zj

)
xj ...

∂

∂z

(
∂qnq

∂znj

)
xnj



(4.244)

again, nj is the number of kinematic joints.

Observe that the terms
∂

∂z

(
∂qi

∂zj

)
xj can be easily calculated with the expressions

of the previous section.

� Revolute joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj =

(
r̃j − r̃k

) ∂wj

∂z
xj + w̃j

(
∂rk
∂z

−
∂rj
∂z

)
xj (4.245)

For a vector:
∂

∂z

(
∂uk

∂zj

)
xj = −ũk

∂wj

∂z
xj + w̃j

∂uk

∂z
xj (4.246)

� Prismatic joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj =

∂wj

∂z
xj (4.247)

For a vector:
∂

∂z

(
∂uk

∂zj

)
xj = 0 (4.248)

152



4.5. Point and vector derivatives

� Cardan joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj =

(
r̃j − r̃k

) [∂wj1

∂z

∂wj2

∂z

]
xj

+

[
w̃j1

(
∂rk
∂z

−
∂rj
∂z

)
w̃j2

(
∂rk
∂z

−
∂rj
∂z

)]
xj

(4.249)

For a vector:

∂

∂z

(
∂uk

∂zj

)
xj = (−ũk)

[
∂wj1

∂z

∂wj2

∂z

]
xj +

[
w̃j1

∂uk

∂z
w̃j2

∂uk

∂z

]
xj (4.250)

� Cylindrical joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj =

[
∂wj

∂z

(
r̃j − r̃k

) ∂wj

∂z

]
xj+

[
0 w̃j

(
∂rk
∂z

−
∂rj
∂z

)]
xj (4.251)

For a vector:

∂

∂z

(
∂uk

∂zj

)
xj = (−ũk)

[
0

∂wj

∂z

]
xj +

[
0 w̃j

∂uk

∂z

]
xj (4.252)

� Spherical joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj = 2

(
r̃j − r̃k

) ∂E
∂z

xj + 2Ẽ

(
∂rk
∂z

−
∂rj
∂z

)
xj (4.253)

For a vector:
∂

∂z

(
∂uk

∂zj

)
xj = −2ũk

∂E

∂z
xj + 2Ẽ

∂uk

∂z
xj (4.254)

� Floating joint
For a point:

∂

∂z

(
∂rk
∂zj

)
xj =

[
0 2

(
r̃j − r̃k

) ∂E
∂z

xj + Ẽ

(
∂rk
∂z

−
∂rj
∂z

)
xj

]
(4.255)

For a vector:

∂

∂z

(
∂uk

∂zj

)
xj =

[
0 −2ũk

∂E

∂z
xj + Ẽ

∂uk

∂z
xj

]
(4.256)

For the sake of simplicity in the definition of the derivative for the floating
joint case, xj is assumed to be the part of the vector x corresponding to the
position of the Euler parameters of the floating joint, thus neglecting the three
first coordinates of the floating joint corresponding to the translations, which
are zero.

153



4. Sensitivity analysis of unconstrained open-loop systems

� Planar joint
For a point:

∂

∂z

(
∂rk
∂zi

)
xj =

[
∂uj

∂zi
xj1

∂vj

∂zi
xj2 (r̃iG − r̃k)

∂wk

∂zi
xj3 + w̃k

(
∂rk
∂zi

− ∂riG
∂zi

)
xj3

]
(4.257)

For a vector:

∂

∂z

(
∂uk

∂zi

)
xj =

[
0 0 w̃k

∂uk

∂z
xj3 − ũk

∂wk

∂z
xj3

]
(4.258)

where

xj =
[
xj1 xj2 xj3

]T
(4.259)

Observe that the resulting elemental second derivatives are formulated in terms
of single derivatives of points, vectors and Euler parameters, whose expressions have
been presented in previous sections. The scheme of differentiation presented enhances
the efficiency of the computation of qzz compared to the expressions depending on
Rv.

4.5.5 Elemental evaluation of qT
zz

This term uses the same expressions obtained in section 4.5.4, but under a different
assembly.

qT
zzx =

∂

∂z



∂q1

∂z1

T

...
∂qi

∂z1

T

...
∂qnq

∂z1

T

...

∂q1

∂zj

T

...
∂qi

∂zj

T

...
∂qnq

∂zj

T

...

∂q1

∂znj

T

...
∂qi

∂znj

T

...
∂qnq

∂znj

T


x =



∂

∂z

(
∂q

∂z1

T)
x

...
∂

∂z

(
∂q

∂zj

T)
x

...
∂

∂z

(
∂q

∂znj

T)
x


(4.260)

where
∂

∂z

(
∂q

∂zj

T)
x =

n∑
i=1

(
∂

∂z

(
∂qi

∂zj

T)
xi

)
(4.261)

and the terms
∂

∂z

(
∂qi

∂zj

T)
can be easily obtained by transposing the expressions

obtained in section 4.5.4. The main difference with the evaluation of qzz is the
assembly of the resulting matrix and the partial products by x.

154



4.5. Point and vector derivatives

4.5.6 Elemental evaluation of q̇zz

The partial derivative q̇zz can be easily obtained by assembling the time derivatives
of the terms introduced in section 4.5.4.

� Revolute joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj =

(
˙̃rj − ˙̃rk

) ∂wj

∂z
xj +

(
r̃j − r̃k

) ∂ẇj

∂z
xj+

˙̃wj

(
∂rk
∂z

−
∂rj
∂z

)
xj + w̃j

(
∂ṙk
∂z

−
∂ṙj
∂z

)
xj

(4.262)

For a vector:

∂

∂z

(
∂u̇k

∂zj

)
xj = − ˙̃uk

∂wj

∂z
xj − ũk

∂ẇj

∂z
xj + ˙̃wj

∂uk

∂z
xj + w̃j

∂u̇k

∂z
xj (4.263)

� Prismatic joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj =

∂ẇj

∂z
xj (4.264)

For a vector:
∂

∂z

(
∂u̇k

∂zj

)
xj = 0 (4.265)

� Cardan joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj =

(
˙̃rj − ˙̃rk

) [∂wj1

∂z

∂wj2

∂z

]
xj +

(
r̃j − r̃k

) [∂ẇj1

∂z

∂ẇj2

∂z

]
xj

+

[
˙̃wj1

(
∂rk
∂z

−
∂rj
∂z

)
˙̃wj2

(
∂rk
∂z

−
∂rj
∂z

)]
xj

+

[
w̃j1

(
∂ṙk
∂z

−
∂ṙj
∂z

)
w̃j2

(
∂ṙk
∂z

−
∂ṙj
∂z

)]
xj

(4.266)

For a vector:

∂

∂z

(
∂u̇k

∂zj

)
xj =

(
− ˙̃uk

) [∂wj1

∂z

∂wj2

∂z

]
xj + (−ũk)

[
∂ẇj1

∂z

∂ẇj2

∂z

]
xj

+

[
˙̃wj1

∂uk

∂z
˙̃wj2

∂uk

∂z

]
xj +

[
w̃j1

∂u̇k

∂z
w̃j2

∂u̇k

∂z

]
xj

(4.267)

155



4. Sensitivity analysis of unconstrained open-loop systems

� Cylindrical joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj =

[
∂ẇj

∂z

(
˙̃rj − ˙̃rk

) ∂wj

∂z
+
(
r̃j − r̃k

) ∂ẇj

∂z

]
xj

+

[
0 ˙̃wj

(
∂rk
∂z

−
∂rj
∂z

)
+ w̃j

(
∂ṙk
∂z

−
∂ṙj
∂z

)]
xj

(4.268)

For a vector:

∂

∂z

(
∂u̇k

∂zj

)
xj =

[
0 − ˙̃uk

∂wj

∂z
− ũk

∂ẇj

∂z

]
xj +

[
0 ˙̃wj

∂uk

∂z
+ w̃j

∂u̇k

∂z

]
xj

(4.269)

� Spherical joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj = 2

(
˙̃rj − ˙̃rk

) ∂E
∂z

xj + 2
(
r̃j − r̃k

) ∂Ė
∂z

xj+

2 ˙̃E

(
∂rk
∂z

−
∂rj
∂z

)
xj + 2Ẽ

(
∂ṙk
∂z

−
∂ṙj
∂z

)
xj

(4.270)

For a vector:

∂

∂z

(
∂u̇k

∂zj

)
xj = −2 ˙̃uk

∂E

∂z
xj − 2ũk

∂Ė

∂z
xj + 2 ˙̃E

∂uk

∂z
xj + 2Ẽ

∂u̇k

∂z
xj (4.271)

� Floating joint
For a point:

∂

∂z

(
∂ṙk
∂zj

)
xj =

[
0 2

(
˙̃rj − ˙̃rk

) ∂E
∂z

xj + 2
(
r̃j − r̃k

) ∂Ė
∂z

xj

]
+[

0 +2Ẽ

(
∂ṙk
∂z

−
∂ṙj
∂z

)
xj + 2 ˙̃E

(
∂rk
∂z

−
∂rj
∂z

)
xj

] (4.272)

For a vector:

∂

∂z

(
∂u̇k

∂zj

)
xj =

[
0 −2 ˙̃uk

∂E

∂z
xj − 2ũk

∂Ė

∂z
xj +

˙̃E
∂uk

∂z
xj + Ẽ

∂u̇k

∂z
xj

]
(4.273)

In this case, xj is assumed to be the part of the vector x corresponding to
the position of the Euler parameters of the floating joint. The derivative with
respect to the three first coordinates of the floating joint corresponding to the
translations are zero.

156



4.5. Point and vector derivatives

� Planar joint
For a point:

∂

∂z

(
∂ṙk
∂zi

)
xj =

[
∂u̇j

∂zi
xj1

∂v̇j

∂zi
xj2

(
˙̃r
i

G − ˙̃rk

) ∂wk

∂zi
xj3 + ˙̃wk

(
∂rk
∂zi

− ∂riG
∂zi

)
xj3

]
+[

0 0 (r̃iG − r̃k)
∂ẇk

∂zi
xj3 + w̃k

(
∂ṙk
∂zi

− ∂ṙiG
∂zi

)
xj3

]
(4.274)

For a vector:

∂

∂z

(
∂u̇k

∂zi

)
xj =

[
0 0 ˙̃wk

∂uk

∂z
xj3 + w̃k

∂u̇k

∂z
xj3 − ˙̃uk

∂wk

∂z
xj3 − ũk

∂ẇk

∂z
xj3

]
(4.275)

where
x =

[
xj xj2 xj3

]
(4.276)

The terms described in this section are the most expensive from a computational
point of view due to the number of products and different derivatives involved. In
the sensitivity analysis in which this term is required, its efficient computation would
determine the global performance of the whole analysis.

4.5.7 Evaluation of qρ

One of the premises of relative coordinate models is that any position of any point
or vector within a kinematic chain can be computed in terms of a set of relative
coordinates. However, those positions are also conditioned by a set of constant terms
which play an essential role in a sensitivity analysis.

The kinematic recursive relations presented in chapter 2 depend exclusively on
relative coordinates, on the local coordinates of the points and vectors of the model
and on the topology of the mechanism, i.e. on the sequence and type of joints defining
the relative motion between bodies. The local coordinates of the model are, thus, the
set of parameters that directly affect the global position coordinates of a point or a
vector. If lengths or angles defined within the local reference frame of a body are
intended to be used as parameters, then a transformation of the resulting sensitivities
with respect to local coordinates into the derivatives of these new parameters have to
be accomplished, because any local length or angle can be described by a combination
of local coordinates of different points or vectors.

Using the expressions of positions formulated in terms of rotation matrices, it
can be concluded that the global position of any point of the kinematic chain can
be obtained by means of the addition of vectors defining the position of the points
involved in each one of the preceding joints in the kinematic chain plus a term related
to the local position of the point within the body in which the point is defined. This
can be formulated for the types of joints where the bodies share one point, such as
revolute, spherical and Cardan joints as:

rk = ri +Ai

(
r̄ik − r̄ii

)
(4.277)

157



4. Sensitivity analysis of unconstrained open-loop systems

where Ai is the rotation matrix of body i.
Applying recursive relations, the global position ri can be expressed in terms of

the points and vectors of the previous joints. Using the same types of joints:

rik =
i∑

h=1

(
Ah

(
r̄hh − r̄hh−1

))
+Ai

(
r̄ik − r̄ii

)
(4.278)

being h each one of the preceding joints of the body i within the kinematic chain.
From (4.278) it can be deduced that the local coordinates affecting rik are the

ones used in the definition of the preceding joints in the kinematic chain, this is, the
group of joints that are between the base body and the body i, as well as the local
coordinates of point k in body i. Considering that the rotation matrices depend only
on local coordinates of vectors (see (2.20), (2.21), (2.22), (2.31), (2.40), (2.41), (2.43),
(2.87), (2.88)), their derivatives with respect to the local coordinates of a point are
null. Behold that none of the rotation matrix expressions introduced in section 2.1
involve any local coordinate of a point, neither in the definition of the constant (A1)
or variable rotation matrices.

At this point, it is convenient to identify the two bodies related by a kinematic
joint. Let us denote as first body in a kinematic joint the body that is closer to the base
body, while the second body will be the one that is closer to the tips. Depending on
in which of the two bodies a local coordinate is defined as a parameter, the derivative
will be different.

According to the independence of rotation matrices from local coordinates of
points, the partial derivative of the position of any point of the kinematic chain can
be obtained with the following expression:

∂rk
∂r̄lj

=


Al in case 1
−Al in case 2
0 in case 3

(4.279)

being l the body where the local coordinates of point k are defined as parameters.
The cases defined are:

� Case 1: point j is contained in the definition of a preceding joint and l is the
first body of the joint, or k = j.

� Case 2: point j is contained in the definition of a preceding joint and l is the
second body of the joint.

� Case 3: point j does not affect any joint previous to body i and k ̸= j.

The definition is valid for any of the joint types commented. Let us see what
happens when a prismatic joint is considered. Recalling (2.28):

rj+2 = rj+1 + zk+1uj+1 (4.280)

158



4.5. Point and vector derivatives

Considering now prismatic, cylindrical and planar joints (they have the same be-
havior with respect to the translation coordinate), (4.278) can be reformulated as:

rik =
i∑

h=1

(
Ah

(
r̄hh − r̄hh−1

))
+Ai

(
r̄ik − r̄ii

)
+

i∑
h=1

(uhzh) (4.281)

being uh the translation joint axis, and zh the translation coordinate. Observe that
neither the axis nor the coordinate have direct relations with the local coordinate of
any point, and therefore, equation (4.279) is still valid for any type of joint.

Following the same scheme, the derivative of the position of a vector with respect
to the local coordinates of a point is always zero, because no local coordinates of
points are included into an expression of a rotation matrix:

∂uk

∂r̄lj
= 0 (4.282)

This derivative will be different than zero if two points are used as the axis of
a rotation, but this possibility is not considered neither theoretically nor within the
implementation of MBSLIM.

Note that, up to this point, only partial derivatives with respect to local coor-
dinates of points have been explored. Now, the derivative of a vector with respect
to the local coordinates of other or the same vector is accomplished. The position
coordinates of a vector are much easier to obtain than the ones of points, because
they depend exclusively on the rotation matrix of the body the vector belongs to and
on the local coordinates of the vector:

uk = Aiū
i
k (4.283)

Despite the apparent simplicity, the derivative becomes more complex than the
previous one with respect to local coordinates of points. The local coordinates of
vectors have a direct impact on the evaluation of the rotation matrices, so in this
differentiation this computation have to be taken into account.

The derivative of the position of a vector with respect to the local coordinates of
other or the same vector are:

∂uk

∂ūl
j

=



Al if j = k

∂Al

∂ūl
j

ūi
k if ūl

j defines the relative rotation of one of the previous joints

0 if j ̸= k and ūl
j does not affect any relative rotation matrix

(4.284)
The last possible case involves the derivative of a point with respect to the local

coordinates of a vector. The expression of this derivative takes the form:

∂rk
∂ūl

j

=
i∑

h=1

(
∂Ah

∂ūl
j

(
r̄hh − r̄hh−1

))
+
∂Ai

∂ūl
j

(
r̄ik − r̄ii

)
+

i∑
h=1

(
∂uh

∂ūl
j

zh

)
(4.285)

159



4. Sensitivity analysis of unconstrained open-loop systems

In the following sections, only the local coordinates of points are considered as
parameters in order to simplify the notation and allow a more direct understanding
of the effects of the geometrical parameters into relative coordinate models. Local
coordinates of vectors as parameters can also be considered with this approach by
means of the previous equations and their time derivatives, but the computations
become particularly complex during the calculation of qzρ and q̇zρ.

4.5.8 Evaluation of q̇ρ

Velocities of points and vectors can be expressed in terms of the local coordinates
of the points and vectors of preceding joints, as well as other terms. Using those
expressions, the partial derivative with respect to any local coordinate of a point can
be directly obtained. However, it can be proved that the same result can be reached
from the time differentiation of the expressions of section 4.5.7:

∂ṙk
∂r̄lj

=


Ȧl in case 1

−Ȧl in case 2
0 in case 3

(4.286)

being l the body where the local coordinates of point k are defined as parameters,
and the cases have been defined in section 4.5.7.

The derivative of the velocity of a vector is, therefore:

∂u̇k

∂r̄lj
= 0 (4.287)

4.5.9 Evaluation of q̈ρ

Similarly to section 4.5.8, it can be proved that the derivatives of the accelerations
of a point or a vector with respect to the local coordinates of a point can be obtained
differentiating twice the expressions of qρ presented in section 4.5.7 with respect to
time:

∂r̈k
∂r̄lj

=


Äl in case 1

−Äl in case 2
0 in case 3

(4.288)

with l the body in which the local coordinates of point k are defined as parameters,
and with cases defined in section 4.5.7.

The derivative of the velocity of a vector is in this case, once again:

∂ük

∂r̄lj
= 0 (4.289)

160



4.5. Point and vector derivatives

4.5.10 Evaluation of qzρ

Following the scheme of derivation of the previous sections, the second derivative
of q with respect to the relative coordinates in positions and with respect to the
parameters of the system, can be obtained by taking derivatives for the expressions
obtained for qρ with respect to z. The results are:

∂

∂z

(
∂rk
∂r̄lj

)
=



∂Al

∂z
in case 1

−∂Al

∂z
in case 2

0 in case 3

(4.290)

wherein, once again, l is the body where the local coordinates of point k are defined
as parameters. The cases have been defined in section 4.5.7.

The derivatives for a vector are, accordingly, all zero:

∂

∂z

(
∂uk

∂r̄lj

)
= 0 (4.291)

4.5.11 Evaluation of q̇zρ

It can be proved that q̇zρ can be obtained as the time derivative of qzρ. Applying
again a new time derivative on the expressions of 4.5.10, q̇zρ̂ is reached:

∂

∂z

(
∂ṙk
∂r̄lj

)
=



∂Ȧl

∂z
in case 1

−∂Ȧl

∂z
in case 2

0 in case 3

(4.292)

where l is the body where the local coordinates of point k are defined as parameters,
and, once again, the cases were defined in section 4.5.7.

The derivatives for a vector are null in all the cases:

∂

∂z

(
∂u̇k

∂r̄lj

)
= 0 (4.293)

Regarding the resulting expressions of the derivatives of q with respect to ρ, local
coordinates of points as parameters can be simply added to a general sensitivity
analysis code using simple and easy-to-compute expressions.

161





Chapter 5

Sensitivity analysis of closed-loop
systems

In this chapter, constrained multibody systems are considered in order to complete
the general sensitivity analysis of topological models. One of the advantages of topo-
logical models with respect to global ones is that they tend to generate a problem
with a smaller number of coordinates. Moreover, in the case of open-loop systems
in minimal coordinates (see chapter 2), no constraints are needed for the equations
of motion. For closed-loop systems, or systems modeled in non-minimal coordinates
(see chapter 3), constraint equations appear, but their number tend to be also smaller
than in the case of global formulations, because most of the joints between bodies
do not need to be modeled using constraint equations. Hence, constraints have to be
combined with the recursive joint relations and with the semi-recursive unconstrained
equations of motion.

In chapter 3, the constraints have been successfully combined with the recursive
relations, yielding the kinematic position, velocity and acceleration problems in rela-
tive coordinates. In addition, constraints have been also applied to the equations of
motion using two very different schemes: the semi-recursive Matrix R formulation,
consisting on the use of a second projection of velocities which conduces to an ODE
system in independent coordinates; and the semi-recursive ALI3-P formulations, based
on an Augmented Lagrangian scheme in positions with projections in velocities and
accelerations, and which produces an index-3 DAE system in dependent coordinates.

In the present chapter, the sensitivity analyses of the three kinematic problems
and the two semi-recursive dynamic formulations are accomplished. The sensitivity
analyses developed are based on the differentiation of the analytical kinematic and
dynamic expressions, following two different approaches: the direct differentiation
method and the adjoint variable method.

The direct differentiation of the kinematic or dynamic expressions of a multibody
system leads to a set of equations where the sensitivities of the states are the main
variables. It means that if the dynamic problem has s unknowns, the sensitivity
analysis of this dynamics with respect to p parameters will lead to a problem with s×p
unknown variables. The advantages of this method are the analogy of the sensitivity

163



5. Sensitivity analysis of closed-loop systems

system to the dynamics one, making relatively easy a sensitivity implementation, and
the fact that the matrix of the system is the same for every parameter.

The adjoint method is, otherwise, a more complex approach, especially in systems
of equations involving numerical integration as the dynamic problem. The real power
of this method is in the reduced number of variables that need to be solved compared
to the direct differentiation method for large numbers of parameters, and despite the
more complex calculations and storage, it could be very profitable in some cases.
With this method, the number of resulting unknown variables will be independent of
the number of parameters selected, but it will be determined by the kind and size
of the dynamic problem and by the number of objective functions (or optimization
constraints) whose gradient is sought.

This chapter is divided in two blocks: one related to the sensitivity analysis of
the kinematics of topological models, and a second block related to the sensitivity
analysis of the dynamics of closed-loop systems.

Firstly, the sensitivity analysis of the kinematics in positions is outlined, consider-
ing the possibility of degrees of freedom not belonging to the set of joint coordinates.
Then, the sensitivity analysis of the kinematic velocity and acceleration problems are
described, paying special attention to the derivatives of the constraints. In general,
the sensitivities of kinematic problems are much easier to solve and involve signifi-
cantly less derivatives than the dynamic problem, but they are included in this chapter
because they are needed to initiate the simulation in the form of the sensitivities of
the initial position and velocity problems, and, moreover, because the problems have
an interest by themselves. In general multibody systems, natural coordinates mod-
els offer the simplest solution to the kinematic problems, whereas the same problem
in relative coordinates seems to be more entangled due to the particular treatment
of each type of joint and to the accumulations required. However, the kinematics
of closed-loop systems in relative coordinates has general known expressions which
can be simply solved for any mechanism by using kinematic recursive relations and
the derivatives of the constraint equations, as it was presented in chapter 3. In the
current chapter, the differentiation of kinematic problems in relative coordinates is
addressed, obtaining a general approach for the calculation of the sensitivity analysis
of any multibody model using both the direct differentiation and the adjoint method.

In a second block, the sensitivities of the dynamics of closed-loop systems are
presented. First, the sensitivity analysis of the semi-recursive Matrix R formulation is
introduced, and then the semi-recursive ALI3-P sensitivity formulations are addressed.
The two schemes of solution of the constrained equations of motion are successfully
differentiated, yielding the forward sensitivity and adjoint variable expressions for
both problems.

In chapter 4, the sensitivity analysis of open-loop systems has been described
paying special attention to the differences between the general formulation for any
reference point and the particular formulations RTdyn0 and RTdyn1. In the present
chapter, all the expressions will be referred to the general formulation for any reference
point. The evaluation of the new constraint derivatives required in the sensitivity
formulations developed will be explained in detail in section 5.5. The rest of the terms

164



5.1. Kinematic sensitivity analysis

of forces and masses needed for the sensitivities of the constrained dynamic equations
have been introduced in chapter 4, and therefore they will be just referenced in this
chapter.

5.1 Kinematic sensitivity analysis

In this section, the sensitivities of an objective function during a kinematic simu-
lation over time will be studied. Let us consider a vector of objective functions1

ψ ∈ Ro, dependent on positions, velocities and accelerations of points, vectors and
relative coordinates as well as a set of parameters ρ, being o the number of scalar
objective functions:

ψ =

∫ tF

t0

g (q, q̇, q̈, z, ż, z̈,ρ) dt (5.1)

wherein g ∈ Ro is a vector of functions with a known analytical expression.

5.1.1 Forward sensitivity

Differentiating (5.1) with respect to the set of sensitivity parameters, the gradient
of the objective function can be determined according to (4.2) in terms of q′, q̇′, q̈′,
z′, ż′, z̈′. However, considering the implicit dependencies of natural coordinates in
relative coordinates, this gradient can be reformulated as:

ψ′ =

∫ tF

t0

(gẑz
′ + gˆ̇zż

′ + gˆ̈zz̈
′ + gρ̂) dt (5.2)

where gẑ, gˆ̇z, gẑ and gρ̂ are given by (4.8).
From (5.2) and (4.8), it can be deduced that the composition of the gradient of the

objective function in a kinematic sensitivity analysis of a relative coordinate model is
significantly more complex than in natural coordinates models since it involves more
terms and products, though it could be a deceptive impression. Consider for example
the case of a closed-loop system: due to the reduced number of coordinates and
constraints of relative coordinate models, the kinematic problems are usually compact
and significantly smaller than the ones generated by natural coordinates models, and
accordingly, their computation is usually faster, especially when the mechanism is
composed of a high number of bodies.

Regarding the kinematic problems of position, velocity and acceleration, it can be
observed that they have a strong interrelation, since the position problem has to be
solved before the computation of the velocities, and the velocities of the states are
also needed for the assessment of the kinematic acceleration analysis. Analogously,
the sensitivities have the same dependencies, so in order to obtain the sensitivity of
the acceleration of a state, for instance, the sensitivities of the positions and velocities
have to be previously evaluated.

1Not all of them need to be objective functions, some of them could be design or optimization
constraints for which the gradient with respect to the parameters is also needed.

165



5. Sensitivity analysis of closed-loop systems

In the following developments, a non-constant B matrix will be considered in order
to embrace all the generality. The case of a constant B matrix can be inferred from
these expressions by eliminating all its derivatives.

For the sake of clarity, let us recall here the expressions of the kinematic problems
(3.15), (3.19a) and (3.19b):[

Φ
{n}
ẑ

B{n}

]
∆z{n+1} =

[
−Φ{n}

d− (zi)
{n}

]
(5.3a)

[
Φẑ

B

]
ż =

[
−Φt

ḋ

]
≡
[
b

ḋ

]
(5.3b)[

Φẑ

B

]
z̈ =

[
−Φ̇t − Φ̇ẑż

d̈− Ḃż

]
≡
[

c

d̈− Ḃż

]
(5.3c)

Differentiating with respect to a set of parameters ρ, the sensitivities of the posi-
tion, velocity and acceleration kinematic problems become:[

Φẑ

B

]
z′ =

[
−Φρ

d′

]
(5.4a)

[
Φẑ

B

]
ż′ =

[
−bρ

ḋ′ − b̄ρ

]
(5.4b)[

Φẑ

B

]
z̈′ =

[
−cρ

d̈′ − c̄ρ

]
(5.4c)

in which d′, ḋ′, d̈′ ∈ Rd×p are the sensitivities of the degrees of freedom at position,
velocity and acceleration level, and the grouped terms introduced are:

bρ = Φ̇ẑz
′ + Φ̇ρ̂ (5.5a)

b̄ρ = (Bẑz
′ +Bρ̂) ż = Ḃz′ +Bρ̂ż (5.5b)

cρ = 2Φ̇ẑż
′ + Φ̈ẑz

′ + Φ̈ρ̂ (5.5c)

c̄ρ = (Bẑz
′ +Bρ̂) z̈ +

(
Ḃˆ̇zż

′ + Ḃẑz
′ + Ḃρ̂

)
ż + Ḃż′

= 2Ḃż′ + B̈z′ +Bρ̂z̈ + Ḃρ̂ż
(5.5d)

where the following simplifications have been applied:

Bẑż = Ḃ (5.6a)

Bẑz̈+ Ḃẑż = Ḃˆ̇zz̈+ Ḃẑż = B̈ (5.6b)

Although constraint relations are almost immediate, the simplified expressions
(5.6) require further explanation. Let us expand the expression of the time derivative
of B according to its original definition given by (3.17):

Ḃ =
dB

dt
= (B)ẑ ⊗3 ż = ((f(z))ẑ)ẑ ⊗3 ż (5.7)

166



5.1. Kinematic sensitivity analysis

Now, consider the following property of tensor-vector products and second deriva-
tives of a function F ∈ Rf dependent on 2 vectors of independent variables x ∈ Rx

and y ∈ Ry: (
(f(x,y))x

)
y
⊗2 x =

(
(f(x,y))y

)
x
⊗3 x (5.8)

Applying (5.8) to (5.9), the following equality is inferred:

Ḃ = ((f(z))ẑ)ẑ ⊗3 ż = ((f(z))ẑ)ẑ ⊗2 ż = Bẑ ⊗2 ż (5.9)

thus equation (5.6a) has been proved.
The expansion of B̈ in terms partial derivatives holds:

B̈ =
dḂ

dt
=

dBẑ

dt
⊗3 ż+ (B)ẑ ⊗3 z̈ (5.10)

Let us explore now the time derivative of Bẑ considering its dependencies:

dBẑ

dt
= (Bẑ)ẑ ⊗4 ż = (Bẑ ⊗3 ż)ẑ =

(
Ḃẑ

)
ẑ

(5.11)

Now, combining (5.8), (5.10) and (5.11), the following expression is achieved:

B̈ =
(
Ḃẑ

)
ẑ
⊗3 ż+ (B)ẑ ⊗3 z̈ = (Bẑ ⊗3 ż)ẑ ⊗3 ż+ (B)ẑ ⊗3 z̈ =

(Bẑ ⊗3 ż)ẑ ⊗2 ż+ (B)ẑ ⊗2 z̈
(5.12)

Therefore, (5.6b) has been validated.
The constraint derivatives involved in (5.5) can be obtained using the differen-

tiation rule declared in (4.9). The terms used to compose them will be detailed in
section 5.5.

The sensitivity of the position problem is unaffected by the variability of the matrix
B, as it can be seen in (5.4a), but the velocity and acceleration problems are penalized
by the definition of degrees of freedom out from the vector of joint-coordinates z.
However, the derivatives required in those kinematic analyses are equivalent to the
ones involved in the evaluation of bρ and cρ in the velocity and acceleration problems
respectively. If the imposition of the degrees of freedom is regarded as a group of
constraints, the same differentiation structure of the constraints can be reused. For

instance, if two new constraint vectors ¯̇Φ ∈ Rd and ¯̈Φ ∈ Rd are considered, being
d the number of degrees of freedom, their right-hand-side terms in the sensitivity
expressions (5.4b) and (5.4c) will be:

¯̇Φ = Bż − żi ⇒ b̄ρ − żi′ = ¯̇Φẑz
′ + ¯̇Φρ̂ (5.13a)

167



5. Sensitivity analysis of closed-loop systems

¯̈Φ = Bz̈ + Ḃż − z̈i ⇒ c̄ρ − z̈i′ = 2 ¯̇Φẑż
′ + ¯̈Φẑz

′ + ¯̈Φρ̂ (5.13b)

In brief, the difference between a constant and non-constant B matrix in the sensi-
tivities of the kinematic problems is similar to the addition of a number of constraints
equal to the number of degrees of freedom not included in the relative coordinates
vector.

5.1.2 Adjoint sensitivity

The adjoint variable method is particularly well-suited for problems with a high
number of parameters and low number of objective functions2, since the number of
sensitivity variables depends on the number of objective functions rather than on
the number of parameters. Nevertheless, it could convey several drawbacks, specially
for differential equations in which the imposition of initial conditions forces to use a
backward-in-time integration scheme. Regarding that any of the kinematic problems
introduced in chapter 3 is formulated as a set of algebraic equations, no numerical
integration or initialization problem will be required, as it will be exposed in the
following lines.

The gradient of an integral objective function ψ ∈ Ro given by (5.1) can be
computed using the following Lagrangian function:

L (ρ) = ψ −
∫ tF

t0

µT
ΦΦdt−

∫ tF

t0

µT
Φ̇
Φ̇dt−

∫ tF

t0

µT
Φ̈
Φ̈dt−

∫ tF

t0

µT
z

(
zi − d

)
dt

−
∫ tF

t0

µT
ż

(
Bż− ḋ

)
dt−

∫ tF

t0

µT
z̈

(
Bz̈− Ḃż− d̈

)
dt

(5.14)

where µΦ, µΦ̇ and µΦ̈ ∈ Rm×o are the adjoint variables associated to the kinematic
constraints in positions, velocities and accelerations respectively, and µz, µż and
µz̈ ∈ Rd×o are the adjoint variables associated to the imposition of the values of the
DoF of the system. Observe that as long as the kinematic problems in positions,
velocities and accelerations are solved, the Lagrangian will have the same value of
the objective function (thus the same gradient) regardless of the values of the adjoint
variables.

Taking derivatives on (5.14) with respect to the set of sensitivity parameters, the
gradient of the Lagrangian yields:

L′ = ψ′ −
∫ tF

t0

µT
Φ (Φẑz

′ +Φρ̂) dt−
∫ tF

t0

µT
Φ̇
(Φẑż

′ + bρ) dt−
∫ tF

t0

µT
Φ̈
(Φẑz̈

′ + cρ) dt

−
∫ tF

t0

µT
z (Bz′ − d′) dt−

∫ tF

t0

µT
ż

(
Bż′ + b̄ρ − ḋ′

)
dt−

∫ tF

t0

µT
z̈

(
Bz̈′ + c̄ρ − d̈′

)
dt

(5.15)

2Or constraint functions whose gradient is sought.

168



5.1. Kinematic sensitivity analysis

wherein the terms involving the derivatives of the newly added adjoint variables ap-
pear multiplied by a term that is null, so they are directly eliminated from the final
derivative expression.

Now, the gradient of ψ given by (5.2) can be substituted in (5.15), and the compact
terms bρ, cρ, b̄ρ, and c̄ρ can be expanded to include their dependencies on z′, ż′ and
z̈′ using expressions (5.5):

L′ =

∫ tF

t0

(gẑz
′ + gˆ̇zż

′ + gˆ̈zz̈
′ + gρ̂) dt−

∫ tF

t0

µT
Φ (Φẑz

′ +Φρ̂) dt

−
∫ tF

t0

µT
Φ̇

(
Φẑż

′ + Φ̇ẑz
′ + Φ̇ρ̂

)
dt−

∫ tF

t0

µT
Φ̈

(
Φẑz̈

′ + 2Φ̇ẑż
′ + Φ̈ẑz

′ + Φ̈ρ̂

)
dt

−
∫ tF

t0

µT
z (Bz′ − d′) dt−

∫ tF

t0

µT
ż

(
Bż′ + (Bẑz

′ +Bρ̂) ż − ḋ′
)
dt

−
∫ tF

t0

µT
z̈

(
Bz̈′ + (Bẑz

′ +Bρ̂) z̈ +
(
Ḃˆ̇zż

′ + Ḃẑz
′ + Ḃρ̂

)
ż + Ḃż′ − d̈′

)
dt

(5.16)

Grouping terms with respect to the sensitivities of the states, and applying the
identities introduced in (5.6a) and (5.6b), the sensitivity of the adjoint Lagrangian
becomes:

L′ =

∫ tF

t0

(
gẑ − µT

ΦΦẑ − µT
Φ̇
Φ̇ẑ − µT

Φ̈
Φ̈ẑ − µT

zB− µT
ż Ḃ− µT

z̈ B̈
)
z′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
Φ̇
Φẑ − 2µT

Φ̈
Φ̇ẑ − µT

żB− 2µT
z̈ Ḃ
)
ż′dt

+

∫ tF

t0

(
gˆ̈z − µ

T
Φ̈
Φẑ − µT

z̈B
)
z̈′dt

+

∫ tF

t0

(
gρ̂ + µ

T
z d

′ + µT
ż

(
ḋ′ −Bρ̂ż

)
+ µT

z̈

(
d̈′ −Bρ̂z̈ − Ḃρ̂ż

)
−µT

ΦΦρ̂ − µT
Φ̇
Φ̇ρ̂ − µT

Φ̈
Φ̈ρ̂

)
dt

(5.17)

in which the relation Ḃˆ̇z = Bẑ has been employed.
In (5.17), the gradient of the adjoint Lagrangian is identical to the gradient of the

objective function regardless of the adjoint variable values. Therefore, these adjoint
variables can be selected such as all the terms multiplying the sensitivities of the states
are null, hence their calculation can be avoided. The following systems of equations
are therefore obtained:[

ΦT
ẑ BT

] [µΦ

µz

]
= gT

ẑ − Φ̇T
ẑµΦ̇ − Φ̈T

ẑµΦ̈ − ḂTµż − B̈Tµz̈ (5.18a)

[
ΦT

ẑ BT
] [µΦ̇

µż

]
= gT

ˆ̇z
− 2Φ̇T

ẑµΦ̈ − 2ḂTµz̈ (5.18b)

[
ΦT

ẑ BT
] [µΦ̈

µz̈

]
= gT

ˆ̈z
(5.18c)

169



5. Sensitivity analysis of closed-loop systems

These systems of equations have to be solved starting form the acceleration equa-
tions (µΦ̈ and µz̈), continuing with velocities (µΦ̇ and µż) and ending with positions
(µΦ and µz). In order to obtain the 3(m+ d)× o adjoint variables, the system (5.18)
of 3n × o equations have to be solved, but since the number of variables is lower
than or equal to the number of constraints plus the number of degrees of freedom
(n ≤ m+ d), this adjoint system could have infinite solutions, being one of them the
minimum norm solution.

Once solved the system of adjoint equations and computed the adjoint variables,
the gradient of the objective function can be calculated with the remaining terms of
expression (5.17):

L′ =

∫ tF

t0

(
gρ̂ + µ

T
z ḋ

′ + µT
ż

(
ḋ′ −Bρ̂ż

)
+ µT

z̈

(
d̈′ −Bρ̂z̈ − Ḃρ̂ż

)
−µT

ΦΦρ̂ − µT
Φ̇
Φ̇ρ̂ − µT

Φ̈
Φ̈ρ̂

)
dt

(5.19)

The application of the adjoint variable method to the set of algebraic equations
of the kinematic position, velocity and acceleration problems delivers, as presented
in (5.18), a new set of algebraic equations. Comparing the set of equations yielded
by the adjoint variable method (5.18) and the equations of the direct differentiation
method (5.4), some analogies can be observed, like that the leading matrices of the
adjoint problem are the transpose of the system matrices of the direct problems, of
that both expressions require exactly the same terms, even though they are involved
in different operations.

5.2 Sensitivity analysis of semi-recursive Matrix R

formulations

The enforcement of kinematic constraints in dynamic analysis can be addressed
through different approaches, three of them listed in chapter 3. The complexity in the
differentiation process is strongly tied to the construction of the dynamic equations
and to the set of expressions produced. In this sense, a set of dynamic equations
formulated by means of an ODE system is substantially simpler to differentiate than
problems expressed by a DAE system.

The semi-recursive Matrix R formulation extended to independent variables not
included in the vector of joint coordinates z (variable B matrix) is analytically differ-
entiated in this section with respect to a set of parameters ρ ∈ Rp applying a direct
differentiation scheme and the adjoint variable method.

Let us consider an integral objective function dependent on a set of Cartesian
coordinates q, q̇ and q̈, a set of joint-coordinates z, ż and z̈, a set of degrees of
freedom zi, żi and z̈i and a set of parameters ρ:

ψ =

∫ tF

t0

g
(
q, q̇, q̈, z, ż, z̈, zi, żi, z̈i,ρ

)
dt (5.20)

170



5.2. Sensitivity analysis of semi-recursive Matrix R formulations

Behold that each degree of freedom is part of the Cartesian coordinates vector
or the joint coordinates vector. In this regard, explicit dependencies of the objective
function g on the degrees of freedom are not necessary since they are included in the
Cartesian and joint coordinate dependencies, but they are considered separately due
to particular simplifications conquered for these dependencies.

5.2.1 Forward sensitivity

Taking derivatives on (5.20) with respect to a set of parameters ρ and considering
the explicit dependencies of g, the sensitivity of the objective function (5.20) can be
represented by the following gradient:

ψ′ =

∫ tF

t0

(
gziz

i′ + gżi ż
i′ + gz̈i z̈

i′ + gzz
′ + gż ż

′ + gz̈ z̈
′ + gqq

′ + gq̇q̇
′ + gq̈q̈

′ + gρ

)
dt

(5.21)

where the (·)′ denotes total derivatives with respect to the design parameters and the
subscripts indicate partial derivatives.

The Matrix R formulation imposes the fulfillment of the vector of constraints at
position, velocity and acceleration levels. Considering that the constraint equations
at those levels are enforced, their differentiation with respect to the parameters of the
system delivers the following sensitivity relations:

Φ′ =
dΦ

dρ
= 0 ⇒ Φẑz

′ = −Φρ̂ (5.22a)

Φ̇′ =
dΦ̇

dρ
= 0 ⇒ Φẑż

′ = −bρ (5.22b)

Φ̈′ =
dΦ̈

dρ
= 0 ⇒ Φẑz̈

′ = −cρ (5.22c)

where bρ and cρ, which are not partial derivatives, are described in (5.5).
Equations (5.22a)-(5.22c) have to be completed with d additional constraints like

in (5.4), defining the value of sensitivities of the degrees of freedom,[
Φẑ

B

]
z′ =

[
−Φρ̂

zi′

]
⇒ z′ = RΦzi′ − SΦΦρ̂ (5.23a)[

Φẑ

B

]
ż′ =

[
−bρ

żi′ − b̄ρ

]
⇒ ż′ = RΦ

(
żi′ − b̄ρ

)
− SΦbρ (5.23b)[

Φẑ

B

]
z̈′ =

[
−cρ

z̈i′ − c̄ρ

]
⇒ z̈′ = RΦ

(
z̈i′ − c̄ρ

)
− SΦcρ (5.23c)

being b̄ρ and c̄ρ defined in (5.5).
Expanding terms to make explicit the dependencies on the sensitivities of the

independent coordinates in positions, velocities and accelerations, equations (5.23)
are transformed:

z′ = RΦzi′ − SΦΦρ̂ (5.24a)

171



5. Sensitivity analysis of closed-loop systems

ż′ = RΦ
(
żi′ − Ḃz′ +Bρ̂ż

)
− SΦ

(
Φ̇ẑz

′ + Φ̇ρ̂

)
(5.24b)

z̈′ = RΦ
(
z̈i′ − 2Ḃż′ + B̈z′ +Bρ̂z̈ + Ḃρ̂ż

)
− SΦ

(
2Φ̇ẑż

′ + Φ̈ẑz
′ + Φ̈ρ̂

)
(5.24c)

Every kinematic problem implicitly involved in semi-recursive Matrix R formula-
tions (3.15), (3.19a) and (3.19b) evidences that joint coordinates can be expressed as
a combination of terms referred to degrees of freedom and constraint equations. For
a given instant of time, the implicit dependency z = z (zi,Φ (ρ)) can be inferred from
the application of the implicit function theorem to equations (5.24) augmented with
an appropriate selection of degrees of freedom through matrix B:

δz =
∂z

∂zi
δzi +

∂z

∂Φ
Φρ̂δρ⇒ z′ = zziz

i′ + zΦΦρ̂ (5.25)

Analogously, the implicit relations ż = ż
(
żi, Φ̇ (z,ρ)

)
for velocities and z̈ =

z̈
(
z̈i, Φ̈ (ż, z,ρ)

)
for joint coordinate accelerations can be deduced, yielding:

δż =
∂ż

∂żi
δżi+

∂ż

∂z
δz+

∂ż

∂Φ̇

(
Φ̇ẑz

′ + Φ̇ρ̂δρ
)
⇒ ż′ = żżi ż

i′+żzz
′ + żΦ̇

(
Φ̇ẑz

′ + Φ̇ρ̂

)
(5.26a)

δz̈ =
∂z̈

∂z̈i
δz̈i+

∂z̈

∂ż
δż+

∂z̈

∂z
δz+

∂z̈

∂Φ̈

(
Φ̈ˆ̇zż

′ + Φ̈ẑz
′ + Φ̈ρ̂δρ

)
⇒

z̈′ = z̈z̈i z̈
i′+z̈żż

′+z̈zz
′ + z̈Φ̈

(
Φ̈ẑż

′ + Φ̈ẑz
′ + Φ̇ρ̂

) (5.26b)

Comparing (5.25), (5.26a) and (5.26b) with (5.24), the following relations can be
deduced:

∂z

∂zi
= zzi =

∂ż

∂żi
= żżi =

∂z̈

∂z̈i
= z̈z̈i = RΦ (5.27)

∂z

∂Φ
= zΦ =

∂ż

∂Φ̇
= żΦ̇ =

∂z̈

∂Φ̈
= z̈Φ̈ = −SΦ (5.28)

∂z

∂ρ
= zρ = −SΦΦρ̂ (5.29)

∂ż

∂z
= żz = −SΦΦ̇ẑ −RΦḂ (5.30)

∂ż

∂ρ
= żρ = −SΦΦ̇ρ̂ −RΦBρ̂ż (5.31)

∂z̈

∂ż
= z̈ż = −2SΦΦ̇ẑ − 2RΦḂ (5.32)

∂z̈

∂z
= z̈z = −SΦΦ̈ẑ −RΦB̈ (5.33)

∂z̈

∂ρ
= z̈ρ = −SΦΦ̈ρ̂ −RΦ

(
Bρ̂z̈ + Ḃρ̂ż

)
(5.34)

172



5.2. Sensitivity analysis of semi-recursive Matrix R formulations

The expressions whose sensitivity analysis is been addressed include the defini-
tion of a non-constant B matrix, i.e. the possibility of independent coordinates non
belonging to the joint-coordinates vector. Behold that the expressions developed are
generic for any selection of degrees of freedom. In fact, if the vector of independent
coordinates are selected such as the matrix B is constant, the expressions presented
are still valid (with the derivatives of B null).

Once established the derivative expressions of z, ż and z̈ in (5.27), the dependent
variables q′, q̇′, q̈′, z′, ż′, z̈′ can be removed from the gradient of the objective function
(5.21). Then, all the contributions involving zi′, żi′ and z̈i′ can be gathered together:

gži = gzi + [gẑ + gˆ̇zżz + gˆ̈z (z̈żżz + z̈z)] zzi = gzi +
[
gẑ + gˆ̇z

(
−SΦΦ̇ẑ −RΦḂ

)
+gˆ̈z

((
−2SΦΦ̇ẑ − 2RΦḂ

)(
−SΦΦ̇ẑ −RΦḂ

)
+
(
−SΦΦ̈ẑ −RΦB̈

))]
RΦ

(5.35a)

gˇ̇zi = gżi + [gˆ̇z + gˆ̈zz̈ż] żżi = gżi +
[
gˆ̇z + gˆ̈z

(
−2SΦΦ̇ẑ − 2RΦḂ

)]
RΦ (5.35b)

gˇ̈zi = gz̈i + gˆ̈zz̈z̈i = gz̈i + gˆ̈zR
Φ (5.35c)

gρ̌ = gρ̂ + gẑzρ + gˆ̇z (żzzρ + żρ) + gˆ̈z (z̈ż (żzzρ + żρ) + z̈zzρ + z̈ρ) (5.35d)

where (·)̌· identifies a partial derivative including implicit dependencies with respect
to joint coordinates:

(·)x̌ = (·)x̂ + (·)ẑzx + (·)ˆ̇z (żx + żzzx) + (·)ˆ̈z (z̈x + z̈żżx + (z̈z + z̈żżz) zx) (5.36)

Note that the substitution of the derivatives with respect to ρ in (5.35) is omitted
to clarify the resulting equations since the replacement is straightforward and no
significant simplifications can be applied. Observe that the derivatives gẑ, gˆ̇z, gˆ̈z and
gρ̂ indicate the differentiation rule exposed in (4.8) in chapter 4.

