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Abstract

A Boundary Element approach for the numerical computation of substation grounding systems is pre-

sented. In this general formulation, several widespread intuitive methods (such as Average Potential

Method) can be identi�ed as the result of speci�c choices for the test and trial functions and suitable as-

sumptions introduced in the BEM formulation to reduce computational cost. While linear and parabolic

leakage current elements allow to increase accuracy, computing time is drastically reduced by means of

new completely analytical integration techniques and semi-iterative methods for solving linear equations

systems. This BEM formulation has been implemented in a speci�c Computer Aided Design system for

grounding analysis developed in the last years. The feasibility of this new approach is demonstrated with

its application to a real problem.
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1 Introduction

In general, a safe earthing system has the objectives of granting the integrity of equipments and the

continuity of the service under fault conditions |providing means to carry and dissipate electric currents

into the ground| and safeguarding that a person working or walking in the surroundings of grounded

installations is not exposed to the danger of su�ering an electrical shock. To achieve these goals, the

equivalent electrical resistance of the system must be low enough to assure that fault currents dissipate

mainly through the grounding grid into the earth, while maximum potential gradients between close points

on the earth surface must be kept under certain tolerances (step, touch and mesh voltages) [1,2].

Physical phenomena underlying fault currents dissipation into the earth can be modelled by means of

Maxwell's Electromagnetic Theory [3]. Constraining the analysis to obtain the electrokinetic steady-state

response and neglecting the inner resistivity of the earthing conductors |therefore, potential can be

assumed constant in every point of the electrodes surface|, the 3D problem associated with an electrical

current derivation to earth can be written as

�������������� = �













 grad(V ); div(��������������) = 0 in E;

��������������tnnnnnnnnnnnnnnE = 0 in �E ; V = V� in �; V �! 0 if jxxxxxxxxxxxxxxj ! 1;
(1)

where E is the earth, 













 its conductivity tensor, �E the earth surface, nnnnnnnnnnnnnnE its normal exterior unit �eld and

� the electrode surface [4,5]. The solution at this problem gives the potential V and the current density ��������������



at an arbitrary point xxxxxxxxxxxxxx when the electrode attains a voltage V� (Ground Potential Rise or GPR) relative to

a distant grounding point assumed to be at the potential of remote earth. Since V and �������������� are proportional

to the GPR value, the normalized boundary condition V� = 1 is not restrictive at all.

On the other hand, the leakage current density � at an arbitrary point of the earthing electrode surface,

the total surge current I� leaked into the ground when fault conditions occur, and the equivalent resistance

of the earthing system Req (apparent resistance of the earth-electrode circuit) can be written as:

� = ��������������tnnnnnnnnnnnnnn; I� =

Z Z
�

� d�; Req =
V�

I�
: (2)

being nnnnnnnnnnnnnn the normal exterior unit �eld to �.

For practical purposes, the hypothesis of homogeneous and isotropic soil can be considered acceptable [2],

and its conductivity tensor 













 can be substituted by a meassured apparent scalar conductivity 
. Otherwise,

since the kind of techniques presented in this paper can be extended to multi-layer soil models (these models

represent the ground strati�ed into two or more layers of appropriate thickness each one with a di�erent

value of 
 [6]), further discussion and examples are restricted to uniform soils. If one further assumes that

the earth surface is horizontal, symmetry allows to rewrite (1) in terms of a Dirichlet Exterior Problem [5].

In practice, the particular geometry of the earthing electrode in most electrical installations |a grid of

interconnected bare cylindrical conductors, horizontally buried and supplemented by a number of vertical

rods, which ratio diameter/lenght uses to be relatively small (of the order of 10�3)| makes very di�cult to

obtain analytical solutions to this kind of problems. Therefore, the use of standard numerical techniques

(such as Finite Di�erences or Finite Elements) requires the discretization of domain E, and to obtain

su�ciently accurate results should imply unacceptable computing e�orts in memory storage and CPU

time.

On the other hand, since computation of potential is only required on the earth surface �E , and the

equivalent resistance can be easily obtained in terms of the leakage current density at points of the

earthing electrode surface (2), a Boundary Element approach (which would only require the discretization

of the grounding surface �) seems to be the right choice [7,8,9].

2 General Boundary Element Formulation

The application of results of the Potential Theory to problem (1) allows to express the potential V at an

arbitrary point xxxxxxxxxxxxxx on the earth E in terms of the unknown leakage current density � in �, in the integral

form:

V (xxxxxxxxxxxxxx) =
1

4�


Z Z
��������������2�

k(xxxxxxxxxxxxxx; ��������������) �(��������������) d� (3)

with the weakly singular kernel k(xxxxxxxxxxxxxx; ��������������)

k(xxxxxxxxxxxxxx; ��������������) =

�
1

r(xxxxxxxxxxxxxx; ��������������)
+

1

r(xxxxxxxxxxxxxx; ��������������0)

�
; r(xxxxxxxxxxxxxx; ��������������) =

��xxxxxxxxxxxxxx� ��������������
��; (4)

where ��������������0 is the symmetric of �������������� with respect to the earth surface [4,5,10,11].



Since (3) holds on the earthing electrode surface �, the boundary condition V� = 1 leads to a Fredholm

integral equation of the �rst kind on � with quasi-singular kernel (4), which solution is the unknown

leakage current density � [5]. Moreover, the variational form

Z Z
��������������2�

w(��������������) (V (��������������)� 1) d� = 0: (5)

must be satis�ed for all members w(��������������) of a suitable class of test functions de�ned on �.

Now, for a given set of N trial functions fNi(��������������)g de�ned on �, and for a given set ofM 2D boundary ele-

ments f��g, the unknown leakage current density � and the earthing electrode surface � can be discretized

in the form

�(��������������) =

NX
i=1

�iNi(��������������); � =

M[
�=1

��; (6)

and a discretized form of potential (3) can be written as

V (xxxxxxxxxxxxxx) =

NX
i=1

�i Vi(xxxxxxxxxxxxxx); Vi(xxxxxxxxxxxxxx) =

MX
�=1

V �
i (xxxxxxxxxxxxxx); (7)

being V �
i (xxxxxxxxxxxxxx) potential coe�cients

V �
i (xxxxxxxxxxxxxx) =

1

4�


Z Z
��������������2��

k(xxxxxxxxxxxxxx; ��������������)Ni(��������������) d�
�: (8)

Then, for a given set of N test functions fwj(��������������)g de�ned on �, the variational statement (5) is reduced

to the system of linear equations

NX
i=1

Rji�i = �j ; j = 1; : : : ;N ; (9)

Rji =
MX
�=1

MX
�=1

R
��

ji ; �j =
MX
�=1

�
�

j ; (10)

R
��

ji =
1

4�


ZZ
��������������2��

wj(��������������)

ZZ
��������������2��

k(��������������;��������������)Ni(��������������) d�
�d�� (11)

�
�

j =

ZZ
��������������2��

wj(��������������) d�
� : (12)

In practice, the number of 2D discretizations required to solve the above stated equations in real problems

implies an extremely large number of degrees of freedom. Moreover, coe�cients matrix in (9) is full and

the computation of each term requires double integration on a 2D domain, and therefore some additional

simpli�cations must be introduced to overcome the problem complexity.



3 Aproximated 1D Variational Statement

With this scope, it is possible to introduce in our statement one of the hypotheses widely used in most

of the practical methods related in the literature [1,2,11]. Thus, taking into account the real geometry of

grounding grids in practice, it seems reasonable to consider that the leakage current density is constant

around the cross section of the cylindrical electrode [4,5].