Finally, gathering the terms with respect to zi′, żi′ and z̈i′, the expression of the
gradient results:

ψ′ =

∫ tF

t0

(
gžiz

i′ + gˇ̇zi ż
i′ + gˇ̈zi z̈

i′ + gρ̌

)
dt (5.37)

The sensitivities zi′, żi′ and z̈i′ can be obtained differentiating (3.27) with respect
to the vector of parameters. First of all, let us transform the system (3.27) to use a
more compact notation:

M̄z̈i = Q̄ (5.38)

with

M̄ =
(
RΦTMdRΦ

)
(5.39)

Q̄ = RΦT
(
Qd −Md

(
SΦc−RΦḂż

))
(5.40)

173



5. Sensitivity analysis of closed-loop systems

Then, taking derivatives in (5.38) with respect to the set of parameters ρ:

M̄′z̈i + M̄z̈i′ = Q̄′ (5.41)

where:

Q̄′ =
dQ̄

dρ
= Q̄žiz

i′ + Q̄ˇ̇zi ż
i′ + Q̄ρ̌ = −K̄zi′ − C̄żi′ + Q̄ρ̌ (5.42)

M̄′z̈i =
dM̄

dρ
z̈i =

(
M̄ži z̈

i
)
zi′ + M̄ρ̌z̈

i (5.43)

The resulting Tangent Linear Model (hereinafter TLM) takes the form:

M̄z̈i′ + C̄żi′ +
(
K̄+ M̄zi z̈

i
)
zi′ = Q̄ρ̌ − M̄ρ̌z̈

i (5.44a)

zi′ (t0) = zi′0 (5.44b)

żi′ (t0) = żi′0 (5.44c)

wherein:

Q̄ρ̌ − M̄ρ̌z̈
i = Q̄ρ̂−M̄ρ̂z̈

i +
(
Q̄ẑ + Q̄ˆ̇zżz − M̄ẑz̈

i
)
zρ + Q̄ˆ̇zżρ (5.45)

K̄ = −Q̄zi = −
(
Q̄ẑ + Q̄ˆ̇zżz

)
zzi (5.46)

C̄ = −Q̄żi = −Q̄ˆ̇zżżi (5.47)

M̄ži z̈
i =

(
M̄ẑz̈

i
)
zzi (5.48)

The terms involving derivatives of ρ, i.e. Q̄ρ̂ and M̄ρ̂z̈
i, can be computed more

efficiently if both are evaluated together. In fact, the terms referred to forces and
masses of each body are accumulated following the same scheme, hence it is convenient
to execute the differentiation of the accumulation-related terms only once for the
whole expression instead of twice, one for forces and another one for masses. In
order to display this relation, the semi-recursive Matrix R dynamic expressions can
be reformulated as:

RΦT
(
Qd −Md

(
RΦ

(
z̈i − Ḃż

)
+ SΦc

))
= 0 (5.49)

Taking into account expression (3.26), the equation (5.49) can be transformed into:

RΦT
(
Qd −Mdz̈

)
= 0 (5.50)

Resorting now to the reference point coordinates accelerations vector V̇ and using
(2.203), (2.206) and the definition of the mass matrix and generalized forces vector in
terms of joint coordinates given by (2.208b) and (2.208c), equation (5.50) becomes:

RΦTRvT
(
Qv −MvV̇

)
= 0 (5.51)

Behold that any of the equations presented above is valid for the differentiation,
even though they are expressed in terms of independent coordinates, in joint coordi-
nates or in reference point coordinates. Exploring each one of equations (5.49), (5.50)

174



5.2. Sensitivity analysis of semi-recursive Matrix R formulations

and (5.51), it can be deduced that (5.51) is the most straightforward to compose, thus
it is the most suitable to be differentiated. Moreover, as introduced in section (2.4.2),
Qv − MvV̇ can be efficiently evaluated following a fully-recursive scheme. The effi-
cient evaluation of the derivatives of Qv −MvV̇ will be commented in section (6.3.1)
corresponding to implementation considerations.

Taking derivatives on (5.51):

Q̄ρ̂ − M̄ρ̂z̈
i = RΦT

ρ̂ RvT
(
Qv −MvV̇

)
+RΦTRvT

ρ̂

(
Qv −MvV̇

)
+RΦTRvT

(
Qv

ρ̂ −Mv
ρ̂V̇ −MvV̇ρ̂

) (5.52)

The special interest of these expressions relies on the elimination of duplicities on
the differentiation process and on the particular assembly using a forward computation
of the sensitivities of the kinematics (V̇ρ̂) from the root to the tips of the mechanism,
and other evaluation and accumulation of masses and forces derivatives from the tips
to the root. With this scheme, either in the differentiation of the kinematic part or
of the forces and masses, only the expressions of the previous term of the kinematic
chain have to be stored to compute the derivative referred to the subsequent body,
hence the use of memory is also improved. A more detailed description is included in
section 6.3.1.

Back into expressions (5.45) to (5.48), the following derivatives are needed as well:

Q̄ẑ = RΦT
z

(
Q−M

(
SΦc−RΦḂż

))
−RΦT

(
K+Mẑ

(
SΦc−RΦḂż

)
+M

(
SΦ
ẑ c+ SΦcẑ −RΦ

ẑ Ḃż−RΦḂẑż−RΦḂżẑ

)), (5.53)

Q̄ˆ̇z = −RΦT
(
C+M

(
SΦcˆ̇z − 2RΦḂ

))
(5.54)

The derivatives of SΦ andRΦ can be attained using the properties of the derivative
of the inverse matrix applied to (5.55), recalled below:

[
SΦ RΦ

] [Φẑ

B

]
= In ⇒

[
SΦ RΦ

]
=

[
Φẑ

B

]−1

(5.55)

Thus, the generic derivatives of SΦ and RΦ can be expressed as:

∂
[
SΦ RΦ

]
∂x

= −
[
Φẑ

B

]−1 [
Φẑx

Bx

] [
Φẑ

B

]−1

= −
[
SΦ RΦ

] [Φẑx

Bx

] [
SΦ RΦ

]
(5.56)

The particularization of (5.56) to derivatives with respect to z and ρ, using the
rule of differentiation (4.9), yields:

SΦ
ẑ = −

(
SΦΦẑẑ +RΦBẑ

)
SΦ (5.57)

RΦ
ẑ = −

(
SΦΦẑẑ +RΦBẑ

)
RΦ (5.58)

SΦ
ρ̂ = −

(
SΦΦẑρ̂ +RΦBρ̂

)
SΦ (5.59)

RΦ
ρ̂ = −

(
SΦΦẑρ̂ +RΦBρ̂

)
RΦ (5.60)

175



5. Sensitivity analysis of closed-loop systems

Observe that if a constant B matrix is selected, its derivatives will be null and
terms RΦBẑ and RΦBρ̂ will disappear from (5.57).

The remaining derivatives of masses and forces Mẑ, K, C, Mρ̂ and Qρ̂ have been
already developed and explained in the previous chapter 4 devoted to the sensitivity
analysis of open-loop systems.

The sensitivity analysis of the semi-recursive Matrix R formulation has been im-
plemented considering a non-constant B matrix and the RTdyn0 and RTdyn1 ap-
proaches. The results of these sensitivities match the expected ones for all the multi-
body models tested, being the computational time for this formulation between the
sensitivities of the slower natural coordinates formulations and the fastest ALI3-P
sensitivities for the experiments considered in this work. Furthermore, the time sav-
ing related to the use of a constant B matrix instead of a non-constant one is below
10% in all the numerical tests executed, which indicates that the inclusion of the
variable matrix has an assumable effect in the computational time without impairing
the accuracy of the results.

5.2.2 Adjoint sensitivity

The adjoint variable method applied to Matrix R formulations was presented and
discussed in [107], starting from three different constructions of the equations of mo-
tion: a first-order explicit ODE system, a first-order implicit ODE system and a
second-order implicit ODE system. The first option delivers the simplest possible
expressions for the adjoint equations, avoiding the time derivative of the mass matrix
(as in the first-order implicit ODE system) and the time derivative of the damping
matrix and the second time derivative of the mass matrix (as in the second-order
implicit ODE system). In the current work, the developments presented in [107] for
the first-order ODE system will be recalled and combined with the semi-recursive
formalism.

The system (5.38) can be transformed into a first-order implicit system by intro-
ducing a new set of variables żi = v, and defining the new vector of first-order states

y =
[
ziT vT

]T
[

I 0
0 M̄

] [
żi

v̇

]
=

[
v
Q̄

]
(5.61a)

M̂ (y,ρ) ẏ = Q̂ (t,y,ρ) (5.61b)

Taking the inverse of the leading matrix in (5.61b), the system can be expressed
as a first-order explicit one,

ẏ = M̂−1 (y,ρ) Q̂ (t,y,ρ) = f (t,y,ρ) (5.62)

Let us now consider the following Lagrangian:

L (ρ) = ψ −
∫ tF

t0

µT (ẏ − f (t,y,ρ)) dt (5.63)

176



5.2. Sensitivity analysis of semi-recursive Matrix R formulations

Since ẏ − f (t,y,ρ) = 0, the value of the Lagrangian is equal to the value of the
objective function, and also its derivatives for any value of µ.

Computing the infinitesimal variations of L,

δL =

∫ tF

t0

(
gy̌δy + gˇ̇yδẏ + gρ̌δρ

)
dt−

∫ tF

t0

δµT (ẏ − f (t,y,ρ)) dt

−
∫ tF

t0

µT (δẏ − fy̌δy − fρ̌δρ) dt

(5.64)

in which the notation explained in equation (5.36) has been used to include implicit
dependencies on joint-coordinates in the partial derivatives with respect to y, ẏ and
ρ.

Integrating by parts and rearranging terms:

δL =
[(
gˇ̇y − µT

)
δy
]tF
t0

+

∫ tF

t0

(
gy̌ − ġˇ̇y + µ

Tfy̌ + µ̇
T
)
δydt

+

∫ tF

t0

(
gρ̌ + µ

Tfρ̌
)
δρdt

(5.65)

The objective of the adjoint approach is to eliminate the need of calculating the
derivatives of the states. In this case the objective is to nullify the expression multi-
plying δy, leading to the following adjoint ODE system:

µ̇ = −fy̌
Tµ− gy̌

T + ġˇ̇y
T (5.66a)

µtF =
[
gˇ̇y

T
]tF (5.66b)

(5.66c)

Nevertheless, these equations involve some problems related to the dependencies
on ẏ and the derivative ġẏ, which could need the calculation of the jerks

...
z i. These

problems can be solved through the transformation of the dependencies on ẏ to im-
plicit dependencies on y and ρ using (5.61b), resulting the final adjoint system:

µ̇ = −fy̌
T
(
µ+ gˇ̇y

T
)
− gy̌

T (5.67a)

µtF = 0 (5.67b)

fy̌ = M̂−1
(
Q̂y̌ − M̂y̌f

)
=

[
0 I

−M̄−1
(
K̄+ M̄ziv̇

)
−M̄−1C̄

]
(5.67c)

gy̌ =
[
gži gˇ̇zi

]
(5.67d)

gˇ̇y =
[
0 gˇ̈zi

]
(5.67e)

177



5. Sensitivity analysis of closed-loop systems

The objective function gradient can be calculated with the remaining terms:

ψ′T = −
[
yT
ρ̌µ
]
t0
+

∫ tF

t0

(
fTρ̌
(
µ+ gˇ̇y

T
)
+ gT

ρ̌

)
dt (5.68a)

fρ̌ = M̂−1
(
Q̂ρ̌ − M̂ρ̌f

)
=

[
0

M̄−1
(
Q̄ρ̌ − M̄ρ̌z̈

i
) ] (5.68b)

Regarding the simplicity and generality of the adjoint method applied to the semi-
recursive Matrix R formulation, it constitutes an interesting approach for the imple-
mentation of the sensitivity analysis of the dynamic response of a multibody system.
These sensitivities have been implemented in the MBSLIM multibody library and
have been tested with excellent results in terms of accuracy. Furthermore, the possi-
bility of using natural coordinates as degrees of freedom allows a direct comparison
against the sensitivities of the Matrix R formulation in natural coordinates, already
included in MBSLIM before the inception of this work. As a result of this comparison,
a significant reduction in the computational cost is achieved with the same behavior
in terms of accuracy.

5.3 Sensitivity analysis of semi-recursive penalty

formulations

As it was commented in section 3.4, the penalty formulation is used exclusively for
initialization purposes when ALI3-P formulations are intended to be used to obtain
the dynamic response of a multibody system. Despite being circumscribed to the
initial time, it has a direct effect into the dynamics as well as into the sensitivity
analysis. Both the direct differentiation method and the adjoint variable method
require the derivatives of the equations of motion at each time step of the simulation,
and since the initial time is part of the simulation, the initial equations have to be
differentiated and included into the sensitivity computations.

5.3.1 Forward sensitivity

The direct differentiation method was initially applied to the penalty formulation
by Pagalday et al. in [86], and has been recently revisited in [2]. It should be
reminded that this formulation eliminates the Lagrange multipliers from the dynamic
equations and substitutes them by a penalty term involving the constraints vector
and its time derivatives. If the objective function is dependent on these Lagrange
multipliers, there is the need of approximating them and their sensitivities according
to the approximation taken in the dynamics (3.44).

Let us recall the dynamic expressions of the penalty formulation revisited in section
3.4. Now, taking derivatives on (3.42) with respect to a set of parameters ρ ∈ Rp,
the following set of p systems of equations is obtained:

M̆z̈′ = Q̆ρ̂ − M̆ρ̂z̈−
(
K̆+ M̆d

ẑ

)
z′ − C̆ż′ (5.69)

178



5.3. Sensitivity analysis of semi-recursive penalty formulations

with

K̆ = −Q̆ẑ = K+ΦT
ẑẑ

(
Φ̇ẑż+ Φ̇t + 2ΩξΦ̇+ Ω2Φ

)
+ΦT

ẑ

(
Φ̇ẑẑż+ Φ̇tẑ + 2ΩξΦ̇ẑ + Ω2Φẑ

) (5.70a)

C̆ = −Q̆ˆ̇z = C+ΦT
ẑ

(
Φ̇ẑˆ̇zż+ Φ̇ẑ + Φ̇tˆ̇z + 2ΩξΦ̇ˆ̇z

)
= C+ΦT

ẑ

(
2Φ̇ẑ + 2ΩξΦ̇ˆ̇z

) (5.70b)

Q̆ρ̂ = Qd
ρ̂ −ΦT

ẑρ̂α
(
Φ̇ẑż+ Φ̇t + 2ΩξΦ̇+ Ω2Φ

)
−ΦT

ẑα
(
Φ̇ẑρ̂ż+ Φ̇tẑ + 2ΩξΦ̇ρ̂ + Ω2Φρ̂

) (5.70c)

M̆ẑ = Md
ẑ +ΦT

ẑẑαΦẑ +ΦT
ẑαΦẑẑ (5.70d)

M̆ρ̂ = Md
ρ̂ +ΦT

ẑρ̂αΦẑ +ΦT
ẑαΦẑρ̂ (5.70e)

Herein, K is the stiffness matrix (see section 4.2.2.1) and C the damping matrix of
the mechanism (see section 4.2.2.2), while the subscripts indicate partial derivatives
or the differentiation rule introduced in (4.9).

The absence of Lagrange multipliers in this formulation encompasses a series of
additional considerations when the penalty formulation is used in the initialization
of an ALI3-P scheme. The main issue is related to the dependency of the objective
function considered on the Lagrange multipliers, which could appear if this function
uses values of reaction forces or torques corresponding to the constraint equations.
Besides, the computation of the reaction forces in joint coordinate models is now put
aside since they are not the subject of the present development.

The dependency of the objective function on Lagrange multipliers imply the use
of the derivative of the approximated Lagrange multipliers given by equation (3.44):

λ∗′ = α
(
Φ̈′ + 2ΩξΦ̇′ + Ω2Φ′

)
(5.71)

where:

Φ′ = Φẑz
′ +Φρ̂ (5.72a)

Φ̇′ = Φ̇ˆ̇zż
′ + Φ̇ẑz

′ + Φ̇ρ̂ (5.72b)

Φ̈′ = Φ̈ˆ̈zz̈
′ + Φ̈ˆ̇zż

′ + Φ̈ẑz
′ + Φ̈ρ̂ (5.72c)

Therefore, since (5.69) is an ODE system, it could be integrated in time to obtain
the sensitivities of the states, and then they can be used to compute the sensitivities
of the Lagrange multipliers by means of (5.71). In the case of using this formula-
tion to initialize an ALI3-P, the sensitivities of positions and velocities are already
known, since they are obtained in the corresponding kinematic sensitivity problems,
and therefore z̈′ can be directly obtained without a numerical integrator. In Figure
5.1, the flow chart of the initialization process of the direct sensitivity of a semi-
recursive ALI3-P formulation by means of the sensitivity analysis of the kinematic
problems in positions and velocities and the dynamic penalty problem is displayed.

179



5. Sensitivity analysis of closed-loop systems

t = t0

Initialization of the dynamics

-Kinematic position problem.
- Kinematic velocity problem.
- Dynamic penalty formulation

Sensitivity of kinematic position problem[
Φẑ

B

]
z′ =

[
−Φρ

zi′

]

Sensitivity of kinematic velocity problem[
Φẑ

B

]
ż′ =

[
−bρ

żi′ − b̄ρ

]

Sensitivity of dynamic penalty problem

M̆z̈′ = Q̆ρ̂ − M̆ρ̂z̈ −
(
K̆+ M̆d

ẑ

)
z′ − C̆ż′

λ∗′ = α
(
Φ̈′ + 2ΩξΦ̇′ + Ω2Φ′

)

End

S
en
si
ti
v
it
y
in
it
ia
li
za
ti
on

z, ż, z̈

z′

ż′

z̈′, λ∗′

Figure 5.1: Flowchart of the initialization process for the sensitivity analysis of semi-
recursive ALI3-P formulations.

5.3.2 Adjoint sensitivity

The particular initialization of the dynamic system in ALI3-P formulations entails
a series of considerations in the application of the adjoint variable method to the
dynamic equations. On the one hand, there are two possible approaches for the adjoint
method, which are the discrete and continuous adjoint variable methods, consisting
in the use of the discrete or the continuous equations of motion in the construction of
the Lagrangian which originates the set of adjoint equations.

The continuous adjoint variable method applied to the dynamic equations of mo-
tion of a multibody system formulated as a second-order DAE system usually conveys

180



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

a set of conditions at the initial instant of time involving the sensitivities of the states
at position and velocity levels3. The sensitivities of the position and velocity problems
at the initial instant of time can be straightforwardly calculated from the kinematic
sensitivity analysis described in section 5.1. However, the effect of the dynamic accel-
eration problem is minimum in the continuous adjoint variable method, since it will
only determine the value of one of the steps of the gradient numerical integration. In
brief, for small enough time steps, the inclusion of the dynamic initial acceleration
problem in the continuous adjoint variable method can be dismissed, hence it will
not be described here. The reader is referred to [2] for a general description of the
continuous adjoint variable method applied to a general penalty formulation.

On the contrary, if the sensitivity analysis of an ODE or a DAE system is addressed
by means of the discrete adjoint variable method, every equation solved at each time
instant has to be considered, including the kinematic position and velocity problems
and the dynamic penalty problem. The main reason for these requirements relies on
the type of derivatives considered. Since the equations of motion used in this approach
contain a numerical integrator already applied to them before differentiation, they
cannot be integrated by parts in time (they constitute algebraic equations), thus no
instant terms at the initial time arise in this case. The effect of the initialization
process in the discrete adjoint variable method has to be considered jointly with the
rest of the equations solved in the simulation, hence the discrete adjoint equations of
the penalty formulation will be particularized for a semi-recursive ALI3-P simulation
in section 5.4.2.2.

5.4 Sensitivity analysis of semi-recursive ALI3-P

formulations

The formulations based on dependent coordinates such as ALI3-P have larger
numbers of variables than the ones based on independent coordinates. However, in
general, they usually display better performance in terms of computational time, since
no translation from dependent to independent coordinates is needed, as it happens,
for instance, in Matrix R formulations.

Let us remind here that the dynamic ALI3-P formulation guarantees a good ful-
fillment of the constraints in positions but also in velocities and accelerations thanks
to orthogonal projections. The results of the dynamics have high accuracy as well as
a reduced computational time. Furthermore, the scheme of solution used, allowing
the presence of redundant constraints, including the stiffness and damping matrices
in the solution, and solving the index-3 DAE directly in positions avoiding the well
known drift problem of reduced-index transformations, leads to a robust, accurate
and fast solution of the dynamics, properties that can be extended to the sensitivity
analysis.

3Proof of this can be found in the application of this method to the penalty formulation explored
in [2] or to the ALI3-P formulation described in [4].

181



5. Sensitivity analysis of closed-loop systems

5.4.1 Forward sensitivity

In this section, a generalized method for the forward sensitivity analysis of the
semi-recursive ALI3-P formulation is introduced.

Let us consider an objective function expressed in terms of z, ż, z̈, λ∗ and ρ, and
also in terms of the Lagrange multipliers of the velocity and acceleration projections
σ and κ (in the case of projections solved with an augmented Lagrangian scheme):

ψ =

∫ tF

t0

g (z, ż, z̈,λ∗,σ,κ,ρ) dt (5.73)

The gradient of the objective function can be expressed by the following equation:

ψ′ = ∇ψT =

∫ tF

t0

(gẑz
′ + gˆ̇zż

′ + gˆ̈zz̈
′ + gλ∗λ∗′ + gσσ

′ + gκκ
′ + gρ̂) dt (5.74)

In equation (5.74) the derivatives of g are known, and the terms z′, ż′, z̈′, λ∗′,
σ′ and κ′ are the unknown matrices, which can be solved by means of: a set p
Differential Algebraic Equation systems for the sensitivity analysis of the dynamics;
other p systems of equations for the sensitivity of the velocity projections; and other
p systems of equations for the sensitivity of the acceleration projections.

Taking derivatives on the augmented Lagrangian index-3 part of the ALI3-P for-
mulation given by equations (3.28) with respect to the set of parameters ρ, the fol-
lowing p systems of equations are obtained:[

Mdz̈∗′{i} +Cż∗′{i} + K̄z′{i} +ΦT
ẑλ

∗′{i}] = Q̄ρ (5.75a)

λ∗′{i} = λ∗′{i−1} +αΦ′ (5.75b)

with:

K̄ = Md
ẑz̈

∗ +ΦT
ẑẑ (λ

∗ +αΦ) +ΦT
ẑαΦẑ +K (5.76)

Q̄ρ = Qd
ρ̂ −Md

ρ̂z̈
∗ −ΦT

ẑρ̂ (λ
∗ +αΦ)−ΦT

ẑαΦρ̂ (5.77)

Φ′ = Φẑz
′ +Φρ̂ (5.78)

in which K̄, C and Md ∈ Rn×n are square matrices while Q̄ρ ∈ Rn×p is a matrix
with the same dimensions of z′{i}. These matrices involve the following tensor-vector
products: Md

ẑz̈
∗ = Md

ẑ ⊗ z̈∗, ΦT
ẑẑ (λ

∗ +αΦ) = ΦT
ẑẑ ⊗ (λ∗ +αΦ), Md

ρ̂z̈
∗ = Md

ρ̂ ⊗ z̈∗

and ΦT
ẑρ̂ (λ

∗ +αΦ) = ΦT
ẑρ̂ ⊗ (λ∗ +αΦ).

The constraints errors at velocity and acceleration levels are controlled in semi-
recursive ALI3-P formulations by means of velocity and acceleration projections. Con-
sidering P̄ ∈ Rn×n a symmetric semi-definite positive projection matrix, the sensitiv-
ity equations of the iterative velocity projections given by (3.35) take the form:

(
P̄+ ςΦT

ẑαΦẑ

)
ż′{i} = P̄ż∗′ + P̄′ (ż∗ − ż)−ΦT

ẑẑ

(
σ + ςαΦ̇

)
z′

−ΦT
ẑρ̂

(
σ + ςαΦ̇

)
−ΦT

ẑ

(
σ′{i} + ςαbρ

) (5.79a)

σ′{i} = σ′{i−1} + ςαΦ̇′; i > 1 (5.79b)

182



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

with bρ defined in (5.5a), and:

P̄′ = P̄ẑz
′ + P̄ˆ̇z∗ ż

∗′ + P̄ρ̂ (5.80)

Analogously, taking derivatives on (3.39) with respect to the parameters of the
system, the sensitivity of the acceleration projections is reached:(

P̄+ ςΦT
ẑαΦẑ

)
z̈′{i} = P̄z̈∗′ + P̄′ (z̈∗ − z̈)−ΦT

ẑẑ

(
κ+ ςαΦ̈

)
z′

−ΦT
ẑρ̂

(
κ+ ςαΦ̈

)
−ΦT

ẑ

(
κ′{i} + ςαcρ

) (5.81a)

κ′{i} = κ′{i−1} + ςαΦ̈′; i > 1 (5.81b)

with cρ defined in (5.5c).
Equations (5.75) combined with a numerical integrator provide the sensitivities of

the relative coordinates in positions z′, the sensitivities with respect to the Lagrange
multipliers λ∗′ and the sensitivities of the unprojected velocities and accelerations
of the states ż∗′ and z̈∗′. Equation (5.79) uses the unprojected sensitivities of the
velocities obtained in (5.75) ż∗′ to compute the sensitivities of the projected velocities
of the states ż′. Similarly, equation (5.81) produces the sensitivities of the projected
accelerations z̈′ from the unprojected ones z̈∗′.

The sensitivity equations (5.79) and (5.81) have been obtained differentiating the
velocity and acceleration projections in the form of an Augmented Lagrangian scheme,
but it has been proved empirically that penalty non-iterative schemes of solution (3.37)
and (3.40) offer good results as well. In that case, the Lagrange multipliers σ and κ
vanish from the projection sensitivities equations along with their sensitivities σ′ and
κ′, keeping the remaining terms unchanged.

It is important to remark that the direct differentiation method is based on the
forward differentiation of the expressions used to solve the dynamics. Despite that
this affirmation seems to be trivial, it becomes of real importance when projections
are treated. For instance, if in the computations of the dynamics the unprojected ve-
locities generate an error in the velocity constraints lower than the specified tolerance,
the projections do not need to be computed. Accordingly, if the velocity projections
are not computed, the sensitivity of the projected velocities has to be omitted too.
Otherwise, the final results will be inaccurate.

The ALI3-P formalism combined with a semi-recursive accumulation in joint co-
ordinate models delivers efficient and accurate results for the dynamic simulation of
multibody systems. The sensitivity analysis takes advantage of the reduced number
of coordinates and constraints generated by joint coordinate models (compared with
other coordinate models), leading to fast and accurate sensitivity evaluations, which
convert the direct sensitivity analysis of semi-recursive ALI3-P formulations into one
of the best options for an efficient and accurate sensitivity analysis.

The sensitivity analysis of closed-loop systems based on the direct differentiation
method applied to the semi-recursive ALI3-P formulation has been programmed in the
MBSLIM multibody library, including both the RTdyn0 and RTdyn1 approaches and

183



5. Sensitivity analysis of closed-loop systems

the possibility of iterative or non-iterative projections. The projection matrix imple-
mented is the mass matrix, primarily because both the mass matrix and its derivative
are required in the index-3 augmented Lagrangian part of the ALI3-P formulation
and in its sensitivity, respectively, hence both terms can be directly reused.

The semi-recursive ALI3-P direct sensitivity formulation presented in this sec-
tion has usually displayed higher efficiency than the equivalent method in natural
coordinates or the semi-recursive Matrix R sensitivity formulation in the numerical
experiments in which it has been tested.

5.4.2 Adjoint sensitivity

The adjoint sensitivity of any set of ODE or DAE can be computed from two
different perspectives, leading to the commonly known as discrete and continuous
adjoint methods. The sensitivity of the DAE system originated from the dynamics of
a multibody system formulated with an ALI3-P approach can be solved by means of
these two approaches, encompassing different advantages and disadvantages related
to the terms needed and the generality of the expressions.

On the continuous approach, the equations are considered as continuous in time,
which entails a series of continuous differentiation formalisms that can induce com-
plex and high time consuming derivatives when applied to second-order DAE systems.
Nevertheless, the resulting expressions are general regardless of the numerical inte-
grator used in the solution of the original ODE or DAE system.

The discrete approach, on the other hand, handles the derivatives of the discretized
dynamic expressions with a numerical integrator applied to the states. The adjoint
sensitivity system obtained in this approach depends on the numerical integrator se-
lected on the dynamics, which means that the set of equations generated is particular
for a family of integrators, and also forces to solve the dynamics and the sensitivities
with the same integrator. Despite the particularity, the discrete method usually de-
livers simpler systems of equations and does not require additional time derivatives
of dynamic magnitudes, as it could happen in continuous methods.

5.4.2.1 Continuous approach

The dynamic equations of the semi-recursive ALI3-P formulation constitute a set
of continuous-in-time equations which need to be evaluated at successive instants of
time to be solved, since it is impossible or very difficult to solve a general DAE system
without a discretization. From this perspective, the application of the continuous
adjoint variable method (CAVM) seems to be the most logical option regarding the
nature of the dynamic equations.

The continuous adjoint sensitivity of the Augmented Lagrangian Index-3 formula-
tion with projections was developed and exhaustively detailed in [4]. In this section,
the scheme of solution and expressions presented in this paper are revisited and ex-
tended for their application to relative coordinate models. Following the directives
explained in [4], a change of variables, ż∗ = v∗ is applied in order to avoid high

184



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

order temporal derivatives, thus an additional constraint is added to the adjoint La-
grangian. Moreover, the addition to the Lagrangian of the velocity constraint equa-
tions in the final time is imposed to solve the incompatibilities appearing at time tF ,
Φ̇ (tF ,qF ,v

∗
F ,ρ) ≈ 0. Observe that this constraint is evaluated with the unprojected

velocities, and therefore it is not exactly equal to zero, but since the constraints in po-
sitions, velocities and accelerations in the previous time step are equal to zero thanks
to the projections, this error could be considered low enough to neglect it.

Furthermore, the iterations of the Lagrange multipliers related to the Augmented
Lagrangian scheme can be avoided using one of the lemmas introduced in the com-
mented paper, which declares: “The augmented Lagrangian scheme of the index-3
DAE TLM is equivalent to the TLM of the augmented Lagrangian Index-3 formula-
tion”, [4], with the following approximation of the Lagrange multipliers:

λ ≈ (λ∗ +αΦ) (5.82)

Consequently, the augmented Lagrangian index-3 can be substituted by an index-
3 TLM, leading to a much direct solution avoiding the iteration of the Lagrange
multipliers sensitivities.

Now, let us consider a Lagrangian composed of an objective function minus the
set of equations that are fulfilled in the dynamics, and with the considerations of the
change of variables and velocity constraint in the final time already commented:

L = ψ −
∫ tF

t0

µT
2

(
Mv̇∗ +ΦT

ẑ (λ∗ +αΦ)−Q
)
dt

−
∫ tF

t0

µT
1 (ż∗ − v∗) dt−

∫ tF

t0

µT
ΦΦdt

−
∫ tF

t0

µT
Φ̇

([
P̄+ ςΦT

ẑαΦẑ

]
ż − P̄v∗ +ΦT

ẑ ςαΦt

)
dt

−
∫ tF

t0

µT
Φ̈

([
P̄+ ςΦT

ẑαΦẑ

]
z̈ − P̄v̇∗ +Φẑςα

(
Φ̇ẑż + Φ̇t

))
dt

+ηTΦ̇ (tF ,qF ,v
∗
F ,ρ)

(5.83)

For the sake of clearness, the adjoint variables µ1, µ2, µΦ̇, µΦ̈ ∈ Rn×o and η,
µΦ ∈ Rm×o are identified by the same subindices introduced in [4]. The resulting
Lagrangian has 6 matrices of adjoint variables, µ2 and µΦ corresponding to the index-
3 DAE system, µΦ̇ to the projections of velocities, µΦ̈ to acceleration projections, µ1

to the change of variable equations and η to the velocity constraint for unprojected
velocities (this last only evaluated at the final time).

The gradient of the Lagrangian (5.83) with respect to the set of parameters ρ can

185



5. Sensitivity analysis of closed-loop systems

be formulated as:

L′ =
[
ηTΦ̇∗

ẑz
′ + ηTΦẑv

∗′ + ηTΦ̇∗
ρ

]tF
+

∫ tF

t0

(
gẑ − µT

2 K̄− µT
ΦΦẑ − µT

Φ̇

(
ΦT

ẑẑςαΦ̇− P̄ẑ (v
∗ − ż) +ΦT

ẑ ςαΦ̇ẑ

)
−µT

Φ̈

(
ΦT

ẑẑςαΦ̈− P̄ẑ (v̇
∗ − z̈) +ΦT

ẑ ςαΦ̈ẑ

))
z′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
Φ̇

(
P̄+ΦT

ẑ ςαΦẑ

)
− 2µT

Φ̈
ΦT

ẑ ςαΦ̇ẑ

)
ż′dt−

∫ tF

t0

µT
1 ż

∗′dt

+

∫ tF

t0

(
µT

1 − µT
2C+ µT

Φ̇

(
P̄+ P̄v∗ (v∗ − ż)

)
+ µT

Φ̈
P̄v∗ (v̇∗ − z̈)

)
v∗′dt

−
∫ tF

t0

(
gˆ̈z − µ

T
Φ̈

(
P̄+ΦT

ẑ ςαΦẑ

))
z̈′dt

−
∫ tF

t0

(
µT

2M− µT
Φ̈
P̄
)
v̇∗′dt+

∫ tF

t0

(
gλ∗ − µT

2Φ
T
ẑ

)
λ∗′dt

+

∫ tF

t0

(
gρ̂ + µ

T
2 Q̄

ρ − µT
ΦΦρ̂ − µT

Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (v
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (v̇
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))
dt

(5.84)

where the asterisk as superscript means that the term is evaluated with the unpro-
jected velocities or accelerations. Observe that there are 7 unknown sensitivity arrays
z′, ż′, z∗′, z̈′, v∗′, v̇∗′ and λ∗′ which represent (6n+m)× p sensitivities corresponding
to the solution of the direct sensitivity problem. Since the previous expressions are
valid for any value of the adjoint variables, they can be selected in order to nullify
the term multiplying the forward sensitivity variables. Thanks to this selection, the
adjoint variable method dodges the calculation of these variables which can be highly
time consuming for a large number of parameters.

Looking into equation (5.84), it can be observed that there are 2n × p forward
sensitivities that cannot be neglected, so an integration by parts in time may be
applied to the integrals involving ż∗′ and v̇∗′, which constitute the temporal derivatives

186



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

of z∗ and v̇∗ respectively:

L′ =
[
ηTΦ̇∗

ẑz
′ + ηTΦẑv

∗′ + ηTΦ̇∗
ρ

]tF
−
[
µT

1 z
′]tF
t0

−
[(
µT

2M− µT
Φ̈
P̄
)
v∗′]tF

t0

+

∫ tF

t0

(
gẑ − µT

2 K̄− µT
ΦΦẑ − µT

Φ̇

(
ΦT

ẑẑςαΦ̇− P̄ẑ (v
∗ − ż) +ΦT

ẑ ςαΦ̇ẑ

)
−µT

Φ̈

(
ΦT

ẑẑςαΦ̈− P̄ẑ (v̇
∗ − z̈) +ΦT

ẑ ςαΦ̈ẑ

)
+ µ̇T

1

)
z′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
Φ̇

(
P̄+ΦT

ẑ ςαΦẑ

)
− 2µT

Φ̈
ΦT

ẑ ςαΦ̇ẑ

)
ż′dt

+

∫ tF

t0

(
µT

1 − µT
2C+ µT

Φ̇

(
P̄+ P̄v∗ (v∗ − ż)

)
+ µT

Φ̈
P̄v∗ (v̇∗ − z̈)

+µ̇T
2M+ µT

2 Ṁ− µ̇T
Φ̈
P̄− µT

Φ̈
˙̄P
)
v∗′dt

−
∫ tF

t0

(
gˆ̈z − µ

T
Φ̈

(
P̄+ΦT

ẑ ςαΦẑ

))
z̈′dt+

∫ tF

t0

(
gλ∗ − µT

2Φ
T
ẑ

)
λ∗′dt

+

∫ tF

t0

(
gρ̂ + µ

T
2 Q̄

ρ − µT
ΦΦρ̂ − µT

Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (v
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (v̇
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))
dt

(5.85)

Once integrated by parts, the unknown direct sensitivities can be neglected making
the o×(4n+m) coefficients multiplying them equal to zero. Therefore, the final system
of equations depending exclusively on the adjoint variables is achieved:

µ̇1 − K̄Tµ2 −ΦT
ẑµΦ −ATµΦ̇ −BTµΦ̈ = −gT

ẑ , (5.86a)

MTµ̇2 − P̄Tµ̇Φ̈ − C̄Tµ2 + µ1 + ETµΦ̇ + FTµΦ̈ = 0, (5.86b)(
P̄+ΦT

ẑ ςαΦẑ

)T
µΦ̇ + 2ς

(
ΦT

ẑαΦ̇ẑ

)T
µΦ̈ = gT

ˆ̇z
, (5.86c)(

P̄+ΦT
ẑ ςαΦẑ

)T
µΦ̈ = gT

ˆ̈z
, (5.86d)

Φẑµ2 = gT
λ . (5.86e)

wherein:

A = ΦT
ẑẑςαΦ̇− P̄ẑ (v

∗ − ż) +ΦT
ẑ ςαΦ̇ẑ, (5.87a)

B = ΦT
ẑẑςαΦ̈− P̄ẑ (v̇

∗ − z̈) +ΦT
ẑ ςαΦ̈ẑ, (5.87b)

C̄ = C− Ṁ, (5.87c)

E = P̄+ P̄v∗ (v∗ − ż) , (5.87d)

F = − ˙̄P+ P̄v∗ (v̇∗ − z̈) , (5.87e)

K̄ = K+Mẑv̇
∗ +ΦT

ẑαΦẑ +ΦT
ẑẑ (λ

∗ +αΦ) . (5.87f)

The resulting adjoint system constitutes an index-3 DAE system, where the alge-
braic equations (5.86c) and (5.86d) related to the projections in velocities and accel-
erations can be solved separately from the DAE system ((5.86a), (5.86b) and (5.86e)),
as it happens with the underlying forward dynamics.

187



5. Sensitivity analysis of closed-loop systems

The adjoint system has to fulfill the following set of initialization conditions eva-
luated at tF :

[µ1]
tF =

[
Φ̇∗T

ẑ η
]tF

, (5.88a)[
MTµ2 −ΦT

ẑ η
]tF =

[
P̄TµΦ̈

]tF . (5.88b)

The imposition of these initialization conditions in the final time tF obligates to
integrate backward in time equations (5.86). This backward integration implies the
storage of Lagrange multipliers, positions and projected and unprojected velocities
and accelerations of the states at each time instant, thus once the forward dynamics
is complete, the adjoint variables and the gradient of the objective function can be
computed from tF to t0. The terms required to build the adjoint system can be
computed during the backwards integration using the stored values of the states and
the Lagrange multipliers. A different possibility, not explored in this work, consists in
the computation of all the terms required for the adjoint at each time step during the
forward dynamics, but this will result in the usage of a big amount of memory whose
access for reading and writing could worsen the computational time of the adjoint
calculation.

Finally, the properties of the Lagrangian allow to calculate the gradient of the ob-
jective function with the remaining terms of (5.85), including solely partial derivatives
of dynamic terms with respect to the array of parameters ρ:

ψ′ =
[
ηTΦ̇∗

ρ̂

]tF
+
[
µT

1 z
′ −
(
µT

2M− µT
Φ̈
P̄
)
v∗′]tF

t0

+

∫ tF

t0

(
gρ̂ + µ

T
2 Q̄

ρ − µT
ΦΦρ̂ − µT

Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (v
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (v̇
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))
dt

(5.89)

The initialization of a DAE system is usually one of the most complex parts of its
solution, specially harder the higher its index. In semi-recursive ALI3-P dynamics,
for example, if a Newmark integrator is used, the positions, velocities and acceler-
ations of the states are needed for the initialization of the integrator, and they can
be easily calculated solving the kinematic problems in positions and velocities and
using a reduced-index formulation to solve the initial dynamic accelerations (such as
the penalty problem described in section 3.4). Observe that the structure of this
initialization is completely different to the calculation of the dynamics at any other
time.

Similarly, the solution of the initialization conditions of the adjoint system has a
specific scheme of calculation based on the fulfillment of different conditions at the
final time, both kinematic and dynamic. In [4], a set of equations and an algorithm
for the solution of the initial conditions for an ALI3-P adjoint system were proposed
and described in detail. Since the gist and the basis of the initialization have been
already presented in the commented paper, here the scheme of solution is directly
applied to a semi-recursive accumulation of a joint coordinate model.

188



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

At time tF , the adjoint system is composed of equations (5.86) plus the instant
conditions at time tF (5.88):

µ̇1 − K̄Tµ2 −ΦT
ẑµΦ −ATµΦ̇ −BTµΦ̈ = −gT

ẑ , (5.90a)

MTµ̇2 − P̄Tµ̇Φ̈ − C̄Tµ2 + µ1 + ETµΦ̇ + FTµΦ̈ = 0, (5.90b)(
P̄+ΦT

ẑ ςαΦẑ

)T
µΦ̇ + 2ς

(
ΦT

ẑαΦ̇ẑ

)T
µΦ̈ = gT

ˆ̇z
, (5.90c)(

P̄+ΦT
ẑ ςαΦẑ

)T
µΦ̈ = gT

ˆ̈z
, (5.90d)

Φẑµ2 = gT
λ∗ , (5.90e)

[µ1]
tF =

[
Φ̇∗T

ẑ η
]tF

, (5.90f)[
MTµ2 −ΦT

ẑ η
]tF =

[
P̄TµΦ̈

]tF (5.90g)

Comparing the resulting initialization equations to the ones included in the refer-
ence work [4], it can be observed that, since the objective function considered in the
present work only involves an integral term, no incompatible conditions are present
here, like it occurs in the commented work.

The solution of the initial system (5.90) can be achieved with the following algo-
rithm:

1. Calculation of µΦ̈ from (5.90d).

2. Evaluation of µΦ̇ from (5.90c).

3. Time differentiation of (5.90d) to obtain µ̇Φ̈. The time derivative of the adjoint
variable related to the acceleration projections is required for solving the ini-
tial system of equations and to initialize its time integration. The most direct
method to obtain it, consists in taking derivatives in (5.90d) with respect to
time, which yields:(

P̄+ΦT
ẑ ςαΦẑ

)T
µ̇Φ̈ = ġT

ˆ̈z
−
(
˙̄P+ Φ̇T

ẑ ςαΦẑ +ΦT
ẑ ςαΦ̇ẑ

)T
µΦ̈ (5.91)

Observe that if g is at least quadratic in accelerations, the term ġˆ̈z can involve
jerks

...
z , which could be very difficult to obtain analytically from the semi-

recursive ALI3-P equations. The solution given in the reference paper and
considered here is the use of a numerical estimation based on the values of the
accelerations in the present and previous time steps.

4. Solution of equations (5.90e) and (5.90g) to obtain µ2 and η. These two sets of
equations have the same structure as a classical index-1 DAE Lagrange system,
and accordingly, they have an unique solution if the rank of

[
MdT ΦT

ẑ

]
is

equal to the number of coordinates and if no redundant constraints are present.
However, although the first condition is satisfied in ALI3-P formulations, the
use of redundant constraints leads to an infinite number of possible solutions
of η, so the problem is compatible undetermined. One of its possible solutions

189



5. Sensitivity analysis of closed-loop systems

consists in the minimum norm solution, which can be obtained by means of
the Moore-Penrose generalized inverse. This method uses the singular value
decomposition of the leading matrix, and despite the high computational effort
involved in these type of calculations, the fact that it is evaluated only once
per simulation causes that it does not have a significant impact in the general
computation time.

The solution of µ2 and η takes the form:[
µ2

−η

]
= VrΣ

−1
r UT

r

[
P̄TµΦ̈

gT
λ

]
(5.92)

with,

Σ = UT

[
MdT ΦT

ẑ

Φẑ 0

]
V (5.93)

where Σ ∈ R(n+m)×(n+m), U ∈ R(n+m)×(n+m) and V ∈ R(n+m)×(n+m) are the
resulting matrices of the singular value decomposition (observe that Σ is diago-
nal). In (5.92), matrix Σr ∈ Rr×r is a diagonal matrix containing the non-zero
singular values from Σ, while Ur ∈ R(n+m)×r and Vr ∈ R(n+m)×r contain, res-
pectively, the right and left singular vectors associated to them.

5. Assessment of µ1 from (5.90f).

6. Calculation of µ̇1 from (5.90a) assuming µΦ = 0.

7. Computation of µ̇2. If the mass matrix has full rank, µ̇2 can be directly obtained
from (5.90b), but the MBSLIM implementation involves semi-definite positive
mass matrices which not always have an inverse. This issue is circumvented
in [4] by means of the approximation of this variable by means of the value
of the equivalent index-1 DAE adjoint system. In order to obtain an scheme
of solution equivalent to the ALI3-P system where µ2 has an analog meaning,
the conditions and adjoint variables are transformed, as it is described in the
appendix D. The following assumption is done:

[µ̇2]
tF ≈

[
µ̇I1

2

]tF (5.94)

where the variable obtained from the index-1 adjoint system is identified with
the superscript I1.

As it can be deduced from the previous algorithm, the main challenge in the
solution of (5.90) is related to the assumption that redundant constraints could be
present.

The proposed algorithm for the solution of the adjoint equations for any time
ti < tF is devised here:

1. Determination of µΦ̈ from (5.90d).

190



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

2. Determination of µ̇Φ̈ my means of a numerical integrator. In the present deve-
lopment, the backward implicit Newmark integrator is used, with the following
expressions:

µ̇n
∗ = − γ

βh
µn

∗ + ˆ̇µn+1
∗ ; ˆ̇µn+1

∗ =
γ

βh
µn+1

∗ −
(
γ

β
− 1

)
µ̇n+1

∗ (5.95)

Note that only one integration in time is needed, since there are no adjoint
variables with double time derivatives due to the change of variables included
in the Lagrangian.

3. Computation of µΦ̇ from (5.90c).

4. Calculation of µ2, µ1 and µΦ using (5.90a), (5.90b) and (5.90e). First, the
variables µ̇2 and µ̇1 have to be integrated backwards in time. The application
of the backwards integrator to (5.90a), (5.90b) and (5.90e) yields:

− γ

βh
µ1 + ˆ̇µ1 − K̄Tµ2 −ΦT

ẑµΦ −ATµΦ̇ −BTµΦ̈ = −gT
ẑ , (5.96a)

MT

(
− γ

βh
µ2 + ˆ̇µ2

)
− P̄Tµ̇Φ̈ − C̄Tµ2 + µ1 + ETµΦ̇ + FTµΦ̈ = 0, (5.96b)

Φẑµ2 = gT
λ∗ . (5.96c)

For the sake of clearness, the superscripts n and n+ 1 have been omitted from
the integrator terms, being the term in positions evaluated at the time step n,
and the correction part ˆ̇µ∗ calculated with the terms of the previously computed
instant of time, which is n+ 1.

Rearranging the three equations into a matrix form:
− γ

βh
I −K̄T −ΦT

ẑ

I − γ

βh
MT − C̄T 0

0 Φẑ 0


µ1

µ2

µΦ

 =

 r1
r2
gT
λ∗

 (5.97)

with

r1 = −gT
ẑ +ATµΦ̇ +BTµΦ̈ − ˆ̇µ1 (5.98a)

r2 = P̄Tµ̇Φ̈ − ETµΦ̇ − FTµΦ̈ −MT ˆ̇µ2 (5.98b)

According to [4], a scaling of this equation is recommended to improve its ill
conditioning. Following these guidelines, the first equation is scaled by a factor
of βh2; the second equation is scaled by a factor of γh; the first adjoint variable
is substituted by the scaled one µ̄1 = γhµ1; finally, the third adjoint variable is
substituted by µ̄Φ = βh2µΦ. The resulting scaled system of equations becomes:

−I −βh2K̄T −ΦT
ẑ

I −γ
2

β
MT − γhC̄T 0

0 Φẑ 0


 µ̄1

µ2

µ̄Φ

 =

βh2r1γhr2
gT
λ∗

 (5.99)

191



5. Sensitivity analysis of closed-loop systems

If the Newmark integrator used is the trapezoidal rule, with β =
1

4
and γ =

1

2
,

the optimal scaled expression presented in [4] is reached.

The possible presence of redundant constraints entails infinite solutions of the
previous system. Hence, there are various methods to obtain different valid
solutions, such as the Moore-Penrose generalized inverse by means of singular
value decomposition, introduced previously in this section. This method is
absolutely valid, but it involves a high computational effort, which is specially
relevant when this computation has to be executed at each time step.

Other possibility, presented in [4], consists in the solution of the system by means
of a transformation of (5.99) into an augmented Lagrangian scheme. This ap-
proach offers a robust scheme of solution, accepting redundant constraints, with
low computational effort. The first step to achieve an augmented Lagrangian
scheme is to add the first and second equations of (5.99):−γ2β MT − γhC̄T − βh2K̄T −ΦT

ẑ

Φẑ 0

[µ2

µ̄Φ

]
=

[
γhr2 + βh2r1

gT
λ∗

]
(5.100)

Observe that this system is analog to the classical Index-1 Lagrange formu-
lation, so its transformation into an augmented Lagrangian scheme is almost
straightforward.(
γ2

β
Md + γhC̄+ βh2K̄

)T

µ2 +ΦT
ẑ

(
µ̄

∗(i)
Φ −αa (gλ −Φẑµ)

)
= −γhr2 − βh2r1

(5.101a)

µ̄
∗(i)
Φ = µ̄

∗(i−1)
Φ −αa (gλ −Φẑµ) (5.101b)

where αa ∈ Rm×m is a diagonal matrix with penalty factors, opening the pos-
sibility of different factors per constraint equation, as it has been implemented
in the dynamics.

The determination of the values of the adjoint variables makes possible to compute
the gradient of the objective function without the evaluation of the sensitivities of the
states, using the remaining terms described in (5.89). Despite the complexity of the
initialization problem and the conditions that have to fulfill the expression of the
objective function at time tF , the solution of the system can be executed with low
computational effort, involving two linear equations and one augmented Lagrangian
system. It has been proved that this method, and particularly this algorithm, offers
good results in terms of accuracy along with high efficiency when a high number of
parameters is used.

In this section, the method described in [4] has been successfully extended to
semi-recursive formulations based on joint coordinates, and it has been tested and
implemented in the MBSLIM multibody library as a general sensitivity formulation.

192



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

During the study and implementation of this method, a different and simpler
approach has been developed as an alternative in order to avoid complex initialization
problems. As a result, the discrete approach has been achieved.

5.4.2.2 Discrete approach

The discrete approach is based on the use of the discrete expressions of the dyna-
mics for building the adjoint variable Lagrangian. Basically, this approach represents
the adjoint of the discretization, which means that the adjoint is generated with
the discrete equations of motion and the discrete variables obtained in the dynamics.
The approach has been successfully applied to multibody models in [96] with a Runge-
Kutta integrator and in [97,128] with Hilber-Hughes-Taylor integrator, among others.

In general, this approach is less cumbersome than the continuous method, spe-
cially with DAE systems, but it has as main drawback the generation of particular
expressions involving the numerical integrator applied to the dynamics.

First of all, the discrete nature of the discrete AVM implies that any integral will
be substituted by its discrete form in terms of sums. For simplicity, the integral
function is discretized by means of the trapezoidal rule, with the form:∫ tF

t0

Xdt =
h

2
(X0 +Xn) + h

n−1∑
i=1

Xi (5.102)

where h is the step of time of the discretization, n = tF−t0
h

the number of steps and
Xi the value of X at the time ih+ t0.

Accordingly, the objective function:

ψ =

∫ tF

t0

gdt (5.103)

can be discretized and transformed into:

ψ =
h

2
(g0 + gn) + h

n−1∑
i=1

gi (5.104)

In this approach, the index-3 DAE system is better suited to build the adjoint
system than the augmented Lagrangian index-3 DAE as long as it does not require
an iteration for the Lagrange multipliers. The lemma 4.3 presented in [4] established
the basis to interchange these two formulations within a sensitivity analysis, using the
following upgrade of the Lagrange multipliers

λ ≈ (λ∗ +αΦ) (5.105)

where λ are the Lagrange multipliers of the index-3 DAE and λ∗ are the Lagrange
multipliers of the augmented Lagrangian index-3.

193



5. Sensitivity analysis of closed-loop systems

The semi-recursive index-3 DAE tangent linear model takes the form:

Mdz̈∗′ +Cż∗′ +
(
Md

ẑz̈
∗ +ΦT

ẑẑλ+K
)
z′ +ΦT

ẑλ
′ = Qd

ρ̂ −Md
ρ̂z̈

∗ −ΦT
ẑρ̂λ (5.106a)

Φẑz
′ = −Φρ̂ (5.106b)

and with the substitution of the Lagrange multipliers by the ones of the augmented
Lagrangian scheme, it becomes:

Mdz̈∗′ +Cż∗′ +
(
Md

ẑz̈
∗ +ΦT

ẑαΦẑ +ΦT
ẑẑ (λ

∗ +αΦ) +K
)
z′ +ΦT

ẑλ
∗′ =

Qd
ρ̂ −Md

ρ̂z̈
∗ −ΦT

ẑρ̂ (λ
∗ +αΦ)−ΦT

ẑαΦρ̂

(5.107a)

Φẑz
′ = −Φρ̂ (5.107b)

The discrete approach used to solve the dynamics requires to handle the derivatives
of the equations with the numerical integrator already applied to them. In the present
development, the Newmark’s integrator is selected due to its simplicity and good
behavior, with the sensitivities of positions of the states as the main variables of the
system. The application of the integrator to the index-3 DAE TLM yields:(

Md
ẑz̈

∗ +ΦT
ẑαΦẑ +ΦT

ẑẑ (λ
∗ +αΦ) +K+

1

βh
Md +

γ

βh
C

)
z∗′ +ΦT

ẑλ
∗′ =

Qd
ρ̂ −Md

ρ̂z̈
∗ −ΦT

ẑρ̂ (λ
∗ +αΦ)−ΦT

ẑαΦρ̂ −Mdˆ̈z
′ −Cˆ̇z

′
(5.108a)

Φẑz
′ = −Φρ̂ (5.108b)

with the following Newmark’s integrator equations used for the sensitivities of the
states:

ż∗′i =
γ

βh
z′i + ˆ̇z

′
i−1; ˆ̇z

′
i−1 =

{
− γ

βh
z′i−1 −

(
γ

β
− 1

)
ż′i−1 −

(
γ

2β
− 1

)
hz̈′i−1

}
(5.109a)

z̈∗′i =
1

βh2
z′i + ˆ̈z

′
i−1; ˆ̈z

′
i−1 =

{
− 1

βh2
zi−1 −

1

βh
żi−1 −

(
1

2β
− 1

)
z̈i−1

}
(5.109b)

The application of the Newmark integrator to the sensitivities of the non-iterative
velocity projections yields:(

P̄+ ςΦT
ẑαΦẑ

)
ż′{i} = P̄

(
γ

βh
z′ + ˆ̇z

′
)
+ P̄′ (ż∗ − ż)−ΦT

ẑẑςαΦ̇z′

−ΦT
ẑρ̂ςαΦ̇−ΦT

ẑ ςαb
ρ

(5.110)

with

P̄′ = P̄ẑz
′ + P̄ˆ̇z∗

(
γ

βh
z′ + ˆ̇z

′
)
+ P̄ρ̂ (5.111)

Similarly, the discrete sensitivities of the acceleration projections become:(
P̄+ ςΦT

ẑαΦẑ

)
z̈′{i} = P̄

(
1

βh2
z′ + ˆ̈z

′
)
+ P̄′ (z̈∗ − z̈)−ΦT

ẑžςαΦ̈z′

−ΦT
ẑρ̂ςαΦ̈−ΦT

ẑ ςαc
ρ

(5.112)

194



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

Observe that, since differentiation and discretization are decoupled processes for
this numerical integrator and sensitivity expressions, their order can be interchanged,
which means that the discretization of the continuous sensitivities of the EoM is
equivalent to the differentiation of the discrete EoM. Upon that base the discrete
adjoint variable method will be built.

The first step in the generation of the adjoint equations is the composition of a
Lagrangian preserving the same value of the objective function but including a set
of new adjoint variables and the constraint conditions that the system has to satisfy.
Before looking at the details on how to build it, let us consider the following discrete
adjoint Lagrangian:

L =
h

2
(L0 + Ln) + h

n−1∑
i=1

Li (5.113)

where, Li is the value of L at time ih+ t0 and L0, Ln are the initial and final values
of L at t0 and tF , respectively.

Analogously, the gradient of the Lagrangian involving a discrete integral can be
computed as:

L′ =
h

2
(L′

0 + L′
n) + h

n−1∑
i=1

L′
i (5.114)

Once the Lagrangian (5.113) and its gradient (5.114) are expressed in terms of
discrete magnitudes, the equations of the Lagrangian for each instant of time can be
introduced. Let us define the Lagrangian at an instant of time ti ∈ (t0, tF ] such as:

Li = gi − µT
(
Mdz̈∗ +ΦT

ẑ (λ∗ +αΦ)−Q
)
− µT

ΦΦ

−µT
Φ̇

([
P̄+ ςΦT

ẑαΦẑ

]
ż − P̄ż∗ +ΦT

ẑ ςαΦt

)
−

−µT
Φ̈

([
P̄+ ςΦT

ẑαΦẑ

]
z̈ − P̄z̈∗ +Φẑςα

(
Φ̇ẑż + Φ̇t

)) (5.115)

in which:

� µ ∈ Rn×o is the set of adjoint variables associated to the first n equations of the
index-3 DAE system.

� µΦ ∈ Rm×o are the adjoint variables associated to the last m equations of the
index-3 DAE system.

� µΦ̇ ∈ Rn×o is the set of adjoint variables related to the velocity projections.

� µΦ̈ ∈ Rn×o is the set of adjoint variables corresponding to acceleration projec-
tions.

195



5. Sensitivity analysis of closed-loop systems

The gradient of this instant Lagrangian, considering the discrete derivatives intro-
duced in (5.108), (5.110) and (5.112), has the following expression:

L′
i =

{
gẑ − µT

(
1

βh2
Md +

γ

βh
C̄+ K̄

)
+ µT

ΦΦẑ

+µT
Φ̇

(
P̄
γ

βh
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(ż∗ − ż)−ΦT

ẑẑςαΦ̇−ΦT
ẑ ςαΦ̇ẑ)

)
+µT

Φ̈

(
P̄

1

βh2
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(z̈∗ − z̈)−ΦT

ẑẑςαΦ̈−ΦT
ẑ ςαΦ̈ẑ

)}
z′

+
{
gˆ̇z−µ

T
Φ̇

(
P̄+ ςΦT

ẑαΦẑ

)
−µT

Φ̈

(
ΦT

ẑ ςα
(
Φẑẑż+ Φ̇ẑ +Φẑt

))}
ż′

+
{
gˆ̈z − µ

T
Φ̈

(
P̄+ ςΦT

ẑαΦẑ

)}
z̈′

−
{(
µTC− µT

Φ̇
P̄
)}

ˆ̇z′

−
{
µTMd − µT

Φ̈

(
P̄+P̄ˆ̇z∗ (ż

∗ − ż)
)
−µT

Φ̈
P̄ˆ̇z∗ (z̈

∗ − z̈)
}
ˆ̈z′

+
{
gλ∗ − µTΦT

ẑ

}
λ∗′

+
{(

gρ̂ + µ
T
(
Qd

ρ̂ −Md
ρ̂z̈

∗ −ΦT
ẑρ̂ (λ

∗ +αΦ)−ΦT
ẑαΦρ̂

)
− µT

ΦΦρ̂

−µT
Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (ż
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (z̈
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))}

(5.116)

wherein all the magnitudes within the previous equations are evaluated at time ti.

The instant Lagrangian sensitivities can be substituted into (5.114), conforming
an unique expression with the adjoint variables, the sensitivities of the states and the
sensitivities of the Lagrange multipliers from every time step as unknowns. Since the
values of the Lagrangian and objective function gradients are identical for any value
of the adjoint variables, these variables can be selected such as they nullify the terms
multiplying the unknown sensitivities of the states and the Lagrange multipliers, hence
avoiding their calculation.

Returning again to equation (5.116), it can be seen that ˆ̇z′ and ˆ̈z′ could be trans-
formed into expressions dependent on the sensitivities of the previous step of time,

196



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

using (5.109). Therefore, the instant Lagrangian for any time ti becomes:

L′
i =

{
gẑ − µT

(
1

βh2
Md +

γ

βh
C̄+ K̄

)
+ µT

ΦΦẑ

+µT
Φ̇

(
P̄
γ

βh
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(ż∗ − ż)−ΦT

ẑẑςαΦ̇−ΦT
ẑ ςαΦ̇ẑ

)
+µT

Φ̈

(
P̄

1

βh2
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(z̈∗ − z̈)−ΦT

ẑẑςαΦ̈−ΦT
ẑ ςαΦ̈ẑ

)}
z′

+
{
gˆ̇z−µ

T
Φ̇

(
P̄+ ςΦT

ẑαΦẑ

)
−µT

Φ̈

(
ΦT

ẑ ςα
(
Φẑẑż+ Φ̇ẑ +Φẑt

))}
ż′

+
{
gˆ̈z − µ

T
Φ̈

(
P̄+ ςΦT

ẑαΦẑ

)}
z̈′

−
{(
µTC− µT

Φ̇
P̄
)}{

− γ

βh
z′i−1 −

(
γ

β
− 1

)
ż′i−1 −

(
γ

2β
− 1

)
hz̈′i−1

}
−
{
µTMd − µT

Φ̈

(
P̄+P̄ˆ̇z∗ (ż

∗ − ż)
)
−µT

Φ̈
P̄ˆ̇z∗ (z̈

∗ − z̈)
}{

− 1

βh2
z′i−1

− 1

βh
ż′i−1 −

(
1

2β
− 1

)
z̈′i−1

}
+
{
gλ∗ − µTΦT

ẑ

}
λ∗′

+
{(

gρ̂ + µ
T
(
Qd

ρ̂ −Md
ρ̂z̈

∗ −ΦT
ẑρ̂ (λ

∗ +αΦ)−ΦT
ẑαΦρ̂

)
− µT

ΦΦρ̂

−µT
Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (ż
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (z̈
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))}

(5.117)

Observe that the sensitivity of each instant Lagrangian involves the sensitivities of
the states in the time step ti and in the previous one ti−1. The integrator terms induce
“couplings” between subsequent time steps and imply that the instant state sensitivi-
ties z′i−1, ż

′
i−1 and z̈′i−1 affect both the instant Lagrangians Li−1 and Li. Consequently,

the cancellation of terms multiplying the instant state sensitivities (required for the
generation of the adjoint equations) cannot be addressed for each instant Lagrangian
alone, but for both Li−1 and Li together in accordance with the scheme of integration
(5.114).

Let us now consider two subsequent steps of time ti and ti+1, none of them being
the initial or final time of the dynamic simulation. Both expressions appear in (5.114)
multiplied by the same coefficient h, so it is avoided here for the sake of clarity.

197



5. Sensitivity analysis of closed-loop systems

L′
i + L′

i+1 =

{
gẑ − µT

(
1

βh2
Md +

γ

βh
C̄+ K̄

)
+ µT

ΦΦẑ

+µT
Φ̇

(
P̄
γ

βh
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(ż∗ − ż)−ΦT

ẑẑςαΦ̇−ΦT
ẑ ςαΦ̇ẑ)

)
+µT

Φ̈

(
P̄

1

βh2
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(z̈∗ − z̈)−ΦT

ẑẑςαΦ̈−ΦT
ẑ ςαΦ̈ẑ

)}
i

z′i

+

{
gẑ − µT

(
1

βh2
Md +

γ

βh
C̄+ K̄

)
+ µT

ΦΦẑ

+µT
Φ̇

(
P̄
γ

βh
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(ż∗ − ż)−ΦT

ẑẑςαΦ̇−ΦT
ẑ ςαΦ̇ẑ)

)
+µT

Φ̈

(
P̄

1

βh2
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(z̈∗ − z̈)−ΦT

ẑẑςαΦ̈−ΦT
ẑ ςαΦ̈ẑ

)}
i+1

z′i+1

+
{
gˆ̇z−µ

T
Φ̇

(
P̄+ ςΦT

ẑαΦẑ

)
−µT

Φ̈

(
ΦT

ẑ ςα
(
Φẑẑż+ Φ̇ẑ +Φẑt

))}
i
ż′i

+
{
gˆ̇z−µ

T
Φ̇

(
P̄+ ςΦT

ẑαΦẑ

)
−µT

Φ̈

(
ΦT

ẑ ςα
(
Φẑẑż+ Φ̇ẑ +Φẑt

))}
i+1

ż′i+1

−
{
µT

Φ̈

(
P̄+ ςΦT

ẑαΦẑ

)}
i
z̈′i −

{
µT

Φ̈

(
P̄+ ςΦT

ẑαΦẑ

)}
i+1

z̈′i+1

−
{(
µTC− µT

Φ̇
P̄
)}

i

{
− γ

βh
z′i−1 −

(
γ

β
− 1

)
ż′i−1 −

(
γ

2β
− 1

)
hz̈′i−1

}
−
{(
µTC− µT

Φ̇
P̄
)}

i+1

{
− γ

βh
z′i −

(
γ

β
− 1

)
ż′i −

(
γ

2β
− 1

)
hz̈′i

}
−
{
µTMd − µT

Φ̈

(
P̄+P̄ˆ̇z∗ (ż

∗ − ż)
)
−µT

Φ̈
P̄ˆ̇z∗ (z̈

∗ − z̈)
}
i

{
− 1

βh2
z′i−1

− 1

βh
ż′i−1 −

(
1

2β
− 1

)
z̈′i−1

}
−
{
µTMd − µT

Φ̈

(
P̄+P̄ˆ̇z∗ (ż

∗ − ż)
)
−µT

Φ̈
P̄ˆ̇z∗ (z̈

∗ − z̈)
}
i+1

{
− 1

βh2
z′i

− 1

βh
ż′i −

(
1

2β
− 1

)
z̈′i

}
+
{
gλ∗ − µTΦT

ẑ

}
i
λ∗′

i +
{
gλ∗ − µTΦT

ẑ

}
i+1
λ∗′

i+1

+
{(

gρ̂ + µ
T
(
Qd

ρ̂ −Md
ρ̂z̈

∗ −ΦT
ẑρ̂ (λ

∗ +αΦ)−ΦT
ẑαΦρ̂

)
− µT

ΦΦρ̂

−µT
Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (ż
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (z̈
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))}
i

+
{(

gρ̂ + µ
T
(
Qd

ρ̂ −Md
ρ̂z̈

∗ −ΦT
ẑρ̂ (λ

∗ +αΦ)−ΦT
ẑαΦρ̂

)
− µT

ΦΦρ̂

−µT
Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (ż
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (z̈
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

))}
i+1

(5.118)

198



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

where the subscripts i and i + 1 indicate that the magnitudes are calculated in time
instants ti and ti+1 respectively.

If the evaluation of z′i, ż
′
i, z̈

′
i and λ

′
i is intended to be avoided, all the terms of

(5.118) multiplying them have to be nullified. Accordingly, the following equations
are obtained:

{(
1

βh2
Md +

γ

βh
C̄+ K̄

)T

µ+ΦT
ẑµΦ−AT

Φ̇
µΦ̇−AT

Φ̈
µΦ̈

}
{i}

= gT
ẑ{i}

+

{
γ

βh
GT +

1

βh2
HT

}
{i+1}

(5.119a)

{(
P̄+ ςΦT

ẑαΦẑ

)T
µΦ̇ +

(
ΦT

ẑ ςα
(
2Φ̇ẑ

))T
µΦ̈

}
{i}

= gT
ˆ̇z{i}

−
{(

1− γ

β

)
GT − 1

βh
HT

}
{i+1}

(5.119b)

{(
P̄+ ςΦT

ẑαΦẑ

)T
µΦ̈

}
{i}

= gT
ˆ̈z{i} −

{(
1− γ

2β

)
hGT +

(
1− 1

2β

)
HT

}
{i+1}
(5.119c){

µTΦT
ẑ

}
{i} = gλ∗{i} (5.119d)

where:
G = µTC− µT

Φ̇

(
P̄+P̄ˆ̇z∗(ż

∗ − ż)
)
− µT

Φ̈
P̄ˆ̇z∗ (z̈

∗ − z̈) (5.120a)

H = µTMd − µT
Φ̈
P̄ (5.120b)

AΦ̇ = P̄
γ

βh
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(ż∗ − ż)−ΦT

ẑẑςαΦ̇−ΦT
ẑ ςαΦ̇ẑ (5.120c)

AΦ̈ = P̄
1

βh2
+

(
P̄ẑ+

γ

βh
P̄ˆ̇z∗

)
(z̈∗ − z̈)−ΦT

ẑẑςαΦ̈−ΦT
ẑ ςαΦ̈ẑ (5.120d)

Equations (5.119) for any ti ∈ (t0, tF ) also represent the adjoint problem at time
tF , but according to (5.114), since there is no term evaluated at time tF + h, G
and H become null for this particular case. Behold that time tF neither requires a
particular set of equations, nor the addition of new adjoint variables as it happens in
the continuous AVM [4].

Adjoint equations (5.119) can be solved sequentially: firstly, µΦ̈ can be determined
from (5.119c); secondly, the value of µΦ̈ can be substituted in (5.119b), so µΦ̇ can
be obtained; thirdly and last, (5.119a) and (5.119d) can be combined and solved
jointly, giving as result the values of µ and µΦ. The solution of this third system
of equations is equivalent to (5.100) solved in the continuous approach, and suffers
the same problems of indetermination when redundant constraints are part of the
multibody model. Hence, the same techniques presented for (5.100) are equally valid
in the discrete approach. In fact, the solution of (5.119a) and (5.119d) implemented

199



5. Sensitivity analysis of closed-loop systems

in the MBSLIM multibody library is based on an augmented Lagrangian scheme with
(5.119a) scaled by a factor of βh2 in order to improve its numerical conditioning. The
resulting expressions have the form:

(
Md + γhC̄+ βh2K̄

)T
µ+ΦT

ẑ

(
µ

∗(i)
Φ −αa (gλ −Φẑµ)

)
= r1 (5.121a)

µ
∗(i)
Φ = µ

∗(i−1)
Φ −αa (gλ −Φẑµ) (5.121b)

with

r1 =
{
gT
ẑ−AT

Φ̇
µΦ̇−AT

Φ̈
µΦ̈

}
{i} +

{
γ

βh
GT +

1

βh2
HT

}
{i+1}

(5.122)

In the discrete adjoint system, the different expressions used to solve the initial
position, velocity and acceleration problems have to be considered in the Lagrangian
in order to incorporate their effect on the sensitivities. Consequently, the adjoint of
the initial position and velocity problem, given by (5.1.2), have to be computed at
the first time instant of the simulation, but also the adjoint of the initial dynamic
acceleration problem have to be addressed. In this work, the initial acceleration
problem is solved by means of the semi-recursive penalty approach with a fixed point
scheme in accelerations described in section 3.4, and whose sensitivity analysis was
outlined in section 5.3. Here, the discrete adjoint equations needed for the initial
instant of time during the discrete adjoint sensitivity analysis of a semi-recursive
ALI3-P formulation is briefly described.

Equations (3.15), (3.19a) and (3.42) allow the computation of the instant La-
grangian at the initial time t0 as:

L0 = g0 − µT
Φ0

([
Φ

zi − d

])
− µT

Φ̇0

([
Φẑ

B

]
ż+

[
Φt

−żi

])
− µT

0

(
M̆z̈− Q̆

)
(5.123)

Now, applying the sensitivity expressions (5.4a), (5.4b) and (5.69) of the initial
problems, the gradient of the instant Lagrangian at the initial time step is:

L′
0 = gẑz

′ + gˆ̇zż
′ + gˆ̈zz̈

′ + gρ̂ − µT
Φ0

([
Φẑ

B

]
z′ −

[
−Φρ̂

d′

])
−µT

Φ̇0

([
Φẑ

B

]
ż′ +

[
Φ̇ẑ

Ḃ

]
z′ +

[
Φ̇ρ̂

Bρ̂ż − żi′

])
−µT

0

(
M̆z̈′ + C̆ż′ +

(
M̆ẑz̈+ K̆

)
z′ − Q̆ρ̂ + M̆ρ̂z̈

) (5.124)

In the two previous equations, µΦ0 ∈ R(m+d)×o is the adjoint variable related to
the initial position equations, µΦ̇0 ∈ R(m+d)×o is the variable related to the fulfillment
of the initial velocity problem and µ0 ∈ Rn×o is related to the satisfaction of the
dynamic penalty problem.

In (5.124), there are not unprojected velocities or accelerations, neither Lagrange
multipliers, but there are 3 sets of unknown sensitivities: z′, ż′ and z̈′. Furthermore,

200



5.4. Sensitivity analysis of semi-recursive ALI3-P formulations

the equations used in the adjoint are all linear, so its solution does not require a
numerical integration. Nullifying the terms multiplying the sensitivities of the states,
considering also the expression of the complete Lagrangian gradient (5.114), the fo-
llowing system of adjoint equations at the initial time t0 is obtained:{
µT

0

(
M̆ẑz̈+ K̆

)
+ µT

Φ0

([
Φẑ

B

])
+ µT

Φ̇

([
Φ̇ẑ

Ḃ

])}
{0}

= gẑ{0} +

{
2γ

βh
G+

2

βh2
H

}
{1}

(5.125a){
µT

0

(
C̆
)
+ µT

Φ̇0

([
Φẑ

B

])}
{0}

= gˆ̇z{0} − 2

{(
1− γ

β

)
G+

(
− 1

βh

)
H

}
{1}
(5.125b){

µT
0

(
M̆
)}

{0}
= gˆ̈z{0} − 2

{(
1− γ

2β

)
hG+

(
1− 1

2β

)
H

}
{1}

(5.125c)

Observe that the right hand sides of equations (5.125a), (5.125b) and (5.125c) are
identical to (5.119a), (5.119b) and (5.119c), respectively, except for a coefficient 2
multiplying terms G and H due to the trapezoidal integration scheme used (5.114).
This coefficient arises during the addition of equations and the cancellation of the
terms including the sensitivities of the states at t0.

The system of equations (5.125) can be easily solved sequentially: firstly, µ0 can
be determined from (5.125c) (this system is compatible determined, hence it has an
unique solution); secondly, µΦ̇0 can be obtained from (5.125b). Thirdly, µΦ0 can be
calculated from (5.125a).

It is important to note that the use of redundant constraints entails the existence
of infinite valid solutions for µΦ0 and µΦ̇0, being one of them the minimum norm
solution of the system. Since this system is solved only once per simulation, there
is no need to use efficient techniques to solve it. This minimum norm solution is
considered and implemented in MBSLIM for the solution of both µΦ̇0 and µΦ0.

Once solved the systems of adjoint equations corresponding to each time step,
the gradient of the objective function can be computed with the remaining terms
independently of the sensitivities of the states. The instant gradient for ti ∈ (t0, tF ]
can be computed as:

ψ′
i = gρ̂ + µ

TQ̄ρ − µT
ΦΦρ̂ − µT

Φ̇

(
ΦT

ẑρ̂ςαΦ̇− P̄ρ̂ (ż
∗ − ż) +ΦT

ẑ ςαΦ̇ρ̂

)
−µT

Φ̈

(
ΦT

ẑρ̂ςαΦ̈− P̄ρ̂ (z̈
∗ − z̈) +ΦT

ẑ ςαΦ̈ρ̂

) (5.126)

At t0, the instant gradient of the objective function is:

ψ′
0 = L′

0 = gρ̂ − µT
Φ0

([
Φρ

−zi′

])
− µT

Φ̇0

([
Φ̇ρ̂

Bρ̂ż − żi′

])
− µT

0

(
M̆ρ̂z̈− Q̆ρ̂

)
(5.127)

Applying the numerical integration of the integral (5.114), the gradient of the
objective function can be obtained as:

ψ′ =
h

2
(ψ′

0 +ψ
′
n) + h

n−1∑
i=1

ψ′
i (5.128)

201



5. Sensitivity analysis of closed-loop systems

The semi-recursive ALI3-P discrete adjoint sensitivity formulation can be generally
computed by means of the following algorithm:

1. Solution of the dynamic problem and storage of the values of the states, the
Lagrange multipliers and the projected and unprojected velocities and accele-
rations at each time step.

2. Initiation of the backwards evaluation of the adjoint variable sensitivity at tF
with G = 0 and H = 0.

3. Determination of µΦ̈ from (5.119c).

4. Evaluation of µΦ̇ from (5.119b).

5. Solution of µ and µΦ form (5.119a) and (5.119d).

6. Computation of the instant objective function gradient (5.126) and integration
in time by means of (5.128).

7. Calculation of terms G and H through (5.120) at the current time step.

8. Decrease of the time instant (i = i− 1), and repetition of the stages from 2 to
6 until t0 is reached.

9. At t0, computation of µ0 from (5.125c).

10. Calculation of µΦ̇0 from (5.125b), using a minimum norm solver.

11. Determination of µΦ0 from (5.125a), using a minimum norm solver.

12. Computation of the instant objective function gradient (5.127) and integration
in time by means of (5.128).

Behold that most of the obstacles found in the continuous adjoint variable method
applied to the semi-recursive ALI3-P formulation, such as time derivatives of mass
and projection matrices, the application of a variable change, the addition of adjoint
variables at tF or the complex initialization process (see section 5.4.2.1) are avoided
with this method. There are no additional derivatives apart from the ones present on
the forward sensitivity formulation and the initialization process at tF is reduced to
use the same expressions valid for any instant of time ti ∈ (t0, tF ] but with G and H
equal to zero.

5.5 Constraint derivatives

The derivatives of the constraints vector are ubiquitous in the kinematic or dy-
namic analysis of any constrained multibody system. The sensitivity analysis of a
constrained dynamic or kinematic problem involves the derivatives of each magnitude
evaluated in the original problem, which encompasses an explosion of constraint vector

202



5.5. Constraint derivatives

derivatives. Among other magnitudes, the sensitivity analysis require first and second
derivatives of the constraints vector, as it has been evidenced in the expressions of
the semi-recursive ALI3-P and Matrix R sensitivity formulations.

Constraints can be expressed in terms of positions, velocities and accelerations
of Cartesian coordinates or joint coordinates. For some constraint equations, such
as loop-closure constraints, the definition in terms of Cartesian coordinates is more
direct, and analytical derivatives of these expressions with respect to Cartesian coor-
dinates are forthright to obtain. In this sense, the following set of dependencies will
be considered in the differentiation of the constraints vector:

Φ = Φ (q (z,ρ) , z,ρ) (5.129a)

Φ̇ = Φ̇ (q̇ (ż, z,ρ) ,q (z,ρ) , ż, z,ρ) (5.129b)

Φ̈ = Φ̈ (q̈ (z̈, ż, z,ρ) , q̇ (ż, z,ρ) ,q (z,ρ) , z̈, ż, z,ρ) (5.129c)

being q , q̇ and q̈ Cartesian positions, velocities and accelerations, respectively.
The transformation from coordinate derivatives with respect to Cartesian coordi-

nates to joint-coordinate derivatives can be attained using the differentiation chain
rule in combination with the expressions presented in section 4.5.

In the following sections, the analytical expressions of the derivatives of the cons-
traints vector needed for the solution of the sensitivity analysis of the dynamics (and
kinematics) of multibody systems are introduced.

Moreover, it is important to remark that, hereinafter, the operator ⊗2 of tensor-
vector or tensor-matrix products on mode 2 will be omitted in order to produce a
more compact notation. If tensor-vector or tensor-matrix products are on mode 3,
the operator ⊗3 will be explicitly used.

5.5.1 Evaluation of Φẑẑ

The Jacobian matrix of the constraints vector is explicitly present in every of the
formulations used to solve constrained multibody dynamics. This matrix involves
arithmetic operations of positions of points, vectors, angles and distances, as well as
other parameters. In general, the constraints Jacobian matrix is not constant, thus
the second derivative Φẑẑ exists, and has the following expression:

Φẑẑ = (Φẑ)ẑ = (Φqqz +Φz)ẑ = (Φq)ẑqz +Φq(qz)ẑ + (Φz)ẑ =

(Φqqqz +Φqz)qz +Φqqzz +Φzqqz +Φzz = (Φqqqz)qz +Φqqzz + 2Φzqqz +Φzz

(5.130)

In general, the presence of a constraint involving relative coordinates z and Carte-
sian coordinates of points or vectors q is not very usual, so the term Φzq will be
commonly zero. Observe that three new derivatives of the constraint vector appear
in (5.130), involving the second partial derivative of the constraints with respect to
natural coordinates Φqq ∈ Rm×nq×nq , the second partial derivative with respect to
relative coordinates Φzz ∈ Rm×n×n and the crossed derivatives with respect to the

203



5. Sensitivity analysis of closed-loop systems

relative and Cartesian coordinates and Φzq ∈ Rm×n×nq (being nq the number of na-
tural coordinates affecting the constraints vector).

In (5.130), terms can be divided in two groups: the derivatives involving analytical
expressions dependent on the type of constraints and terms involving the topology of
the mechanism. The derivatives Φqq, Φzq and Φzz gather explicit dependencies on
q and z, so they can be directly evaluated differentiating the particular equations of
each type of constraint. On the other hand, the terms qz and qzz described in sections
4.5.1 and 4.5.4 respectively, represent the variation of positions of points and vectors
with respect to the relative coordinates, and they are directly related to the sequence
and type of joints of the model.

The partial derivative of the Jacobian matrix with respect to any of the magnitudes
contained in the relative coordinates vector are gathered in Φzz.

One important note with respect to equation (5.130) is that different modes of
tensor products appear, as it can be observed in the following expression. This product
has the commutative property, so 2 expressions are valid:

(Φqqqz)qz = Φqq ⊗2 qz ⊗3 qz = Φqq ⊗3 qz ⊗2 qz (5.131)

where the sub-index of the cross specifies the mode of the reduced tensor product.
The same properties can be applied to a tensor-vector product.

5.5.2 Evaluation of Φ̇ẑẑ

The tensor Φ̇ẑẑ is the term that gathers more different terms and a long concatena-
tion of sums of products, thus it requires an important computational effort. It can be
demonstrated that this tensor can be calculated through a direct differentiation of the

expression of Φẑẑ given by 5.130 with respect to time, regarding that
(
Φ̇ẑ

)
ẑ
=

dΦẑẑ

dt
:

Φ̇ẑẑ =
d

dt
((Φqqqz)qz +Φqqzz + 2Φzqqz +Φzz) =(

Φ̇qqqz

)
qz + (Φqqq̇z)qz + (Φqqqz) q̇z + Φ̇qqzz +Φqq̇zz + 2Φ̇zqqz + 2Φzqq̇z + Φ̇zz

(5.132)

The tensors Φ̇qq, Φ̇zq and Φ̇zz can be easily calculated for a particular constraint
equation, but q̇zz is a general term related to the topology of the mechanism, and
its calculation has been explained in section 4.5.6. The remaining terms of equation
(5.132) have been introduced in previous sections.

Observe that (5.132) involves the sum of eight different tensor products, and re-
quires eleven different terms to be computed, seven dependent on each individual
constraint equation (Φ̇qq, Φ̇zq and Φ̇zz, Φqq, Φzq and Φ̇q, and Φq), and four depen-
dent on the topology of the mechanism (q̇zz, qzz, q̇z and qz). If this term is compared
with the equivalent one in natural coordinates, which solely requires the term Φ̇qq, it
can be deduced that relative coordinate models find a handicap when the sensitivities
of constrained systems are addressed.

204



5.5. Constraint derivatives

Despite the large expression, four considerations must be pointed out: first, seven
of the eleven terms present in the computation of Φ̇ẑẑ are also needed by other terms of
the multibody sensitivity analysis, so they could be reused; second, relative coordinate
models usually generate a low number of constraints, so the order of the products is
relative low, specially if it is compared with the size of the equivalent term of natural
coordinates Φ̇qq; third, the constraints of multibody models, such as loop-closure
constraints, have very simple expressions which make differentiation really simple,
and in some cases several derivatives will become even null; and fourth, the crossed
dependencies on q and z, though possible, are rare, so these terms are usually not
required.

Furthermore, the reuse of terms and the application of sparse tensor algebra allow
an efficient evaluation of this derivative.

5.5.3 Evaluation of Φρ̂

Since any constant or coefficient of a constraint can be selected as a parameter,
the derivative of the constraints vector with respect to it can have several forms
depending on the type of the constraint and the type of the parameter. Thus, the
particular equations of each type of constraint have to be differentiated with respect
to the parameter selected.

For example, for a point coincidence constraint used as loop-closure constraint, its
derivative with respect to a set of parameters would be:

Φρ̂ =
(
rj − rk

)
ρ̂
=
∂rj
∂ρ

− ∂rk
∂ρ

(5.133)

If the position of any of the points depends on a parameter, the derivative will
exist. In the MBSLIM implementation, global positions of points are determined by
the local coordinates of different points in the multibody model. In that case, if the
parameters selected are local coordinates of points, expressions of section 4.5.7 can be
used to compute Φρ̂.

5.5.4 Evaluation of Φẑρ̂

The computation of second derivatives in relative coordinate models involves, as
it was patent in previous sections, a concatenation of sums of tensor and matrix
products. The same circumstance is present in the assessment of Φẑρ̂:

Φẑρ̂ = (Φqqz +Φz) = Φqρ̂qz +Φqqzρ +Φzρ̂ (5.134)

Tensors Φqρ̂ ∈ Rm×nq×p and Φzρ̂ ∈ Rm×n×p are obtained from the particular
expressions of each type of constraint, while qzρ ∈ Rnq×n×p is related to the topology
of the mechanism.

If the parameters of the system are related to the local geometry of a body, this
is, they affect local coordinates, there would be a double explicit dependency in the

205



5. Sensitivity analysis of closed-loop systems

derivatives of the constraint vector (with q and ρ). In this case:

Φqρ̂ = Φqqqρ +Φqρ (5.135a)

Φzρ̂ = Φzqqρ +Φzρ (5.135b)

The derivative qρ is a term related to the topology of the system and can be
computed by means of the expressions developed in section 4.5.7.

5.5.5 Evaluation of Φ̇ρ̂

This derivative can be obtained applying the rule of differentiation (4.9) to the
expression of the time derivative of the constraints vector (3.9):(

Φ̇
)
ρ̂
= (Φẑż+Φt)ρ̂ = Φẑρ̂ż+Φtρ̂ (5.136)

where Φẑρ̂ ∈ Rm×n×p is a tensor described in section 5.5.4, and Φtρ̂ ∈ Rm×p is a
matrix obtained from the particular expressions of each type of constraint.

Observe that Φtρ̂ can be decomposed into:

Φtρ̂ = Φtqqρ +Φtρ (5.137)

with qρ computed using the equations introduced in section 4.5.7.

5.5.6 Evaluation of Φ̇ẑρ̂

The time derivative of the constraints vector can be affected by the different types
of parameters determining the dynamic or kinematic behavior of a multibody system,
and therefore, their derivatives determine a sensitivity analysis. The term Φ̇ẑρ̂ ∈
Rm×n×p is a tensor result of the differentiation of Φ̇ with respect to the relative
coordinates and with respect with the set of parameters using the rule of differentiation
(4.9). It can be expressed in terms of partial derivatives as:

Φ̇ẑρ̂ =
(
Φ̇qqz +Φqq̇z + Φ̇z

)
ρ̂
= Φ̇qρ̂qz +Φqρ̂q̇z + Φ̇qqzρ +Φqq̇zρ + Φ̇zρ̂ (5.138)

It can be proved that: (
Φ̇ẑ

)
ρ̂
=

dΦẑρ̂

dt
(5.139)

Accordingly, this derivative can be obtained through these two different proce-
dures, yielding both of them equivalent expressions

Once again, the terms of (5.138) with the subscript ρ̂ can be further decomposed
into:

Φ̇qρ̂ = Φ̇qqqρ +Φqqq̇ρ + Φ̇qρ (5.140a)

Φ̇zρ̂ = Φ̇zqqρ +Φzqq̇ρ + Φ̇zρ (5.140b)

with qρ and q̇ρ given by the equations introduced in sections 4.5.7 and 4.5.8.
Observe that most of the terms vanish for simple constraint equations, with the

consequent reduction in the computational effort.

206



5.5. Constraint derivatives

5.5.7 Evaluation of Φ̈ρ̂

The derivative Φ̈ρ̂ is explicitly required by the term cρ in (5.5c), which is used
in the sensitivity equations of kinematic and dynamic problems. This term can be
obtained differentiating (5.136) with respect to time:(

Φ̈
)
ρ̂
=

d

dt
(Φẑρ̂ż+Φtρ̂) = Φ̇ẑρ̂ż+Φẑρ̂z̈+ Φ̇tρ̂ (5.141)

where:
Φ̇tρ̂ = Φ̇tqqρ +Φtqq̇ρ + Φ̇tρ (5.142)

with terms Φ̇ẑρ̂ and Φẑρ̂ described in sections 5.5.6 and 5.5.4 respectively.
The explosion of constraint derivatives creates some difficulties for the implemen-

tation of constrained joint coordinate models, especially regarding the detection of
what intermediate derivatives or terms can be eliminated from the calculation (in
the case they are null). This happens, for instance, in the case of the normalization
constraint of the Euler parameters (see section 3.5.1), which only depends on the re-
lative coordinates vector, and all the other derivatives vanish and does not need to be
computed. A general code could execute this dependency detection in an early stage
of the simulation during the creation of the model, so during the sensitivity analysis
process only the required derivatives and intermediate products are calculated. This
is the philosophy followed in the implementation of these derivatives in the MBSLIM
multibody library.

207



5. Sensitivity analysis of closed-loop systems

208



Chapter 6

Implementation of the proposed
methods in MBSLIM

One of the biggest efforts during the development of the present thesis has been
the implementation of the kinematics, dynamics and sensitivities described in previous
chapters into a general multibody library, namely MBSLIM [5]. MBSLIM is a multi-
purpose multibody systems library for rigid-body simulations1 originally based on
natural coordinates and programmed in Fortran 2018, whose main capabilities are:

� Kinematics of multibody models in positions, velocities and accelerations, sup-
porting mixed coordinates and a broad variety of constraints, including rheo-
nomic and non-holonomic.

� Dynamics of multibody models, including different types of formulations and a
wide variety of forces and constraints.

� Sensitivity analysis of kinematics.

� Optimization applied to the kinematics of a multibody system (optimum syn-
thesis problem).

� Sensitivity analysis of the dynamics of multibody systems with different formu-
lations.

� Optimization of the dynamic performance of a multibody model, including op-
timal control and design optimization.

The possibility of implementing the new relative coordinates formulations into an
existing library has its advantages and drawbacks. On the one hand, all the types
of forces and constraints, the definition of the models, the structure of resolution
of equations and, definitely, all the capabilities already implemented can be reused
without important changes. On the other hand, a full study of the library is needed
to identify the structures in order to integrate the new formulations and algorithms
while preserving the uniformity in the code and keeping the existing code running.

1MBSLIM is currently being extended to flexible multibody systems.

209



6. Implementation of the proposed methods in MBSLIM

The main rules followed during the implementation were :

1. The definition of the models by the user shall be equivalent to the original
one in order to make possible the execution of existing models with topological
formulations.

2. The relative coordinate models shall be automatically generated from the infor-
mation given by the user.

3. Natural coordinates models shall coexist with relative coordinate ones, in order
to reuse some problems already solved with natural coordinates.

Despite that the two first conditions hinder the beginning of the implementation,
the third one opens the possibility of a separation inside the code, dividing all in na-
tural and relative structures and simplifying the immersion in the code. Furthermore,
the chance of solving problems in natural coordinates allows to start the dynamics
with initial positions and velocities calculated with the natural coordinates kinematic
or static equilibrium problems.

6.1 Kinematics formulations

The first and perhaps the more challenging part of the implementation appeared
during the creation of relative coordinate models. If the user gave the information
of the model in the form of forces, masses, constraints and types of joints relating
the motion of all the bodies with each other, the creation of the topological model
would be straightforward. However, the models are described in MBSLIM primarily
in terms of points and vectors, which can be shared or not between bodies and related
by different constraints. The generation of a relative coordinate model from this
information can be significantly difficult due to the fact that a joint can be defined
differently in terms of points and vectors.

The process of building a topological model can be divided in three phases. Firstly,
relations between each possible couple of bodies have to be evaluated in terms of
constraints and shared points and vectors in order to determine if the relative motion
between these bodies can be described with a kinematic joint. Secondly, the kinematic
chains have to be detected, identifying the sequence of precedence of bodies and joints.
And thirdly and last, loops in the kinematic chains have to be located and opened by
the elimination of one of the joints of each loop and by the addition of a loop-closure
constraint.

Detection
(joints)

Sequence
(topology)

Opening
(closed-loops)

Figure 6.1: Stages of the generation of a topological model.

210



6.2. Forward dynamics formulations

The opening of closed loops is programmed as an automatic operation, with a
recursive algorithm which detects the closure of a chain and an automatic selection of
the joint to be eliminated and the addition of the corresponding constraints. Although
any type of joint can be eliminated, the priority is to clear the spherical joints, and
then the rest of the types, starting from the ones with the higher number of variables.
The reason of the elimination of spherical joints relies on the fact that this type
of joint has 4 coordinates and 1 constraint equation related to the normalization of
the Euler parameters. If it is eliminated, the number of coordinates is reduced in 4
variables, only 3 constraint equations of coincidence of points have to be added and
the normalization constraint disappears.

Paying attention to the kinematics, one of the main problems is in the selection of
the degrees of freedom. In MBSLIM, the DoF are selected and specified by the user
among all the angles and distances defined in the model, but also among coordinates
of points and vectors. Since there is a condition of minimum impact of the relative
coordinate model creation in the supplied user information, the degrees of freedom
must be conserved. Due to that, among other reasons, the kinematics of natural coor-
dinates models are used to solve the initial position and velocity problems, and then a
conversion from natural to relative coordinates is applied. Besides, in semi-recursive
Matrix R, for example, it is necessary to solve the kinematics at each time step, and
here the degrees of freedom play an essential role since they constitute the indepen-
dent coordinates which are the main variables of the formulation. For this reason,
the use of natural coordinates as degrees of freedom is formulated and programmed
in MBSLIM for the kinematics of topological models and different dynamic formu-
lations. Despite the slight increase in complexity, this allows a higher integration of
the topological kinematics and a more direct comparison with natural coordinates
models.