Hence, if we denote L the whole set of axial lines of the buried conductors, b�������������� the orthogonal projection over

the bar axis of a given generic point �������������� 2 �, �(b��������������) the electrode diameter, C(b��������������) the circumferential perimeter

of the cross section at b��������������, and b�(b��������������) the approximated leakage current density at this point (assumed uniform

around the cross section), equation (3) can be written in the form

bV (xxxxxxxxxxxxxx) = 1

4�


Z
b��������������2L

"Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC

#b�(b��������������) dL: (13)

This assumption of circumferential uniformity seems to be quite adecquate and not too restrictive due to

the speci�c geometry of these earthing electrodes in real cases. Nevertheless, because the leakage current

is not really uniform around the cross section, boundary condition V� = 1 can not be exactly satis�ed now

at every point on the electrode surface and variational equality (5) does not hold anymore. Therefore, if we

restrict the class of trial functions to those with circumferential uniformity, that is w(��������������) = bw(b��������������) 8�������������� 2 C(b��������������),
(5) results: Z

b��������������2L
bw(b��������������)"��(b��������������)� 1

4�


Z
b��������������2L

K(b��������������;b��������������) b�(b��������������) dL# dL = 0 (14)

for all members bw(b��������������) of a suitable class of test functions de�ned on L, being K(b��������������;b��������������) the integral kernel
K(b��������������;b��������������) = Z

��������������2C(b��������������)

"Z
��������������2C(b��������������)

k(��������������;��������������) dC

#
dC: (15)

Resolution of integral equation (14) involves discretization of the domain |in this case, the whole set of

axial lines of the buried conductors L|. Thus, for given sets of n trial functions f bNi(b��������������)g de�ned on L

and m 1D boundary elements fL�g, the unknown approximated leakage current density b� and the whole

set of axial lines of the buried conductors L can be discretized in the form

b�(b��������������) = nX
i=1

b�i bNi(b��������������); L =

m[
�=1

L�; (16)

In these terms, a discretized version of the aproximated potential (13) can be obtained as

bV (xxxxxxxxxxxxxx) = nX
i=1

b�i bVi(xxxxxxxxxxxxxx); bVi(xxxxxxxxxxxxxx) = mX
�=1

bV �

i (xxxxxxxxxxxxxx); (17)



bV �
i (xxxxxxxxxxxxxx) =

1

4�


Z
b��������������2L�

"Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC

# bNi(b��������������) dL: (18)

On the other hand, for a suitable selection of n test functions f bwj(b��������������)g de�ned on L, variational statement

(14) is reduced to the system of linear equations

nX
i=1

bRjib�i = b�j ; j = 1; : : : ; n; (19)

bRji =
mX
�=1

mX
�=1

bR��

ji ; b�j = mX
�=1

b�j� ; (20)

where bR��

ji and b�j� coe�cients can be obtained as

bR��
ji =

1

4�


Z
b��������������2L�

bwj(b��������������)
"Z

b��������������2L�
K(b��������������;b��������������) bNi(b��������������) dL

#
dL; (21)

b��j =

Z
b��������������2L�

� �(b��������������) bwj(b��������������) dL: (22)

On a regular basis, the computational work required to solve a real problem is drastically reduced by

means of this 1D formulation with respect to the one given by expressions (9), (10), (11) and (12), because

integrals on the circumferential perimeter of electrodes are taken apart of integrals on their axial lines.

However, extensive computing is still required, mainly for circumferential integration in (18) and (21), and

further simpli�cations are necessary to reduce computing time under acceptable levels [5].

3.1 Simpli�ed 1D Boundary Element Formulation

The inner integral of kernel k(xxxxxxxxxxxxxx; ��������������) in (18) can be written as sum of two terms:Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC =

Z
��������������2C(b��������������)

dC

r(xxxxxxxxxxxxxx; ��������������)
+

Z
��������������2C(b��������������)

dC

r(xxxxxxxxxxxxxx; ��������������0)
: (23)

Analyzing the �rst of them, distance r(xxxxxxxxxxxxxx; ��������������) between any point xxxxxxxxxxxxxx of the domain and any point �������������� at the

earthing electrode surface can be expressed as:

r(xxxxxxxxxxxxxx; ��������������) =

s��xxxxxxxxxxxxxx� b����������������2 + �2(b��������������)
4

�
��xxxxxxxxxxxxxx� b�����������������(b��������������) sin ! cos � (24)

where � is the angular position in the perimeter of cross section of the cylindrical conductor, and ! is the

angle formed by the vector that links xxxxxxxxxxxxxx with its projection b�������������� (b�������������� � xxxxxxxxxxxxxx) and the unit vector of bar axis bssssssssssssss(b��������������),
that is

sin ! =

�� (b�������������� � xxxxxxxxxxxxxx) � bssssssssssssss(b��������������) ����b�������������� � xxxxxxxxxxxxxx
�� (25)
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Figure 1.{ Analysis of distance between an arbitrary point xxxxxxxxxxxxxx and any point �������������� at the electrode surface.

as it is shown in �gure 1.