The two specific versions of accumulation, RTdyn0 and RTdyn1, have been in-
cluded in the MBSLIM multibody library with the purpose of comparing their per-
formance, despite entailing a duplication in part of the code. However, the reference
point selected is configured to affect exclusively elemental terms, allowing the reuse of
the same assembly structures and solution of the system. Furthermore, the derivatives
of the constraints vector as well as the derivatives of points and vectors with respect
to relative coordinates are computed with a set of expressions which are independent
of the reference point selected, with the consequent reduction in the code.

The types of joints listed in chapter 2 are all implemented in MBSLIM, including
all the terms and derivatives introduced in the present work. The use of modern
Fortran object oriented programming features simplifies the implementation, making
the addition of new types of joints more direct.

6.2 Forward dynamics formulations

The application of forces and masses to the kinematic structure of relative coordi-
nate models and its study compose the dynamic analysis of the system. The selection

211



6. Implementation of the proposed methods in MBSLIM

of the reference points has here a bigger impact than in the kinematics, since the
expressions of the elemental mass matrices and generalized forces vector of each body
are different for the two specific accumulations being studied. On order to simplify
the implementation, these differences are considered exclusively at an elemental body
level, using a general structure of assembly and solution for the two accumulations.

The solution of the dynamics of relative coordinate models can be categorized
as unconstrained open-loop systems and constrained models. The first group can
be solved using a semi-recursive accumulation scheme as well as a fully-recursive
approach. Although the two methods are basically the same (being the fully-recursive
approach the triangular system of the semi-recursive expressions), their equations
and their solution are completely different, involving even different terms. This is
the reason for implementing two different separated codes in MBSLIM, one for each
method.

Constrained systems are solved using a semi-recursive accumulation and two di-
fferent formulations, one based on dependent coordinates (ALI3-P) and another on
independent coordinates (Matrix R). The structure of solution of the formulations
ALI3-P and Matrix R was implemented in MBSLIM previously to the onset of the
present work, and it has been reused in the solution of relative coordinate models.
However, there are different conditions and considerations that have to be applied
solely to relative coordinates, such as the computation of the mass matrix at each
time step, or the presence of a non-constant B matrix in relative coordinate models,
which encompasses the generation of specific code in relative coordinates with its own
routines of solution.

The application of constraints to fully-recursive schemes has been also studied, but
its implementation is still under development, and only particular codes have been
generated in the multibody library MBLSIM.

In order to obtain the low computational times presented in the numerical experi-
ments of chapter 7, a substantial list of simplifications have been developed, being the
bulk of them presented in previous chapters. However, there is a simplification that
has not being previously presented, which is related to the computation of the resi-
dual of the equations of motion for a given system without considering the constraints.
This simplification is described in the following subsection.

6.2.1 Simplified evaluation of Qd −Mdz̈

Despite the fact that a general constrained fully-recursive formulation has not
being finally implemented, the study of the fully-recursive accumulations for open-
loop systems has produced several improvements into the semi-recursive approach,
both in constrained and unconstrained systems.

The scheme of solution usually employed to solve the dynamics from the semi-
recursive perspective for the formulations studied in the present thesis is based on the
Newton-Raphson method, where a linearization of the system is used to find a solution
with an error lower than a given tolerance. This method requires, on the one hand,
a tangent matrix of the system, and on the other, the evaluation of the residual.

212



6.2. Forward dynamics formulations

In relative coordinates, the bigger effort in terms of computational time is on the
calculation and assembly of the tangent matrix, involving derivatives of constraints,
forces and masses. The residual, however, can be evaluated very efficiently by means
of the fully-recursive scheme.

The fully-recursive expressions are obtained from the same equations of the semi-
recursive approach and using the same principle of virtual power. Since there are no
different assumptions taken in one or other accumulation, the final expressions have
to be the same. In fact, as it has been commented before, the fully-recursive equations
can be obtained by triangularization of the semi-recursive expressions. Although the
two formulations are based on the same equations, the fully-recursive one is much
more efficient in the computation of the residual.

Let us consider the equations of motion of an open-loop system. They can be
expressed in terms of the accelerations of the relative coordinates z̈ or depending on
the linear and angular accelerations of the reference point coordinates V̇:

Qd −Mdz̈ = RvT
(
Qv −MvṘvż

)
−
(
RvTMvRv

)
z̈ =

RvT
(
Qv −Mv

(
Ṙvż +Rvz̈

))
= RvT

(
Qv −MvV̇

)
= 0

(6.1)

Using the expression dependent on the reference points, a more efficient residual
evaluation is achieved.

The recursive terms bi and ḃi, used as the elemental terms for the composition of
the mass matrix, generalized forces vector and even for the derivatives of the cons-
traints vector, are expressed by positions and velocities of points and vectors (as
well as other terms present on the spherical and floating joints). Thus, a forward
recursive computation of the positions and velocities of the points and vectors of the
mechanism is needed after any update of the relative coordinates vector. During this
recursive computation, the reference point vectors in velocities (V) and accelerations
(V̇) can be calculated too with a minimum computational effort. Let us recall here
the kinematic recursive relations (2.121):

Vi = Bv
iVi−1 + bv

i żi (6.2a)

V̇i = Bv
i V̇i−1 + bv

i z̈i + dv
i (6.2b)

The terms Bv
i , b

v
i and dv

i have to be calculated for each joint and each iteration,
so the V and V̇ can be obtained with only a few more operations.

Recalling the dynamic assembly procedure, the expression Qv − MvV̇ can be
directly computed for each joint:

Qv −MvV̇ =


Qv

1 −Mv
1V̇1

Qv
2 −Mv

2V̇2

...

Qv
nj

−Mv
nj
V̇nj

 (6.3)

being nj the number of kinematic joints (which is equal to the number of bodies of
the model).

213



6. Implementation of the proposed methods in MBSLIM

At this point, the array Qv − MvV̇ is achieved with V̇ and the elemental mass
matrix and elemental generalized forces vector of each body. Now, the accumulation
of masses and forces must be done, which in a matrix notation is attained multiplying
it by the transpose ofRv, presented in (6.1). Nevertheless, this matrix has a particular
structure which allows a recursive accumulation from one body to the previous one
within the kinematic chain, starting by the ends of the mechanism until the base is
reached. This accumulation is the basis of the fully-recursive accumulation presented
in section 2.4.2, which can be summarized into:

RT
i

(
Q−MV̇

)
= bi

THi (6.4)

Hi =
(
Qi −MiV̇i

)
+BvT

i Hi+1 (6.5)

where Hi ∈ R6 is a new term including the accumulation of the forces and torques
from one body to its preceding one.

It should be indicated that this method suffers the same problem commented for
the fully-recursive approach: if a direct assembly of forces over the relative coordinates
is used, the previous equation have to be corrected:

RT
i

(
Q−MV̇

)
= bi

THi +Qz
i (6.6)

Hi =
(
Qi −MiV̇i

)
+BvT

i Hi+1 (6.7)

being Qz
i the values of the forces and\or torques directly applied on joint i.

6.2.2 Approximate tangent matrix

As it has been previously mentioned in this document, the dynamics of some of
the formulations studied is solved by means of an iterative Newton-Raphson scheme.
This method is based on the decomposition of the system into a Taylor’s series, where
only the first derivative is used and the higher order derivatives are dismissed. Thus,
the method approximates the solution of the equations of motion by means of a
linearization, and since it is an iterative process, it allows also to use an approximate
tangent matrix in the solution of the new set of linearized equations.

To begin with, let us recall the augmented Lagrangian part of a semi-recursive
ALI3-P formulation, introduced in (3.28a):

Mdz̈ +ΦT
ẑ (λ∗ +αΦ)−Qd = 0 (6.8)

The tangent matrix of the aforementioned system of equations, considering z as
the main variables, can be obtained as:

T = Md
ẑz̈ +Md∂z̈

∂z
+ΦT

ẑẑ (λ
∗ +αΦ) +ΦT

ẑ (λ∗ +αΦẑ) +K+C
∂ż

∂z
(6.9)

If a Newmark’s family numerical integrator, described by (4.16) and (4.18), is
applied to the previous equation, expressing velocities and acceleration of the states

214



6.2. Forward dynamics formulations

as function of the positions of the current time step and a correction term dependent
on the states of the previous step of time, the following tangent matrix is reached:

T = Md
ẑz̈ +Md 1

βh2
+ΦT

ẑẑ (λ
∗ +αΦ) +ΦT

ẑ (λ∗ +αΦẑ) +K+C
γ

βh
(6.10)

Regarding the new factors introduced with the numerical integrator, it can be
deduced that one of the most relevant terms of this tangent matrix is the mass matrix,

which is multiplied by
1

βh2
, followed by the damping matrix, scaled by

γ

βh
. Moreover,

there is a penalty matrix α as well that increases the relevance of the terms it is
penalizing. However, there is a big difference among ΦT

ẑẑ (λ
∗ +αΦ) and ΦT

ẑ (αΦẑ),
since Φ usually have very low values, while Φẑ is steadier and with values independent
of the convergence of Φ. Furthermore, the stiffness matrix K has a very direct impact
in this matrix when high stiff forces are involved in the simulation, becoming as
important as the mass matrix in some simulations.

In the present development, different approximate tangent matrices have been
tested, evaluating the computational effort consumed during their calculation and
the number of iterations required to achieve convergence. The results of this study
yielded that the term Md

ẑz̈ has a minimum impact in the number of iterations whereas
its computation is really expensive, and accordingly, it has been eliminated from the
tangent matrix of the Newton-Raphson solution. The second consequence of the study
is that the term ΦT

ẑẑ (λ
∗ +αΦ) does not contribute to the convergence of the problem,

and in some simulations, it could also worsen the number of iterations, which indicates
that the exact tangent matrix does not always imply a faster convergence. Therefore,
this term has been also extracted from the approximated tangent matrix, which can
be now computed as:

Tap =
1

βh2
Md +ΦT

ẑαΦẑ +K+
γ

βh
C (6.11)

Now, some of the most time demanding terms have been eliminated from the
expression of the tangent matrix, with the subsequent reduction in computational
time, making this formulation more competitive with respect to other formulations.
However, immersing in the study of the assembly of the matrices composing the
tangent matrix, a group of new simplifications can be incorporated. Observe that Tap

is now composed of one term of masses (
1

βh2
Md), one term of constraints (ΦT

ẑαΦẑ)

and two terms of forces (K and
γ

βh
C).

In section 4.2.2, the exact derivatives of the generalized forces vector with respect
to the relative coordinates in positions and velocities have been presented for an arbi-
trary selection of reference points, yielding the exact stiffness and damping matrices.
Regarding its composition, it could be seen that there are terms required in the com-
putation of both matrices as well as some repetitions in the assemblies and other
calculations. These redundancies can be avoided by computing both terms jointly,
generating a new matrix denoted here as KC.

215



6. Implementation of the proposed methods in MBSLIM

Moreover, there are some terms of the computation of these matrices that have a
low impact in the convergence of the solution, such as inertial terms or the derivatives
of the kinematic terms used to assemble the generalized forces vector. Considering all
the issues commented, the new matrix KC grouping the derivatives of forces can be
expressed as:

KC = Kap +
γ

βh
Cap (6.12)

and therefore, the approximated tangent matrix could be obtained as:

Tap =
1

βh2
Md +ΦT

ẑαΦẑ +KC (6.13)

Let us recall the expression of the calculation of the generalized forces vector of
each body introduced in (4.32):

Qv
i =

ni
f∑

j=1

Qv
i,j

(e) +Qv
i
(I) (6.14a)

Qv
i,j

(e) =

[
fj

nG
j + (r̃iG − r̃i) fj

]
(6.14b)

Qv
i
(I) =

[
−miω̃i (ω̃i (r

i
G − ri))

−ω̃iJ
G
i ωi − (r̃iG − r̃i) (miω̃i (ω̃i (r

i
G − ri)))

]
(6.14c)

being ni
f the number of external forces applied to the body i. Analogously, the

approximated derivative of the generalized forces vector can be obtained as:

KCv
i =

ni
f∑

j=1

KCv
i,j

(e) +KCv
i
(I) (6.15a)

KCv
i,j

(e)


(
(Ke)j qz + (Ce)j

(
q̇z +

γ

βh
q̇ż

))
(
r̃j − r̃i

)(
(Ke)j qz + (Ce)j

(
q̇z +

γ

βh
q̇ż

))
 (6.15b)

KCv
i
(I) = 0 (6.15c)

which can be regarded as an approximation of equations (4.40) and (4.49) added
together. Observe also that the term related to the inertial forces is dismissed.

Once calculated the elemental approximate derivative of the generalized forces
vector for each body, they have to be assembled following the same scheme of the
dynamics, already presented in (4.33a) and (4.33b), but here the term corresponding
to derivatives of masses and kinematic accumulative terms is disregarded:

KCi = bvT
i KCvΣ

i , (6.16a)

KCvΣ
i = KCi

v +

ni
s∑

s=1

(
BvT

s KCvΣ
s

)
(6.16b)

216



6.3. Sensitivity analysis.

in which ni
s is the number of children of body i. In this case, (6.16) can be regarded

as an approximation of equations (4.34a), (4.34b), (4.51a) and (4.51b) in which the
least relevant terms have been neglected. This new approximated term gathering the
derivatives of the generalized forces vector has given very good results in terms of
convergence of the augmented Lagrangian part of the dynamics of the semi-recursive
ALI3-P formulation with a substantially lower computational effort than using the
exact stiffness and damping matrices. It should be remarked that the computations
presented in this section are valid for Newton-Raphson iterations in the dynamics,
yet the exact stiffness and damping matrices provided by equations (4.40), (4.34a),
(4.34b), (4.49), (4.51a) and (4.51b) are essential for the execution of any sensitivity
analysis and therefore the exact matrices have been implemented in every sensitivity
analysis formulation.

6.3 Sensitivity analysis.

The formulations used to obtain the dynamic response of a multibody system are
4: fully-recursive approach for open-loop systems, semi-recursive accumulation for
open-loop systems, semi-recursive ALI3-P for constrained systems and semi-recursive
Matrix R for constrained systems. Besides, each one of the formulations listed have 2
different expressions depending on the reference point selected, one for RTdyn0 and
other for RTdyn1.

The computation of the sensitivity analysis of the previous formulations have been
developed using a purely analytical scheme, this is, considering all the analytical
derivatives of each elemental term, constraint, mass and force, and assembling it
considering the analytical derivatives of the dynamic expressions.

The variety of formulations, accumulations, types of joints, constraints and forces
that could be present in a multibody model makes a general implementation of a
sensitivity analysis a goal difficult to achieve. The work is hardened with the conside-
ration of 2 different schemes of differentiation: the direct differentiation method and
the adjoint variable method.

The implementation process of the analytical computation of the sensitivity anal-
ysis has been a sequential process involving different stages, all of them validated by
means of a comparison with numerical differentiation. This process is outlined in
Figure 6.3.

The great variety of terms, expressions, reference points and formulations does
not necessarily imply an increase in the complexity of the code, but it increases
the probability of including errors. In order to reduce this probability, each one
of the simulation results has been tested against numerical differentiation (as it was
commented) and with other multibody formulations in natural coordinates whose
accuracy and reliability have been previously proved. Furthermore, numerical and
symbolic differentiation (in some cases) have been also used in the detection of internal
errors in different terms of each formulation, and they have worked as excellent tools
for the detection and solution of anomalies in the code.

217



6. Implementation of the proposed methods in MBSLIM

Derivative of kinematic terms

Derivative of recursive relations

Derivative of elemen-
tal mass matrices

Derivative of elemen-
tal generalized forces

Derivative of mass matrix

Stiffness matrix

Damping matrix

Algorithm for semi-
recursive open chain systems

Derivatives of constraints

DDM* on semi-
recursive Matrix R

Continuous AVM** on
semi-recursive Matrix R

DDM* on semi-recursive ALI3-P

Continuous AVM** on
semi-recursive ALI3-P

Discrete AVM** on
semi-recursive ALI3-P

Addition of geometry pa-
rameters affecting assembly

DDM* on fully-
recursive formulations

*Direct Differentiation Method.
**Adjoint Variable Method.

Figure 6.2: Stages of the implementation of the sensitivity analysis described in this
document.

Once reached an appropriate accuracy level in the results of the sensitivity analysis
of topological models, the simplification process begins. As it has been evidenced in
chapters 4 and 5, the sensitivity analysis of relative coordinate models requires a
significant amount of intermediate derivatives and products related to the assembly
of the system matrices and the accumulation of terms. It even requires the derivatives
of terms that are constant with other models, as it occurs with the mass matrix in
natural coordinates.

Our first sensitivity implementations of topological formulations have been espe-
cially slow, but the use of topology to simplify the computation of derivatives in
addition to the consideration of the symmetry of matrices and tensors had brought
about an important increase in efficiency, reaching lower computational times than
natural coordinates formulations in the numerical examples considered.

218



6.3. Sensitivity analysis.

Moreover, one particular group of computations has contributed to decrease even
more the computational expense: the use of symmetric and non-symmetric sparse
tensors. The inclusion of sparsity in a tensor contributes to simplify its products
with vectors or matrices, so it can be reused in different parts of the problem without
a significant increase in the computational time. Being discarded the use of dense
tensors because of its inefficiency, the other possibility, which would be to compute
directly the product of a tensor by a vector, could be very efficient if the tensor
appears only once per iteration, but if it appears more than once multiplying several
terms, there would be a repetition in calculations and assemblies that would impair
the performance of the sensitivity analysis.

Further simplifications have also been applied to the differentiation of the dynamic
expressions such as the recursive computation of the residual partial derivative with
respect to the parameters of the system, explained in the following subsection.

6.3.1 Simplified calculation of Qd
ρ̂ −Md

ρ̂z̈

The simplifications introduced in section 6.2.1 for the computation of the residual
in the dynamics can be extended to obtain a simple scheme of differentiation of diffe-
rent terms in the framework of a joint coordinate model with respect of any parameter.
These simplifications are specially helpful when local coordinates of points and vectors
defining one joint are used as parameters, so a propagation of the sensitivities is
needed.

The scheme presented involves tho phases: first, a differentiation of the kinematic
expressions of the open-loop system, from the base of the mechanism to the ends; and
second, the differentiation of the elemental masses and forces and their accumulation
from the ends of the mechanism to the base.

Let us begin with the differentiation of the kinematic recursive expressions in
accelerations (2.121):(

V̇i

)
ρ̂
=
(
Bv

i

)
ρ̂
V̇i−1 +Bv

i

(
V̇i−1

)
ρ̂
+
(
bv
i

)
ρ̂
z̈i +

(
dv
i

)
ρ̂

(6.17)

The derivatives with respect to ρ of the accelerations of the reference point coor-
dinates can be calculated, therefore, with a recursive accumulation starting from the

base body to the tips of the kinematic tree. The derivatives
(
Bv

i

)
ρ̂
,
(
bv
i

)
ρ̂
and

(
dv
i

)
ρ̂

have analytical expressions that can be obtained depending on the type of parameter
selected.

It should be pointed out that the unique parameters that affect the kinematics of
open-loop systems are those related to geometrical considerations, such as lengths or
local coordinates of points and vectors. In constrained systems, the kinematics can
also be affected by other different parameters depending on the kind of constraints
defining the model.

Back to the dynamics, derivatives also have to be taken on the accumulation
of forces and masses. In this case, the simplified accumulation (6.18) is directly

219



6. Implementation of the proposed methods in MBSLIM

differentiated: (
RT

i

(
Q−MV̇

))
ρ̂
=
(
bi

T
)
ρ̂
Hi + bi

T
(
Hi

)
ρ̂
+
(
Qz
)
ρ̂

(6.18)(
Hi

)
ρ̂
=

[(
Qi

)
ρ̂
−
(
Mi

)
ρ̂
V̇i −Mi

(
V̇i

)
ρ̂

]
+
(
BvT

i

)
ρ̂
Hi+1 +BvT

i

(
Hi+1

)
ρ̂

(6.19)

Observe that these expressions use only once the derivative of each term, which
means that the elemental mass matrix and elemental generalized forces vector for each
body have to be differentiated only once per iteration. This expression generates the
easiest and faster computation of the term Qd

ρ̂−Md
ρ̂z̈, which can be used in any of the

semi-recursive formulations presented, both for open-loop and closed-loop systems.

6.4 Design optimization and optimal control of multi-

body systems

The purpose of the present thesis was originally the development of a set of fast
and accurate sensitivity analysis computations which could be used in the design op-
timization or optimal control problems. With the advance of the work, the research
lines had been zeroing in on the extension and generalization of relative coordinate
formulations and sensitivity computations, putting aside the investigation into op-
timization applications. However, a study of these optimization problems has been
performed, particularly in what concerns to their definition, implementation and prac-
tical considerations.

Optimization problems can be classified considering its nature in five categories,
according to [129]: geometrical, kinematic, dynamical, multidisciplinary and topo-
logy optimization. In the present work, all the efforts have been focused in dynamic
optimization, but some kinematic optimization problems related to the synthesis of
different mechanisms have been also worked on.

Dynamical optimization problems can be classified as well in accordance with
their purpose and the type of parameters selected, leading to optimal control and
optimal design problems. Optimal control is focused on the optimization of a series of
forces, torques or constraints actuating on the system over time, in order to achieve
an expected performance. On the other hand, the aim of design optimization is
in the determination of the values of a set of design parameters which optimizes
an objective function. The difference here is patent: optimal control is referred to
external parameters, this is, it does not affect the mechanism, but the environment
conditions, whereas the optimal design considers internal parameters, referred to the
structure, geometry, inertia or masses of the mechanism, and which directly affect the
mechanism but not the environment. In MBSLIM, both optimization problems have
been implemented considering the same scheme, since both use the same definition of
objective function and gradient.

During the development of the present work, three approaches have been used in
order to link third-party optimization algorithms with the multibody models solved
with MBSLIM:

220



6.4. Design optimization and optimal control of multibody systems

1. Modified L-BFGS-B: the origin of this algorithm can be dated in 1989, when
Liu and Nocedal presented in [130] a new method called L-BFGS, based on a
limited memory quasi-Newton method for large scale optimizations. In 1997,
Zhu et al. [131] extended the algorithm so as to support simple boundary con-
straints in the optimization, leading to the so called L-BFGS-B algorithm. The
latest revision of this code has been made by Morales and Nocedal [132] in 2011,
in which the previous code was modified in order to achieve faster convergence
and to eliminate the addition of errors of some compilers.

The algorithm is programmed in Fortran 77, and therefore, its integration in
a multibody library written in Fortran 2018 as MBSLIM is almost straightfor-
ward. One of the greatest advantages of this code is that it can be executed
using directly the same multibody library in which the dynamics and sensitivity
analysis are computed, without the need of resorting to external libraries. This
simplifies as well the debugging process inherent to any program implementa-
tion.

2. Optimization Toolbox of Matlab: Matlab offers a wide range of possibi-
lities related to the optimization of a function, involving constrained or uncons-
trained optimizations, scalar or vector objective functions, etc. In the present
work, the following features of the Optimization Toolbox of Matlab have been
used:

� fminunc: it is a routine used for unconstrained optimization problems
involving scalar objective functions.

� fmincon: it supports the minimization of scalar functions subjected to a
set of constraints of any type, i.e. boundary conditions, linear and non-
linear constraints. The definition of objective functions in MBSLIM as ar-
rays allows to incorporate there any nonlinear constraint, so the analytical
computation of their gradient can be directly executed without requiring
additional code.

� multistart: one of the biggest problems of any optimization, and especially
in gradient-based optimization, is that any optimization algorithm seeks a
local optimum, but not a global one. The local minimum obtained strongly
depends on the initial values of the set of parameters. In order to minimize
the effect of these values, which are usually approximately or arbitrarily
selected, Maltlab offers the multistart routine, which allows to initiate the
same optimization with different sets of initial values of the parameters.

� minimax: multi-objective optimization can be focused from different per-
spectives depending on what is its desired result. One possibility could be
to use a set of weight factors indicating the degree of minimization sought
for each component of the objective function. An analog result can be ob-
tained by composing a scalar objective function as the weighted addition of
the components of the objective function array, which allows to use scalar
optimization routines such as fminunc or fmincon. Other possibility,

221



6. Implementation of the proposed methods in MBSLIM

contemplated by the minimax routine, consists in minimize the maximum
value of the components of the objective function array. This technique is
also known as worst-case optimization.

The user code, containing the multibody model, maneuver and objective func-
tion, has been linked to the optimization routines of Matlab by means of .MEX
files. In this sense, the debugging and detection of errors become more entan-
gled. On the other hand, the possibility of having all the mathematical tools of
Matlab and all its optimization routines are worth it.

3. Python: the line of investigation in Python is more recent, and only a few op-
timization tests have been executed in this language. Python is a programming
language whose relevance in many fields of knowledge has exploded in the last
few years, partially thanks to its broad variety of libraries. In what refers to the
particular implementation, the user code in Fortran is connected with the code
in Python by means of an additional file programmed in C++, with an equiva-
lent role to the .MEX file in Matlab interfaces. As it has been commented, only
a few tests have been executed in Python, being the optimization algorithm the
modified L-BFGS-B presented above, with which the results for both implemen-
tations (Fortran and Python) of this optimizer can be tested. The expectations
with the Fortran-Python interface is to widen the range of optimization algo-
rithms by means of diverse Python libraries and to take advantage of all the
features of Python.

6.5 Software integration

One of the objectives of the implementation of the new code related to relative
coordinate models in the multibody library MBSLIM has been to integrate it with
all the calculations of the preexisting natural coordinates models in a way that both
codes do not interfere but share routines, schemes or algorithms. The goal has been
achieved at different levels:

� Unique user definition: there is an unique definition of the model by the
user, from which the natural and relative coordinate models are generated. All
the user information is translated and included in those models, being both
completely equivalent. At the moment, the natural coordinate model is cre-
ated unconditionally, while relative coordinate models are created only if the
formulation selected is based on these coordinates.

� Shared routines: the great variety of constraints and forces defined in terms
of natural coordinates can be used in relative coordinate models without signif-
icant modifications. This entails a great advantage with respect to new codes,
since all the features already programmed, tested and optimized in natural co-
ordinates can be then used in joint coordinates, and accordingly, high complex

222



6.5. Software integration

models with complex forces or constraints can be then executed without re-
defining their expressions. Among all the constraints supported, there are dot
products, angle definitions, distance definitions, cross products, guidance con-
straints, coincidence of points or vectors or linear combination constraints. In
what refers to forces, there can be found spring forces, contact forces, different
models of tire forces, other frictional forces and other user-defined actuation
forces. All of these are fully supported by natural and relative coordinate mod-
els.

� Reuse of natural coordinates problems: the integration of natural and
relative coordinate models is such that different problems solved in a set of
coordinates can be reused on the other model. For instance, the initial posi-
tion and velocity problem in natural coordinates is reused in relative coordinate
models, being required an additional layer of calculation of the relative coordi-
nates in positions and velocities from the values of positions and velocities of
the points and vectors of the model. This layer is needed as long as the values
of the vector of initial dependent relative coordinates are not specified by the
user. The translation can be executed before the solution of the initial position
and velocity problems, and then these problems can be solved in relative coor-
dinates. The other possibility is solving the problem in natural coordinates and
then translating the converged variables to joint coordinates. Both approaches
have been implemented in MBSLIM. Other problem which can be reused from
natural coordinates is the static equilibrium problem (also solved in relative co-
ordinates). In general, the coexistence of both models would allow even to solve
different parts of the dynamic or sensitivity problem with different models, even
though this path has not been explored yet.

� Numerical integration: other part of the code that is completely shared be-
tween any of the multibody models supported by MBSLIM is related to the nu-
merical integration of the equations of motion. The same routines of integration,
such as a Newmark’s family integrator, HHT integrator(Hilbert-Hughes-Taylor)
or generalized-α integrator, are used by all the models and formulations.

There is still an incomplete line of development in MBSLIM related to the in-
tegration of natural and relative coordinate models. In future modifications, it is
expected to pack all the structures and terms of every model into a bigger structure
which allows to reuse the same routines of solution of constrained problems, such as
the ALI3-P or Matrix R schemes. The differences of accumulations, non-constant
mass matrices and other particular computations make this process unreachable by
the moment, but this task is intended to be accomplished in the near future.

223





Chapter 7

Numerical experiments

The theoretical developments presented in previous chapters are tested here with
different multibody systems, starting from the simplest ones such as a five-bar mecha-
nism, to the more realistic industrial systems such as a vehicle. In the present chapter,
dynamic formulations of multibody systems and their sensitivity analysis are evalu-
ated in terms of accuracy and computational time. The kinematics and its sensitivities
are not considered separately in this chapter, but they are regarded as part of the
dynamic analysis, appearing implicitly in problems such as the initial position and
velocity problem, or during the evaluation of semi-recursive Matrix R formulations.

Numerical experiments seek to shed light on the excellent behavior of the relative
coordinates formulations described in this work compared with the equivalent formu-
lations in natural coordinates. All the simulations and analyses have been executed
with an Intel Core i7-8700 CPU at 3.20GHz in a single thread, which means that
no parallelization have been considered. The computation in a single thread offers a
more direct comparison between the computational effort required to solve relative
and natural coordinates models, since the computational time is directly related to
the number of instructions executed (as well to the accesses to memory). All the code
has been generated in Fortran using the latest features allowed by the standard For-
tran 2018, with the Fortran Intel Parallel Studio XE 2018 as compiler on a Windows
10 operating system.

The multibody models and maneuvers used to test the dynamic and sensitivity
formulations proposed are listed in increasing complexity. Each numerical experiment
is structured in four parts: first, the description of the model is presented along with
the properties of the maneuver, the sensitivity analysis objective function and the set
of parameters; second, the results of the dynamic simulation are displayed by means
of tables and graphics, indicating computational times and the evolution of a set of
variables over time in order to compare results of all the formulations tested; third,
the results of the sensitivity analyses are displayed and compared among different
relative and natural coordinates formulations, using direct and adjoint approaches;
and fourth, the results of an optimization problem involving the sensitivity analysis
of the dynamics are presented (only for the buggy vehicle and bicycle).

225



7. Numerical experiments

7.1 Five-bar mechanism

The first numerical experiment consists in the simulation of a five-bar linkage.
The mechanism considered has been traditionally used as benchmark problem to test
sensitivity results, including penalty methods [109], Matrix R methods (also referred
as Maggi’s formulation) [107,133], classical index-1 and index-3 Lagrange formulations
[2] and even the analytical sensitivity analysis of ALI3-P formulations in its direct [3]
and adjoint versions [4].

A B

31

2

F1

F2

Figure 7.1: Five-bar mechanism.

7.1.1 Multibody model

The five-bar linkage is a mechanism composed of 4 movable bars linked to a fifth
one fixed to the ground. The bars are linked by means of five revolute joints with
parallel axes conforming a single closed chain. Looking at Figure 7.1, the revolute
joints are located at points A, 1, 2, 3 and B. The lengths of the bars are:

LA1 =
√
2m (7.1)

L12 =

√
13

2
m (7.2)

L23 =

√
13

2
m (7.3)

L3B =
√
2m (7.4)

LAB = 1m (7.5)

Points A and B are fixed to the ground, being their position:

rA =
[
0 0 0

]T
(7.6)

rB =
[
1 0 0

]T
(7.7)

226



7.1. Five-bar mechanism

The rest of the points are initially placed at:

r1 =
[
−1 −1 0

]T
(7.8)

r2 =
[
0.5 −2 0

]T
(7.9)

r3 =
[
2 −1 0

]T
(7.10)

The mass of the bodies is assumed to be uniformly distributed with respect to
inertia considerations. The mass of each bar is:

mA1 = 1 kg (7.11)

m12 = 1.5 kg (7.12)

m23 = 1.5 kg (7.13)

m3B = 1 kg (7.14)

The CoM is placed in the geometrical center of each bar, matching the middle
point of the line linking the tips of each bar where the revolte joints are placed.
The forces acting over the mechanism are gravitational forces along with two spring-
damper forces, one between points B and 1, and the other one between points B and
2. The stiffness and damping coefficients as well as the natural length characterizing
the spring-damper forces are described in Table 7.1.

Force Stiffness (N/m) Damping (Ns/m) Natural length (m)

Spring 1 100 0
√
5

Spring 2 100 0
√
17/2

Table 7.1: Coefficients of spring-damper forces acting on the five-bar linkage

The two degrees of freedom considered for the simulation are the angles of the joints
located at points A and 1. These angles are defined counterclockwise, considering as
angle “0” the position where the two bars defining the joint are aligned and with the
same orientation. The initial values of these angles are:

α1 = −3π

4
rad (7.15)

α2 =
π

4
+ arctan (1.5) rad (7.16)

For the sensitivity analysis, the following array of objective functions is considered:

ψ =

ψ1

ψ2

ψ3

 (7.17)

with

ψ1 =

∫ tF

t0

(r2 − r20)
T (r2 − r20) dt (7.18a)

227



7. Numerical experiments

ψ2 =

∫ tF

t0

ṙT2 ṙ2dt (7.18b)

ψ3 =

∫ tF

t0

r̈T2 r̈2dt (7.18c)

In expressions (7.18), r2 is the position of the point identified as 2 in Figure 7.1,
whereas ṙ2 and r̈2 are its velocity and acceleration. The term r20 represents the
position of point 2 at the initial instant of time, being equal to:

r20 =
[
0.5 −2.0 0.0

]T
(7.19)

The group of parameters considered for the sensitivity analysis are the natural
length of the springs, along with the mass of bar A1 and the local component X of
the position of its CoM. In addition, the length of the bar A1 is considered as part
of the parameters of the system with the purpose of proving the calculation of the
sensitivity analysis for a parameter that affects the recursive accumulation process of
relative coordinate models.

ρ =
[
Ls1 Ls2 mA1 rG LA1

]T
(7.20)

in which rG constitutes a simplified notation of
(
r̄GA1

)
x
.

The simulation tested consists in a 5 seconds motion of the mechanism subjected
to gravitational and spring forces. The sensitivity analysis is applied to the dynamic
response under these conditions.

7.1.2 Numerical results: dynamics

The dynamic formulations tested in this example are the semi-recursive ALI3-P
and Matrix R formulations for RTdyn0 and RTdyn1 accumulations. The response of
Matrix R in natural coordinates is used as reference in order to test the validity of
the previous dynamic formulations.

Formulation 1 R0-ALI3-P R1-ALI3-P R0-MatrixR R1-MatrixR

Tolerance 10−10 10−10 10−10 10−10

Penalty factor α 109 109 - -
Projection matrix Md Md - -
Proj. scaling factor ς 1.0 1.0 - -
Projection type Non-iterative Non-iterative - -
1R0: RTdyn0; R1: RTdyn1.

Table 7.2: Configuration parameters for each formulation.

The dynamic simulation analyzes the motion of the mechanism subjected to the
gravitational and spring-damper forces described in the previous section during 5
seconds, with a time step of 1 millisecond. Each formulation is configured with the

228



7.1. Five-bar mechanism

0 1 2 3 4 5 6 7
0

0.5

1

Time (s)

P
o

si
tio

n 
(m

)
X-component of position of point 2

 

 

0 1 2 3 4 5 6 7
-3

-2.5

-2

Time (s)

P
o

si
tio

n 
(m

)

Y-component of position of point 2

 

 

0 1 2 3 4 5 6 7
-1

0

1

2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

X-component of velocity of point 2

 

 

0 1 2 3 4 5 6 7
-2

0

2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

X-component of velocity of point 2

 

 

0 1 2 3 4 5 6 7
-5

0

5

10

Time (s)

A
cc

e
le

ra
tio

n 
(m

/s
2
) X-component of acceleration of point 2

 

 

0 1 2 3 4 5 6 7
-20

0

20

Time (s)

A
cc

e
le

ra
tio

n 
(m

/s
2
) Y-component of acceleration of point 2

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.2: Position, velocity and acceleration of point 2 of the five-bar mechanism.

set of parameters specified in Table 7.2. The value of the penalty factor in ALI3-P
formulations is selected arbitrarily from a range that usually provides a low number

229



7. Numerical experiments

of iterations and low numerical errors ( α ∈ [106, 1012]). The scaling factor ς has
been selected in such a way that the dissipation effect of the mass matrix projections
(proved by Garćıa Orden and Dopico in [127]) does not affect the dynamics of the
system. Moreover, the tolerance is referred to the fulfillment of an error criterion,
which in this case is the 2-norm of the increment in the main variables delivered by
the Newton-Raphson iteration (in both ALI3-P and Matrix R formulations).

In Figure 7.2, the position, velocity and acceleration of point 2 over time are
displayed for the four formulations in relative coordinates as well as for the reference
formulation (labeled as MatrixR). This figure evidences the good behavior in terms of
accuracy of all the formulations presented, despite the differences in models (natural
and relative coordinates), in the set of reference points (RTdyn0 and RTdyn1) and in
the type of equations of motion (Matrix R and ALI3-P).

In order to compare times among formulations, the simulation time is incremented
form 5 seconds to 50 seconds, with the mechanism subjected to the same forces.
The computational times of the 50-seconds simulation are displayed in Table 7.3,
comparing each one of the formulations being tested with the equivalent formulation
in natural coordinates.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 1.906 2.391 1.255
RTdyn1 ALI3-P 1.813 2.391 1.319
RTdyn0 MatrixR 2.406 3.203 1.331
RTdyn1 MatrixR 2.250 3.203 1.424

Table 7.3: CPU time of relative coordinates formulations compared with the equiva-
lent formulation in natural coordinates.

Despite the low number of bodies, forces and constraints of the mechanism, relative
coordinate models show better performance in terms of computational time than the
equivalent formulations in natural coordinates. This was not expected to happen for
small problems like this, but the simplicity of the joint coordinate model, composed
of 4 revolute joints, and the optimized code generated for relative coordinate models
in MBSLIM are responsible for this reduction in CPU time.

7.1.3 Numerical results: sensitivity analysis

The sensitivity analysis of the dynamics is accomplished applying the following
sensitivity formulations developed in this work:

� RTdyn0 ALI3-P: forward, continuous adjoint and discrete adjoint sensitivity
formulations.

� RTdyn1 ALI3-P: forward, continuous adjoint and discrete adjoint sensitivity
formulations.

230



7.1. Five-bar mechanism

� RTdyn0 Matrix R: forward and continuous adjoint sensitivity formulations.

� RTdyn1 Matrix R: forward and continuous adjoint sensitivity formulations.

The reference sensitivities are obtained from the natural coordinate Matrix R
forward and adjoint sensitivity formulations, which have been implemented and tested
in MBSLIM prior to the inception of the present work. The accuracy of the reference
formulations has been also tested against finite differences, but since the evaluation of
the reference formulation is not the aim of this numerical simulation, hereinafter the
analytical reference solutions of Matrix R in natural coordinates will be considered as
the correct solutions.

0 1 2 3 4 5 6 7
0

2

4

6

8
Objective function in velocities

Time (s)


2

 

 

0 1 2 3 4 5 6 7
0

100

200

300

400
Objective function in accelerations

Time (s)


3

 

 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8
Objective function in positions

Time (s)


1

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR
RTdyn0-ALI3-P
RTdyn1-ALI3-P
RTdyn0-MatrixR
RTdyn1-MatrixR

MatrixR
RTdyn0-ALI3-P
RTdyn1-ALI3-P
RTdyn0-MatrixR
RTdyn1-MatrixR

Figure 7.3: Five-bar objective functions integrated forward in time.

First of all, the results of each objective function are displayed in Figures 7.3 and
7.4, integrating forward and backward in time respectively. The reason of these two
numerical time integrations relies on the fact that the same scheme of integration is
used for the objective function and its gradient. By integrating the objective function
forward in the direct sensitivity and backward in the adjoint sensitivity approaches,
the objective function is evaluated only once per time step, and no repeated calcula-
tions or storage of the values of the objective function have to be done. These figures
show an excellent convergence for all the dynamic relative coordinates formulations.

231



7. Numerical experiments

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8
Objective function in positions

Time (s)


1

 

 

0 1 2 3 4 5 6 7
0

2

4

6

8
Objective function in velocities

Time (s)


2

 

 

0 1 2 3 4 5 6 7
0

100

200

300

400
Objective function in accelerations

Time (s)


3

 

 

MatrixR
RTdyn0-ALI3-P
RTdyn1-ALI3-P
RTdyn0-MatrixR
RTdyn1-MatrixR

MatrixR
RTdyn0-ALI3-P
RTdyn1-ALI3-P
RTdyn0-MatrixR
RTdyn1-MatrixR

MatrixR
RTdyn0-ALI3-P
RTdyn1-ALI3-P
RTdyn0-MatrixR
RTdyn1-MatrixR

Figure 7.4: Five-bar objective functions integrated backward in time.

Now, let us begin with the sensitivity analysis of the objective function (7.17). For
the sake of clearness, results are divided according to each one of the scalar objective
functions conforming the array of objective functions. Moreover, the results using
forward sensitivity formulations are separated from the ones using adjoint sensitivity
formulations, both continuous and discrete, in order to clarify the graphics and to
allow a more direct comparison among formulations.

Figure 7.5 portrays the coincidence of the results of the Matrix R forward sen-
sitivity formulation in natural coordinates with the solution of the semi-recursive
sensitivity formulations for the the first objective function (7.18a). Figure 7.6 makes
apparent the convergence of the semi-recursive forward sensitivity formulations for
the objective function (7.18b). The same good behavior in terms of accuracy can
be observed in Figure 7.7, where the results of the semi-recursive forward sensitivity
formulations (chapters 5.2.1 and 5.4.1) for the objective function (7.18c) are presented.

Figures 7.8, 7.9 and 7.10 display the results of the sensitivity analysis of the three
components of the objective function array using all the semi-recursive adjoint sen-
sitivity formulations considered in this work (chapter 5.2.2 and 5.4.2). It should be
pointed out that two different semi-recursive ALI3-P adjoint formulations have been
considered in this case, i.e. the discrete and continuous adjoint sensitivity formulations

232



7.1. Five-bar mechanism

0 1 2 3 4 5 6 7
-6

-4

-2

0

Gradient with respect to L
s1

Time (s)


L

s1

 

 

0 1 2 3 4 5 6 7
0

2

4

Gradient with respect to L
s2

Time (s)


L

s2

 

 

0 1 2 3 4 5 6 7
0

0.2

0.4

Gradient with respect to m
A1

Time (s)


m

A
1

 

 

0 1 2 3 4 5 6 7
-0.5

0

0.5
Gradient with respect to rG

Time (s)


rG

 

 

0 1 2 3 4 5 6 7
-2

0

2

4

Gradient with respect to L
A1

Time (s)


L

A
1

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.5: Sensitivity analysis of the objective function Ψ1 using the DDM.

presented in chapter 5. Looking closer at the figures, an apparent slight divergence
can be observed in the sensitivities with respect to the length of body A1 when ALI3-

233



7. Numerical experiments

0 1 2 3 4 5 6 7
-20

-10

0

Time (s)


L

s1

Gradient with respect to L
s1

 

 

0 1 2 3 4 5 6 7
0

20

40

60

Time (s)


L

s2

Gradient with respect to L
s2

 

 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

Time (s)


m

A
1

Gradient with respect to m
A1

 

 

0 1 2 3 4 5 6 7
-1

0

1

2

Time (s)


rA

1

Gradient with respect to rG

 

 

0 1 2 3 4 5 6 7
-30

-20

-10

0

Time (s)


L

A
1

Gradient with respect to L
A1

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.6: Sensitivity analysis of the objective function Ψ2 using the DDM.

P and Matrix R formulations are compared. The divergence in the evolution of this
component of the gradient is not an error or ill-conditioning of the ALI3-P problem,

234



7.1. Five-bar mechanism

0 1 2 3 4 5 6 7
-200

0

200

400

Time (s)


L

s1

Gradient with respect to L
s1

 

 

0 1 2 3 4 5 6 7
0

1000

2000

3000

Time (s)


L

s2

Gradient with respect to L
s2

 

 

0 1 2 3 4 5 6 7
-40

-20

0

20

Time (s)


m

A
1

Gradient with respect to m
A1

 

 

0 1 2 3 4 5 6 7
-100

-50

0

50

Time (s)


rG

Gradient with respect to rG

 

 

0 1 2 3 4 5 6 7
-3000

-2000

-1000

0

Time (s)


L

A
1

Gradient with respect to L
A1

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.7: Sensitivity analysis of the objective function Ψ3 using the DDM.

but it arises from the different adjoint schemes and its numerical integration. In this
case, it should be reminded that the continuous adjoint methods encompass a group of

235



7. Numerical experiments

0 1 2 3 4 5 6 7
-6

-4

-2

0

Gradient with respect to L
s1

Time (s)


L

s1

 

 

0 1 2 3 4 5 6 7
-2

0

2

4

Gradient with respect to L
s2

Time (s)


L

s2

 

 

0 1 2 3 4 5 6 7
0

0.2

0.4

Gradient with respect to m
A1

Time (s)


m

A
1

 

 

0 1 2 3 4 5 6 7
0

0.5

1
Gradient with respect to rG

Time (s)


rG

 

 

0 1 2 3 4 5 6 7
-5

0

5

10

Gradient with respect to L
A1

Time (s)


L

A
1

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

Figure 7.8: Sensitivity analysis of the objective function Ψ1 using the AVM.

instant terms that have to be added at the initial and final times, which entails some
“jumps” in the evolution of the gradient when these terms are added. Accordingly,

236



7.1. Five-bar mechanism

0 1 2 3 4 5 6 7
-20

0

20

Gradient with respect to L
s1

Time (s)


L

s1

 

 

0 1 2 3 4 5 6 7
-50

0

50

100

Gradient with respect to L
s2

Time (s)


L

s2

 

 

0 1 2 3 4 5 6 7
-2

-1

0

1

Gradient with respect to m
A1

Time (s)


m

A
1

 

 

0 1 2 3 4 5 6 7
-50

0

50

Gradient with respect to L
A1

Time (s)


L

A
1

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

0 1 2 3 4 5 6 7
-4

-2

0

2

Time (s)


rG

Gradient with respect to rG

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

Figure 7.9: Sensitivity analysis of the objective function Ψ2 using the AVM.

only the final results and not the evolution of the gradients are meaningful when the
AVM is used.

237



7. Numerical experiments

0 1 2 3 4 5 6 7
-1000

0

1000

2000

Gradient with respect to L
s1

Time (s)


L

s1

 

 

0 1 2 3 4 5 6 7
-5000

0

5000

Gradient with respect to L
s2

Time (s)


L

s2

 

 

0 1 2 3 4 5 6 7
-100

-50

0

50

Gradient with respect to m
A1

Time (s)


m

A
1

 

 

0 1 2 3 4 5 6 7
-4000

-2000

0

2000

Gradient with respect to L
A1

Time (s)


L

A
1

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

0 1 2 3 4 5 6 7
-200

-100

0

100

Time (s)


rG

Gradient with respect to rG

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

Figure 7.10: Sensitivity analysis of the objective function Ψ3 using the AVM.

Although the previous figures seem to show a good convergence of all the formu-
lations, this coincidence is made even more obvious in Tables 7.4, 7.5 and 7.6, where
the final results of each gradient are displayed for each one of the components of the
objective function.