The elliptic integral obtained when r(xxxxxxxxxxxxxx; ��������������) in (24) is substituted into (23) can be aproximated by means

of numerical integration. In practice, this simpli�cation is quite accurate because we are interested in

computing potential at points on the earth surface, which are very far from the earthing electrode in

comparison with the size of its diameter. Accordingly, distance between points xxxxxxxxxxxxxx and b�������������� is several orders of

magnitude bigger than the bar diameter �(b��������������) [5]. At the same time, this result can be interpreted as an

approximation of distance r(xxxxxxxxxxxxxx; ��������������) in (24), in terms of the distance between xxxxxxxxxxxxxx and its orthogonal projectionb�������������� and the cylindrical diameter at this point:

r(xxxxxxxxxxxxxx; ��������������) � br(xxxxxxxxxxxxxx;b��������������) =

s��xxxxxxxxxxxxxx� b����������������2 + �2(b��������������)
4

: (26)

Finally, analyzing the second term in (23) in the same way as (24), an approximation to the circumferential

integral of inner kernel in (18) can be obtained:

Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC � � �(b��������������)bk(xxxxxxxxxxxxxx;b��������������); (27)

bk(xxxxxxxxxxxxxx;b��������������) =  1br(xxxxxxxxxxxxxx;b��������������) + 1br(xxxxxxxxxxxxxx; b��������������0)
!
: (28)

bk(xxxxxxxxxxxxxx;b��������������) is a modi�ed kernel of the original one (4). In this new expression, the orthogonal projection of

�������������� over the bar axis and the diameter of electrode are used, and distance r(xxxxxxxxxxxxxx; ��������������) is rede�ned in terms of

them.



On the other hand, taking into account the above analysis of k(xxxxxxxxxxxxxx; ��������������), a �rst approximation to inner kernel

in (15) can now be derived

K(b��������������;b��������������) � Z
��������������2C(b��������������)

� �(b��������������)bk(��������������;b��������������) dC: (29)

Next, bearing in mind the hypothesis used in (26), distance between points �������������� and b�������������� can be expressed in

terms of the distance between points over the axes of electrodes (b�������������� and b��������������) and the diameter �(b��������������), so that

kernel (15) can now be simpli�ed in the same manner as (27):

K(b��������������;b��������������) � � �(b��������������) � �(b��������������) bbk(b��������������;b��������������); (30)

being
bbk(b��������������;b��������������) the approximated kernel

bbk(b��������������;b��������������) =

 
1bbr(b��������������;b��������������) + 1bbr(b��������������; b��������������0)

!
; (31)

bbr(b��������������;b��������������) =

s��b��������������� b����������������2 +
�2(b��������������) + �2(b��������������)

4
: (32)

The use of the unexpensive approximations (27) and (30) to evaluate the circumferential integrals of

kernels, takes advantage of the fact that double integration in the general boundary element approach is

performed on a 1D domain |expressions (18) and (21)|.

For di�erent selections of the sets of trial and test functions, speci�c formulations can be obtained. Thus,

for constant leakage current elements, Point Colocation (Dirac deltas as trial functions) leads to the very

early intuitive methods, such as the superposition of current point sources, whereas Galerkin formulation

(test functions identical to trial functions) leads to a kind of more recent methods, such as \Average

Potential Method, APM "), based on the idea that each segment of conductor is substituted for a \line of

point sources over the length of the conductor" [13]. In these methods, coe�cients (21) correspond to

\mutual and self resistances"between \segments of conductor" [11]. Naturally, for higher order elements it

is now possible to derive more advanced formulations [5]. Further discussion and examples are restricted

to Galerkin type formulations, where the matrix of coe�cients of linear system (19) is symmetric and

positive de�nite [12].

Now, if we take into account simpli�cations achieved in the circumferential integration and diameter of

conductors is assumed constant within each element, �nal expressions for computing potential coe�cients

(18) and linear system coe�cients (21) can be written as

bV �
i (xxxxxxxxxxxxxx) �

��

4


Z
b��������������2L�

bk(xxxxxxxxxxxxxx;b��������������) bNi(b��������������) dL: (33)

bR��

ji �
�����

4


Z
b��������������2L�

bNj(b��������������)
"Z

b��������������2L�

bbk(b��������������;b��������������) bNi(b��������������)dL
#
dL; (34)



where �� and �� represent the constant diameter within elements L� and L�. Obviously, (34) leads to a

symmetric matrix.

Nevertheless, computation of the remaining integrals in (33) and (34) is not obvious, and the cost of

numerical integration is still out of range due to the undesirable behaviour of the integrands. For this

reason, it is essential to derive explicit formulae in order to compute analytically these coe�cients.

4 Analytical Integration of Coe�cients

Successive hypotheses introduced in the general boundary element formulation have allowed to reduce the

complexity of the grounding grid analysis. Thus, each cylindrical conductor can be modelled by means

of a segment of straight line |the electrode axis| de�ned by its ends, and provided with an additional

geometrical property |the electrode diameter| which is taken into account in the calculations.

Now, potential created by an electrode at any point xxxxxxxxxxxxxx of the domain (17) can be obtained as sum of the

contributions (33) of each conductor of the grounding grid. These terms correspond to the i trial function

contribution to potential generated by the element L� belonging to electrode L at an arbitrary point xxxxxxxxxxxxxx.

On the other hand, the simpli�ed 1D boundary element discretization of the problem leads to system (19),

which coe�cients bR��
ji in (34) correspond to the i trial function contribution to potential generated by the

element L� over other element L� , weighted by the j test function.

4.1 Computation of Potential Coe�cients bV �
i (xxxxxxxxxxxxxx)

Any point b�������������� 2 L� can be expressed in terms of the mid-point b��������������0 of the element L�, its length L� and its unit

vector bssssssssssssss�, for a value of scalar parameter � varying within the range �1 and 1 (domain of isoparametric

trial functions) [14]. Thus, (33) can be rewritten as the line integral in a single variable �:

bV �
i (xxxxxxxxxxxxxx) =

��L�

8


Z �=1

�=�1

bk(xxxxxxxxxxxxxx;b��������������(�)) bNi(b��������������(�)) d�: (35)

In the same way, it is possible to express the integral kernel bk(xxxxxxxxxxxxxx;b��������������(�)) as a function of �, given that it

depends on terms (28) in the form br(xxxxxxxxxxxxxx;b��������������(�)). Thus, if we denote p0 the distance between the point xxxxxxxxxxxxxx and

its orthogonal projection over the electrode axial line, and q the distance between this projection and the

mid-point b��������������0, distance br(xxxxxxxxxxxxxx;b��������������(�)) results in
br(xxxxxxxxxxxxxx;b��������������(�)) = L

�

2

p
(bp(xxxxxxxxxxxxxx))2 + (bq(xxxxxxxxxxxxxx)� �)2; (36)

(bp(xxxxxxxxxxxxxx))2 =

�
p0(xxxxxxxxxxxxxx)

L
�=2

�
2

+

�
��

L
�

�
2

; bq(xxxxxxxxxxxxxx) = q(xxxxxxxxxxxxxx)

L
�=2

(37)

Obviously this analysis can also be performed with the term br(xxxxxxxxxxxxxx; b��������������0(�)) in (28), and we should obtain

analogous expressions in terms of new geometrical parameters bp0(xxxxxxxxxxxxxx) and bq0(xxxxxxxxxxxxxx), corresponding to points

(xxxxxxxxxxxxxx; b��������������0) [5].