These tables evidence a good convergence of all the formulations regardless of the

238



7.1. Five-bar mechanism

Formulation ψ1
Ls1

ψ1
Ls2

ψ1
mA1

ψ1
rG ψ1

LA1

Reference -4.228 3.212 0.3186 0.4423 3.360
RTdyn0 ALI3-P: DDM -4.228 3.212 0.3186 0.4423 3.359
RTdyn0 ALI3-P: CAVM -4.228 3.212 0.3186 0.4423 3.360
RTdyn0 ALI3-P: DAVM -4.228 3.213 0.3186 0.4424 3.360
RTdyn1 ALI3-P: DDM -4.228 3.212 0.3186 0.4423 3.359
RTdyn1 ALI3-P: CAVM -4.228 3.212 0.3186 0.4423 3.360
RTdyn1 ALI3-P: DAVM -4.228 3.213 0.3186 0.4424 3.360
RTdyn0 MatrixR: DDM -4.228 3.212 0.3186 0.4423 3.360
RTdyn0 MatrixR: CAVM -4.228 3.212 0.3186 0.4423 3.360
RTdyn1 MatrixR: DDM -4.228 3.212 0.3186 0.4423 3.360
RTdyn1 MatrixR: CAVM -4.228 3.212 0.3186 0.4423 3.360

Table 7.4: Gradient of objective function Ψ1

Formulation ψ2
Ls1

ψ2
Ls2

ψ2
mA1

ψ2
rG ψ2

LA1

Reference -15.45 50.32 0.9700 0.7454 -27.37
RTdyn0 ALI3-P: DDM -15.45 50.32 0.9700 0.7454 -27.37
RTdyn0 ALI3-P: CAVM -15.45 50.32 0.9700 0.7453 -27.37
RTdyn0 ALI3-P: DAVM -15.46 50.32 0.9707 0.7460 -27.36
RTdyn1 ALI3-P: DDM -15.45 50.32 0.9700 0.7454 -27.37
RTdyn1 ALI3-P: CAVM -15.45 50.32 0.9700 0.7453 -27.37
RTdyn1 ALI3-P: DAVM -15.46 50.32 0.9707 0.7460 -27.36
RTdyn0 MatrixR: DDM -15.45 50.32 0.9700 0.7454 -27.37
RTdyn0 MatrixR: CAVM -15.45 50.32 0.9700 0.7454 -27.37
RTdyn1 MatrixR: DDM -15.45 50.32 0.9700 0.7454 -27.37
RTdyn1 MatrixR: CAVM -15.45 50.32 0.9700 0.7454 -27.37

Table 7.5: Gradient of objective function Ψ2

reference point, the dynamic formulation and the sensitivity analysis method selected.
In fact, the biggest divergences are detected in the discrete adjoint variable method
applied to the semi-recursive ALI3-P scheme, but it is never larger than a 0.5% of the
reference result. In general, all the formulations described in the present work yield
similar results, despite the remarkable differences among models, dynamic schemes of
solution and sensitivity analysis methods.

Paying attention to Table 7.7, it is obvious that the computation of the sensitivity
analysis using relative coordinate models is slower than the equivalent formulations in
natural coordinates, even though the dynamics are computed faster, according to Ta-
ble 7.3. This increase in CPU time is partially due to the concatenation of derivatives
in relative coordinate models, whereas in natural coordinates models the derivative of
each term is more direct. Besides, it can be seen that the direct differentiation method

239



7. Numerical experiments

Formulation ψ3
Ls1

ψ3
Ls2

ψ3
mA1

ψ3
rG ψ3

LA1

Reference 221.8 2437 -32.51 -85.70 -2547
RTdyn0 ALI3-P: DDM 221.7 2437 -32.51 -85.70 -2547
RTdyn0 ALI3-P: CAVM 221.8 2437 -32.51 -85.70 -2547
RTdyn0 ALI3-P: DAVM 221.1 2437 -32.43 -85.67 -2547
RTdyn1 ALI3-P: DDM 221.7 2437 -32.51 -85.70 -2547
RTdyn1 ALI3-P: CAVM 221.8 2437 -32.51 -85.70 -2547
RTdyn1 ALI3-P: DAVM 221.1 2437 -32.43 -85.67 -2547
RTdyn0 MatrixR: DDM 221.8 2437 -32.51 -85.70 -2547
RTdyn0 MatrixR: CAVM 221.8 2437 -32.51 -85.70 -2547
RTdyn1 MatrixR: DDM 221.8 2437 -32.51 -85.70 -2547
RTdyn1 MatrixR: CAVM 221.8 2437 -32.51 -85.70 -2547

Table 7.6: Gradient of objective function Ψ3

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P: DDM 0.719 0.547 0.761
RTdyn0 ALI3-P: CAVM 0.781 0.750 0.960
RTdyn0 ALI3-P: DAVM 0.766 0.797 1.041
RTdyn1 ALI3-P: DDM 0.719 0.547 0.761
RTdyn1 ALI3-P: CAVM 0.781 0.750 0.960
RTdyn1 ALI3-P: DAVM 0.766 0.797 1.041
RTdyn0 MatrixR: DDM 1.109 0.703 0.634
RTdyn0 MatrixR: CAVM 1.109 0.844 0.761
RTdyn1 MatrixR: DDM 1.109 0.703 0.634
RTdyn1 MatrixR: CAVM 1.109 0.844 0.761

Table 7.7: CPU time of relative coordinates formulations compared with the equiva-
lent one in natural coordinates.

produces a bigger gap between times of natural and relative coordinate models, while
this deviation is reduced in the adjoint variable method. Regarding formulations,
ALI3-P is generally faster than Matrix R formulations both in natural and relative
models. The low number of parameters makes the direct differentiation method faster
in all the cases, except in semi-recursive Matrix R formulations, where all the com-
putational times for any sensitivity analysis are the same. One of the reasons of the
similarity of CPU times in these formulations relies on the fact that the bulk of the
computational effort is here centered in the calculation and assembly of each derivative
regardless of the scheme of solution selected.

Looking at the selection of reference points, Table 7.7 shows that the unification
of code and other developments considered in the MBSLIM implementation lead to a
minimum deviation in time between RTdyn0 and RTdyn1, such that it is less than 1
millisecond in this numerical example for every one of the formulations tested.

240



7.2. Spatial slider crank

7.2 Spatial slider crank

The spatial slider-crank is a four-body mechanism described in the Library of Com-
putational Benchmark Problems of the IFToMM Technical Committee for Multibody
Dynamics [134] based on the numerical example originally proposed in [114]. It has
been used as benchmark problem in a work associated to the present thesis [60], in
which the semi-recursive ALI3-P formulation was combined with the RTdyn0 and
RTdyn1 versions of the semi-recursive accumulation.

Figure 7.11: Spatial slider crank mechanism.

7.2.1 Multibody model

The spatial slider crank, represented in Figure 7.11, is composed of 3 movable
bodies: the crank, connected to the ground (fixed body) by a revolute joint; the
slider, linked to the ground by a prismatic joint; and the connecting rod, joined to
the crank by a spherical joint and to the slider by a Cardan joint.

This multibody system is specially interesting in joint coordinate modeling due
to the fact that gathers 4 different types of joints (revolute, prismatic, Cardan and
spherical) and a closed loop. Moreover, only 3 bodies are involved, which even makes
it possible writing the equations of motion and the accumulated mass matrices and
forces vector by hand in order to test the method.

This numerical example has been used in the earliest stages of the implementation
of the automatic opening of closed loops algorithm. Let us compare the four possible
options resulting from opening the loop by eliminating one of the 4 joints of the
system. Table 7.8 evidences that the best option is to eliminate the spherical joint,
since the number of constraints and joint-variables generated is the lower of all the 4
cases. In fact, this example shows that the joints with the higher number of degrees
of freedom should be eliminated first. For instance, comparing the model generated
by the elimination of a revolute or prismatic joint with the one generated by the cut

241



7. Numerical experiments

of the Cardan joint, Table 7.8 makes it clear that Cardan joints should be removed
prior to one degree-of-freedom joints.

Joint eliminated Number of variables Number of constraint equations

Revolute 4+2+1=7 6+1=7
Spherical 1+2+1=4 3
Cardan 1+4+1=6 4+1=5
Prismatic 4+2+1=7 9+1=10

Table 7.8: Study of models generated by the elimination of different joints on the
spatial slider crank

The joint coordinate model automatically generated by the MBSLIM multibody
library consists of 2 kinematic chains gathering a prismatic, a revolute and a Cardan
joint. This delivers a model described by 4 joint-coordinates subjected to 3 loop-
closure constraint equations. For comparison purposes, MBSLIM delivers an equi-
valent natural coordinates model composed of 25 mixed coordinates (24 Cartesian
coordinates plus an angular coordinate) subjected to 28 redundant constraints.

Once described the topology, let us focus on the kinematic and dynamic description
of the model. First, it is convenient to identity the crank as body AB, the rod as
body BC and the slider block as body CD according to the points between which each
body is defined in Figure 7.11. The lengths of the crank and the rod are:

LAB = 0.08m (7.21)

LBC = 0.3m (7.22)

The mass of each body is:

mAB = 0.12 kg (7.23)

mBC = 0.5 kg (7.24)

mCD = 2.0 kg (7.25)

while their local moments of inertia with respect to their centers of mass (located at
the geometric center of each body) are:

J̄AB =

10−4 0 0
0 10−4 0
0 0 10−4

 kg ·m2 (7.26)

J̄BC =

4 · 10−3 0 0
0 4 · 10−3 0
0 0 4 · 10−3

 kg ·m2 (7.27)

J̄CD =

10−4 0 0
0 10−4 0
0 0 10−4

 kg ·m2 (7.28)

242



7.2. Spatial slider crank

The dynamic simulation proposed in [134] consists in a free motion of the mech-
anism subjected to the action of gravity for an initial angular speed of 6 rad/s for
the crank. Nevertheless, the problem is modified here in order to include more sensi-
tivity parameters. In this regard, a new spring-damper force is added between a point

placed at the global position
[
0 0 0

]T
and point D with the characteristics specified

in Table 7.9:

Force Stiffness (N/m) Damping (Ns/m) Natural length (m)

Spring 1 10 1 0.25

Table 7.9: Coefficients of spring-damper forces acting on the spatial slider crank

For the sensitivity analysis, the gradient of the following vector of objective func-
tions is sought:

ψ =

ψ1

ψ2

ψ3

 (7.29)

with

ψ1 =

∫ tF

t0

(rD − rD0)
T (rD − rD0) dt (7.30a)

ψ2 =

∫ tF

t0

ṙTDṙDdt (7.30b)

ψ3 =

∫ tF

t0

r̈TDr̈Ddt (7.30c)

wherein

rD0 =
[
0.25 0 0

]T
(7.31)

As sensitivity parameters, the mass of the slider, the stiffness and damping coeffi-
cients of the spring-damper along with its natural length are considered. Behold that
the sensitivity analysis would deliver the impact of the mass and the spring-damper
parameters on the dynamic response of the system.

ρ =
[
mCD kS1 cS1 LS1

]T
(7.32)

The sensitivity analysis is studied for the 5 second dynamic maneuver of the mecha-
nism subjected to gravitational and spring-damper forces.

7.2.2 Numerical results: dynamics

The dynamic formulations tested in this section are the semi-recursive ALI3-P
and the semi-recursive Matrix R formulations combined with the particular reference
point selection of RTdyn0 and RTdyn1. The semi-recursive dynamic results delivered

243



7. Numerical experiments

are compared in terms of accuracy with the Matrix R formulation in natural coordi-
nates, and in terms of computational time with the equivalent formulations in natural
coordinates.

The simulation is executed with a fixed time step of 1 millisecond and with the im-
plicit trapezoidal rule as numerical integrator. Each one of the semi-recursive dynamic
formulations are configured according to Table 7.10.

Formulation 1 R0-ALI3-P R1-ALI3-P R0-MatrixR R1-MatrixR

Tolerance 10−10 10−10 10−10 10−10

Penalty factor α 1010 1010 - -
Projection matrix Md Md - -
Proj. scaling factor ς 10−4 10−4 - -
Projection type Non-iterative Non-iterative - -
1R0: RTdyn0; R1: RTdyn1.

Table 7.10: Configuration parameters for each formulation in the dynamic simulation
of the spatial slider crank.

In order to compare the dynamics obtained with the two constrained semi-recursive
formulations combined with accumulation schemes RTdyn0 and RTdyn1, with the
benchmark problem proposed in [134], a first simulation without the spring-damper
and under the conditions specified in the cited reference is accomplished, with the
results exposed in Figure 7.12. The reference solution obtained with Matrix R in
natural coordinates and all the semi-recursive formulations are in concordance with
the results presented in [134].

The incorporation of the spring-damper delivers a completely different dynamics,
displayed in Figure 7.13. Behold that, in this case, the convergence of the five for-
mulations considered is excellent despite the intrinsic differences between models and
schemes of constraint enforcement (Matrix R and ALI3-P).

Formulation CPU time CPU time nat. coord Ratio nat/rel

RTdyn0 ALI3-P 0.156 0.266 1.705
RTdyn1 ALI3-P 0.156 0.266 1.705
RTdyn0 MatrixR 0.297 0.531 1.788
RTdyn1 MatrixR 0.297 0.531 1.788

Table 7.11: CPU time of relative coordinates formulations compared with the equiv-
alent formulation in natural coordinates.

One important advantage of joint-coordinate formulations relies on its high effi-
ciency. Table 7.11 proves that, even though the spatial slider crank involves a low
number of bodies, semi-recursive models perform better than natural coordinates
models in terms of computational time. This table shows that every formulation is
executed faster in relative coordinate models, becoming the semi-recursive ALI3-P

244



7.2. Spatial slider crank

0 1 2 3 4 5 6 7
0

20

40

60

Time (sec)

A
n

gl
e 

(r
a

d)
Crank angle

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0.2

0.25

0.3

0.35

0.4

Time (sec)

P
o

si
tio

n 
(m

)

X-component of position of point D

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

Time (sec)

V
e

lo
ci

ty
 (

m
/s

)

X-component of velocity of point D

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

Figure 7.12: Dynamic simulation of spatial slider crank without spring under bench-
mark conditions.

formulation (both RTdyn0 and RTdyn1 approaches) the most efficient. Behold also
that the divergence in computational times between RTdyn0 and RTdyn1 is minimal,
which makes both approaches equally desirable for a dynamic simulation.

7.2.3 Numerical results: sensitivity analysis

The sensitivity analysis is executed on the dynamic maneuver with the spring-
damper force between point D and a point fixed to the ground. The sensitivity
analyses tested and compared in this numerical example are:

� RTdyn0 ALI3-P: forward, continuous adjoint and discrete adjoint sensitivity
formulations.

� RTdyn1 ALI3-P: forward, continuous adjoint and discrete adjoint sensitivity
formulations.

� RTdyn0 Matrix R: forward and continuous adjoint sensitivity formulations.

� RTdyn1 Matrix R: forward and continuous adjoint sensitivity formulations.

245



7. Numerical experiments

0 1 2 3 4 5 6 7
0

5

10

15

Time (sec)

A
n

gl
e 

(r
a

d)

Crank angle

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0.2

0.25

0.3

0.35

0.4

Time (sec)

P
o

si
tio

n 
(m

)

X-component of position of point D

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

Time (sec)

V
e

lo
ci

ty
 (

m
/s

)

X-component of velocity of point D

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

Figure 7.13: Dynamic simulation of spatial slider crank with a spring force.

The reference results for the semi-recursive direct and adjoint sensitivities are
calculated by means of the Matrix R direct and adjoint sensitivity formulations in
natural coordinates.

First, let us look at the results of the evaluation of the objective function over
time for the five dynamic formulations used for the simulation of the spatial slider
crank mechanism. Figure 7.14 shows, once again, the accurate convergence among
formulations.

The gradient results of the objective function given by (7.29) and (7.30) with
respect to the set of parameters specified on (7.32) applying the semi-recursive ALI3-
P and Matrix R forward sensitivity formulations are presented on Figures 7.15, 7.16
and 7.17 for each of the objective functions.

Figures 7.15, 7.16 and 7.17 validate both the implementation and theory behind the
analytical sensitivities of joint coordinate models following a semi-recursive scheme.
It should be remarked that 3 different joint types appear in this multibody model,
involving the particular analytical derivatives of the kinematic and recursive relations
associated to the revolute joint, prismatic joint and Cardan joint. Moreover, the
derivatives of the loop-closure constraint referred to the elimination of the spherical
joint have been considered too.

246



7.2. Spatial slider crank

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

Time (sec)


1

Objective function 1

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Time (sec)


2

Objective function 2

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0

20

40

60

Time (sec)


3

Objective function 3

 

 
Reference
RTdyn0 ALI3-P
RTdyn1 ALI3-P
RTdyn0 MatrixR
RTdyn1 MatrixR

Figure 7.14: Evolution of the each of the spatial-slider-crank objective functions over
time.

Besides, the elimination of the spherical joint during the automatic opening of
closed loops creates two different kinematic chains, this is, a branched system. The
differentiation of the accumulation and assembly processes is therefore also validated
for this numerical example.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 0.438 0.641 1.464
RTdyn1 ALI3-P 0.438 0.641 1.464
RTdyn0 MatrixR 1.031 0.984 0.954
RTdyn1 MatrixR 1.031 0.984 0.954

Table 7.12: CPU time of relative coordinates forward sensitivity formulations com-
pared with the equivalent formulation in natural coordinates.

In terms of computational time, the gap between semi-recursive and global formu-
lations displayed in Table 7.11 is reduced in the sensitivity analysis. Table 7.12 shows

247



7. Numerical experiments

0 1 2 3 4 5 6 7
-2

0

2

4
x 10

-3

Time (sec)


1 m

C
D

Sensitivity of 1 with respect to m
CD

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-5

0

5

10
x 10

-5

Time (sec)


1 k S

1

Sensitivity of 1 with respect to k
S1

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-10

-5

0

5
x 10

-3

Time (sec)


1 c S

1

Sensitivity of 1 with respect to c
S1

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-0.02

-0.01

0

0.01

Time (sec)


1 L

S
1

Sensitivity of 1 with respect to L
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.15: Forward sensitivity analysis of the objective function Ψ1 for the spatial
slider crank mechanism.

that semi-recursive formulations are a 46.4 % faster than the equivalent method in
natural coordinates, but the result is inverted in semi-recursive Matrix R formula-
tions, which are a 4.6% slower than global methods. Furthermore, comparing ALI3-P
and Matrix R formulations, a bigger divergence is observed between the computa-
tional times of joint-coordinate formulations than in natural coordinate models. This
efficiency deviation can be attributed to the presence of more intermediate derivatives
in Matrix R formulations than in ALI3-P schemes.

The computational gains (and losses) observed in Table 7.12 do not justify the
implementation effort required to obtain a general library in joint-coordinates for the

248



7.2. Spatial slider crank

0 1 2 3 4 5 6 7
-0.1

0

0.1

Time (sec)


2 m

C
D

Sensitivity of 2 with respect to m
CD

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-2

-1

0
x 10

-3

Time (sec)


2 k S

1

Sensitivity of 2 with respect to k
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-0.4

-0.2

0

Time (sec)


2 c S

1

Sensitivity of 2 with respect to c
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0

0.5

1

Time (sec)


2 L

S
1

Sensitivity of 2 with respect to L
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.16: Forward sensitivity analysis of the objective function Ψ2 for the spatial
slider crank mechanism.

sensitivity analysis of the dynamics of a multibody system. Nevertheless, behold that
the main problem of global methods (with natural or reference point coordinates)
is that they generate a problem involving a long list of dependent coordinates and
constraint equations. For very reduced problems, such as the spatial slider crack,
global methods do not present important shortcomings since the number of variables
and constraints is relatively low. For problems involving more bodies and joints, both
semi-recursive Matrix R and ALI3-P formulations are expected to be more efficient,
both at dynamic and sensitivity analysis levels.

Let us compare now the results of the continuous and discrete adjoint sensitivity

249



7. Numerical experiments

0 1 2 3 4 5 6 7
-50

0

50

100

Time (sec)


3 m

C
D

Sensitivity of 3 with respect to m
CD

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-1

-0.5

0

Time (sec)


3 k S

1

Sensitivity of 3 with respect to k
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
-200

-100

0

Time (sec)


3 c S

1

Sensitivity of 3 with respect to c
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 1 2 3 4 5 6 7
0

100

200

300

Time (sec)


3 L

S
1

Sensitivity of 3 with respect to L
S1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.17: Forward sensitivity analysis of the objective function Ψ3 for the spatial
slider crank mechanism.

formulations. The present numerical example sheds light on the advantages of dis-
crete adjoint variable methods with respect to continuous methods. With the time
step selected for the dynamic simulation and conserved for the adjoint problem, the
solution of the continuous adjoint variable ALI3-P equations involves the addition
of important numerical errors that lead to inaccurate solutions. In other words, the
continuous adjoint ALI3-P equations require a smaller time step to be solved. Since
interpolation between time steps is not currently supported by MBSLIM for adjoint
methods, the other option is to solve both dynamic and sensitivity problems with
smaller time steps. In this case, the time step is slowed down to 0.1 milliseconds for

250



7.2. Spatial slider crank

0 1 2 3 4 5 6 7
-5

0

5

10
x 10

-4

Time (sec)


1 m

C
D

Sensitivity of 1 with respect to m
CD

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-5

0

5

10
x 10

-5

Time (sec)


1 k S

1

Sensitivity of 1 with respect to k
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
0

1

2
x 10

-3

Time (sec)


1 c S

1

Sensitivity of 1 with respect to c
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-0.02

-0.01

0

0.01

Time (sec)


1 L

S
1

Sensitivity of 1 with respect to L
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

Figure 7.18: Adjoint sensitivity analysis of the objective function Ψ1 for the spatial
slider crank mechanism.

the global and topological continuous adjoint ALI3-P methods, while the rest of the
formulations are still solved with a time step of 1 millisecond. Behold in Figures 7.18,
7.19 and 7.20 the level of accuracy of discrete and continuous semi-recursive adjoint
sensitivity formulations even for this reduced time step.

Figures 7.18, 7.19 and 7.20 display a great convergence of the gradient results
evaluated by means of a continuous adjoint variable method for global and semi-
recursive Matrix R formulations and for the discrete approach of the semi-recursive
ALI3-P formulation. These results clearly validate the continuous and discrete semi-
recursive adjoint expressions. Moreover, note that the deviation between RTdyn0 and

251



7. Numerical experiments

0 1 2 3 4 5 6 7
-0.2

0

0.2

Time (sec)


2 m

C
D

Sensitivity of 2 with respect to m
CD

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-2

0

2

4
x 10

-3

Time (sec)


2 k S

1

Sensitivity of 2 with respect to k
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-0.2

-0.1

0

Time (sec)


2 c S

1

Sensitivity of 2 with respect to c
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-1

0

1

Time (sec)


2 L

S
1

Sensitivity of 2 with respect to L
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

Figure 7.19: Adjoint sensitivity analysis of the objective function Ψ2 for the spatial
slider crank mechanism.

RTdyn1 approaches is extremely reduced despite, as presented in chapters 2 and 4,
the different recursive kinematic and sensitivity expressions.

In Table 7.13, the performance of the adjoint formulations are assessed in terms
of computational time, considering the same time step of 1 millisecond (despising the
fact that the continuous semi-recursive ALI3-P adjoint variable method requires a
lower time step in order to obtain the same accuracy level of other semi-recursive sen-
sitivity formulations). Note that all the semi-recursive adjoint sensitivity formulations
are faster than the equivalent natural coordinate formulations, being the fastest both
discrete and continuous semi-recursive ALI3-P adjoint formulations. As it was ex-
pected, the similarities between the application of the continuous and discrete adjoint
variable methods yield analog computational expenses.

252



7.2. Spatial slider crank

0 1 2 3 4 5 6 7
-20

0

20

Time (sec)


3 m

C
D

Sensitivity of 3 with respect to m
CD

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

Time (sec)


3 k S

1

Sensitivity of 3 with respect to k
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-40

-20

0

20

Time (sec)


3 c S

1

Sensitivity of 3 with respect to c
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 1 2 3 4 5 6 7
-100

0

100

200

Time (sec)


3 L

S
1

Sensitivity of 3 with respect to L
S1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

Figure 7.20: Adjoint sensitivity analysis of the objective function Ψ3 for the spatial
slider crank mechanism.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P: CAVM 0.469 0.750 1.599
RTdyn1 ALI3-P : CAVM 0.469 0.750 1.599
RTdyn0 MatrixR 0.953 1.063 1.115
RTdyn1 MatrixR 0.953 1.063 1.115
RTdyn0 ALI3-P: DAVM 0.469 0.797 1.699
RTdyn1 ALI3-P: DAVM 0.469 0.797 1.699

Table 7.13: CPU time of semi-recursive adjoint sensitivity formulations compared
with the equivalent formulation in natural coordinates.

253



7. Numerical experiments

7.3 Buggy vehicle

In the third numerical example, a more complex real-life multibody system is
studied in order to prove both the validity of recursive dynamic and sensitivity for-
mulations as well as their performance in terms of accuracy and efficiency. The vehicle
model considered is based on a real-life buggy vehicle used in past years in control and
state observation applications [124, 135, 136] and flexible multibody dynamics [122],
among other issues. Recently, a model of this vehicle has been used in [3] and [4]
to check the validity of the direct and adjoint variable sensitivity analysis of ALI3-P
formulations, and in [60] to test the dynamic results of semi-recursive ALI3-P formu-
lations.

Figure 7.21: Four-wheeled vehicle, depicting the points and vectors used to define the
model in MBSLIM.

7.3.1 Multibody model

As it has been commented in the introduction of this section, the model has
been thoroughly studied in previous works [122, 124, 135, 136], thus only its main
characteristics will be outlined here, referring the reader to the commented references
for further detail.

254



7.3. Buggy vehicle

In brief, the model consists in a four-wheeled buggy composed of 18 bodies with
four articulated suspensions. The chassis is formed of a tubular structure on which 4
articulated suspensions are mounted. Both engine and pilot are considered as rigidly
attached to the chassis, and their distribution contributes to a slight displacement of
the center of mass with respect to the geometrical center of the chassis.

The front and rear axles have different suspension types, with a McPherson con-
figuration in the rear axle and a double wishbone type for the frontal suspensions [135].
Each suspension system includes a physical spring-damper which is modeled by means
of a spring-damper force, neglecting their effects in terms of masses and inertia. The
spring-damper elements are leaned inwards in order to smoothen the suspension, as it
can be observed on Figure 7.21, and they have been parameterized with the coefficients
of Table 7.14.

Force Stiffness (N/m) Damping (Ns/m) Natural length (m)

Front axle 16000 10000 0.710
Rear axle 10595 6000 0.741

Table 7.14: Coefficients of spring forces acting on the five-bar linkage

The power is transmitted to the rear axle, while the two front wheels are driven
by a steering rack linked to two connecting rods. Moreover, the coordinate associated
to the steering rack is guided by means of a rheonomic constraint. This guidance will
determine the dynamic maneuver executed.

The mechanism has been modeled with 33 points, 25 vectors, 4 angles (correspond-
ing to each one of the wheels) and 5 distances (describing the motion of the steering
rack and the spring-damper systems). Moreover, a rheonomous constraint is used as
guidance of the steering rack. This information in terms of points, vectors, angles,
distances and user-defined constraints is unique for natural and relative coordinate
models, being the MBSLIM library responsible for generating the corresponding na-
tural and relative coordinate models. The degrees of freedom defining the model are
a combination of coordinates of points, vectors, angles and distances.

The set of forces applied on the model require a special mention. In addition to the
gravitational forces related to the mass of each body, and the spring-damper forces
of each one of the suspensions, contact and frictional forces have been considered
to model the tires of the vehicle. In previous works [3, 4, 60], the model of contact
used was based on a sphere-plane contact, but it has been substituted in the present
simulations by a circumference-plane contact model. The computation of the contact
and frictional forces is completely analytical (including the stiffness and damping
matrices related to these forces) and they have been used in both natural and relative
coordinate models.

The tires-ground normal contact is based on a Kelvin-Voigt contact model with
hysteresis (see [137]) while frictional tire force components are evaluated by means
of the simplified linearized tire model described in [138]. Both contact and frictional
forces have been modeled with the coefficients specified in Table 7.15 (the nomencla-

255



7. Numerical experiments

ture used in [137] for normal contact and in [138] for frictional forces is reused here).

Force coefficient Front axle Rear axle

K 60430 60430
Dc 100 100
DR 100 100
Radius 0.30253 0.30253
κc 0.8 0.8
αc 0.2 0.2
µx 0.7 0.7
µy 0.7 0.7

Table 7.15: Coefficients of vehicle tire forces.

The natural coordinate model generated is composed of 180 mixed coordinates
(171 Cartesian coordinates of points and vectors and 9 referred to to angles and
distances) subjected to 178 constraint equations. Taking into account that the model
has 14 degrees of freedom, and that the difference between the number of variables and
constraint equations is 2, it is patent that it has redundant constraints. However, this
is not a problem neither in natural or relative coordinates since MBSLIM supports
them for each one of the formulations tested in this numerical example.

The topological model is slightly more difficult to obtain, requiring the identifi-
cation of joints by means of relations of points and vectors between bodies, followed
by the detection of closed loops and their opening. The joint coordinate model au-
tomatically generated by MBSLIM is composed of 18 kinematic joints defined by a
total of 36 joint coordinates. During the generation of the model, 4 closed loops were
detected and opened by the elimination of 4 spherical joints (16 coordinates and 4
normalization constraints were suppressed), and accordingly, 12 constraint equations
of point coincidence were added to the model (3 per eliminated joint). Other cons-
traint equations not defining joint relations, such as the rheonomic guidance of the
steering rack, were added to the model, resulting a total of 26 constraint equations.
The kinematic joints and the constraint equations present in the relative coordinate
model are displayed on Figure 7.22.

At the initial position, the suspensions of the vehicle are not at the static equi-
librium configuration since the chassis is slightly elevated, and therefore a suspension
stabilization occurs during the first second of the simulation.

7.3.1.1 First maneuver: step descent

Two maneuvers are tested with this multibody system. The first maneuver consists
in the descent of a step of 1 cm located at 5.5 m from the origin, with a forward initial
linear speed of 3 m/s and with an angular speed of 11 rad/s for each wheel. With
this velocity, the step is reached approximately at t = 2.0 s. The simulation time is

256



7.3. Buggy vehicle

Chassis

Steering
rack

Tie rod
1

Hub
carrier 1

Wheel
1

Ground

:Revolute joint

:Spherical joint

:Cardan joint

T

S

:Tire

:Linear spring-damper

P :Prismatic joint

A-Arm
1a

Ground

R

S

C

F :Floating joint

F

P

C C

Tie rod
2

Ground

:Closure loop constraint

:Cross product constraint

L

C

A-Arm
1b

A-Arm
2b

R R

S S

R R

A-Arm
2a

Hub
carrier 2R

T

T

Wheel
3

R

R

T

T

Wheel
2

Wheel
4

S S

Hub
carrier 4

Hub
carrier 3

A-Arm
4

R R

R

SS

A-Arm
3

RR

L

L

L

L

R

:Distance constraintD

:Rheonomic constraintR

C C

D D

DD

Figure 7.22: Kinematic joints, bodies and constraints of the topological model

4.5 s, no additional tractor forces are applied and the steering system is blocked with
the front wheels straight.

For the sensitivity analysis of this maneuver, the following objective function is
considered:

ψ =

∫ tF

t0

r̈21zdt (7.33)

In which r̈1z denotes the Z-component of the acceleration of point 1, located in the
chassis. This objective function represents a measure of comfort, since it is evaluating
the accelerations that the driver would experiment during the descent of the step, and
is related to vibration measurements according to norm ISO 2631-1.

257



7. Numerical experiments

7.3.1.2 Second maneuver: double lane change

The second maneuver lasts 12 s and consists in a double lane change according
to norm ISO 3888-1:1999. This norm determines the dimensions of the “test track
for a severe lane-change manoeuvre” [139], and it has been employed to establish the
limits of the maneuver for a vehicle width of 1.625m (which is the distance between
the exterior side of each one of the front wheels). An user guide function, displayed
in 7.23, has been adjusted to comply with the boundaries of the test track.

0 2 4 6 8 10 12
0.32

0.325

0.33

P
os

iti
on

 (
m

)

0 2 4 6 8 10 12
-0.05

0

0.05

Time(sec)

V
el

oc
ity

 (
m

/s
) 

or
 a

cc
el

er
at

io
n 

(m
/s

2 )

 

 
Acceleration
Velocity
Position

Figure 7.23: Driving function for the steering rack.

In this maneuver no tractor forces have been considered, thus motion is exclusively
due to the inertial forces related to the initial velocity of the chassis and the wheels. In
this regard, the initial velocities are 11.9 m/s for the chassis in the forward direction,
and 46 rad/s for the wheels around their spin axis.

The lateral and inertial forces appearing in this maneuver entail a change in the
roll ϕ of the chassis. The objective function of this maneuver measures the sum of
squares of the roll rate over time. The gradient of this objective function will deliver
a measure of the impact of each one of the parameters in the roll rate, and they could
be eventually used to minimize the roll rate in this maneuver.

ψ =

∫ tF

t0

ϕ̇2dt (7.34)

7.3.2 Numerical results: dynamics

The first maneuver has been executed with a fixed time step of 1 millisecond,
while the double-lane change maneuver has been simulated with time intervals of
10 milliseconds. The numerical integrator used in both maneuvers is the Newmark
integrator with β = 0.25 and γ = 0.5, which is identical to the implicit trapezoidal
rule. In Figure 7.24, a capture of the graphical interface configured for the vehicle
dynamic simulation can be observed.

Concerning to semi-recursive Matrix R formulations, the degrees of freedom of the
model include a set of angles and distances identified with joint coordinates, and an-
other set of point and vector coordinates that is not included in the dependent relative
coordinates vector. Therefore, a non-constant B matrix containing the variation of

258



7.3. Buggy vehicle

Figure 7.24: Graphical interface for the simulation of the buggy vehicle.

the degrees of freedom with respect to the dependent coordinates (see section 3.2.1)
is also tested with this model.

7.3.2.1 First maneuver: step descent

The descent of a step of 1 cm entails a change in the position, velocity and ac-
celerations of the Z component of each point of the model, while the imposition of
straight front wheels implies that any change in the Y direction will be negligible.
In this maneuver, the X and Z coordinates of point 1 belonging to the chassis are
examined in terms of position, velocity and acceleration.

Results for the four semi-recursive formulations tested along with the reference re-
sults obtained with a global Matrix R formulation in natural coordinates, are displayed
in Figure 7.25. Despite the completely different models (natural and joint coordinate
models), reference point selection (RTdyn0 and RTdyn1) and formulations (Matrix R
and ALI3-P), Figure 7.25 demonstrates the validity of the theoretical developments
for semi-recursive formulations along with their implementation in MBSLIM.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 2.781 6.703 2.410
RTdyn1 ALI3-P 2.781 6.703 2.410
RTdyn0 MatrixR 5.422 9.781 1.804
RTdyn1 MatrixR 5.422 9.781 1.804

Table 7.16: CPU time of relative coordinates formulations compared with the equiv-
alent one in natural coordinates.

The formulations tested in this maneuver are compared in terms of computational
effort in Table 7.16. This table evidences the significant reduction in CPU time of
relative coordinate formulations compared with the equivalent formulations in natural
coordinates. It should be noted that all dynamic simulations have been executed
considering a very low error tolerance (10−10) for the Newton-Raphson iteration loop.
For other tolerances, such as 10−7, the ratio between natural and relative coordinates
solutions reaches 3.50 in ALI3-P formulations and 1.54 in Matrix R formulations, but
in that case, the reduction in CPU time of semi-recursive formulations came from
a lower number of iterations. For more demanding tolerances, like the one used to

259



7. Numerical experiments

0 1 2 3 4 5 6
0

10

20
X-component of position of point 1

Time (s)

P
o

si
tio

n 
(m

)

 

 

0 1 2 3 4 5 6
0.3

0.32

0.34
Z-component of position of point 1

Time (s)

P
o

si
tio

n 
(m

)

 

 

0 1 2 3 4 5 6
2

2.5

3

X-component of velocity of point 1

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

 

 

0 1 2 3 4 5 6
-0.5

0

0.5
Z-component of velocity of point 1

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

 

 

0 1 2 3 4 5 6
-1

0

1
X-component of acceleration of point 1

Time (s)

A
cc

e
le

ra
tio

n 
(m

/s
2
)

 

 

0 1 2 3 4 5 6
-20

0

20
Z-component of acceleration of point 1

Time (s)

A
cc

e
le

ra
tio

n 
(m

/s
2
)

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.25: Position, velocity and acceleration of point 1 belonging to the chassis.

obtain the results of Table 7.16 and Figure 7.25, the number of iterations is very
similar among formulations.

260



7.3. Buggy vehicle

7.3.2.2 Second maneuver: double lane change

A double lane change is a smoother maneuver than the step descent as long as
there are no strong impacts, collisions or abrupt changes in forces or constraints.
Therefore, both the dynamics and its sensitivities can be computed with an increased
time step. In this case, the semi-recursive and global formulations are executed with
a time step of 10 milliseconds.

0 20 40 60 80 100 120 140 160 180
-2

0

2

4

6

X-Position (m)

Y
-P

o
si

tio
n 

(m
)

Trajectory of point 1

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12 14 16
-0.01

-0.005

0

0.005

0.01

Time (sec)

R
o

ll 
(r

a
d)

Roll of the chassis

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.26: Trajectory of point 1 in the XY plane and roll of the chassis in the double
lane change maneuver

In Figure 7.26, the trajectory in plane XY of point 1 located at the frontal part
of the chassis along with the roll of the chassis over time are displayed for the 4
semi-recursive formulations tested as well as for the reference solution. This figure
reflects the great level of convergence of all joint coordinate formulations tested in this
maneuver, even for this relatively high simulation time. Moreover, it is remarkable
that two radically different models, such as the one expressed in terms of natural
coordinates and the joint coordinate model, yield such similar behaviors.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 1.047 3.750 3.582
RTdyn1 ALI3-P 1.047 3.750 3.582
RTdyn0 MatrixR 2.109 3.859 1.830
RTdyn1 MatrixR 2.109 3.859 1.830

Table 7.17: CPU time of semi-recursive dynamic formulations compared with the
equivalent natural coordinate formulation in a double lane-change maneuver.

261



7. Numerical experiments

Semi-recursive formulations are compared with the equivalent global formulation
in terms of computational effort in Table 7.17. Behold that semi-recursive ALI3-P
formulations outperform any global formulation, and they are also two times faster
than semi-recursive Matrix R formulations. Moreover, it should be remarked that
semi-recursive Matrix R formulations are more efficient than the equivalent formula-
tion in natural coordinates, even with the shortcoming of considering a non-constant
B matrix (stemming from the user definition of Cartesian coordinates as degrees of
freedom). With regard to semi-recursive formulations, it is clear that ALI3-P outper-
form Matrix R formulations in what refers to computational effort in this particular
maneuver.

7.3.3 Numerical results: sensitivity analysis

The parameters selected for the sensitivity analysis in both maneuvers are the
stiffness and damping coefficients of the four suspensions (equal values are regarded
for the spring-dampers of each axle) along with the mass of the frame.

ρsens =
[
kf cf kr cr mc

]T
(7.35)

where kf and cf are the stiffness and damping coefficients of the front suspensions, kr
and cr denote the stiffness and damping coefficients of the rear suspensions and mc

represents the mass of the chassis.

7.3.3.1 First maneuver: step descent

The gradient of the objective function displayed in Figure 7.27 is evaluated by
means of the semi-recursive forward and adjoint sensitivity formulations described
in chapter 5. The gradient results presented in Figures 7.31 and 7.32 for forward
and adjoint methods respectively, reflect an excellent convergence of semi-recursive
sensitivity formulations with the reference values obtained through the Matrix R
forward and adjoint sensitivity formulation in natural coordinates.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

Time (sec)



Evolution of  over time

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.27: Evolution of the objective function over time on a step descent maneuver.

262



7.3. Buggy vehicle

0 1 2 3 4 5 6
-1

0

1

2

x 10
-4

Time (s)


k f

Gradient with respect to k
f

 

 

0 1 2 3 4 5 6

0

5

10
x 10

-4

Time (s)


c f

Gradient with respect to k
c

 

 

0 1 2 3 4 5 6
-4

-2

0
x 10

-5

Time (s)


k r

Gradient with respect to k
r

 

 

0 1 2 3 4 5 6
0

0.5

1
x 10

-3

Time (s)


c r

Gradient with respect to c
r

 

 

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

Time (s)


m

c

Gradient with respect to m
c

 

 

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

MatrixR

RTdyn0-ALI3-P

RTdyn1-ALI3-P

RTdyn0-MatrixR

RTdyn1-MatrixR

Figure 7.28: Gradient of the step-descent objective function using forward semi-
recursive sensitivity formulations.

Paying attention to Table 7.18, it is clear that all the semi-recursive formulations
display better performance than the equivalent ones in natural coordinates in terms
of computational time. However, the time saving is not similar to the one obtained in
the dynamics due to, on the one hand, the increase in the complexity in the differen-

263



7. Numerical experiments

0 1 2 3 4 5 6
-2

0

2

4
x 10

-4

Time (s)


k f

Gradient with respect to k
f

 

 

0 1 2 3 4 5 6

0

5

10
x 10

-4

Time (s)


c f

Gradient with respect to k
c

 

 

0 1 2 3 4 5 6
-1

0

1
x 10

-4

Time (s)


k r

Gradient with respect to k
r

 

 

0 1 2 3 4 5 6
0

0.5

1
x 10

-3

Time (s)


c r

Gradient with respect to c
r

 

 

0 1 2 3 4 5 6
-0.1

0

0.1

Time (s)


m

c

Gradient with respect to m
c

 

 

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

MatrixR

RTdyn0-ALI3-P:CAVM

RTdyn1-ALI3-P:CAVM

RTdyn0-MatrixR

RTdyn1-MatrixR

RTdyn0-ALI3-P:DAVM

RTdyn1-ALI3-P:DAVM

Figure 7.29: Gradient of the step-descent objective function using adjoint semi-
recursive sensitivity formulations.

tiation, involving concatenations of products and derivatives, and on the other hand,
due to the non-constant mass matrix which is assembled and differentiated in the
semi-recursive sensitivity formulations at each time step, while in natural coordinates
models it is always constant, and its derivative null.

264



7.3. Buggy vehicle

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P: DDM 8.188 9.484 1.158
RTdyn0 ALI3-P: CAVM 9.031 10.953 1.213
RTdyn0 ALI3-P: DAVM 8.781 11.047 1.258
RTdyn1 ALI3-P: DDM 8.188 9.484 1.158
RTdyn1 ALI3-P: CAVM 9.031 10.953 1.213
RTdyn1 ALI3-P: DAVM 8.781 11.047 1.258
RTdyn0 MatrixR: DDM 30.156 35.563 1.179
RTdyn0 MatrixR: CAVM 30.350 37.719 1.243
RTdyn1 MatrixR: DDM 30.156 35.563 1.179
RTdyn1 MatrixR: CAVM 30.250 37.719 1.243

Table 7.18: CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the step-descent maneuver

These two drawbacks entail a reduction in the efficiency of the semi-recursive
sensitivity analysis formulations, even though they are in average a 20.9% faster in
ALI3-P models than the equivalent formulation in natural coordinates, and 21.1%
faster in Matrix R formulations, according to Table 7.18. Observe that despite semi-
recursive Matrix R formulations show a slightly better CPU time ratio between natural
and relative coordinate formulations, semi-recursive ALI3-P sensitivity formulations
are still faster for every set of coordinates and every sensitivity method.

The problem related to the computation and assembly of the derivatives of the
mass matrix can be simplified considering the evolution of the problem and the ma-
neuver being simulated. The variation of the mass matrix with respect to the relative
coordinates is, in general, a magnitude that varies slowly, so its values between two
instants of time are almost equal. Accordingly, the possibility of evaluating Md

ẑ each
several time steps has emerged, and it has been proved in this maneuver. The results
in terms of computational time are displayed in Table 7.19 .

If the sensitivity results with the evaluation of Md
ẑ every two time steps are com-

pared with the original solution, the maximum percentage of deviation found will be
lower than 0.05% for each one of the formulations. Regarding that the maximum
differences obtained among formulations are between 1 to 2 %, it can be stated that
the error introduced by not computing Md

ẑ each time step is not significant compared
with the differences in the computation of each formulation.

Now, contrasting the results of Tables 7.18 and 7.19, a significant increase in the
ratio of CPU times between natural and relative coordinates formulations is observed
in ALI3-P methods. On the other hand, since the reduction in time is equal for each
formulation, this effect has a lower impact on Matrix R formulations.

265



7. Numerical experiments

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P: DDM 7.313 9.484 1.297
RTdyn0 ALI3-P: CAVM 8.078 10.953 1.356
RTdyn0 ALI3-P: DAVM 7.906 11.047 1.397
RTdyn1 ALI3-P: DDM 7.313 9.484 1.297
RTdyn1 ALI3-P: CAVM 8.078 10.953 1.356
RTdyn1 ALI3-P: DAVM 7.906 11.047 1.397
RTdyn0 MatrixR: DDM 29.219 35.563 1.217
RTdyn0 MatrixR: CAVM 29.516 37.719 1.278
RTdyn1 MatrixR: DDM 29.219 35.563 1.217
RTdyn1 MatrixR: CAVM 29.516 37.719 1.278

Table 7.19: CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the step-descent maneuver with Md

ẑ evalu-
ated each 2 time steps.

7.3.3.2 Second maneuver: double lane change

The double lane change described in section 7.3.1.2 and simulated in section 7.3.2.2
is analyzed in terms of sensitivity in this section, considering the objective function
(7.34) measuring the integral of the square of the roll rate over time. The sensitivity
analyses of the dynamic formulations used in section 7.3.2.2 are here accomplished
by means of the analytical direct and adjoint sensitivity formulations presented in
chapter 5.

0 2 4 6 8 10 12
0

2

4

6
x 10

-4

Time (sec)



Evolution of  over time

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.30: Evolution of the objective function over time on a double-lane-change
maneuver.

First of all, let us assess the differences among objective function values evaluated
through different dynamic formulations. Figure 7.30 shows that all the semi-recursive
dynamic formulations converge to identical values of the objective function, and con-
verge with the expected reference value.

As stated in section 7.3.2.2, this maneuver is smoother than a step descent since no
discrete impact forces are present. Accordingly, this maneuver can be executed with
a higher time step (10 milliseconds) without impairing accuracy, as proved for the
dynamics. In the case of sensitivity analysis, a bigger divergence could be expected

266



7.3. Buggy vehicle

0 2 4 6 8 10 12 14 16
0

2

4
x 10

-8

Time (sec)


k f

Sensitivity of  with respect to k
f

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12 14 16

-10

-5

0
x 10

-9

Time (sec)


c f

Sensitivity of  with respect to c
f

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12 14 16

-4

-2

0

x 10
-8

Time (sec)


k r

Sensitivity of  with respect to k
r

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12 14 16

-4

-2

0

x 10
-8

Time (sec)


c r

Sensitivity of  with respect to c
r

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12 14 16

0

1

2

3
x 10

-6

Time (sec)


m

c

Sensitivity of  with respect to m
c

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.31: Gradient of the double-lane-change objective function using forward
semi-recursive sensitivity formulations.

regarding that small variations in the dynamics are amplified in any sensitivity anal-
ysis. Fortunately, those sensitivity divergences are minimal, as it can be observed in
Figures 7.31 and 7.32, comprising the evaluation of the gradient of the objective func-
tion (7.34) with the direct and adjoint sensitivity formulations presented in chapter
5.