On the other hand, trial functions bNi(b��������������(�)) in (35) can be expressed |by means of their series expansion

until the second order term| as parabolic functions in the variable �, which coe�cients depend on known

values of the functions and their �rst and second derivatives [5].

Finally, if we substitute in (35) expressions obtained in (36) for the integral kernel (28) and those developed

for the trial functions bNi(b��������������(�)), taking into account that both depend on �, it is possible to integrate

explicitly the potential coe�cient bV �
i (xxxxxxxxxxxxxx). After a relatively long analytical development, (35) results in

bV �
i (xxxxxxxxxxxxxx) =

��

4


�
�(bp(xxxxxxxxxxxxxx); bq(xxxxxxxxxxxxxx)) + �(bp0(xxxxxxxxxxxxxx); bq0(xxxxxxxxxxxxxx)) � (38)

where function �(�; �) depends only on geometrical parameters and known coe�cients of trial functions [5].

4.2 Computation of System Coe�cients bR��

ji

In analogous way to previous development, any point b�������������� 2 L� can be expressed in terms of the mid-point b��������������
0

of the element L�, its length L� and its unit vector bssssssssssssss� , for a value of scalar parameter � varying within the

range �1 and 1 (domain of isoparametric trial functions) [14]. Thus, taking into account the development

achieved in (35), expression (34) can be rewritten as two line integrals, one in the single variable � and

other in �,

bR��
ji =

� �� �� L�
L
�

16


(Z �=1

�=�1

bNj(b��������������(�)) �Z �=1

�=�1

bbk(b��������������(�);b��������������(�)) bNi(b��������������(�)) d��d�
)

(39)

It may be seen that the line integral in � is similar to (35), although in this case, the integral kernel is

given by (31). If geometrical parameters bp(b��������������(�)) and bq(b��������������(�)) are suitably rede�ned, expression (35) can

be written [5] |by means of (38)| in the form

bR��

ji =
�����L�

8


(bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2) + bR��

ji (
b��������������0
1
;b��������������0

2
; b��������������1; b��������������2)

)
(40)

where coe�cients bR��

ji (
b��������������
1
;b��������������

2
; b��������������

1
; b��������������

2
) can be obtained as

bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2)=

�=1Z
�=�1

bNj(b��������������(�))[�(bp(b��������������(�)); bq(b��������������(�)))]d� (41)

bp2(b��������������(�)) = �
p0(b��������������(�))
L
�=2

�
2

+

�
��

L
�

�
2

+

�
��

L
�

�2

; (42)

bq(b��������������(�)) = q(b��������������(�))
L
�=2

: (43)

On the other hand, trial functions bNj(b��������������(�)) can be expressed |by means of their series expansion until

the second order term| as parabolic functions in the variable �, which coe�cients are known [5], in the

same way as it has been previously made with bNi(b��������������(�)). Finally, substitution of trial functions bNj(b��������������(�))
in (41) leads to a line integral in the variable �.



4.2.1 Integration of Coe�cients bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2)

Each coe�cient bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2) in (40) can be understood as the potential in
uence generated by an

electrode on another. Since electrodes are perfectly de�ned by cartesian coordinates of their axial ends, we

can analyse the �rst of two terms and apply results and formulae obtained to the second one, considered

as the integration between two di�erent bars (with the symmetric points to b��������������1 and b��������������2).
Therefore, integration of coe�cients (41) requires in the �rst place a geometrical analysis of two cylindrical

bars in the space. This study allows to express adimensional distances bp(b��������������(�)) and bq(b��������������(�)) in (42) and (43)

as a function of �, and a set of known geometrical parameters depending on the relative position between

electrodes [5]. Now, if �nal expressions for bp(b��������������(�)) and bq(b��������������(�)) derived with the previous analysis, and

those obtained for trial functions bNj(b��������������(�)) are substituted in (41), and we make suitable arrangements,

results in

bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2) =

u=2X
u=0

w=4X
w=0

K
(u)
w '(u)

w ; (44)

where coe�cients K
(u)
w can directly be computed from the jth trial function, the geometrical parameters

of electrodes and the ith trial function [5].