267



7. Numerical experiments

0 2 4 6 8 10 12 14 16

0

2

4

x 10
-8

Time (sec)


k f

Sensitivity of  with respect to k
f

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 2 4 6 8 10 12 14 16

-1

-0.5

0
x 10

-8

Time (sec)


c f

Sensitivity of  with respect to c
f

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 2 4 6 8 10 12 14 16

-4

-2

0

2
x 10

-8

Time (sec)


k r

Sensitivity of  with respect to k
r

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 2 4 6 8 10 12 14 16

-4

-2

0

x 10
-8

Time (sec)


c r

Sensitivity of  with respect to c
r

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 2 4 6 8 10 12 14 16

0

2

4
x 10

-6

Time (sec)


m

c

Sensitivity of  with respect to m
c

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

Figure 7.32: Gradient of the double-lane-change objective function using adjoint semi-
recursive sensitivity formulations.

Behold that, in these two figures, ten semi-recursive sensitivity formulations have
been tested, involving 2 different accumulation schemes (RTdyn0 and RTdyn1), two
different constraints enforcements (Matrix R and ALI3-P), two different analytical
differentiation methods (direct and adjoint variable methods) and even two different

268



7.3. Buggy vehicle

discretization philosophies (discrete and continuous adjoint variable methods). Above
all, it should be remarked that this problem involves 18 bodies, 5 different types of
joints, several constraint equations and a branched tree topology, thus most of the
derivatives and schemes of differentiation for the composition of the semi-recursive
sensitivity equations presented in this work have been proved in this example.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P: DDM 2.578 4.609 1.788
RTdyn0 ALI3-P: CAVM 2.766 - -
RTdyn0 ALI3-P: DAVM 2.686 4.906 1.827
RTdyn1 ALI3-P: DDM 2.578 4.609 1.788
RTdyn1 ALI3-P: CAVM 2.766 - -
RTdyn1 ALI3-P: DAVM 2.686 4.906 1.827
RTdyn0 MatrixR: DDM 8.484 11.609 1.368
RTdyn0 MatrixR: CAVM 8.563 11.969 1.404
RTdyn1 MatrixR: DDM 8.484 11.609 1.368
RTdyn1 MatrixR: CAVM 8.563 11.969 1.404

Table 7.20: CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates for the double-lane-change maneuver

Additionally, the case of semi-recursive Matrix R formulations requires a special
mention. In this particular model, the degrees of freedom are a combination of angles
and distances assimilable to joint coordinates along with some Cartesian coordinates
of points and vectors. The inclusion of Cartesian coordinates as degrees of freedom
is accomplished in this work without an imposition of additional constraints or with-
out enlarging the dependent coordinates vector. Instead, a new variable B matrix
has been defined, and both the dynamic equations of motion and the sensitivity ex-
pressions (both direct and adjoint variable methods) have been developed under this
variability assumption. The buggy dynamic and sensitivity simulations validate both
the theoretical developments and implementation of the sensitivity formulations and,
in particular, the modified semi-recursive formulation for non-constant B matrices.

Let us inspect now the computational efficiency of each sensitivity evaluation pay-
ing attention to the CPU times required by each sensitivity formulation to compute
the gradient of the objective function (7.34) for the double lane change maneuver,
displayed in Table 7.20. Semi-recursive sensitivity formulations are more efficient
than global formulations in any case, being semi-recursive ALI3-P formulations the
fastest. The computational gains in semi-recursive formulations are around a 79.6%
for semi-recursive ALI3-P sensitivity formulations and 38.6% for semi-recursive Ma-
trix R sensitivity formulations (considering the average gains for RTdyn0 and RTdyn1
forward and adjoint sensitivity formulations). However, accuracy of global ALI3-P
formulations is poorer than semi-recursive ALI3-P formulations in this case, which
implies that the time step should be decreased for reaching the same accuracy level
of semi-recursive formulations, with the corresponding impact on the computational

269



7. Numerical experiments

cost. The computational burden of including a variable B matrix does not constitute
a significant harm to the efficiency of the method. In fact, semi-recursive Matrix
R sensitivity formulations require lower computational effort than global Matrix R
sensitivity methods.

Comparing direct and adjoint differentiation methods, Table 7.20 shows a mini-
mum difference in the computational expense, being slightly more efficient forward
sensitivity formulations. The efficiency of adjoint variable methods is expected to
grow with the increase in the number of parameters. With regards to the order be-
tween discretization and differentiation, discrete adjoint variable methods applied to
semi-recursive and global ALI3-P formulations perform better that continuous meth-
ods, being even not possible to obtain accurate results with the continuous approach
in natural coordinates for the time step selected.

7.3.4 Numerical results: design optimization

The objective function gradients obtained in section 7.3.3 by means of analytical
methods are extremely useful in the optimization of the dynamics of multibody sys-
tems. It has been proved by several authors that optimization algorithms that handle
the derivatives of the objective function usually deliver better performance than those
which are based on the unique evaluation of objective function values.

In this section, the optimization of the design of the buggy vehicle is accomplished
for the step descent and double lane change maneuvers. Each optimization problem
is described as a minimization problem which seeks to obtain the set of parameter
values that conquests the minimum value of an objective function. The solution of
those problems has been successfully reached by means of third party gradient-based
optimization algorithms, such as L-BFGS-B or the optimization algorithms included
in the fmincon Matlab function.

The set of parameters considered in both maneuvers are the stiffness and damping
coefficients of the spring-damper suspension forces, as stated in (7.36). The aim of
these problems is to optimize the suspensions, thus the mass of the chassis included
as a sensitivity parameter in section 7.3.3 (according to (7.35)) does not play any role
in the optimization.

The optimal design problems related to both maneuvers consist in the determina-
tion of the set of stiffness and damping coefficients of each suspension which minimizes
the value of the corresponding objective function. The set of optimum design para-
meters are, thus:

ρopt =
[
kf cf kr cr

]T
(7.36)

Each optimization problem is constrained by some lower boundaries in the forces
coefficients regarding that they could not have negative values. The upper limits are
selected more arbitrarily in order to establish a range of usual or possible values of this
type of mechanical elements. Both lower (L) and upper (U) boundaries are specified

270



7.3. Buggy vehicle

in (7.37).

L =
[
10 10 10 10

]T
(7.37a)

U =
[
105 105 105 105

]T
(7.37b)

Once proved that all the sensitivity formulations included in this paper reach the
same gradient results, no explicit mention would be made to the dynamic and sensi-
tivity analysis method used, being the optimization results applicable to any of those
formulations. Moreover, no computational time is evaluated for any optimization,
since it is directly related to the sensitivity formulation selected. Instead, the num-
ber of iterations is presented, and the computational effort can be inferred from this
number and the CPU time relations presented in section 7.3.3 .

Each optimization problem unfolds as follows: first, the design optimization prob-
lem is described as a minimization problem; second, the optimization results are
presented in terms of number of iterations and local optimum reached; and third,
results are discussed.

7.3.4.1 First maneuver: step descent

The step descent maneuver reflects the behavior of the vehicle in the presence of
reduced obstacles or irregular pavements. In general, the suspensions of a vehicle are
designed so as to minimize the effects of road surface irregularities experimented by
the pilot, thus reducing vibrations transferred to the chassis. The objective function
(7.33) considered in this maneuver is related to vibration measurements according to
norm ISO 2631-1, thus their optimization will lead to minimum vibrations, and thus,
to maximum pilot comfort.

The design optimization problem can be stated as a minimization problem with
the form:

min
ρ

ψ =

∫ tF

t0

r̈21zdt (7.38)

s.t. ρ ≤ U (7.39)

ρ ≥ L (7.40)

with U and L being the upper and lower limits of the parameter values defined in
(7.37). Behold that the lower limits L are indispensable since stiffness of damping
coefficients cannot have negative values, while the upper boundaries U are free to be
chosen by the user.

The initial values of the parameters at the onset of the optimization process are
those used for the previous dynamic and sensitivity analyses. They are specified in
Table 7.14. However, in order to prove the validity of the results obtained, other
different starting configurations have been also tested, but they are not included here
for the sake of clarity.

271



7. Numerical experiments

All the optimizations have been executed with a maximum number of optimization
iterations of 100, a maximum number or objective function evaluations of 1000 and
a stop criteria of the 2-norm of the parameter increment lower than 10−8. Table 7.21
gathers the optimization results obtained with each one of the optimization algorithms
supported by the fmincon function of Matlab. According to that table, it is clear
that Active Set along with SQP algorithms require the fewest number of optimization
iterations to reach an optimum according to the stop criteria. Nevertheless, the
Interior Point algorithm requires more iterations but can reach lower values of the
objective function, thus attaining a better local optimum. Trust region reflective
(TRR) optimization algorithms deliver the worst performance in this case, with a high
number of iterations (it has been stopped by the maximum optimization iterations
criterion) and with a high objective function value.

Algorithm kf cf kr cr Ψ Nº iter

Interior Point 13731.4 245.896 13434.3 59.7709 1.4146 80
TRR 15217.6 7911.09 14514.9 4724.76 13.164 100 (max)
SQP 13886.8 257.488 10962.8 96.9401 1.4601 30
Active Set 13923.9 251.196 10961.4 96.8143 1.4619 19

Table 7.21: Optimization results for the step-descent maneuver using the fmincon
tool of Matlab

0 20 40 60 80 100 120
0

5

10

15

20
Evolution of the objective function at each optimization iteration

Number of iterations

O
b

je
ct

iv
e

 fu
nc

tio
n 

va
lu

e

 

 

Interior Point

TRR

SQP

Active Set

Figure 7.33: Evolution of objective function value per optimization iteration with the
four algorithms available on fmincon for the step-descent maneuver.

In order to check the validity of the local optimum reached, the initial values of the
coefficients have been modified, reaching in all the tests executed similar or worse final
function values. Even though, it cannot be firmly declared that the solution reached
with the Interior Point algorithm according to Table 7.21 is a global optimum. It can
be only stated that it delivers the lowest of the minimum objective function values
obtained.

Moreover, in Figure 7.33 the evolution of the objective function value at each
iteration step is displayed for each one of the optimization algorithms proved. This

272



7.3. Buggy vehicle

figure sheds light on the process followed by each algorithm to reach the final optimum.
While Interior Point methods entail the higher number of iterations, it is clear from
this figure that they reach a value close to the final solution in about 21 iterations, and
then continues iterating to reach a slightly lower value. On the contrary, Active Set
and SQP algorithms attain lower values of the objective function in fewer iterations
than Interior Point algorithms but they are stopped before the 20th and 31st iteration
respectively.

In Figure 7.34, the evolution of the Z coordinate of the acceleration of point 1
(belonging to the chassis) over time is displayed for the original and the optimized set
of parameters. It is clear from this figure that the optimized set of parameters is able
to reduce the absolute values of the acceleration peaks during the stabilization of the
suspensions (first second of the simulation) and during the descent of the step (after
t = 2 sec).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-10

-5

0

5

10

15
Evolution of the acceleration of the Z coordinate of point 1 of the chassis

Time (sec)

A
cc

e
le

ra
tio

n 
(m

/s
e

c2
)

 

 
Optmized parameters
Original parameters

Figure 7.34: Evolution of the acceleration of the Z coordinate of point 1 over time on
a step descent maneuver for the original and the optimized set of parameters.

7.3.4.2 Second maneuver: double lane change

In this case, the design optimization problem seeks to optimize the suspensions for
the double lane change maneuver in order to minimize the roll rate experimented by
the chassis. In this regard, the optimization parameters are the same of the former
maneuver, but the target is completely different. It should be reminded that right and
left suspension forces coefficients are assumed to be equal, while they vary between
front and rear axles.

The minimization problem stemmed from the suspension forces optimization can
be stated as:

min
ρ

ψ =

∫ tF

t0

ϕ̇2dt (7.41)

s.t. ρ ≤ U (7.42)

ρ ≥ L (7.43)

with U and L defined in (7.37).
However, it has been made patent in section 7.3.3.2 that the objective function and

its gradient have very low values, thus it is convenient to scale the objective function

273



7. Numerical experiments

in order to enhance the numerical conditioning of the optimization. Consequently,
the minimization problem has been reformulated as:

min
ρ

ψ = k

∫ tF

t0

ϕ̇2dt (7.44)

s.t. ρ ≤ U (7.45)

ρ ≥ L (7.46)

with the penalty factor k = 105. Behold that the scaling factor affects both the value
of the objective function and its gradient.

Algorithm kf cf kr cr Ψ Nº iter

Interior Point 11643.9 23308.5 20635.9 28819.1 7.7677 33
TRR 2987.53 14931.6 681.023 19643.2 1.8566 100(max)
SQP 11646.4 23309.1 20632.1 28818.4 7.7677 34
Active set 515.281 11489.7 201.502 10047.4 1.2357 90

Table 7.22: Optimization results for the double-lane-change maneuver using the
fmincon tool of Matlab

In this case, the optimization results must be carefully inspected. The minimiza-
tion of the roll rate seeks to lower the center of mass so that it matches the roll center
of the vehicle (see [140]). Looking at Table 7.22, the stiffness coefficients of front
and rear suspensions are decreased in the optimization process in order to reduce the
spring forces and lower the chassis. The optimization behaves as expected in this
regard, but lowering the chassis conveys an undesired effect on the steering relations
and on the distance between chassis and ground.

Instead of optimizing the suspensions, let us evaluate what is the optimal value of
the local Z-position of the center of mass that minimizes the roll rate, with:

min
r̄Gz

ψ = k

∫ tF

t0

ϕ̇2dt (7.47)

s.t. r̄Gz ≤ 1 (7.48)

r̄Gz ≥ −1 (7.49)

wherein the penalty factor is k = 105. This minimization problem is more direct, and
can be solved in a few iterations with any of the previous optimization algorithms
included in fmincon, according to Table 7.23 and Figure 7.35.

It should be noted that the local Z axis of the chassis and the global Z axis have
opposite directions, thus an increase in the local Z-component lowers the CoM in the
absolute reference frame. Oversimplifying, the optimization concludes that center of
mass of the chassis should be lowered 0.2493−(−0.2471) = 0.5203m, which cannot be
accomplished varying stiffness and damping coefficients without impairing the general
dynamics of the vehicle. In this sense, a redesign of the frontal double wishbone and

274



7.3. Buggy vehicle

Algorithm (r̄Gz )ini (r̄Gz )opt Ψ Nº iter

Interior Point -0.2471 0.2493 0.4227 7
TRR -0.2471 0.2493 0.4227 8
SQP -0.2471 0.2493 0.4227 7
Active set -0.2471 0.2493 0.4227 6

Table 7.23: Optimization results for the double-lane-change maneuver with the Z local
coordinate of the center of mass of the chassis as parameter.

0 1 2 3 4 5 6 7 8
0

20

40

60
Evolution of the objective function at each optimization iteration

Iterations

O
b

je
ct

iv
e

 fu
nc

tio
n 

va
lu

e

 

 

Interior Point

TRR

SQP

Active Set

Figure 7.35: Evolution of objective function value per optimization iteration with the
Z-component of the center of mass as parameter.

the rear McPherson suspensions should be addressed to obtain the minimum possible
roll rate, which cannot be accomplished with the parameters selected.

The evolution of the roll rate for the original and optimized local Z coordinate of
the chassis CoM is exposed in Figure 7.36. This figure makes clear that the optimized
parameter is able to reduce the absolute value of the roll rate in every one of the
curves executed by the buggy vehicle during the double lane change maneuver, even
though its value is out of the feasible solutions.

0 2 4 6 8 10 12

-0.01

0

0.01

0.02

Evolution of the roll rate over time

Time (sec)

R
o

ll 
ra

te
 (

ra
d/

se
c)

 

 
Optimized parameters
Original parameters

Figure 7.36: Evolution of the roll rate over time on a double lane change maneuver
for the original and the optimized set of parameters.

In brief, an application case of the sensitivity analysis developments presented
in previous chapters has been studied, and results have been discussed in terms of
optimization algorithms and with respect to the final dynamic performance.

275



7. Numerical experiments

7.4 Bicycle

The dynamic analysis of bicycles is a subject that has attracted the attention of
several researchers for decades [141]. This particular multibody system, composed of
4 bodies in its simpler configuration, has leaded to interesting studies in the field of
system identification [142] and virtual sensors [143], among many others.

7.4.1 Multibody model

The model of bicycle used in the present work is based on the description presented
in [144], but the contact between tire and ground, modeled in [144] with non-slipping
rolling contact by means of holonomic and non-holonomic constraints, is substituted
in this work by normal and frictional tire forces.

B

H
R

F

v1

v2

v3

r1

r2

r3

z1

z2

z3

q
q

q

Figure 7.37: Model of bicycle.

The bicycle displayed in Figure 7.37 is composed of four bodies, i.e. the frame
(B), the fork-handlebar (H), the front wheel (F) and rear wheel (R), which are linked
by means of revolute joints. The body of the rider is considered rigidly attached
to the frame, so its effects in terms of the magnitude and disposition of masses are
incorporated to the frame. All the geometries, masses and inertia values of the model
described in [144] match the ones used in the present model.

The normal contact model used for the interaction between each one of the tires
and the ground is based on a Kelvin-Voigt contact model with hysteresis (see [137]).
Contact detection and the indentation assessment is executed by means of an analyti-
cal circumference-plane model, already used in the vehicle model described in section
7.3. The frictional part of tire forces is evaluated through the linearized tire model
described in [138]. The coefficients used to model the contact forces are displayed in
Table 7.24, in which the nomenclature used in [137] for normal contact and in [138]
for frictional forces has been reused.

276



7.4. Bicycle

Force coefficient Front wheel Rear wheel

K 6000 6000
Dc 100 100
DR 80 80
Radius 0.35 0.30
κc 0.15 0.15
αc 0.15 0.15
µx 1.0 1.0
µy 1.0 1.0

Table 7.24: Coefficients of tire forces in the bicycle model.

The rear wheel and the steering are actuated by means of two external torques
in order to control the velocity of the bicycle and its leaning angle. These external
torques are modeled through non-cyclical splines parameterized by means of a series
of values of the torques at different time steps, guaranteeing their continuity and
differentiability. For the dynamic and sensitivity analysis, the splines displayed in
Figure 7.38 parameterized with 16 points each will be regarded.

0 1 2 3 4 5 6 7 8 9 10
-13

-12

-11

-10
Torque applied on the rear wheel

Time (sec)

T
o

rq
ue

 (
N

m
)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
Torque applied on the handlebar

Time (sec)

T
o

rq
ue

 (
N

m
)

Figure 7.38: Torque applied on the rear wheel and handlebar modeled through spline.

The model is described by means of 3 points, 8 vectors and 3 angles, identified in
Figure 7.37 as z1, z2 and z3. Accordingly, the natural coordinates model generated is
defined by means of 36 variables subjected to 30 constraint equations.

The joint coordinate model automatically generated by MBSLIM is composed of
3 revolute joints and a floating joint, since there are not kinematic relations between
any of the bodies of the bicycle and and the ground. The angles added in the natural
coordinate model are automatically assimilated by MBSLIM to the joint coordinates of

277



7. Numerical experiments

the three revolute joints, and since there is no additional user constraint or closed loop
in the system, there is only one constraint in this model related to the normalization
of the Euler parameters of the floating joint.

Regarding the sensitivity analysis of the system, the objective function considered
is a combination of an error in the linear velocity of the system and an error in the
leaning angle, both with respect to the references presented in Figure 7.39 :

ψ =

∫ tF

t0

(| ϕ− ϕref | + |∥ ṙ1 ∥ −ṙ1ref |) dt (7.50)

where ϕ is the leaning angle (using the notation presented in [144]), and ṙ1 is the
velocity of the center of the rear wheel.

0 1 2 3 4 5 6 7 8 9 10
6

7

8

9

10
Reference value of velocity (m/s)

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.1

0

0.1

0.2
Reference value of roll angle (rad)

Time (s)

R
o

ll 
an

gl
e 

(r
a

d)

Figure 7.39: Reference velocity and roll angle for the dynamic simulation of the
bicycle.

The group of instant torques used to compute the splines is regarded as the set
of parameters of the sensitivity analysis. The change of the number of parameters,
i.e. the modification of the number of instant torques used to calculate each spline,
constitutes one of the most attractive features of this model, offering the possibility
of comparing the performance of the different sensitivity formulations for different
number of parameters.

The particular selection of parameters in this model allows to readily define an
optimal control problem in terms of the set of parameters used to compute the splines
and the objective function defined in (7.50). Even though the definition of the mini-
mization problem is immediate, the process to reach the optimal solution implies
that the dynamic simulation should be robust enough to support configurations that

278



7.4. Bicycle

lead to the fall of the bicycle with impact forces and other “strange” configurations
that could entail convergence problems. For that reason, an additional sphere-plane
contact force has been added on the frame with the sphere center at a frame point
artificially located 3 meters above the ground when the bicycle is upright. The radius
of the contact sphere is 1 meter, while the plane of contact is the surface of the ground.

In order to limit the range of torques that can be applied to the rear wheel and
handlebar, some upper and lower boundaries have been established, being −10 the
lower limit and 200 the upper limit for each parameter.

7.4.2 Numerical results: dynamics

Figure 7.40: Graphical interface for the simulation of the bicycle.

The dynamic simulation consists in a 10 seconds maneuver subjected to gravity,
to a traction torque on the rear wheel and to a steering torque applied on the fork-
handlebar. A capture of the graphic interface configured for the dynamic simulation
of the bicycle can be seen in Figure 7.40.

This model constitutes a clear example of an open-loop system, which in this case
is composed of 3 revolute joints (frame-fork, front wheel-fork and rear wheel-frame)
and a floating joint. However, the particular modeling of the floating joint through
Euler parameters implies that no unconstrained formulation can be applied. In this
regard, the normalization constraint of the Euler parameters obliges to enforce it
through semi-recursive Matrix R or ALI3-P schemes, for instance.

Nevertheless, in order to test the fully-recursive formulation presented in section
2.4.2, the peculiarity of the Euler parameters normalization constraint in floating
joints should be recalled. In brief, since only three of the four parameters are in-
dependent, three of them can be selected as main variables for the solution of each
fully-recursive acceleration. Other possibility is to impose the Euler parameters nor-
malization constraint at acceleration level when equation (2.247e) is solved for the
floating joint. This leads to an index-1 classical Lagrange method for constraints ap-
plied on the base body, equivalent to the formulation described in [36]. This method
has not been generally described in the thesis because it has only been implemented
in the MBSLIM multibody library for constraints applied to the base body, thus it
is not a general algorithm yet. Moreover, the formulation matches the index-1 fully-

279



7. Numerical experiments

recursive formulation described in [36] for constraints applied on the base body, thus
the reader is referred to this work for further detail.

In Figure 7.41, the seven methods tested display an excellent level of convergence,
even for index-1 fully-recursive approaches.

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 0.781 3.047 3.901
RTdyn1 ALI3-P 0.781 3.047 3.901
RTdyn0 MatrixR 1.031 3.063 2.971
RTdyn1 MatrixR 1.031 3.063 2.971
RTdyn0 Index-1 FR 0.484 - -
RTdyn1 Index-1 FR 0.375 - -

Table 7.25: CPU time of relative coordinates sensitivity formulations compared with
the equivalent formulation in natural coordinates.

0 5 10 15
1.5

1.55

1.6

Time (sec)

A
n

gl
e 

(r
a

d)

Handlebar angle

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 index-1 FR

RTdyn1 index-1 FR

0 10 20 30 40 50 60 70 80 90 100 110
-30

-20

-10

0

10

Position (m)

P
o

si
tio

n 
(m

)

Trayectory of point 3 in plane XY

 

 
Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 index-1 FR

RTdyn1 index-1 FR

Figure 7.41: Reference velocity and roll angle for the dynamic simulation of the
bicycle.

The four semi-recursive formulations along with the two fully-recursive ones are
examined in terms of computational time in Table 7.25, displaying a much better
performance than natural coordinate formulations. In this case, semi-recursive ALI3-
P formulations are 3.901 times faster than the global ALI3-P method, while the
semi-recursive Matrix R formulation, despite being slower than semi-recursive ALI3-
P, are still almost 3 times more efficient than the equivalent global formulation. The
worse behavior of natural coordinates comes from the traditional problem of Cartesian
coordinate formulations with high speed rotating vectors, which involves an increase in
the number of iterations, with the consequent impact on the computational expense.

280



7.4. Bicycle

Moreover, Table 7.25 proves that fully-recursive dynamic simulations are the fastest
for this particular experiment. It should be commented likewise that the fully-
recursive RTdyn1 approach is much more efficient than RTdyn0. This divergence can
be attributed to the direct MBSLIM implementation of the method without exploit-
ing the similarities between these two accumulation schemes, unlike in semi-recursive
methods.

7.4.3 Numerical results: sensitivity analysis

In this section, the sensitivity analysis is accomplished, using the semi-recursive
ALI3-P and Matrix R direct and adjoint sensitivity formulations presented in chapter
5. Moreover, the results of the application of the direct differentiation method to the
fully-recursive formulation with base-body constraints imposed by meas of an index-
1 scheme is evaluated. All the sensitivity results are compared with the reference
response obtained with the natural coordinates Matrix R direct and adjoint sensitivity
formulations for the same time step.

Let us begin with the fully-recursive forward sensitivity formulation, evaluated for
a shorter simulation time (5 seconds). Figure 7.42 evidences that the fully-recursive
gradient starts to diverge from the reference at 4.5 seconds approximately, being
the results obtained after this time completely inaccurate. In order to understand
better this behavior, let us inspect the fulfillment of the sensitivities of the constraints
vector at position, velocity and acceleration levels in Figure 7.44. Let us remind here
that the biggest drawback of the equations of motion of a dynamic system modeled
with an index-1 DAE system is the drift-off error that could lead to divergences in
the dynamics. To the best of the author’s knowledge, the effect of drift-off in the
sensitivities has not been as thoroughly studied as for dynamic analyses, and it is
included here for that reason.

Since no additional enforcement of constraints at position or velocity levels has
been carried out during the dynamics, the constraints vector at position and velocity
levels acquire increasing errors during the simulation, even though not so high to
affect the dynamic results, as it is shown in Figure 7.43. On the contrary, sensitivity
analysis includes this effect and amplifies it in such a manner that this drift-off error
entails that the sensitivity analysis diverges.

This problem constitutes a perfect example of the index-1 formulation problems
extended to sensitivities. Partially, this formulation has not been extended and gene-
ralized in MBSLIM to support any type of constraints both for dynamics and sensi-
tivity analysis due to this drift-off problems. In fact, other constrained fully-recursive
formulations have been explored, but robust and stable schemes require the addi-
tion of coupling terms that lead to very complex formulations and/or to couplings
that oblige to resort to a semi-recursive solution. It should also be remarked that
this problem stems from the imposition of the constraint equations. The open-loop
fully-recursive sensitivity expressions have been proved and verified in other numerical
examples, delivering good and stable behaviors even for large simulation times.

On the other hand, semi-recursive sensitivity formulations display an excellent

281



7. Numerical experiments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

x 10
-5

Time (sec)


 1

Sensitivity of  with respect to 
1

 

 
Reference
RTdyn0 index-1 FR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

x 10
-4

Time (sec)


 2

Sensitivity of  with respect to 
2

 

 
Reference
RTdyn0 index-1 FR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

0

5

10
x 10

-5

Time (sec)


 3

Sensitivity of  with respect to 
3

 

 
Reference
RTdyn0 index-1 FR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

6
x 10

-5

Time (sec)


 4

Sensitivity of  with respect to 
4

 

 
Reference
RTdyn0 index-1 FR

Figure 7.42: Sensitivity of fully-recursive formulation with an index-1 enforcement of
constraints for a RTdyn0 accumulation.

performance in terms of accuracy as shown in Figure 7.46, which exhibits the gra-
dient of the objective function displayed on Figure 7.45 with respect to the first four
sensitivity parameters (as sample) for the complete 10 seconds simulation.

Adjoint variable methods show as well great convergence levels, as it can be ob-
served in Figure 7.47. Once again, it should be remarked that here two different
models are compared, based on relative and natural coordinates, two different formu-
lations (Matrix R and ALI3-P), two accumulation schemes (RTdyn0 and RTdyn1),
two differentiation schemes (forward and adjoint sensitivity formulations) and two
discretization schemes (discrete and adjoint variable methods), and equivalent results
are reached with a high level of convergence.

In this numerical example, semi-recursive methods have proved a more efficient
dynamic performance than the equivalent formulation in natural coordinates, as shown
in Table 7.25. The sensitivity analysis computational times, gathered in Table 7.26,

282



7.4. Bicycle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
x 10

-8

Time (sec)

)

2-norm of constraints at position level

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4
x 10

-7

Time (sec)

_ )

2-norm of constraints at velocity level

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
x 10

-8

Time (sec)

B )

2-norm of constraints at acceleration level

Figure 7.43: Fulfillment of constraints at position, velocity and acceleration levels.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4
x 10

-3

Time (sec)

d
) d
;

2-norm of position constraint sensitivity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

Time (sec)

_ ) d
;

2-norm of velocity constraint sensitivity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
x 10

-10

Time (sec)

B ) d
;

2-norm of acceleration constraint sensitivity

Figure 7.44: Constraints sensitivities at position, velocity and acceleration levels.

also exhibit that less computational effort is required by joint coordinate models than

283



7. Numerical experiments

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

Time (sec)


Evolution of the objective function

 

 

Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.45: Evolution of the objective function over time.

Formulation CPU time CPU time naturals Ratio nat/rel

RTdyn0 ALI3-P: DDM 1.967 10.063 5.116
RTdyn0 ALI3-P: CAVM 1.750 5.578 3.187
RTdyn0 ALI3-P: DAVM 1.718 5.469 3.183
RTdyn1 ALI3-P: DDM 2.078 10.063 4.843
RTdyn1 ALI3-P: CAVM 1.891 5.578 2.950
RTdyn1 ALI3-P: DAVM 1.844 5.469 2.966
RTdyn0 MatrixR: DDM 6.219 8.484 1.364
RTdyn0 MatrixR: CAVM 6.141 9.203 1.499
RTdyn1 MatrixR: DDM 6.313 8.484 1.344
RTdyn1 MatrixR: CAVM 6.219 9.203 1.480

Table 7.26: CPU time of semi-recursive sensitivity formulations compared with the
equivalent one in natural coordinates.

by the corresponding sensitivity formulation in natural coordinates. Moreover, the
great gains in semi-recursive ALI3-P formulations compared to the equivalent global
method should be further explained . Since the sensitivity problem has 32 parameters,
32 systems of equations have to be solved in forward sensitivity formulations, and
since the bigger effort in global ALI3-P formulations is devoted to the resolution of
these systems of equations, it is the most impaired method for an increase in the
number of parameters. In fact, global ALI3-P adjoint methods display much better
computational efficiency.

Besides, RTdyn0 and RTdyn1 show small differences in CPU time according to
Table 7.26, being RTdyn0 the fastest. The better performance of RTdyn0 comes from
the particular definition of the floating joint that highly simplifies the recursive kine-
matic relations that appear in the accumulation of masses and forces. An additional
reason relies on the reduced number of bodies and joints, which makes that time
savings related to the floating joint determine the computational performance of the
dynamic and sensitivity formulations.

Other interesting study that can be easily addressed with this multibody system
consists in the evaluation of the effect of an increase of the number of parameters in
the efficiency of each sensitivity formulation. For the sake of clarity, two constant

284



7.4. Bicycle

0 2 4 6 8 10 12
-5

0

5

10
x 10

-5

Time (sec)


 1

Sensitivity of  with respect to 
1

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12
-2

0

2
x 10

-4

Time (sec)


 2

Sensitivity of  with respect to 
2

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12
-10

-5

0

5
x 10

-5

Time (sec)


 3

Sensitivity of  with respect to 
3

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

0 2 4 6 8 10 12
-5

0

5
x 10

-5

Time (sec)


 4

Sensitivity of  with respect to 
4

 

 Reference

RTdyn0 ALI3-P

RTdyn1 ALI3-P

RTdyn0 MatrixR

RTdyn1 MatrixR

Figure 7.46: Objective function gradient obtained by means of semi-recursive forward
sensitivity formulations.

splines will be used in order to guarantee that the dynamic maneuver is preserved
between simulations with different number of parameters. For comparison purposes,
a null torque will be applied on the handlebar and a constant momentum of −12Nm
on the rear wheel.

It is evident from Table 7.27 that adjoint methods are extremely well suited for a
high number of parameters, being their efficiency much less affected by the increase
in the parameters size than direct differentiation methods. However, semi-recursive
Matrix R methods display a reduced decreasing in its computational expense. In those
formulations, the composition of the equations of motion is more computationally

285



7. Numerical experiments

0 5 10 15
-5

0

5

x 10
-5

Time (sec)


 1

Sensitivity of  with respect to 
1

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 5 10 15

-5

0

5
x 10

-5

Time (sec)


 2

Sensitivity of  with respect to 
2

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 5 10 15

-2

0

2

x 10
-5

Time (sec)


 3

Sensitivity of  with respect to 
3

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

0 5 10 15
-2

-1

0

1
x 10

-5

Time (sec)


 4

Sensitivity of  with respect to 
4

 

 

Reference

RTdyn0 ALI3-P:CAVM

RTdyn1 ALI3-P:CAVM

RTdyn0 MatrixR

RTdyn1 MatrixR

RTdyn0 ALI3-P:DAVM

RTdyn1 ALI3-P:DAVM

Figure 7.47: Objective function gradient obtained by means of semi-recursive adjoint
sensitivity formulations.

demanding than the solution of the system. Since adjoint methods only reduce the
number of systems to be solved, but require the same (or more) terms than direct
differentiation methods, the computational expense remains almost unaltered. In the
case of semi-recursive ALI3-P formulations, the solution of the equations of motion is
more cumbersome, thus, the computational effort of adjoint methods is significantly
lower than the one demanded by direct differentiation methods.

286



7.4. Bicycle

Number of parameters
Formulation 32 100 200 500 1000

RTdyn0 ALI3-P: DDM 1.906 2.406 3.219 5.359 9.203
RTdyn0 ALI3-P: CAVM 1.734 1.938 2.047 2.328 2.953
RTdyn0 ALI3-P: DAVM 1.703 1.766 1.906 2.266 2.922
RTdyn1 ALI3-P: DDM 2.063 2.578 3.375 5.813 10.375
RTdyn1 ALI3-P: CAVM 1.813 1.969 2.219 2.781 3.906
RTdyn1 ALI3-P: DAVM 1.781 1.984 2.189 2.813 3.875
RTdyn0 MatrixR: DDM 5.969 7.422 9.891 17.672 30.391
RTdyn0 MatrixR: CAVM 5.890 7.172 9.641 16.875 28.953
RTdyn1 MatrixR: DDM 6.063 7.563 10.172 18.125 31.359
RTdyn1 MatrixR: CAVM 6.016 7.375 9.781 17.438 29.500

Table 7.27: CPU time comparative among sensitivity formulations with different num-
bers of parameters.

7.4.4 Numerical results: optimal control

With the sensitivity analysis defined in the former section, it is possible to address
an optimal control problem by means of a gradient-based optimization algorithm.
In this case, the L-BFGS-B bound constrained optimization algorithm [132] will be
considered.

The optimization problem can be described as a minimization problem with the
form:

min
ρ

ψ =

∫ tF

t0

(| ϕ− ϕref | + |∥ ṙ1 ∥ −ṙ1ref |) dt (7.51)

s.t. ρi ≤ U (7.52)

ρi ≥ L (7.53)

with
ρ =

[
ρ1 ... ρi ... ρp

]T
(7.54)

and with U = 200 and L = −10.
Since there is only one objective function and multiple parameters, the maneuver

sought is complex and there are multiple deviations and multiple paths to follow, it
is convenient to divide the optimization problem into smaller optimization problems
with reduced simulation times. This partitioning consists in the division of the total 10
seconds simulation into smaller optimizations with increasing time steps, all of them
starting from time t0 = 0s. The simulation time is increased by 1 second between
optimizations. It should be remarked that this partitioning solution has been reached
after several attempts and reformulations of the optimal control problem, being this
the simplest an most effective.

The values of the parameters used in the dynamics and sensitivity analysis sections
are the results obtained from this optimal control problem. Thus, they have not been

287



7. Numerical experiments

used as initial guess points to start the optimization problem. Instead, the initial
rear wheel torque consists in a constant momentum of −12Nm, while the handlebar
torque is initialized with a constant null momentum. With this initial configuration,
the bicycle moves in a straight line and with a variable linear velocity.

The optimization problem is solved by means of the L-BFGS-B algorithm devel-
oped by Nocedal and Morales and described in [132]. In this case, this algorithm has
been selected in order to prove other options than the fmincon tool of Matlab and
to test its performance. In fact, this problem has been also executed with Matlab in
order to prove the validity of the results, but since the performance of the fmincon
optimization algorithms have been assessed in the vehicle numerical experiment of
section 7.3, here the focus will be put upon the L-BFGS-B algorithm.

The performance of the modified version of the L-BFGS-B described in [132] is
determined by a set of parameters which control the stop criteria and the definition
of upper and lower bounds, among other features. For the optimization which leads
to the results discussed in the dynamics and sensitivity analysis sections, the variable
associated to the stop criteria (factr) has been set to 10, which is equivalent to
“extremely high accuracy”, according to the optimization algorithm. The stop criteria
associated to the maximum absolute value of the projected gradient (pgtol) has been
configured to 10−5. The upper and lower bounds are activated according to the limits
commented above.

With the parameterization of the L-BFGS-B algorithm described above, an excel-
lent optimum is expected, but at the cost of a high number of iterations. Remember
that the optimization problem is addressed by means of a set of sequential optimiza-
tion problems with increasing simulation times. As a consequence, the final number
of iterations is extremely high, but since each analytical gradient evaluation requires
only a few seconds according to to the results of section 7.4.3, the complete optimal
control problem is addressed in a few minutes.

factr pgtol Ψ Nº iter

101 (high accuracy) 10−5 8.8012 · 10−3 3635
107 (medium accuracy) 10−5 8.8033 · 10−3 2690

1012 (low accuracy) 10−5 1.8586 · 10−2 42

Table 7.28: Optimization results for different parameterizations of the L-BFGS-B
algorithm.

In Table 7.28, the results obtained for other configurations of the L-BFGS-B algo-
rithm are displayed. Optimization with medium and high accuracy display very close
values related to the objective function value, while low accuracy optimization leads
to poorer local optimums. In regard to the number of iterations, the computational
cost grows with the accuracy level demanded. It should be remarked that the number
of iterations displayed in Table 7.28 is the number of iterations of each intermediate
optimization summed altogether.

Due to the high number of parameters involved in the optimization, the final

288



7.5. Ship anchor maneuver

0 2 4 6 8 10 12 14
6

7

8

9

10

2-norm of the linear velocity (m/s)

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

 

 

0 2 4 6 8 10 12 14
-0.2

-0.1

0

0.1

0.2
Roll angle (rad)

Time (s)

R
o

ll 
an

gl
e 

(r
a

d)

 

 
Desired value
High accuracy
Medium accuracy
Low accuracy

Desired value
High accuracy
Medium accuracy
Low accuracy

Figure 7.48: Dynamic response of the bicycle after the optimization with L-BFGS-B
algorithm with high, low and medium accuracy compared with the desired velocity
and roll angle.

dynamic responses with the three sets of optimized parameters are assessed rather
than examining optimized arrays value by value. The linear velocity and the roll angle
are compared in Figure 7.48 with respect to the desired response for the cases of high,
medium and low accuracy. Behold that high and medium accuracy optimizations fall
very close to the desired responses, while the low accuracy optimization is not able to
reach such convergence levels.

7.5 Ship anchor maneuver

The fifth numerical experiment considered consists in the dynamic simulation of
the lift anchor maneuver described in [145]. The main interest of this problem relies
on the large concatenation of bodies composing a single kinematic chain. Long single-
chain models lead to large fully-dense system matrices in semi-recursive accumulation
schemes which are computationally expensive to assemble. In this regard, the best
performance is expected from fully-recursive formulations.

It should be commented that the evaluation of contact-frictional forces is extremely
computationally demanding in this problem and strongly conditions the efficiency of
the simulation regardless of the formulation selected

7.5.1 Multibody model

The mechanism is composed of 64 bodies including an anchor in the end of the
kinematic chain, linked to a special end link by means of a revolute joint and a series

289



7. Numerical experiments

of 61 chain links of diverse type. The relative motion between chain links is described
by Cardan joints with the exception of the swivel link shown in Figure 7.49 which
includes an intermediate revolute joint in order to prevent the twisting of the chain.

Figure 7.49: Detail of the swivel link in the anchor chain, with kinematic joints
identified as “C” (Cardan), “R” (revolute) and “F” (floating).

The chain lifting is simulated by means of a rheonomous constraint applied to a
point belonging to the extreme link of the chain placed in the opposite tip of the
anchor. Moreover, the contact of each link and the anchor with the hull of the
ship is evaluated by means of the contact-frictional force model described in [145].
The multibody model is thus subjected to contact-frictional forces, gravity and a
rheonomous guidance constraint.

Figure 7.50: Detail of the anchor chain tip, with kinematic joints identified as “C”
(Cardan), and “R” (revolute).

The system of coordinates selected to model a mechanism involving a large con-
catenation of bodies in a single chain strongly determines the efficiency of its kinematic
or dynamic simulation. Natural coordinates generate a model with 702 dependent
variables and subjected to 700 constraints. Despite the enormous size of the model,
the system matrices generated are strongly sparse. Taking advantage of sparse alge-
bra and sparse solvers, the dynamics of this mechanism can be solved efficiently in
fully-Cartesian coordinates.

Relative coordinate models, on the contrary, generate a model described by a
floating joint, 3 revolute joints and 60 Cardan joints, delivering a total of 130 joint
coordinates. Since there are not closed loops, no loop-closure constraint has to be
added, and only four constraints equations have to be considered in the base body:

290



7.5. Ship anchor maneuver

three rheonomous driving constraints and a normalization constraint for the floating
joint Euler parameters.

7.5.2 Numerical results: dynamics

Figure 7.51: Simulation of the lifting anchor maenuver.

The forward dynamic simulation consists in a 20 second lifting anchor maneuver
with a time step of 0.05 milliseconds (this reduced time step is required by the contact
model considered). Two captures of the dynamic simulation are shown in Figure 7.51.

First of all, lets us evaluate the dynamic performance of joint coordinate models.
The semi-recursive generation of the equations of motion yields a fully dense sym-
metric mass matrix whose composition could result as computationally expensive as
the solution of natural coordinate models for a large enough number of bodies. On
the contrary, fully-recursive algorithms do not involve the generation of the full sys-
tem mass matrix, but elemental matrices that are accumulated body-by-body from
the tips of the mechanism to the base. This mechanism is, thus, better suited to be
solved with a fully-recursive algorithm, leading to the solution of small systems for
each joint, instead of a large dense system of size 130× 130.

Nevertheless, it should be reminded that fully-recursive algorithms are based on a
fixed-point solution of the equations of motion, which is less robust than the Newton-
Raphson schemes used in the semi-recursive ALI3-P or Matrix R formulations. Con-
tact forces, in this case, could require to use smaller time steps in fully-recursive
algorithms than in semi-recursive methods, thus impairing their efficiency. Neverthe-
less, for the sake of clarity, all the formulations will be executed with the same time
step of 0.05 milliseconds.

For simplicity, only the semi-recursive and global ALI3-P formulations along with
the fully-recursive one will be tested because we know that the efficiency of the Matrix
R global and semi-recursive formulation will be much worse, specially in a system with
a large number of degrees of freedom like the one considered in this section.

Table 7.29 evidences that, for a given fixed time step, fully-recursive formulations
perform much more efficiently than any other formulation in relative or natural coor-
dinates. Moreover, in this case, the global ALI3-P formulation in natural coordinates
display a better behavior than the topological semi-recursive ones.

Behold that this case has been explicitly selected so as to display the drawbacks of
semi-recursive formulations with large single chain concatenations. In this particular

291



7. Numerical experiments

Formulation CPU time CPU time natural Ratio nat/rel

RTdyn0 ALI3-P 1505.82 1115.46 0.741
RTdyn1 ALI3-P 1467.34 1115.46 0.760
RTdyn0 Index-1 FR 356.72 - -
RTdyn1 Index-1 FR 358.03 - -

Table 7.29: CPU time of relative coordinates sensitivity formulations compared with
the equivalent formulation in natural coordinates for the lift anchor maneuver.

mechanism, contact forces are more cumbersome to be assembled in relative coordi-
nates than in natural coordinates (thus the stiffness and damping matrices) and the
mass matrix turns out to be fully dense, thus impairing the computational efficiency.
It should be also clarified that kinematic chains with fewer chain links perform much
more efficiently in semi-recursive topological than in global formulations.

Although this numerical example disagrees with the idea that relative coordinate
modeling is more efficient, it also evidences the advantages of having both global
and topological formulations implemented in the general multibody library MBSLIM,
making it possible to select the best set of coordinates and formulation for each mech-
anism. Moreover, it also highlights that there is no universally best set of coordinates
and formulation, because their performance depends on the type of mechanism con-
sidered.

7.5.3 Numerical results: sensitivity analysis

This problem has been studied only at a dynamic level in order to prove the
limitations of the dynamic formulations developed in this work. Moreover, the CPU-
times for the sensitivity analysis are even more disadvantageous for the semi-recursive
formulations than in the case of the forward dynamics.

In future works, it is intended to address different optimizations on the lifting
anchor maneuver.

292



Chapter 8

Conclusions and future work

This chapter gathers the conclusions of the work developed during this thesis and
outlines the future research topics opened by this work and which are still unfinished
or have not been addressed yet.

8.1 Conclusions

The most important conclusions about the methods developed in this thesis are
the following:

� A more general and systematic description of the already existing topological
semi-recursive methods is provided, extending them for an arbitrary reference
point and connecting them with the classical kinematics and dynamics equations
of the relative motion. From these general equations, two particular cases have
been implemented, corresponding to two different choices of reference points:
RTdyn0 (CoM of each body as reference point), and RTdyn1 (point of each
body coincident with the global origin as reference point).

� Fully-recursive formulations for open-loop systems have also been covered for
an arbitrary selection of reference points.

� The kinematic problems of constrained multibody systems modeled in joint
coordinates have been extended to support degrees of freedom not included in
the dependent joint coordinate vector.

� Semi-recursive methods have been successfully combined with two constraint
enforcement techniques, delivering the independent coordinate semi-recursive
Matrix R formulation and the dependent coordinate semi-recursive ALI3-P for-
mulation.

� The sensitivity analyses of unconstrained open-loop formulations have been ad-
dressed for the semi-recursive and the fully-recursive methods.

293



8. Conclusions and future work

� All the derivatives of recursive kinematic relations, accumulations and assembly
procedures have been attained by means of analytical differentiation. More-
over, derivatives have been carefully inspected and tested in order to guarantee
maximum accuracy and efficiency.

� The sensitivity of constrained kinematic problems has been accomplished for
joint coordinate models, delivering a kinematic forward sensitivity formulation
and a kinematic adjoint sensitivity formulation.

� The sensitivity analysis of semi-recursive Matrix R formulations has been suc-
cessfully developed, yielding the forward and adjoint semi-recursive Matrix R
sensitivity formulations.

� The semi-recursive ALI3-P dynamic formulations have also been studied in
terms of sensitivity using the direct differentiation method and the discrete
and continuous adjoint variable method. As a result, three sensitivity formu-
lations with two different choices of reference points each have been developed
and implemented.

Moreover, it should be remarked that all the kinematic, dynamic and sensitivity
formulations included in this thesis document have been implemented in the general
purpose multibody library MBSLIM as general formulations, this is, they are intended
for any definition of a multibody model. This implementation has the following fea-
tures:

� The definition of a model is unique in MBSLIM, thus joint coordinate models
have been programmed to be automatically generated from the set of points,
vectors, angles, distances and constraints specified by the user.

� The opening of closed loops in joint coordinate models has been coded to be
executed automatically too.

� Natural coordinate and joint coordinate models now coexist in MBSLIM, which
makes possible to address any kinematic, dynamic or sensitivity problem in any
coordinates by simply selecting the appropriate formulation.

� Joint coordinate models have been programmed to be solved with dense solvers,
although the sparsity of some terms and derivatives have been harnessed by
reusing the sparse algebra functions already included in MBSLIM for natural
coordinate models.

� All the methods implemented support redundant constraints like the previously
existing natural coordinate formulations.

� All the derivatives involved in the abovementioned joint coordinate sensitivity
formulations have been analytically developed and programmed except, the par-
tial derivatives of some forces with respect to parameters, such as spline forces,
which are computed by means of automatic differentiation supported by the

294



8.1. Conclusions

Eigen library. This proves that the sensitivity methods programmed can be
easily extended for complex derivatives of particular forces without the need of
generating analytical derivatives in every case.

The MBSLIM implementation has been tested with five numerical examples: a
five-bar mechanism, a spatial slider crank, a buggy vehicle, a bicycle and a chain-
anchor system. From the solution of the dynamic, sensitivity analysis, design op-
timization and optimal control problems of those multibody models, the following
conclusions can be inferred:

� The dynamic and sensitivity formulations developed in this work have been
tested in complex numerical experiments involving normal contact, friction, tire
forces or rheonomic constraints.

� All the dynamic and sensitivity analyses tested provide highly accurate results
despite the differences in multibody models (natural coordinates and joint-
coordinates), dynamic formulations (Matrix R and ALI3-P) or sensitivity for-
mulations (forward, continuous adjoint or discrete adjoint).

� Topological semi-recursive methods are usually but not always faster than global
methods, as it has been shown in the ship anchor maneuver. This highlights
the importance of supporting different approaches and coordinate types in a
multibody library such as MBSLIM.

� Computational gains observed for topological semi-recursive methods with res-
pect to global methods in dynamic formulations are drastically reduced in sen-
sitivity formulations due to the higher complexity of semi-recursive derivatives.
Nevertheless, semi-recursive sensitivity formulations clearly outperform the effi-
ciency of global methods in many problems, as proved in the sensitivity analysis
of the buggy vehicle and the bicycle.

� Topological fully-recursive methods are almost always the best option in terms
of computational efficiency when open-loop systems are simulated. However,
these methods gather a series of issues when they are combined with constraint
equations which make them less attractive for general closed-loop systems, as it
has been shown in the bicycle experiment.

� The design optimization and optimal control problems have made apparent that
the sensitivity formulations developed in this work are appropriate to be used in
the optimization of multibody systems. The solution of those problems has been
accomplished by means of third party gradient-based optimization algorithms,
such as L-BFGS-B or the optimization algorithms included in the fmincon
Matlab function.

295



8. Conclusions and future work

8.2 Future work

During the study of joint coordinate modeling, recursive methods, constrained
formulations and sensitivity analyses, some lines of investigation have emerged but
they have not been addressed yet. Some of the most interesting topics are listed
below:

� Fully-recursive formulations and sensitivities for closed-loop systems.
This line has been explored, but no significant advance has been reached re-
sulting in worse formulations than the semi-recursive ones. The future line of
investigation is related to robust and accurate fully-recursive formulations and
their sensitivity analyses.

� Deeper study of gradient-based optimization methods. In this docu-
ment, most of the effort has been devoted to the derivation of the sensitivity
analysis of dynamics formulations based on analytical expressions. The research
on gradient-based methods and its combination with the equations of motion
in design optimization and optimal control have not been addressed in depth in
this work.

� Increase efficiency of recursive formulations. There is still a gain margin
for recursive formulations due to implementation inefficiencies, such as repeated
or unnecessary calculations.

� Parallelization. In sensitivity analysis, it could be very profitable to parallelize
some evaluations in order to reduce the computational effort.

� Flexible multibody formulations. The developments introduced in the
present thesis document related to rigid bodies can be extended to flexible multi-
body systems, both in terms of dynamics and sensitivities. This line represents
the most important of the commented future lines of research, and it is intended
to require the author efforts during the next few months.

296



Bibliography

[1] D. Dopico, Y. Zhu, A. Sandu, and C. Sandu, “Direct and adjoint sensitivity
analysis of multibody systems using Maggi’s equations,” in Proceedings of the
ASME 2013 International Design Engineering Technical Conferences &Com-
puters and Information in Engineering Conference. IDETC/CIE 2013, 8 2013.

[2] D. Dopico, A. Sandu, C. Sandu, and Y. Zhu, “Sensitivity analysis of multibody
dynamic systems modeled by ODEs and DAEs,” in Multibody Dynamics. Com-
putational Methods and Applications (Z. Terze, ed.), vol. 35 of Computational
Methods in Applied Sciences, ch. Sensitivity Analysis of Multibody Dynamic
Systems Modeled by ODEs and DAEs, pp. 1–32, Springer, 2014.

[3] D. Dopico, F. González, A. Luaces, M. Saura, and D. Garćıa-Vallejo, “Direct
sensitivity analysis of multibody systems with holonomic and nonholonomic
constraints via an index-3 augmented Lagrangian formulation with projections,”
Nonlinear Dynamics, May 2018.

[4] D. Dopico, A. Sandu, and C. Sandu, “Adjoint sensitivity index-3 augmented La-
grangian formulation with projections,” Mechanics Based Design of Structures
and Machines, 2021.

[5] D. Dopico, A. Luaces, U. Lugŕıs, M. Saura, F. González, E. Sanjurjo, and R. Pas-
torino, “MBSLIM: Multibody Systems in Laboratorio de Ingenieŕıa Mecánica.”
http://lim.ii.udc.es/MBSLIM, 2009-2016.

[6] N. Orlandea, M. Chace, and D. Calahan, “A sparsity-oriented approach to
the dynamic analysis and design of mechanical systems—part 1,” Journal of
Manufacturing Science and Engineering, Transactions of the ASME, vol. 99,
no. 3, p. 773 – 779, 1977.

[7] N. Orlandea and D. A. Calahan, “A sparsity-oriented approach to the dynamic
analysis and design of mechanical systems—part 2,” Journal of Manufacturing
Science and Engineering, Transactions of the ASME, vol. 99, no. 3, p. 780 –
784, 1977.

[8] J. Wittenburg, Dynamics of systems of rigid bodies. Wiesbaden:
Vieweg+Teubner Verlag, 1977.

297

http://lim.ii.udc.es/MBSLIM


Bibliography

[9] O. Brüls and A. Cardona, “On the use of Lie group time integrators in multibody
dynamics,” Journal of Computational and Nonlinear Dynamics, vol. 5, no. 3,
p. 1 – 13, 2010.

[10] J. Garcia de Jalon, J. Unda, and A. Avello, “Natural coordinates for the com-
puter analysis of multibody systems,” Computer Methods in Applied Mechanics
and Engineering, vol. 56, no. 3, p. 309 – 327, 1986.

[11] J. Garćıa de Jalón, M. Serna, and R. Avilés, “Computer method for kinematic
analysis of lower-pair mechanisms-II position problems,” Mechanism and Ma-
chine Theory, vol. 16, no. 5, p. 557 – 566, 1981.

[12] J. Garcia de Jalon, M. Serna, and R. Avilés, “Computer method for kinematic
analysis of lower-pair mechanisms-I velocities and accelerations,” Mechanism
and Machine Theory, vol. 16, no. 5, p. 543 – 556, 1981.

[13] M. A. Serna, R. Avilés, and J. Garcia de Jalon, “Dynamic analysis of plane
mechanisms with lower pairs in basic coordinates,” Mechanism and Machine
Theory, vol. 17, no. 6, p. 397 – 403, 1982.

[14] J. Garcia de Jalon, “Twenty-five years of natural coordinates,”Multibody System
Dynamics, vol. 18, no. 1, p. 15 – 33, 2007.

[15] E. Bayo, J. Garcia de Jalon, A. Avello, and J. Cuadrado, “An efficient compu-
tational method for real time multibody dynamic simulation in fully cartesian
coordinates,” Computer Methods in Applied Mechanics and Engineering, vol. 92,
no. 3, p. 377 – 395, 1991.

[16] J. Garćıa de Jalón, J. M. Jiménez, A. Avello, F. Mart́ın, and J. Cuadrado,
“Real time simulation of complex 3-D multibody systems with realistic graph-
ics,” in Real-Time Integration Methods for Mechanical System Simulation (E. J.
Haug and R. C. Deyo, eds.), (Berlin, Heidelberg), pp. 265–292, Springer Berlin
Heidelberg, 1991.

[17] F. González, D. Dopico, R. Pastorino, and J. Cuadrado, “Behaviour of aug-
mented Lagrangian and Hamiltonian methods for multibody dynamics in the
proximity of singular configurations,” Nonlinear Dynamics, vol. 85, no. 3,
p. 1491 – 1508, 2016.

[18] M. Vermaut, F. Naets, and W. Desmet, “A flexible natural coordinates formu-
lation (FNCF) for the efficient simulation of small-deformation multibody sys-
tems,” International Journal for Numerical Methods in Engineering, vol. 115,
no. 11, p. 1353 – 1370, 2018.

[19] J. Cuadrado, R. Gutiérrez, M. Naya, and P. Morer, “A comparison in terms of
accuracy and efficiency between a MBS dynamic formulation with stress analysis
and a non-linear FEA code,” International Journal for Numerical Methods in
Engineering, vol. 51, pp. 1033–1052, 07 2001.

298



Bibliography

[20] R. Featherstone, “The calculation of robot dynamics using articulated-body
inertias,” The International Journal of Robotics Research, vol. 2, no. 1, p. 13 –
30, 1983.

[21] P. N. Sheth and J. Uicker, J. J., “IMP (Integrated Mechanisms Program), A
Computer-Aided Design Analysis System for Mechanisms and Linkage,” Journal
of Engineering for Industry, vol. 94, pp. 454–464, 05 1972.

[22] M. A. Chace and D. A. Smith, “DAMN—A Digital Computer Program for the
Dynamic Analysis of Generalized Mechanical Systems,” SAE, vol. 80, pp. 696–
991, 1971.

[23] B. Paul, “Dynamic analysis of planar machines with specified force inputs,”
Proceedings of the Third Applied Mechanics Conference, 1973.

[24] B. Paul, “Dynamic analysis of machinery via program dymac,” SAE Technical
Papers, 1977.

[25] Y. Stepanenko and M. Vukobratović, “Dynamics of articulated open-chain ac-
tive mechanisms,” Mathematical Biosciences, vol. 28, no. 1-2, p. 137 – 170,
1976.

[26] M. Vukobratović, D. Stokić, and D. Hristić, “New control concept of anthropo-
morphic manipulators,” Mechanism and Machine Theory, vol. 12, no. 5, p. 515
– 530, 1977.

[27] M. Vukobratović, “Dynamics of active articulated mechanisms and synthesis of
artificial motion,” Mechanism and Machine Theory, vol. 13, no. 1, p. 1 – 18,
1978.

[28] R. Waters, “Mechanical arm control,” M.I.T. Artificial Intelligence Lab. Memo.,
1979.

[29] W. Armstrong, “Recursive solution to the equations of motion of n-link manipu-
lator,” Proceedings 5th WorldCongress on Theory of Machines and Mechanisms,
1979.

[30] J. Luh, M. Walker, and R. Paul, “On-line computational scheme for mechan-
ical manipulators,” Journal of Dynamic Systems, Measurement and Control,
Transactions of the ASME, vol. 102, no. 2, p. 69 – 76, 1980.

[31] M. Walker and D. Orin, “Efficient dynamic computer simulation of robotic
mechanisms,” Journal of Dynamic Systems, Measurement and Control, Trans-
actions of the ASME, vol. 104, no. 3, p. 205 – 211, 1982.

[32] J. Hollerbach, “A recursive Lagrangian formulation of maniputator dynamics
and a comparative study of dynamics formulation complexity,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. SMC-10, no. 11, p. 730 – 736,
1980.

299



Bibliography

[33] W. Jerkovsky, “The structure of multibody dynamics equations,” Journal of
Guidance, Control, and Dynamics, vol. 1, no. 3, p. 173 – 182, 1978.

[34] R. Featherstone, Robot dynamics algorithms. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1987.

[35] D.-S. Bae and E. Haug, “A recursive formulation for constrained mechanical
system dynamics: Part I. Open loop systems,” Mechanics of Structures and
Machines, vol. 15, no. 3, pp. 359–382, 1987.

[36] D.-S. Bae and E. Haug, “A recursive formulation for constrained mechanical
system dynamics: Part II. Closed loop systems,” Mechanics of Structures and
Machines, vol. 15, no. 4, pp. 481–506, 1988.

[37] D.-S. Bae and E. Haug, “A recursive formulation for constrained mechanical
system dynamics: Part III. Parallel processor implementation,” Mechanics of
Structures and Machines, vol. 16, no. 2, p. 249 – 269, 1988.

[38] S. Kim and E. Haug, “A recursive formulation for flexible multibody dynam-
ics, part I: Open-loop systems,” Computer Methods in Applied Mechanics and
Engineering, vol. 71, no. 3, p. 293 – 314, 1988.

[39] S. Kim and E. Haug, “A recursive formulation for flexible multibody dynamics,
part II: Closed loop systems,” Computer Methods in Applied Mechanics and
Engineering, vol. 74, no. 3, p. 251 – 269, 1989.

[40] H. Lai, E. Haug, S. Kim, and D. Bae, “A decoupled flexible-relative co-ordinate
recursive approach for flexible multibody dynamics,” International Journal for
Numerical Methods in Engineering, vol. 32, no. 8, p. 1669 – 1689, 1991.

[41] S. S. Kim and M. J. Vanderploeg, “A general and efficient method for dynamic
analysis of mechanical systems using velocity transformations,” Journal of Me-
chanical Design, Transactions of the ASME, vol. 108, no. 2, p. 176 – 182, 1986.

[42] P. Nikravesh and G. Gim, “Systematic construction of the equations of motion
for multibody systems containing closed kinematic loops,” Journal of Mechan-
ical Design, Transactions of the ASME, vol. 115, no. 1, p. 143 – 149, 1993.

[43] A. Jain, “Unified formulation of dynamics for serial rigid multibody systems,”
Journal of Guidance, Control, and Dynamics, vol. 14, no. 3, p. 531 – 542, 1991.

[44] A. Avello, J. Jiménez, E. Bayo, and J. Garcia de Jalon, “A simple and
highly parallelizable method for real-time dynamic simulation based on velocity
transformations,” Computer Methods in Applied Mechanics and Engineering,
vol. 107, no. 3, p. 313 – 339, 1993.

[45] J. M. Jimenez, Formulaciones cinemáticas y dinámicas para la simulación en
tiempo real de sistemas de sólidos ŕıgidos. PhD thesis, Universidad de Navarra,
1993.

300



Bibliography

[46] J. Rodŕıguez, Análisis eficiente de mecanismos 3D con metodos topológicos y
tecnoloǵıa de componentes en Internet. PhD thesis, University of Navarre, 2000.

[47] D. Negrut, R. Serban, and F. Potra, “A topology-based approach to exploiting
sparsity in multibody dynamics: Joint formulation,” Mechanics of Structures
and Machines, vol. 25, no. 2, pp. 221–241, 1997.

[48] D. Bae, J. Han, and H. Yoo, “A generalized recursive formulation for constrained
mechanical system dynamics,” Mechanics of Structures and Machines, vol. 27,
no. 3, pp. 293–315, 1999.

[49] D. S. Bae, J. M. Han, J. H. Choi, and S. M. Yang, “A generalized recursive
formulation for constrained flexible multibody dynamics,” International Journal
for Numerical Methods in Engineering, vol. 50, no. 8, pp. 1841–1859, 2001.

[50] S. Kim, “A subsystem synthesis method for efficient vehicle multibody dynam-
ics,” Multibody System Dynamics, vol. 7, no. 2, p. 189 – 207, 2002.

[51] K. Anderson, “An order n formulation for the motion simulation of general
multi-rigid-body constrained systems,” Computers and Structures, vol. 43, no. 3,
p. 565 – 579, 1992.

[52] K. Anderson and J. Critchley, “Improved ’order-n’ performance algorithm for
the simulation of constrained multi-rigid-body dynamic systems,” Multibody
System Dynamics, vol. 9, no. 2, p. 185 – 212, 2003.

[53] J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, “Intelligent simulation of
multibody dynamics: Space-state and descriptor methods in sequential and
parallel computing environments,” Multibody System Dynamics, vol. 4, pp. 55–
73, 02 2000.

[54] D. Dopico, Formulaciones semi-recursivas y de penalización para la dinámica
en tiempo real de sistemas multicuerpo. PhD thesis, Universidade da Coruña,
2004.

[55] J. Garcia De Jalon, E. Alvarez, F. De Ribera, I. Rodriguez, and F. Funes,
“A fast and simple semi-recursive formulation for multi-rigid-body systems,”
Computational Methods in Applied Sciences, vol. 2, pp. 1–23, 2005.

[56] F. J. Funes and J. Garćıa de Jalón, “An efficient dynamic formulation for solving
rigid and flexible multibody systems based on semirecursive method and implicit
integration,” Journal of Computational and Nonlinear Dynamics, vol. 11, no. 5,
2016.

[57] Y. Pan, W. Dai, Y. Xiong, S. Xiang, and A. Mikkola, “Tree-topology-oriented
modeling for the real-time simulation of sedan vehicle dynamics using inde-
pendent coordinates and the rod-removal technique,” Mechanism and Machine
Theory, vol. 143, 2020.

301



Bibliography

[58] J. Cuadrado and D. Dopico, “A hybrid global-topological real-time formulation
for multibody systems,” vol. 5 A, p. 115 – 121, 2003.

[59] J. Cuadrado, D. Dopico, M. Gonzalez, and M. Naya, “A combined penalty and
recursive real-time formulation for multibody dynamics,” Journal of Mechanical
Design, Transactions of the ASME, vol. 126, no. 4, p. 602 – 608, 2004.

[60] D. Dopico Dopico, Á. López Varela, and A. Luaces Fernández, “Augmented La-
grangian index-3 semi-recursive formulations with projections,” Multibody Sys-
tem Dynamics, 2020.

[61] S. Jaiswal, J. Rahikainen, Q. Khadim, J. Sopanen, and A. Mikkola, “Compar-
ing double-step and penalty-based semirecursive formulations for hydraulically
actuated multibody systems in a monolithic approach,” Multibody System Dy-
namics, vol. 52, no. 2, p. 169 – 191, 2021.

[62] J. Martins, P. Sturdza, and J. Alonso, “The complex-step derivative approxi-
mation,” ACM Transactions on Mathematical Software, vol. 29, no. 3, p. 245 –
262, 2003.

[63] T. Maly and L. R. Petzold, “Numerical methods and software for sensitiv-
ity analysis of differential-algebraic systems,” Applied Numerical Mathematics,
vol. 20, no. 1, pp. 57–79, 1996.

[64] W. Feehery, J. Tolsma, and P. Barton, “Efficient sensitivity analysis of large-
scale differential-algebraic systems,” Applied Numerical Mathematics, vol. 25,
no. 1, p. 41 – 54, 1997.

[65] A. Callejo, S. Narayanan, J. Garćıa De Jalón, and B. Norris, “Performance of au-
tomatic differentiation tools in the dynamic simulation of multibody systems,”
Advances in Engineering Software, vol. 73, p. 35 – 44, 2014.

[66] C. Bischof, G. Corliss, A. Griewank, P. Hovland, and A. Carle, “Adi-
for—generating derivative codes from fortran programs,” Scientific Program-
ming, vol. 1, no. 1, p. 11 – 29, 1992.

[67] A. Griewank, D. Juedes, and J. Utke, “Algorithm 755: ADOL-C: A package for
the automatic differentiation of algorithms written in c/c++,” ACM Transac-
tions on Mathematical Software, vol. 22, no. 2, p. 131 – 167, 1996.

[68] S. Narayanan, B. Norris, and B. Winnicka, “ADIC2: Development of a com-
ponent source transformation system for differentiating c and c++,” Procedia
Computer Science, vol. 1, no. 1, pp. 1845–1853, 2010.

[69] A. Dürrbaum, W. Klier, and H. Hahn, “Comparison of automatic and symbolic
differentiation in mathematical modeling and computer simulation of rigid-body
systems,” Multibody System Dynamics, vol. 7, no. 4, p. 331 – 355, 2002.

302



Bibliography

[70] A. Callejo, J. Garćıa de Jalón, P. Luque, and D. A. Mántaras, “Sensitivity-based,
multi-objective design of vehicle suspension systems,” Journal of Computational
and Nonlinear Dynamics, vol. 10, p. 031008, May 2015.

[71] A. Callejo and D. Dopico, “Direct sensitivity analysis of multibody systems:
A vehicle dynamics benchmark,” Journal of Computational and Nonlinear Dy-
namics, vol. 14, pp. 021004–021004–9, Jan. 2019.

[72] J. Ambrósio, M. Neto, and R. Leal, “Optimization of a complex flexible multi-
body systems with composite materials,” Multibody System Dynamics, vol. 18,
no. 2, p. 117 – 144, 2007.

[73] E. Haug and J. Arora, “Design sensitivity analysis of elastic mechanical sys-
tems,” Computer Methods in Applied Mechanics and Engineering, vol. 15, no. 1,
p. 35 – 62, 1978.

[74] J. Arora and E. Haug, “Methods of design sensitivity analysis in structural
optimization,” AIAA Journal, vol. 17, no. 9, pp. 970–974, 1979.

[75] E. Haug and B. Rousselet, “Design sensitivity analysis in structural mechanics.
I. Static response variations,” Journal of Structural Mechanics, vol. 8, no. 1,
p. 17 – 41, 1980.

[76] E. Haug and B. Rousselet, “Design sensitivity analysis in structural mechanics.
II. Eigenvalue variations,” Journal of Structural Mechanics, vol. 8, no. 2, p. 161
– 186, 1980.

[77] B. Rousselet and E. Haug, “Design sensitivity analysis in structural mechanics.
III. Effects of shape variation,” Journal of Structural Mechanics, vol. 10, no. 3,
p. 273 – 310, 1982.

[78] E. J. Haug, K. Neel, and P. Krishnaswami, “Design sensitivity analysis and
optimization of dynamically driven systems.,” vol. 9, p. 555 – 635, 1984.

[79] E. Haug, Computer aided optimal design: structural and mechanical systems,
ch. Design sensitivity analysis of dynamic systems, pp. 705–755. No. 27 in
NATO ASI series. Series F, Computer and systems sciences, Springer-Verlag,
1987.

[80] R. Wehage and E. Haug, “Generalized coordinate partitioning for dimension
reduction in analysis of constrained dynamic systems,” Journal of Mechanical
Design, Transactions of the ASME, vol. 104, no. 1, p. 247 – 255, 1982.

[81] N. Mani and E. Haug, “Singular value decomposition for dynamic system design
sensitivity analysis,” Engineering with Computers, vol. 1, no. 2, p. 103 – 109,
1985.

[82] H. Ashrafiuon and N. Mani, “Analysis and optimal design of spatial mechanical
systems,” Journal of Mechanical Design, Transactions of the ASME, 1990.

303



Bibliography

[83] D. Bestle and J. Seybold, “Sensitivity analysis of constrained multibody sys-
tems,” Archive of Applied Mechanics, vol. 62, no. 3, p. 181 – 190, 1992.

[84] J. Dias and M. Pereira, “Sensitivity analysis of rigid-flexible multibody sys-
tems,” Multibody System Dynamics, vol. 1, pp. 303–322, 1997.

[85] E. Lund and N. Olhoff, “Shape design sensitivity analysis of eigenvalues using
”exact” numerical differentiation of finite element matrices,” Structural Opti-
mization, vol. 8, no. 1, p. 52 – 59, 1994.

[86] J. Pagalday and A. Avello, “Optimization of multibody dynamics using object
oriented programming and a mixed numerical-symbolic penalty formulation,”
Mechanism and Machine Theory, vol. 32, no. 2, pp. 161–174, 1997.

[87] R. Serban and E. Haug, “Kinematic and kinetic derivatives in multibody system
analysis,” Mechanics of Structures and Machines, vol. 26, no. 2, p. 145 – 173,
1998.

[88] X. Wang, E. J. Haug, and W. Pan, “Implicit numerical integration for design
sensitivity analysis of rigid multibody systems,” Mechanics Based Design of
Structures and Machines, vol. 33, no. 1, pp. 1–30, 2005.

[89] M. Schulz and H. Brauchli, “Two methods of sensitivity analysis for multibody
systems with collisions,” Mechanism and Machine Theory, vol. 35, pp. 1345–
1365, Oct. 2000.

[90] S. Li and L. Petzold, “Software and algorithms for sensitivity analysis of large-
scale differential algebraic systems,” Journal of Computational and Applied
Mathematics, vol. 125, pp. 131–145, 2000.

[91] Y. Cao, S. Li, and L. Petzold, “Adjoint sensitivity analysis for differential-
algebraic equations: algorithms and software,” Journal of Computational and
Applied Mathematics, vol. 149, no. 1, pp. 171 – 191, 2002.

[92] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis or
differential-algebraic equations: The adjoint dae system and its numerical so-
lution,” SIAM Journal on Scientific Computing, vol. 24, no. 3, pp. 1076–1089,
2003.

[93] A. Schaffer, “Stability of the adjoint differential-algebraic equation of the index-
3 multibody system equation of motion,” SIAM Journal on Scientific Comput-
ing, vol. 26, no. 4, p. 1432 – 1448, 2005.

[94] A. S. Schaffer, On the adjoint formulation of design sensitivity analysis of multi-
body dynamics. PhD thesis, University of Iowa, 12 2005.

304



Bibliography

[95] A. Schaffer, “Stabilized index-1 differential-algebraic formulations for sensitivity
analysis of multi-body dynamics,” Proceedings of the Institution of Mechanical
Engineers Part K- Journal of Multi-Body Dynamics, vol. 220, pp. 141–156, SEP
2006.

[96] A. Sandu, “On the properties of Runge-Kutta discrete adjoints,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 3994 LNCS - IV, p. 550 – 557, 2006.

[97] T. Lauss, S. Oberpeilsteiner, W. Steiner, and K. Nachbagauer, “The discrete ad-
joint gradient computation for optimization problems in multibody dynamics,”
Journal of Computational and Nonlinear Dynamics, vol. 12, no. 3, 2017.

[98] A. Callejo, V. Sonneville, and O. Bauchau, “Discrete adjoint method for the
sensitivity analysis of flexible multibody systems,” Journal of Computational
and Nonlinear Dynamics, vol. 14, no. 2, 2019.

[99] K. S. Anderson and Y. Hsu, “Analytical fully-recursive sensitivity analysis for
multibody dynamic chain systems,” Multibody System Dynamics, vol. 8, pp. 1–
27, 2002.

[100] K. Anderson and Y. Hsu, “Order-(n+m) direct differentiation determination of
design sensitivity for constrained multibody dynamic systems,” Structural and
Multidisciplinary Optimization, vol. 26, no. 3-4, pp. 171–182, 2004.

[101] K. D. Bhalerao, M. Poursina, and K. S. Anderson, “An efficient direct differenti-
ation approach for sensitivity analysis of flexible multibody systems,” Multibody
System Dynamics, vol. 23, no. 2, p. 121 – 140, 2010.

[102] M. Gutiérrez-López, A. Callejo, and J. Garćıa de Jalón, “Computation of inde-
pendent sensitivities using Maggi’s formulation,” 05 2012.

[103] V. Sonneville and O. Brüls, “Sensitivity analysis for multibody systems formu-
lated on a Lie group,” Multibody System Dynamics, vol. 31, no. 1, p. 47 – 67,
2014.

[104] S. Corner, A. Sandu, and C. Sandu, “Adjoint sensitivity analysis of hybrid
multibody dynamical systems,” Multibody System Dynamics, vol. 49, no. 4,
p. 395 – 420, 2020.

[105] R. Serban, “A parallel computational model for sensitivity analysis in opti-
mization for robustness,” Optimization Methods and Software, vol. 24, no. 1,
pp. 105–121, 2009.

[106] P. Maciag, P. Malczyk, and J. Fraczek, “Hamiltonian direct differentiation and
adjoint approaches for multibody system sensitivity analysis,” International
Journal for Numerical Methods in Engineering, vol. 121, no. 22, p. 5082 – 5100,
2020.

305



Bibliography

[107] D. Dopico, Y. Zhu, A. Sandu, and C. Sandu, “Direct and adjoint sensitivity
analysis of ordinary differential equation multibody formulations,” Journal of
Computational and Nonlinear Dynamics, vol. 10, pp. 1–8, Sept. 2014.

[108] J. Nocedal and S. Wright, Numerical Optimization. Springer-Verlag New York,
second ed., 2006.

[109] J. M. Pagalday, Optimización del comportamiento dinámico de mecanismos.
PhD thesis, University of Navarre, 1994.

[110] J. S. Arora, ed., Introduction to Optimum Design (Fourth Edition). Boston:
Academic Press, fourth edition ed., 2017.

[111] R. Fletcher, ed., Practical methods of optimization. Great Britain: John Wiley
& Sons Ltd, second edition ed., 1987.

[112] J. Betts, ed., Practical methods for optimal control using nonlinear program-
ming. Philadelphia: Society for Industrial and Applied Mathematics, first edi-
tion ed., 2001.

[113] R. Featherstone, Rigid body dynamics algorithms. Springer Science+Business
Media, New York, USA, 2008.

[114] E. J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems:
Basic Methods. Allyn and Bacon series in engineering, Boston: Prentice Hall
College Div, March 1989.

[115] J. Cuadrado, D. Dopico, M. Naya, and M. Gonzalez, “Penalty, semi-recursive
and hybrid methods for mbs real-time dynamics in the context of structural
integrators,” Multibody System Dynamics, vol. 12, no. 2, pp. 117–132, 2004.

[116] J. I. Rodriguez, J. M. Jimenez, F. J. Funes, and J. G. de Jalón, “Recursive
and residual algorithms for the efficient numerical integration of multi-body
systems,” Multibody System Dynamics, vol. 11, pp. 295–320, May 2004.

[117] J. Garćıa de Jalón and E. Bayo, Kinematic and dynamic simulation of multibody
systems: The real-time challenge. New York (USA): Springer-Verlag, 1994.

[118] J. Garcia De Jalon, A. Callejo, A. Hidalgo, and M. Gutierrez, “Efficient solution
of Maggi’s equations,” Proceedings of the ASME Design Engineering Technical
Conference, vol. 4, no. PARTS A AND B, pp. 115–124, 2011.

[119] E. Bayo and R. Ledesma, “Augmented Lagrangian and mass-orthogonal projec-
tion methods for constrained multibody dynamics,” Nonlinear Dynamics, vol. 9,
pp. 113–130, 02 1996.

306



Bibliography

[120] D. Dopico, F. González, J. Cuadrado, and J. Kövecses, “Determination of holo-
nomic and nonholonomic constraint reactions in an index-3 augmented La-
grangian formulation with velocity and acceleration projections,” Journal of
Computational and Nonlinear Dynamics, vol. 9, p. 041006, July 2014.

[121] J. Cuadrado, R. Gutiérrez, M. Naya, and M. González, “Experimental validation
of a flexible MBS dynamic formulation through comparison between measured
and calculated stresses on a prototype car,”Multibody System Dynamics, vol. 11,
no. 2, pp. 147–166, 2004.

[122] R. Gutiérrez, Cálculo de tensiones en componentes de sistemas móviles mediante
dinámica de sistemas multicuerpo flexibles. PhD thesis, Universidade da Coruña,
2003.

[123] U. Lugŕıs, Real-time methods in flexible multibody dynamics. PhD thesis, Uni-
versidade da Coruña, 2008.

[124] M. A. Naya, Aplicación de la Dinámica Multicuerpo en Tiempo Real a la Simu-
lación y el Control de Automóviles. PhD thesis, Universidade da Coruña, 2007.

[125] E. Bayo, J. Garcia De Jalon, and M. A. Serna, “A modified Lagrangian formu-
lation for the dynamic analysis of constrained mechanical systems,” Computer
Methods in Applied Mechanics and Engineering, vol. 71, no. 2, pp. 183–195,
1988.

[126] J. C. Garćıa Orden, “Energy considerations for the stabilization of constrained
mechanical systems with velocity projection,” Nonlinear Dynamics, vol. 60,
no. 1-2, p. 49 – 62, 2010.

[127] J. Orden and D. Dopico, “On the stabilizing properties of energy-momentum in-
tegrators and coordinate projections for constrained mechanical systems,” Com-
putational Methods in Applied Sciences, vol. 4, pp. 49–67, 2007.

[128] T. Lauss, S. Oberpeilsteiner, W. Steiner, and K. Nachbagauer, “The discrete
adjoint method for parameter identification in multibody system dynamics,”
Multibody System Dynamics, vol. 42, no. 4, pp. 397–410, 2018.

[129] J.-F. Collard, Geometrical and Kinematic Optimization of Closed-Loop Multi-
body Systems. PhD thesis, Université Catholique de Louvain, 2007.

[130] D. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[131] C. Zhu, R. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization,” ACM Transactions
on Mathematical Software, vol. 23, no. 4, pp. 550–560, 1997.

307



Bibliography

[132] J. Morales and J. Nocedal, “Remark on ”algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization”,” ACM Transac-
tions on Mathematical Software, vol. 38, no. 1, 2011.

[133] Y. Zhu, D. Dopico, C. Sandu, and A. Sandu, “Dynamic response optimization of
complex multibody systems in a penalty formulation using adjoint sensitivity,”
Journal of Computational and Nonlinear Dynamics, vol. 10, pp. 1–9, May 2015.

[134] I. T. C. for Multibody Dynamics., “Library of computational benchmark prob-
lems. url: http://www.iftomm-multibody.org/benchmark.” http://www.

iftomm-multibody.org/benchmark, 2014.

[135] R. Patorino, Experimental validation of a multibody model for a vehicle prototype
and its application to automotive state observers. PhD thesis, 2012.

[136] E. Sanjurjo, State observers based on detailed multibody models applied to an
automobile. PhD thesis, Universidade da Coruña, 2016.

[137] P. Flores and H. Lankarani, Contact Force Models for Multibody Dynamics.
Springer International Publishing, 2016.

[138] P. Luque, D. Alvarez, and C. Vera, Ingenieria del automovil. Sistemas y com-
portamiento dinamico. Thomson, 2004.

[139] AENOR, “Veh́ıculos de carretera. Turismos. Pista de pruebas para un cam-
bio brusco de carril. Parte1: Doble cambio de carril. UNE 26514-1. Madrid:
AENOR,” 2003.

[140] T. Guillespie, Fundamentals of vehicle dynamics. SAE International, USA, 1992.

[141] A. Schwab and J. Meijaard, “A review on bicycle dynamics and rider control,”
Vehicle System Dynamics, vol. 51, 07 2013.

[142] Rider Optimal Control Identification in Bicycling, vol. Volume 3: Renewable
Energy Systems; Robotics; Robust Control; Single Track Vehicle Dynamics and
Control; Stochastic Models, Control and Algorithms in Robotics; Structure Dy-
namics and Smart Structures; Surgical Robotics; Tire and Suspension Systems
Modeling; Vehicle Dynamics and Control; Vibration and Energy; Vibration
Control of Dynamic Systems and Control Conference, 10 2012.

[143] E. Sanjurjo, M. Naya, J. Cuadrado, and A. Schwab, “Roll angle estimator based
on angular rate measurements for bicycles,” Vehicle System Dynamics, vol. 57,
no. 11, pp. 1705–1719, 2019.

[144] J. Meijaard, J. M. Papadopoulos, A. Ruina, and A. Schwab, “Linearized dynam-
ics equations for the balance and steer of a bicycle: a benchmark and review,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 463, no. 2084, pp. 1955–1982, 2007.

308

http://www.iftomm-multibody.org/benchmark
http://www.iftomm-multibody.org/benchmark
http://www.iftomm-multibody.org/benchmark


Bibliography

[145] D. Dopico, A. Luaces, M. Saura, J. Cuadrado, and D. Vilela, “Simulating the
anchor lifting maneuver of ships using contact detection techniques and conti-
nuous contact force models,” Multibody System Dynamics, 2019.

309



Bibliography

310



Appendix A

Derivative of angular velocity with
respect to positions of relative
coordinates

Angular velocity is an omnipresent piece in joint coordinate formulations. It is
involved in the recursive expressions of each joint, i.e. in ḃv

i and dv
i , in the determi-

nation of the generalized coordinates vector and in the vector of Cartesian velocities,
namely V, Y or Z. Hence, it is present in the computation of a sensitivity analysis in
the form of derivatives with respect to positions and velocities of relative coordinates.

Even though the derivative of this magnitude with respect to velocities of joint
coordinates is straightforward using the recursive relations (2.204), the derivative with
respect to positions is slightly more intricate, and it becomes even more complicated
if the differentiation of full matrices Rv

i is intended to be avoided.

The easiest path to get the derivative of the angular velocity with respect to posi-
tions could be to compute it differentiating with respect to time the partial derivative
of the angular velocity with respect to joint velocities, i.e.:(

ωi

)
ẑ
̸=
(
ω̇i

)
ˆ̇z
=

d

dt

((
ωi

)
ˆ̇z

)
=
[
0 I

]
Ṙv

i (A.1)

However, as it is indicated in A.1, this relation is not true, since in this equation
there are dependencies on ωi that are not being considered.

Let us consider the computation of the angular velocity of a body using the relative
velocities of each joint of the kinematic chain, using (2.107), (2.113) and (2.117):

ωi =
i∑

j=1

ωj−1
j =

i∑
j=1

bv2
j żj (A.2)

being bv2
j the angular part of the term bv

j , corresponding to its fourth to sixth rows,
according to the notation introduced in 4.4.3, and j represents each one of the previous
bodies of body i in its kinematic chain. Taking derivatives with respect to relative

311



A. Derivative of angular velocity with respect to positions of relative
coordinates

coordinates in positions:(
ωi

)
ẑ
=

i∑
j=1

(
ωj−1

j

)
ẑ
=

i∑
j=1

(
bv2
j

)
ẑ
żj (A.3)

with:
bv2
j =

[
0 I

]
bv
j =

[
0 I

]
by
j =

[
0 I

]
bz
j (A.4)

Now, the derivative of the angular velocity is expressed in terms of derivatives of
bv2
j , which have the known expressions presented in 4.4.3. However, the simplification

can be pulled forward, obtaining a derivative of bv
j dependent on Rv

i for all the joints.
Returning to 4.4.3, the derivatives of bv

j not expressed in terms of Rv
i are the ones

related to the spherical and floating joints, since they have parts dependent on the
rotation matrix, which is not a function of Rv

i or even the recursive terms bv
i . Nev-

ertheless, there is a method to obtain the derivative of the rotation matrix involving
Rv

i by means of identification of terms using two different schemes of differentiation.
First, let us consider a vector vj belonging to body i. Its position can be obtained

as:
vj = Aiv̄

i
j (A.5)

and its velocity as:
v̇j = ω̃ivj (A.6)

Now, the derivative of the position of a vector can be computed, using A.5 as:

∂vj

∂z
=
∂Ai

∂z
v̄i
j (A.7)

However, the expression in velocities is also valid:

∂vj

∂z
=
∂v̇j

∂ż
=
[
0 −ṽj

]
Rv

i (A.8)

Using the properties of the skew symmetric tensor of a matrix, (A.8) can be
expressed as:

∂vj

∂z
= R̃v2

i vj = R̃v2
i Aiv̄

i
j (A.9)

in which:
Rv2

i =
[
0 I

]
Ri (A.10)

Identifying terms between (A.9) and (A.7), the following expression of the partial
derivative of the rotation matrix is achieved:

∂Ai

∂z
= R̃v2

i Ai (A.11)

Now, the angular part of bv
i in spherical and floating joints, this is, 2E, can be

differentiated with respect to the relative coordinates of the model as:

∂ (2Ei)

∂z
= 2

∂Ai−1

∂z
Ēi + 2Ai−1

∂Ēi

∂z
= 2R̃v2

i−1Ai−1Ēi + 2Ai−1
∂Ēi

∂z
=

2R̃v2
i−1Ei + 2Ai−1

∂Ēi

∂z
= 2Ẽ

[
0 −I

]
Ri−1 + 2Ai−1

∂Ēi

∂z

(A.12)

312



Equation (A.12) contributes to the simplification of the derivative of the angular
part of bv

i , allowing to express it generally as:

(
bv2
j

)
ẑ
=


b̃v2
j

[
0 −I

]
Rj−1 in case 1

b̃v2
j

[
0 −I

]
Rj−1 + 2Aj−1

∂Ēj

∂z
in case 2

(A.13)

in which case 1 groups revolute, prismatic, Cardan, cylindrical and planar joints, and
case 2 gathers spherical and floating joints. Observe that if the joint considered has

more than one coordinate, the terms b̃v2
j are tensors of dimension 3 by 3 by nv, being

nv the number of variables describing the motion of this joint.
The derivative of the angular velocity can be then recalculated using the previous

relation: (
ωi

)
ẑ
=

i∑
j=1

(
b̃v2
j

[
0 −I

]
Rj−1

)
żj +

i∑
k=1

(
2Ai−1

∂Ēk

∂z

)
żk (A.14)

Now, since:
bv2
j żj = ω

j−1
j (A.15)

equation (A.14) can be transformed into:

∂ωi

∂z
=

i∑
j=1

(
ω̃j−1

j

[
0 −I

]
Rj−1

)
+

i∑
k=1

(
2Ai−1

∂Ēk

∂z

)
żk =

i∑
j=1

(ω̃j − ω̃j−1)
[
0 −I

]
Ri−1 +

i∑
k=1

(
2Ak−1

∂Ēk

∂z

)
żk

(A.16)

The recursive assembly of the matrix Rj−1 using the relative recursive terms of
the previous joints can be recalled to reformulate the previous expression:(

ωi

)
ẑ
=

i∑
j=1

(ω̃j − ω̃j−1)

(
−

j∑
k=1

bv2
k

)
+

i∑
k=1

(
2Ai−1

∂Ēk

∂z

)
żk =

i∑
j=1

(ω̃j−1 − ω̃i)b
v2
j +

i∑
k=1

(
2Ai−1

∂Ēk

∂z

)
żk

(A.17)

Now note that:
i∑

j=1

ω̃ib
v2
j = ω̃i

[
0 I

]
Ri (A.18a)

i∑
j=1

ω̃j−1b
v2
j +

i∑
k=1

(
2Ai−1

∂Ēk

∂z

)
żk =

[
0 I

]
Ṙi (A.18b)

Therefore, the derivative of the angular velocity with respect to the relative coor-
dinates in positions can be finally formulated as:(

ωi

)
ẑ
=
[
0 I

] ∂Rv
i

∂z
ż =

[
0 I

]
Ṙv

i −
[
0 ω̃i

]
Rv

i (A.19)

313





Appendix B

Math notes: skew symmetric
matrix of a vector and skew
symmetric tensor of a matrix

Let us consider 2 vectors u,v ∈ R3 and a scalar α ∈ R. The skew symmetric
matrix of a vector can be defined as a matrix ũ ∈ R3×3 such as:

ũ =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (B.1)

Additionally, let us consider a matrix A ∈ R3×n . The skew-symmetric tensor of
the matrix A ∈ R3×n is defined as the tensor Ã ∈ R3×3×n composed of the skew-
symmetric matrices of each column of the matrix A.

Ã =
[
Ã1 Ã2 ... Ãn

]
(B.2)

where Ai represents the column i of the matrix A.
The skew symmetric matrix of a vector and the skew symmetric tensor of a matrix

have the following properties:

1.
ũT = −ũ (B.3)

2.
αũ = (α̃u) (B.4)

3.
ũu = 0 (B.5)

4.
ũv = −ṽu (B.6)

5.
ũṽ = (ṽũ)T (B.7)

315



B. Math notes: skew symmetric matrix of a vector and skew symmetric
tensor of a matrix

6.
ũṽ = ṽũ+

(˜̃uv) (B.8)

7. (˜̃uv) = vuT − uvT = ũṽ − ṽũ (B.9)

8. (
ũ+ v

)
= ũ+ ṽ (B.10)

9.
ũũ = uuT − uTuI (B.11)

10.
d (ũv)

dt
= ˜̇uv + ũv̇ (B.12)

11.
dṽ

dx
=

˜(dv

dx

)
(B.13)

12.
M̃⊗ v = −ṽM (B.14)

13.

M̃⊗ ṽ = ṽM̃+
( ˜M̃⊗ v

)
(B.15)

316



Appendix C

Derivatives of recursive kinematic
relations for RTdyn0 and RTdyn1

C.1 Expressions of
(
ḃyi

)
z
for RTdyn0

This section gathers the analytical expressions of the partial derivative of the
recursive kinematic relation ḃy

i in the framework of the RTdyn0 accumulation, with
the set of reference points coincident with the center of mass of each body. Final
expressions are directly exposed without intermediate developments.

� Revolute joint:

(
ḃy
i

)
ẑ
=

[
b̃y1,1
i

b̃y2,1
i

] [
0 −I

]
Ṙy

i +

[
˙̃by1,1
i

˙̃by2,1
i

]
(C.1)

� Prismatic joint:

(
ḃy
i

)
ẑ
=

[
˙̃by1,1
i

0

] [
0 −I

]
Ry

i +

[
b̃y1,1
i

0

] [
0 −I

]
Ṙy

i (C.2)

� Cylindrical joint:

(
ḃy1
i

)
ẑ
=

[
˙̃by1,1
i

0

] [
0 −I

]
Ry

i +

[
b̃y1,1
i

0

] [
0 −I

]
Ṙy

i (C.3)

(
ḃy2
i

)
ẑ
=

[
˙̃by1,2
i

˙̃by2,2
i

] [
0 −I

]
Ry

i +

[
b̃y1,2
i

b̃y2,2
i

] [
0 −I

]
Ṙy

i (C.4)

317



C. Derivatives of recursive kinematic relations for RTdyn0 and RTdyn1

� Cardan joint: (
ḃy1
i

)
ẑ
=

[
˙̃by1,1
i

˙̃by2,1
i

] [
0 −I

]
Ry

i−1 +

[
b̃y1,1
i

b̃y2,1
i

] [
0 −I

]
Ṙy

i−1

+

[
˙̃wj

(
r̃iG − r̃j

)
+ w̃j

(
˙̃r
i

G − ˙̃rj

)
0

] [
0 −I

]
by0
i +

[
w̃j

(
r̃iG − r̃j

)
0

] [
0 −I

]
ḃy0
i

(C.5)

(
ḃy2
i

)
ẑ
=

[
˙̃by1,2
i

˙̃by2,2
i

] [
0 −I

]
Ry

i +

[
b̃y1,2
i

b̃y2,2
i

] [
0 −I

]
Ṙy

i (C.6)

� Spherical joint:

(
ḃy
i

)
ẑ
=

(ω̃i

)
ẑ

0

0
(
ω̃i

)
ẑ

by
i +

[
ω̃i 0
0 ω̃i

]
(by

i )ẑ (C.7)

� Floating joint: (
ḃy
i

)
ẑ
= 06×7×n (C.8)

� Planar joint:(
ḃy1
i

)
ẑ
=

[
˙̃by1,1
i

0

] [
0 −I

]
Ry

i−1 +

[
b̃y1,1
i

0

] [
0 −I

]
Ṙy

i−1 (C.9)

(
ḃy2
i

)
ẑ
=

[
˙̃by1,2
i

0

] [
0 −I

]
Ry

i−1 +

[
b̃y1,2
i

0

] [
0 −I

]
Ṙy

i−1 (C.10)

(
ḃy3
i

)
ẑ
=

[
0

˙̃by2,3
i

] [
0 −I

]
Ry

i +

[
0

b̃y2,3
i

] [
0 −I

]
Ṙy

i (C.11)

C.2 Expressions of
(
ḃzi

)
z
for RTdyn1

This section is devoted to present the derivative expressions of ḃz
i for RTdyn1

accumulations, i.e. for a selection of each reference point coincident with the global
origin of coordinates at each time instant. The analytical derivative of the velocity of
the reference point considered for the generation of expressions below is recalled here:

∂ṙi0
∂z

=
[
I 0

]
Ṙz

i − ω̃i

[
I 0

]
Rz

i (C.12)

318



C.2. Expressions of
(
ḃz
i

)
z
for RTdyn1

� Revolute joint

(
ḃz
i

)
ẑ
=

[
b̃z1,1
i

b̃z2,1
i

] [
0 −I

]
Ṙz

i +

[
˙̃bz1,1
i

˙̃bz2,1
i

] [
0 −I

]
Rz

i +

[
˙̃uj

0

] [
−I 0

]
Rz

i

+

[
ũj

0

]
ω̃i

[
−I 0

]
Rz

i

(C.13)

� Prismatic joint(
ḃz
i

)
ẑ
=

[
˙̃bz1,1
i

0

] [
0 −I

]
Rz

i +

[
b̃z1,1
i

0

] [
0 −I

]
Ṙz

i (C.14)

� Cylindrical joint(
ḃz1
i

)
ẑ
=

[
˙̃bz1,1
i

0

] [
0 −I

]
Rz

i +

[
b̃z1,1
i

0

] [
0 −I

]
Ṙz

i (C.15)

(
ḃz2
i

)
ẑ
=

[
˙̃bz1,2
i

˙̃bz2,2
i

] [
0 −I

]
Rz

i +

[
b̃z1,2
i

b̃z2,2
i

] [
0 −I

]
Ṙz

i +

[
˙̃uj

0

] [
−I 0

]
Rz

i

+

[
ũj

0

]
ω̃i

[
−I 0

]
Rz

i

(C.16)

� Cardan joint

(
ḃz1
i

)
ẑ
=

[
˙̃bz1,1
i

˙̃bz2,1
i

] [
0 −I

]
Rz

i−1 +

[
b̃z1,1
i

b̃z2,1
i

] [
0 −I

]
Ṙz

i−1

+

[
˙̃wj

0

] (
−
[
I 0

]
Rz

i

)
+

[
w̃j

0

] (
−ω̃i

[
I 0

]
Rz

i

)
+

[
˙̃wj

(
−r̃j

)
+ w̃j

(
˙̃ri − ˙̃rj

)
0

] [
0 −I

]
bz0
i +

[
w̃j

(
−r̃j

)
0

] [
0 −I

]
ḃz0
i

(C.17)

(
ḃz2
i

)
ẑ
=

[
˙̃bz1,2
i

˙̃bz2,2
i

] [
0 −I

]
Rz

i +

[
b̃z1,2
i

b̃z2,2
i

] [
0 −I

]
Ṙz

i +

[
˙̃wj

0

] [
−I 0

]
Rz

i

+

[
w̃j

0

]
ω̃i

[
−I 0

]
Rz

i

(C.18)

� Spherical joint

(
ḃz
i

)
ẑ
=

(ω̃i

)
ẑ

0

0
(
ω̃i

)
ẑ

bz
i +

[
ω̃i 0
0 ω̃i

]
(bz

i )ẑ (C.19)

319



C. Derivatives of recursive kinematic relations for RTdyn0 and RTdyn1

� Floating joint

(
ḃz
i

)
ẑ
=

(ω̃i

)
ẑ

0

0
(
ω̃i

)
ẑ

bz
i +

[
ω̃i 0
0 ω̃i

]
(bz

i )ẑ (C.20)

� Planar joint

(
ḃz1
i

)
ẑ
=

[
˙̃bz1,1
i

0

] [
0 −I

]
Rz

i−1 +

[
b̃z1,1
i

0

] [
0 −I

]
Ṙz

i−1 (C.21)

(
ḃz2
i

)
ẑ
=

[
˙̃bz1,2
i

0

] [
0 −I

]
Rz

i−1 +

[
b̃z1,2
i

0

] [
0 −I

]
Ṙz

i−1 (C.22)

(
ḃz3
i

)
ẑ
=

[
˙̃bz1,3
i

˙̃bz2,3
i

] [
0 −I

]
Rz

i +

[
b̃z1,3
i

b̃z2,3
i

] [
0 −I

]
Ṙz

i +

[
˙̃wj

0

] (
−
[
−I 0

]
Rz

i

)
+

[
w̃j

0

]
ω̃i

[
−I 0

]
Rz

i

(C.23)

320



Appendix D

Semi-recursive index-1 DAE
formulation

Index reduction is one of the well-known methods used to simplify the solution
of systems of differential algebraic equations. Despite of the increase of robustness
and the generality of the method, it has an important drawback in the generation
of drift-off, which implies that small perturbations in accelerations cause a quadratic
increase in the error of the constraints in positions.

Considering its properties, this formulation constitutes a suitable method for ini-
tializing the accelerations of any dynamic formulation or to compute certain instants
of time, since the error generated by the drift-off in this case is not propagated nor
accumulated.

The general expression of the classical Lagrange index-1 formulation (see [117]) in
relative coordinates becomes:

Mdz̈+ΦT
ẑλ = Qd (D.1a)

Φẑz̈ = −Φ̇ẑż− Φ̇t = c (D.1b)

One of the possible solutions of (D.1) consists in using a fixed-point scheme in
accelerations combined with a minimum norm solution of the system (if it involves
redundant constraints).

D.1 Direct sensitivity

Considering a set of p parameters ρ ∈ Rp conditioning the dynamic response of
the system, the sensitivity analysis of the index-1 formulation can be obtained taking
derivatives of (D.1) with respect to ρ, according to [2]:

Mdz̈′ +Cż′ +
(
Md

ẑz̈+K+ΦT
ẑẑλ
)
z′ +ΦT

ẑλ
′ = Qd

ρ̂ −Md
ρ̂z̈−ΦT

ẑρ̂λ (D.2a)

Φẑz̈
′ = −2Φ̇ẑż

′ − Φ̈ẑz
′ − Φ̈ρ̂ (D.2b)

Similarly to the dynamic solution proposed for the index-1 DAE, the sensitivities
can be obtained using the same fixed point scheme with the sensitivities of the ac-

321



D. Semi-recursive index-1 DAE formulation

celerations z̈′ as main variables. The sensitivities of positions and velocities can be
determined by means of a numerical integrator.

D.2 Adjoint variable sensitivity

D.2.1 Approach 1

The adjoint variable method has been previously applied to index-1 formulations
in [2], but in the present section a slightly different approach is taken in order to avoid
the computation of high order derivatives such as the second time derivative of the
mass matrix M̈d or the time derivative of the damping matrix Ċ. These terms are
avoided by means of the addition of a change of variables v = ż.

Let us consider the following Lagrangian:

L = ψ −
∫ tF

t0

µT
2

(
Mv̇+ΦT

ẑλ−Q
)
dt−

∫ tF

t0

µT
1 (ż − v) dt−

∫ tF

t0

µT
Φ (Φẑv̇− c) dt

(D.3)

Taking derivatives with respect to ρ:

L′ = ψ′ −
∫ tF

t0

µT
1 (ż′ − v′) dt−

∫ tF

t0

µT
Φ

(
Φẑv̇

′ + 2Φ̇ẑv
′ + Φ̈ẑz

′ + Φ̈ρ̂

)
dt

−
∫ tF

t0

µT
2

(
Mdv̇′ +Cv′ +

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
z′ +Φẑλ

′ −Qd
ρ̂ +Md

ρ̂z̈+ΦT
ẑρ̂λ
)
dt

(D.4)

Regrouping terms:

L′ =

∫ tF

t0

(
gˆ̈z − µ

T
2M

d − µT
ΦΦẑ

)
v̇′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
2C− µT

Φ2Φ̇ẑ + µ
T
1

)
v′dt

+

∫ tF

t0

(
−µT

1

)
ż′dt

+

∫ tF

t0

(
gẑ − µT

2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
gλ − µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.5)

Assuming that v̇ is the temporal derivative of v, and ż the time derivative of z,

322



D.2. Adjoint variable sensitivity

an integration by parts can be applied to (D.5):

L′ =
[(
gˆ̈z − µ

T
2M

d − µT
ΦΦẑ

)
v′]tF

t0

−
∫ tF

t0

(
dgˆ̈z

dt
− µ̇T

2M
d − µT

2 Ṁ
d − µ̇T

ΦΦẑ − µT
ΦΦ̇ẑ

)
v′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
2C− µT

Φ2Φ̇ẑ + µ
T
1

)
v′dt

+
[(
−µT

1

)
z′
]tF
t0

−
∫ tF

t0

(
−µ̇T

1

)
z′dt

+

∫ tF

t0

(
gẑ − µT

2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
gλ − µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.6)

Rearranging terms:

L′ =
[(
−µT

1

)
z′
]tF
t0

+
[(
gˆ̈z − µ

T
2M

d − µT
ΦΦẑ

)
v′]tF

t0

+

∫ tF

t0

(
gˆ̇z −

dgˆ̈z

dt
+ µ̇T

2M
d + µT

2

(
Ṁd −C

)
+ µ̇T

ΦΦẑ − µT
ΦΦ̇ẑ + µ

T
1

)
v′dt

+

∫ tF

t0

(
µ̇T

1 + gẑ − µT
2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
gλ − µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.7)

The previous expressions are valid for any values of the adjoint variables, but the
interest of this technique relies on the group of values that nullify the terms multiplying
the sensitivities of the states, so their calculation can be avoided. Thus, the following
set of adjoint equations is reached:

MdTµ̇2 +
(
Ṁd −C

)T
µ2 +ΦT

ẑ µ̇Φ − Φ̇T
ẑµΦ + µ1 = −gT

ˆ̇z
+

dgT
ˆ̈z

dt
(D.8a)

µ̇1 −
(
Md

ẑv̇+K+ΦT
ẑẑλ
)T
µ2 − Φ̈T

ẑµΦ = −gT
ẑ (D.8b)

Φẑµ2 = gT
λ (D.8c)

[µ1]
tF = 0 (D.8d)[

MdTµ2 +ΦT
ẑµΦ

]tF =
[
gT
ˆ̈z

]tF (D.8e)

The proposed solution for the initial conditions of the adjoint variables in tF is:

323



D. Semi-recursive index-1 DAE formulation

1. Initialize µ1 by means of (D.8d).

2. Calculation of µ2 and µΦ from (D.8c) and (D.8e). These equations can be
solved together using a minimum norm solution in order to handle redundant
constraints, which is a requirement in the MBSLIM. One of the possible solutions
could be the use of the Moore-Penrose generalized inverse, which allows the
computation of the minimum norm solution of a system by means of a singular
value decomposition, as presented in (5.92).

3. Determination of µ̇1 from (D.8b).

4. Evaluation of µ̇2 and µ̇Φ from (D.8a) and the time derivative of (D.8c). In the
following line, the resulting system is presented with the unknowns at the left
side of the equal sign:

MdTµ̇2 +ΦT
ẑ µ̇Φ = −gT

ˆ̇z
+

dgT
ˆ̈z

dt
−
(
Ṁd −C

)T
µ2 + Φ̇T

ẑµΦ − µ1 (D.9a)

Φẑµ̇2 =
dgT

λ

dt
− Φ̇ẑµ2 (D.9b)

The resulting system of equations is analog to the one described in step 2, and
therefore the same scheme of solution can be applied.

The solution of the system composed of (D.8a), (D.8b) and (D.8c) for any time
ti < tF requires a backward integration in time to be computed.

The gradient of the objective function can be finally obtained using the values of
the adjoint variables obtained for each time step and the partial derivatives of the
dynamic terms with respect to the parameters:

ψ′ =
[(
µT

1

)
z′
]
t0
−
[(
gˆ̈z − µ

T
2M

d − µT
ΦΦẑ

)
ż′
]
t0

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.10)

It is convenient to remark that the computation of the sensitivities of the states in
positions and velocities is required only once in the entire simulation, and exclusively
at the initial point. The initial values of positions and velocities in the dynamic
problem are usually computed by means of kinematic problems, so the assessment
of the sensitivities of these problems are almost straightforward and do not involve
dynamic terms such as derivatives of forces or masses.

D.2.2 Approach 2

One of the biggest drawbacks of the computation of the adjoint system of an index-
1 classical Lagrange formulation with the approach described in D.2.1 is related to

the requirement of computation of the time derivative
dgT

ˆ̈z

dt
which involve the jerks

...
z .

This issue is specially important because it has to be computed at each time step.

324



D.2. Adjoint variable sensitivity

In order avoid this derivative, the acceleration of the system can be explicitly
expressed in terms of positions, velocities and Lagrange multipliers, as it is explained
in [2].

Accordingly, (D.2), can be reformulated in a matrix form as:[
Md ΦT

ẑ

Φẑ 0

] [
z̈′

λ′

]
=

[
−Md

ẑz̈−ΦT
ẑẑλ−K

−Φ̈ẑ

]
z′ +

[
−C

−2Φ̇ẑ

]
ż′ +

[
Qd

ρ̂ −Md
ρ̂z̈−ΦT

ẑρ̂λ

−Φ̈ρ̂

]
(D.11)

The leading matrix is the same as the one of the index-1 formulation, with does
not have an inverse if there are redundant constraints, but it has a generalized inverse
in all the cases. Denoting the generalized inverse matrix with the superscript †, (D.11)
can be rewritten as:[
z̈′

λ′

]
=

[
Md ΦT

ẑ

Φẑ 0

]†([−Md
ẑz̈−ΦT

ẑẑλ−K

−Φ̈ẑ

]
z′ +

[
−C

−2Φ̇ẑ

]
ż′ +

[
Qd

ρ̂ −Md
ρ̂z̈−ΦT

ẑρ̂λ

−Φ̈ρ̂

])
(D.12)

which can be reformulated as:

z̈′ = z̈zz
′ + z̈żż

′ + z̈ρ

λ′ = λzz
′ + λżż

′ + λρ

(D.13)

with [
z̈z
λz

]
=

[
Md ΦT

ẑ

Φẑ 0

]† [−Md
ẑz̈−ΦT

ẑẑλ−K

−Φ̈ẑ

]
(D.14a)[

z̈ż
λż

]
=

[
Md ΦT

ẑ

Φẑ 0

]† [ −C

−2Φ̇ẑ

]
(D.14b)[

z̈ρ
λρ

]
=

[
Md ΦT

ẑ

Φẑ 0

]† [
Qd

ρ̂ −Md
ρ̂z̈−ΦT

ẑρ̂λ

−Φ̈ρ̂

]
(D.14c)

Now, the gradient of the Lagrangian (D.3) can be expressed as:

L′ =

∫ tF

t0

(
gˆ̈z − µ

T
2M

d − µT
ΦΦẑ

)
v̇′dt

+

∫ tF

t0

(
gˆ̇z − µ

T
2C− µT

Φ2Φ̇ẑ + µ
T
1

)
v′dt

+

∫ tF

t0

(
−µT

1

)
ż′dt

+

∫ tF

t0

(
gẑ − µT

2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
gλ − µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.15)

325



D. Semi-recursive index-1 DAE formulation

The objective of this new approach is to eliminate the time derivatives of the ob-
jective function, so equations (D.13) are substituted exclusively in the terms involving
any derivative of g. Thus, substituting (D.13) in (D.16) (remember that v̇′ = z̈′):

L′ =

∫ tF

t0

(
−µT

2M
d − µT

ΦΦẑ

)
v̇′dt

+

∫ tF

t0

(
gˆ̇z + gˆ̈zz̈ż + gλλż − µT

2C− µT
Φ2Φ̇ẑ + µ

T
1

)
v′dt

+

∫ tF

t0

(
−µT

1

)
ż′dt

+

∫ tF

t0

(
gẑ + gˆ̈zz̈z + gλλz − µT

2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
−µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ + gˆ̈zz̈ρ + gλλρ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.16)

Now, integrating by parts:

L′ =
[(
−µT

2M
d − µT

ΦΦẑ

)
v′]tF

t0

−
∫ tF

t0

(
−µ̇T

2M
d − µT

2 Ṁ
d − µ̇T

ΦΦẑ − µT
ΦΦ̇ẑ

)
v′dt

+

∫ tF

t0

(
gˆ̇z + gˆ̈zz̈ż + gλλż − µT

2C− µT
Φ2Φ̇ẑ + µ

T
1

)
v′dt

+
[(
−µT

1

)
z′
]tF
t0

−
∫ tF

t0

(
−µ̇T

1

)
z′dt

+

∫ tF

t0

(
gẑ + gˆ̈zz̈z + gλλz − µT

2

(
Md

ẑv̇+K+ΦT
ẑẑλ
)
− µT

ΦΦ̈ẑ

)
z′dt

+

∫ tF

t0

(
−µT

2Φ
T
ẑ

)
λ′dt

+

∫ tF

t0

(
gρ̂ − µT

2

(
Md

ρ̂z̈−Qd
ρ̂ +ΦT

ẑρ̂λ
)
− µT

ΦΦ̈ρ̂

)
dt

(D.17)

Rearranging terms and making null the expressions multiplying the sensitivities
of the states and the Lagrange multipliers, the following set of adjoint equations is

326



D.2. Adjoint variable sensitivity

reached:

MdTµ̇2 +
(
Ṁd −C

)T
µ2 +ΦT

ẑ µ̇Φ − Φ̇T
ẑµΦ + µ1 = −

(
gT
ˆ̇z
+ gˆ̈zz̈ż + gλλż

)T
(D.18a)

µ̇1 −
(
Md

ẑv̇+K+ΦT
ẑẑλ
)T
µ2 − Φ̈T

ẑµΦ = −
(
gT
ẑ + gˆ̈zz̈z + gλλz

)T
(D.18b)

Φẑµ2 = 0 (D.18c)

[µ1]
tF = 0 (D.18d)[

MdTµ2 +ΦT
ẑµΦ

]tF =
[
gT
ˆ̈z

]tF (D.18e)

Observe that the resulting adjoint system of equations generated by this approach
and the one presented in D.2.1 are equivalent and can be solved with the same scheme
of computation. The main advantage of the new set of equations obtained relies on
the avoidance of high order temporal derivatives of the objective function, being the
computation of new terms such as z̈z or λz its more remarkable disadvantage.

327





Appendix E

List of publications

This thesis has been funded by MINECO by means of the doctoral research con-
tract BES-2017-080727, co-financed by the European Union through the ESF program
and associated to the project DPI2016-81005-P.

The work developed during the present thesis has been exposed in different con-
ference presentations, and has lead to one conference paper and one journal paper. It
should be remarked that there are two more journal papers under development related
to some topics discussed in chapter 5. The papers and journal communications are
listed below:

Journal papers

D. Dopico Dopico, A. López Varela, A. Luaces Fernández. Augmented Lagrangian
index-3 semi-recursive formulations with projections. Multibody System Dynamics,
2020. doi: 10.1007/s11044-020-09771-9.

Journal papers under development

Discrete adjoint variable method for the sensitivity analysis of ALI3-P formula-
tions.

Direct sensitivity analysis of semi-recursive ALI3-P formulations.

Conference papers

D. Dopico Dopico, A. López Varela, A. Luaces Fernández. Two general index-3
semi-recursive formulations for the dynamics of multibody systems. In A. Kecskeméthy,
F. Geu Flores, editors, Multibody Dynamics 2019, 401–408. Springer International
Publishing, 2019.

Conference communications

A. López Varela, D. Dopico Dopico, A. Luaces Fernández. Direct sensitivity anal-
ysis of multibody systems modeled with relative coordinates using an augmented La-
grangian formulation with projections. In Proceeding of the ASME 2020 International

329



E. List of publications

Design Engineering Technical Conferences and Computers and Information in Engi-
neering Conference - 16th International Conference on Multibody Systems, Nonlinear
Dynamics and Control. Saint Louis, USA (virtual conference), 2020.

A. López Varela, A. Luaces Fernández, D. Dopico Dopico. Adjoint sensitivity
analysis of multibody systems modeled with joint coordinates using an augmented
Lagrangian formulation with projections. In Proceeding of the ASME 2021 Interna-
tional Design Engineering Technical Conferences and Computers and Information in
Engineering Conference - 17th International Conference on Multibody Systems, Non-
linear Dynamics and Control. Saint Louis, USA (virtual conference), 2021.

A. López Varela, A. Luaces Fernández, D. Dopico Dopico. Discrete adjoint ap-
proach for the sensitivity analysis of an augmented Lagrangian index-3 formulation
with projections. In 10th ECCOMAS Thematic Conference on Multibody Dynamics.
Budapest, Hungary (virtual conference), 2021.

D. Dopico Dopico, A. López Varela, A. Luaces Fernández. Optimization of a
three wheeled tilting vehicle. In 10th ECCOMAS Thematic Conference on Multibody
Dynamics. Budapest, Hungary (virtual conference), 2021.

D. Dopico Dopico, A. López Varela, A. Luaces Fernández. Steering optimal design
of a three wheeled tilting vehicle. In 1st International Conference on Machine Design.
Porto, Portugal, 2021.

D. Dopico Dopico, A. López Varela, A. Luaces Fernández, E. Sanjurjo Maroño.
Kinematic and dynamic optimization of the steering of a tilting tricycle. In IUTAM
Symposium on Optimal Design and Control of Multibody Systems. Hamburg, Ger-
many, 2022.

A. López Varela, D. Dopico Dopico, A. Luaces Fernández. Discrete adjoint variable
method applied to semi-recursive augmented Lagrangian index-3 formulations with
projections. In IUTAM Symposium on Optimal Design and Control of Multibody
Systems. Hamburg, Germany, 2022.

Submitted conference communications

A. López Varela, D. Dopico Dopico, A. Luaces Fernández. Sensitivity analysis
of semi-recursive Augmented Lagrangian formulations with projections. In 6th Joint
International Conference on Multibody System Dynamics and 10th Asian Conference
on Multibody Dynamics. New Delhi, India, 2022.

A. Luaces Fernández, A. López Varela, A. Verulkar, C. Sandu, A. Sandu, D.
Dopico Dopico. Optimal design and control of the steering of a tilting tricycle. In
6th Joint International Conference on Multibody System Dynamics and 10th Asian
Conference on Multibody Dynamics. New Delhi, India, 2022.

330



Appendix F

Resumo estendido

A análise de sensibilidade é unha ferramenta extraordinariamente útil na opti-
mización de sistemas multicorpo, tanto a nivel de deseño como a nivel de operación
ou control. A sensibilidade dunha determinada función con respecto duns parámetros
ofrece unha medida do efecto ou impacto deses parámetros na función, o cal per-
mite obter, entre outras cousas, unha medida de avance dun optimizador baseado en
gradiente.

Existen múltiples métodos de diferenciación para acadar a sensibilidade dun deter-
minado sistema de ecuacións. A opción máis sinxela e inmediata abrangue os métodos
numéricos de diferencias finitas, que se fundamentan na perturbación da función ob-
xectivo. Estes métodos, áında que simples, teñen un problema intŕınseco; o chamado
“dilema de tamaño de paso”. Para perturbacións moi grandes, a aproximación da
derivada mediante diferencias finitas incorpora grandes erros, mentres que pertur-
bacións moi reducidas engaden erros numéricos relativos á resta de magnitudes moi
semellantes. Este inconveniente pode ser evadido mediante o uso do método de dife-
rencias finitas en variable complexa, de forma que é posible empregar perturbacións
extremadamente pequenas sen incorporar erros á derivada. Sen embargo, este último
método implica ampliar calquera cálculo para soportar variables complexas.

Outro método de diferenciación en auxe hoxe en d́ıa é a diferenciación automática.
Esta técnica baséase na utilización de libreŕıas e ferramentas matemáticas que son
quen de calcular a derivada de calquera función a través das derivadas anaĺıticas das
operacións elementais que a compoñen mediante a aplicación da regra da cadea. O
único que require esta técnica é unha definición particular de cada unha das funcións
involucradas no cálculo xeral da función obxectivo, de forma que as libreŕıas externas
saiban interpretar os cálculos requiridos pola función principal. O aumento de libreŕıas
ou paquetes software dedicados a este tipo de tarefas fixo que nos últimos anos moitos
investigadores optasen por esta opción nos seus cálculos de sensibilidade. A diferen-
ciación automática permite unha sensibilidade con alta precisión cun reducido coste
a nivel de implementación, pero existen outros métodos que seguen sendo os máis
eficientes a nivel de tempo de computación: os métodos anaĺıticos.

A diferenciación anaĺıtica fundaméntase no cálculo e ensamblaxe das expresións
anaĺıticas de cada dependencia da función obxectivo. Esta técnica require un enorme

331



F. Resumo estendido

esforzo de implementación, pero como contrapartida tamén soe conducir ós cálculos
máis eficientes, xa que o estudo anaĺıtico das derivadas permite simplificar cálculos e
evitar repeticións.

Dentro das técnicas para a análise de sensibilidade, pódense distinguir métodos de
diferenciación directa e métodos de variable adxunta. Os primeiros xeran un problema
expresado en función das sensibilidades das variables do problema orixinal, mentres
que o método adxunto permite reformular a análise de sensibilidade para evitar ter
que calcular esas sensibilidades das variables primarias, que poden ser computacional-
mente moi custosas para un elevado número de parámetros.

Volvendo a sistemas multicorpo, a aplicación de técnicas de análise de sensibili-
dade pode facerse a nivel de cinemática ou de dinámica. A cinemática de calquera
sistema multicorpo ven determinada por unha serie de ecuacións alxébricas a nivel de
relacións recursivas ou a nivel de restricións. A dinámica, sen embargo, ven descrita
por ecuacións diferenciais alxébricas (máis coñecidas polas súas siglas en inglés DAE
ou differential algebraic equations), e a súa análise de sensibilidade é máis complexa,
especialmente se se empregan métodos anaĺıticos. No presente traballo estúdase a
aplicación de técnicas de sensibilidade anaĺıticas á dinámica de sistemas multicorpo
modelada mediante coordenadas de par ou relativas.

En xeral, pódense distinguir tres tipos de coordenadas amplamente despregadas
na comunidade multicorpo: coordenadas de punto de referencia, coordenadas naturais
(ou completamente Cartesianas), e coordenadas relativas. As coordenadas de punto
de referencia constitúen quizais unha das formas máis directas e sistemáticas de mo-
delar un sistema multicorpo. Neste caso, o movemento de cada corpo ven descrito
pola posición e orientación dun punto, que frecuentemente acostuma a coincidir co
centro de masas. Un dos problemas deste tipo de coordenadas reside na imposibili-
dade de definir unha orientación mediante tres parámetros sen singularidades. Moitos
autores describen a orientación mediante tres variables pero empregan métodos para
manexar esas configuracións singulares. Outros empregan conxuntos de parámetros
redundantes, sendo o máis destacado o conxunto de parámetros de Euler, que consiste
en catro parámetros condicionados por unha restrición de norma unitaria. A maiores,
tamén existen novos estudos fundamentados na teoŕıa de grupos de Lie, que permiten
utilizar parametrizacións locais de forma que non se acadan configuracións singulares
dentro dun paso de tempo.

O segundo método de modelado consiste no emprego de coordenadas puramente
Cartesianas, é dicir, coordenadas de puntos e vectores. Con esta definición supérase o
problema de parametrización das orientacións das coordenadas de punto de referencia,
pero esta non é a única vantaxe. Aı́nda que para a definición do mecanismo é preciso
empregar un elevado número de puntos e vectores (12 coordenadas cartesianas para
un sólido 3D), as relacións cinemáticas de compartición de puntos e vectores poden
ser establecidas de forma automática e as restricións resultantes son, como moito,
cuadráticas. Este tipo de coordenadas producen sistemas de ecuacións moi dispersos,
pero mediante o uso de solvers e álxebra dispersa pódense conseguir solucións moi
eficientes da dinámica multicorpo.

A terceira das ramas do modelado en sistemas multicorpo consiste no uso das

332



coordenadas dos pares cinemáticos como variables do modelo. Este sistema constitúe
a maneira máis natural de modelar un sistema multicorpo, especialmente en cadeas
abertas. Neste tipo de modelos, os graos de liberdade son (habitualmente) directa-
mente identificables coas coordenadas de par en cadeas abertas, o cal implica que
se consegue unha parametrización do modelo en coordenadas mı́nimas. En cadeas
pechadas, esta identificación de coordenadas de par e graos de liberdade xa non se
cumpre, e é preciso eliminar un dos pares para converter a cadea pechada nunha cadea
aberta. Para manter a topolox́ıa de cadea pechada, é necesario introducir unha res-
trición cinemática que garanta o movemento relativo do par eliminado. Deste xeito,
unha cadea pechada pode expresarse en termos dunha cadea aberta suxeita a unha
serie de restricións cinemáticas. Os modelos de coordenadas relativas habitúan a xerar
modelos reducidos que é posible resolver de forma moi eficiente. Porén, non é posible
determinar que estes modelos xeren sempre as solucións mais rápidas, senón que a
eficiencia de cada modelización depende do mecanismo e da manobra executada. Por
este motivo, é extremadamente útil ter dispoñible nunha mesma libreŕıa multicorpo
a posibilidade de resolver sistemas mecánicos a través de diferentes modelos.

Neste respecto, no Laboratorio de Ingenieŕıa Mecánica da Universidade da Coruña
desenvolveuse unha libreŕıa de propósito xeral para a simulación da cinemática, diná-
mica e sensibilidade (entre outros problemas) de modelos multicorpo chamada MB-
SLIM. Esta libreŕıa foi orixinalmente deseñada en coordenadas naturais debido ás súas
grandes vantaxes en canto á definición de modelos, propiedades dinámicas (matriz de
masas constante), ou simplicidade das restricións xeradas. Recentemente xurdiu a
posibilidade de ampliar esta libreŕıa para coordenadas relativas, de maneira que fose
posible resolver determinados modelos de forma máis eficiente. Parte do traballo
desenvolto durante a presente tese consistiu na implementación destes modelos na
libreŕıa multicorpo MBSLIM, tanto a nivel de creación de modelo como cinemática,
dinámica e sensibilidade. Cabe destacar que esta programación supuxo a maior parte
dos esforzos desta tese para poder obter un código xeral, robusto e eficiente.

No caṕıtulo 2 da tese, preséntase unha revisión das relacións cinemáticas para sete
dos tipos de pares máis habituais no modelado de sistemas multicorpo en 3 dimensións.
Cada par estúdase en termos de cinemática a nivel de posición, e tamén se xeran unha
serie de relacións recursivas a nivel de velocidade que suporán a base dos métodos de
cálculo tanto cinemático como dinámico. As relacións recursivas expresan a velocidade
e aceleración lineal dun punto de referencia dun corpo e a velocidade e aceleración
angulares dese corpo en relación coas mesmas magnitudes do corpo anterior.

En tanto as magnitudes lineais son relativas a un determinado punto de referen-
cia, as relacións recursivas de cada par involucrarán o punto de referencia usado, o
cal implica que se obterán expresións diferentes para cada selección. Por este mo-
tivo, desenvolvéronse unha serie de expresións xerais válidas para calquera punto de
referencia, e despois particularizáronse para dous conxuntos de puntos de referencia
amplamente empregados en métodos recursivos, que se corresponden cos centro de
masa de cada corpo (RTdyn0) ou ben cos puntos coincidentes coa orixe global de
coordenadas en cada instante (RTdyn1).

A cinemática dos modelos de coordenadas relativas de cadea aberta pode ser di-

333



F. Resumo estendido

rectamente calculada gracias ás relacións cinemáticas e recursivas de cada tipo de
par, pero a dinámica precisa máis pasos. En primeiro lugar, é necesario determinar
que tipo de método se pretende utilizar para resolver a dinámica, xa que métodos
semi-recursivos ou métodos completamente recursivos requiren pasos e ensamblaxes
completamente diferentes. En ambos métodos, o primeiro paso consiste en determi-
nar a matriz de masas e o vector de forzas xeneralizado para cada corpo expresado en
función do punto de referencia seleccionado. O seguinte paso consiste na acumulación,
que en métodos semi-recursivos leva á construción dunha matriz de masas cadrada
do tamaño do vector de coordenadas relativas e a un vector de forzas coa mesma
magnitude. O cálculo totalmente recursivo é diferente a este respecto, xa que non
require ensamblar grandes matrices ou vectores, senón acumular matrices de masas e
vectores de forzas xeneralizados entre corpos consecutivos partindo dos extremos da
árbore cinemática ata a base do mecanismo.

No caṕıtulo 3, as expresións de cadea aberta desenvoltas no caṕıtulo 2 son com-
binadas con restricións para poder resolver problemas de cadea pechada. Os clásicos
problemas cinemáticos de posición inicial, desprazamentos finitos, velocidade e acelera-
ción son particularizados para o caso de coordenadas relativas engadindo unha nova
caracteŕıstica non recollida polo momento en ningún outro dos textos revisados polo
autor: a posibilidade de empregar graos de liberdade sen estar contidos no vector de
coordenadas dependentes. Esta propiedade é retomada en formulacións dinámicas en
coordenadas independentes tamén estudadas nesta tese.

A primeira das formulacións dinámicas estudada e implementada na libreŕıa con-
siste na formulación Matriz R semi-recursiva, que recolle os desenvolvementos de cadea
aberta do caṕıtulo 2 e os combina cun esquema de proxección das coordenadas rela-
tivas no manifold de coordenadas independentes. Este proceso require a resolución
dos problemas cinemáticos de posición e velocidade unha vez por iteración, o cal pode
supoñer un grande esforzo computacional. Outra posible imposición das restricións
en sistemas de cadea pechada consiste no uso dun esquema de Lagrangiano aumen-
tado de ı́ndice 3 con proxeccións (máis coñecido polas súas siglas en inglés ALI3-P ou
Augmented Lagrangian Index-3 formulation with projections). Este esquema com-
bina a imposición do vector de restricións a nivel de posición cunha proxección en
velocidades e outra en aceleracións para garantir un determinado nivel de cumpri-
mento das restricións a niveles de velocidade e aceleración. Este é un esquema: moi
robusto, xa que permite a definición de restricións redundantes ou matrices de masas
singulares (con coordenadas sen masa asociada); é preciso, gracias ó bo cumprimento
de restricións a niveles de posición, velocidade e aceleración; e é moi eficiente, gracias
á resolución mediante un esquema de Lagrangiano aumentado e grazas á resolución
de proxeccións coa mesma matriz de proxección, que permite factorizar a matriz do
sistema só unha vez por paso de tempo.

A maiores, tamén se estudou a aplicación de restricións a formulacións totalmente
recursivas, pero debido á súa elevada complexidade e ó seu comportamento franca-
mente pouco robusto, decidiuse non inclúır estes desenvolvementos no presente docu-
mento de tese. Aı́nda aśı, o traballo con estas formulacións non foi en van, xa que
foi posible empregar acumulacións totalmente recursivas no cálculo de sensibilidades

334



semi-recursivas.

A contribución máis importante do presente traballo atópase no caṕıtulo 4, dedi-
cado ó cálculo anaĺıtico de tódolos termos involucrados na análise de sensibilidade
de formulacións recursivas de cadea aberta. As formulacións recursivas, tanto semi-
recursivas como completamente recursivas, carrexan unha serie de inconvenientes que
fixeron que ata o momento non se estudasen de forma detallada a nivel de sensibilidade
anaĺıtica. O maior problema é relativo á cantidade de operacións intermedias nece-
sarias para obter a dinámica, inclúındo cálculo de relacións recursivas, ensamblaxe de
termos a nivel de sólido, etc. É obvio que unha longa concatenación de produtos e
operacións na dinámica implica unha explosión a nivel de sensibilidade, que pode facer
que a análise de sensibilidade sexa altamente ineficiente. No caṕıtulo 4 preséntanse
tódalas ecuacións e relacións necesarias para poder executar unha análise de sensi-
bilidade de sistemas de cadea aberta modelados en coordenadas relativas. Tódalas
expresións finais foron estudadas para mellorar a eficiencia e para simplificar o pro-
ceso de implementación. Cabe destacar que tódalas expresións foron orixinalmente
referidas a un conxunto de puntos de referencia arbitrario e logo foron particularizadas
para os dous conxuntos máis usados, é dicir, para RTdyn0 e RTdyn1.

Un dos desenvolvementos máis destacables presentados nesta tese consiste no
cálculo e ensamblaxe eficiente das derivadas relativas a puntos e vectores. Mediante
unha simplificación de termos acadouse unha definición de derivadas que non depende
do punto de referencia seleccionado, o cal unifica as expresións de RTdyn0 e RTdyn1,
facilitando o proceso de implementación. A maiores, tamén se presentan nesta tese
os cálculos precisos para obter as derivadas parciais con respecto de calquera tipo
de parámetro, facendo especial fincapé no caso de coordenadas locais de puntos que
afectan á topolox́ıa do sistema.

No caṕıtulo 5, a sensibilidade dos problemas cinemáticos de posición, velocidade e
aceleración son estudados empregando tanto o método de diferenciación directa como
o método de variable adxunta. Estes cálculos, ademais de ter interese en śı, tamén se
inclúen como parte dos desenvolvementos requiridos na sensibilidade de formulacións
dinámicas con restricións.

A sensibilidade de Matriz R semi-recursiva tamén é estudada mediante os métodos
de diferenciación directa e variable adxunta continua, prestando especial atención á
posibilidade de empregar como coordenadas independentes un conxunto de variables
que non estean inclúıdas no vector de coordenadas relativas dependentes. Tanto a
aplicación do método de diferenciación directa como adxunta están fundamentados
en traballos previos, pero neste caso ampĺıase a xeneralidade dos métodos da biblio-
graf́ıa mediante a posibilidade de ter coordenadas independentes fora do vector de
coordenadas dependentes.

A análise de sensibilidade da formulación ALI3-P semi-recursiva é significativa-
mente máis complexa que a de Matriz R, en parte debido ás iteracións dos multipli-
cadores de Lagrange, á aplicación de ecuacións alxébricas adicionais (proxeccións) e
á definición das ecuacións do movemento mediante ecuacións diferenciais alxébricas
de ı́ndice 3. Se ben a aplicación do método de diferenciación directa é máis ou menos
inmediato, o proceso para a obtención das ecuacións de variable adxunta é realmente

335



F. Resumo estendido

intricado. Por este motivo se desenvolveron dous esquemas en paralelo, un empre-
gando o método continuo de variable adxunta e outro o discreto.

No método continuo de variable adxunta considéranse as ecuacións do movemento
como expresións continuas, e deŕıvanse baixo esta asunción aplicando integración por
partes no tempo. Isto implica que se xeran unha serie de condicións no tempo final
da simulación dinámica que determinan a inicialización das variables adxuntas, con-
vertendo este cálculo de valores iniciais nun proceso realmente complexo. Adicional-
mente, a integración por partes implica a aparición de novas derivadas temporais
que non son necesarias na dinámica e poden ser computacionalmente custosas. No
método discreto, pola contra, o Lagrangiano adxunto constrúese a partir das ecuacións
da dinámica discretizada, o cal implica que as ecuacións do integrador empregado na
dinámica determinarán as expresións adxuntas finais. A pesar deste contratempo, o
proceso de inicialización das variables adxuntas é inmediato e non son precisas máis
derivadas que as requiridas no método de diferenciación directa.

A aplicación de ambos métodos á formulación ALI3-P semi-recursiva levouse a
cabo de forma satisfactoria, se ben se comprobou empiricamente que o método con-
tinuo ten xeralmente un peor comportamento que o discreto tanto a nivel de precisión
como a nivel de coste computacional.

No caṕıtulo 6 descŕıbense brevemente os esforzos de implementación necesarios
para programar os métodos introducidos na presente tese na libreŕıa MBSLIM. Non
se pretende que este caṕıtulo sexa unha gúıa de programación nin un listado deta-
llado dos procedementos de creación de modelos, composición de sistemas e resolución
de ecuacións, senón unha descrición das liñas mestras seguidas durante o proceso
de implementación. Tamén se inclúen neste caṕıtulo desenvolvementos intermedios
para maximizar a eficiencia dos métodos dinámicos e de sensibilidade, e coméntase o
proceso seguido para a validación da implementación de cada expresión dinámica e
de sensibilidade.

O caṕıtulo 7 manifesta a xeneralidade, corrección, exactitude e eficiencia dos
métodos dinámicos e de análise de sensibilidade descritos ó longo do documento me-
diante a avaliación do seu desempeño en experimentos numéricos con cinco meca-
nismos: un mecanismo de cinco barras, un biela manivela espacial, un veh́ıculo tipo
buggy, unha bicicleta e un sistema composto por unha cadea e unha áncora. Os dous
primeiros mecanismos son exemplos tradicionalmente usados como banco de probas
que teñen solucións dinámicas coñecidas, e utiĺızanse para comprobar a exactitude e
eficiencia tanto das formulacións dinámicas semi-recursivas como das formulacións de
sensibilidade semi-recursiva. No terceiro e cuarto modelo próbanse as formulacións
dinámicas e de sensibilidade en exemplos máis complexos, e inclúen a aplicación dos
cálculos de sensibilidade na resolución dun problema de deseño óptimo e doutro proble-
ma de control óptimo. A optimización de mecanismos é un dos fins últimos da análise
de sensibilidade, e a este respecto, comprobouse a utilidade dos métodos de sensi-
bilidade descritos. O último experimento serve como demostración das limitacións
dos métodos semi-recursivos, e manifesta a vantaxe de poder contar con libreŕıas que
soporten varios sistemas de modelado en diversas coordenadas.

Cabe destacar que tódolos resultados dinámicos e de sensibilidade se compararon

336



cos obtidos con formulacións globais en coordenadas naturais, e obtivéronse extraordi-
narios niveles de converxencia a pesar da diferencia de modelos (naturais e relativas),
diferencia de formulacións (ALI3-P e Matriz R), diferencia na selección de puntos
de referencia (RTdyn0 e RTdyn1), diferencia de métodos de sensibilidade (adxunta
e directa) e mesmo diferencia de filosof́ıas de discretización (métodos adxuntos con-
tinuo e discreto). Os resultados obtidos deses experimentos numéricos validan tanto
os desenvolvementos teóricos presentados ó longo da tese como a implementación na
libreŕıa multicorpo de propósito xeral MBSLIM.

O traballo desenvolto nesta tese abre as portas a outros traballos futuros que
non foron realizados polo momento debido á falta de tempo e/ou á magnitude dos
mesmos. Entre eles, podemos destacar o desenvolvemento de formulacións totalmente
recursivas con restricións, o estudo e implementación de algoritmos de optimización
baseados en gradiente, a paralelización das ecuacións da dinámica e da sensibilidade,
ou a extensión dos presentes métodos a sólidos flexibles.

337




	Introduction
	Motivation
	State of the art
	Multibody modeling
	Sensitivity analysis
	Optimization

	Objectives
	Thesis structure

	Topological formulations for the dynamics of open-loop systems
	Kinematics
	Revolute joint kinematics
	Prismatic joint kinematics
	Cardan joint kinematics
	Cylindrical joint kinematics
	Spherical joint kinematics
	Floating joint kinematics
	Planar joint kinematics

	Recursive kinematic relations
	Revolute joint recursive equations
	Prismatic joint recursive equations
	Cardan joint recursive equations
	Cylindrical joint recursive equations
	Spherical joint recursive equations
	Floating joint recursive equations
	Planar joint recursive equations

	Kinematic analysis of minimal relative coordinate models
	Initial position problem
	Velocity problem
	Acceleration problem

	Equations of motion for unconstrained open-loop systems
	Semi-recursive method
	Fully-recursive method
	Specific semi-recursive formulations


	Topological formulations for the dynamics of closed-loop systems
	Kinematics for non-minimal relative coordinates
	Initial position problem
	Kinematic velocity analysis
	Kinematic acceleration analysis
	Topological kinematics with natural coordinates as degrees of freedom

	Semi-recursive Matrix R formulations
	Non-constant B matrix

	Semi-recursive ali3p formulations
	Semi-recursive penalty formulation
	Topological constraints
	Euler parameters normalization constraint
	Spherical joint: loop-closure constraint
	Revolute joint: loop-closure constraint
	Cylindrical joint: loop-closure constraint
	Prismatic joint: loop-closure constraint
	Cardan joint: loop-closure constraint
	Planar joint: loop-closure constraint

	Topological derivatives: qz
	Topological derivatives: qpz
	Evaluation of Rp 

	Sensitivity analysis of unconstrained open-loop systems
	Introduction to sensitivity analysis on joint coordinates
	Forward sensitivity of semi-recursive EoM for open-loop systems
	Semi-recursive mass matrix derivatives
	Semi-recursive generalized forces derivatives

	Forward sensitivity of fully-recursive EoM for open-loop systems
	Derivatives of recursive kinematic relations
	Evaluation of Aiz
	Evaluation of Airho
	Evaluation of biz
	Evaluation of bipz
	Evaluation of bipzp
	Evaluation of birho
	Evaluation of biprho
	Evaluation of Biz
	Evaluation of Bipz
	Evaluation of Bipzp
	Evaluation of Birho
	Evaluation of Biprho
	Evaluation of diz
	Evaluation of dizp
	Evaluation of dirho

	Point and vector derivatives
	Elemental evaluation of qz
	Elemental evaluation of qpz
	Elemental evaluation of qsz
	Elemental evaluation of qzz
	Elemental evaluation of qTzz
	Elemental evaluation of qpzz
	Evaluation of qrho
	Evaluation of qprho
	Evaluation of qsrho
	Evaluation of qzrho
	Evaluation of qpzrho


	Sensitivity analysis of closed-loop systems
	Kinematic sensitivity analysis
	Forward sensitivity 
	Adjoint sensitivity 

	Sensitivity analysis of semi-recursive Matrix R formulations
	Forward sensitivity
	Adjoint sensitivity

	Sensitivity analysis of semi-recursive penalty formulations
	Forward sensitivity
	Adjoint sensitivity

	Sensitivity analysis of semi-recursive ali3p formulations
	Forward sensitivity
	Adjoint sensitivity

	Constraint derivatives
	Evaluation of fizz
	Evaluation of fipzz
	Evaluation of firho
	Evaluation of fizrho
	Evaluation of fiprho
	Evaluation of fipzrho
	Evaluation of fisrho


	Implementation of the proposed methods in mbslim
	Kinematics formulations
	Forward dynamics formulations
	Simplified evaluation of Qd - Md  
	Approximate tangent matrix

	Sensitivity analysis.
	Simplified calculation of Qd - Md  

	Design optimization and optimal control of multibody systems
	Software integration

	Numerical experiments
	Five-bar mechanism
	Multibody model
	Numerical results: dynamics
	Numerical results: sensitivity analysis

	Spatial slider crank
	Multibody model
	Numerical results: dynamics
	Numerical results: sensitivity analysis

	Buggy vehicle
	Multibody model
	Numerical results: dynamics
	Numerical results: sensitivity analysis
	Numerical results: design optimization

	Bicycle
	Multibody model
	Numerical results: dynamics
	Numerical results: sensitivity analysis
	Numerical results: optimal control

	Ship anchor maneuver
	Multibody model
	Numerical results: dynamics
	Numerical results: sensitivity analysis


	Conclusions and future work
	Conclusions
	Future work

	Derivative of angular velocity with respect to positions of relative coordinates
	Math notes: skew symmetric matrix of a vector and skew symmetric tensor of a matrix
	Derivatives of recursive kinematic relations for RTdyn0 and RTdyn1
	Expressions of bipz for RTdyn0
	Expressions of bipz for RTdyn1

	Semi-recursive index-1 dae formulation 
	Direct sensitivity
	Adjoint variable sensitivity
	Approach 1
	Approach 2


	List of publications
	Resumo estendido