On the other hand, remaining line integrals in the variable � are incorporated in coe�cients '
(u)
w (44).

Development of explicit formulae to evaluate these expressions is not obvious, and requires quite a lot

of analytical work. Moreover, this circumstance gets worse because coe�cients '
(u)
w depends also on the

geometrical parameters of electrodes, which possible values increase the number of cases of di�erent types

of integrals we must analyse, due to singularities that can be produced [5].

For this reason, in the beginning of this project [15] analytical expressions for the more common spatial

arrangements of electrodes |perpendicular and parallel bars| were derived. Although these techniques

represented a signi�cant improvement in the area of earthing analysis, it was necessary to complete the

analysis of integrals independently of geometrical parameters, in order to compute them analytically in all

cases.

At present, this development has been completely �nished, and now we get ready explicit expressions

to compute all coe�cients '
(u)
w , although its derivation is too cumbersome to be made explicit in this

paper [5]. These formulae have been developed in order to make easy the later implementation in a

computer code, in such a way as its evaluation is made in recurrent form, using as few as possible operations

with transcendental functions. Nevertheless, its programming must be done carefully, due to the huge

complexity of the �nal formulae of coe�cients in (44), and its ill-conditioning.

5 Application to a Real Case

This simpli�ed 1D numerical approach based on the Boundary Element Method with analytical integra-

tion of coe�cients of the linear equations system, is very structured, and it has been developed to be

implemented in a Computer Aided Design system.



E. R. BARBER�A GROUNDING SYSTEM

Max. Grid Dimensions: 145 m� 90 m

Total Protected Surface: 6500 m2

Grid Depth: 0.80 m

Number of Grid Electrodes: 408

Max./Min. Electrode Length: 19 m/3 m

Electrode Diameter: 12.85 mm

Ground Potential Rise: 10 kV

Earth Resistivity: 60 
m

Table 1.|E. R. Barber�a Substation: Characteristics.

Nowadays, all these techniques derived by the authors have allowed to develop the system TOTBEM for

the computer design of earthing grids of electrical substations [16]. With this system, now it is possible

to analyse accurately grounding grids of huge installations, with acceptable computing requirements in

memory storage and CPU time.

The example that we present is the E. R. Barber�a substation grounding, close to Barcelona, Spain. The

earthing system of this substation is a grid of 408 cylindrical conductors with constant diameter (12.85 mm)

buried to a depth of 80 cm, being the total surface protected up to 6500 m2. The total area studied is a

rectangle of 135 m by 210 m, which implies a surface up to 28000 m2. The plan of the grounding grid and

its characteristics are presented in �gure 2. a) and table 1.

The numerical model used in the resolution of this problem has been a Galerkin formulation. Each bar is

discretized in one single constant leakage current density element, which implies 408 degrees of freedom.

On the other hand, the ground potential rise considered in this study has been 10 kV (due to the linear

relation between potential and intensity, we can indistinctly consider the Ground Potential Rise or the

Total Surge Current).

Numerical results, such as the total fault current and the equivalent resistance of the grounding system,

are given in table 2. Moreover, �gure 2. b) shows the potential distribution on ground surface when fault

condition ocurrs, �gure 2. c) represents the potential pro�le along a line, and �gure 2. d) is a 3D view of

potential level on surface. This numerical model of the grounding grid has only required seven and a half

minutes of CPU time in a conventional personal computer (i.e. PC486/16Mb to 66MHz). It is obviuos

that this proposed approach allows the complete characterization of a grounding grid in a riguorous and

reliable way, with very acceptable computing requirements.

This example has also been solved increasing the number of boundary elements used in the numerical

model, by means of the subdivision of each one of the electrodes of the grid. At the scale of the whole grid,

results and potential distributions are not noticeably improved by increasing discretization, therefore as a

general rule, it will not be considered necessary the additional subdivision of grid conductors. In cases in



which we need more accurate results, i.e. to compute touch or step voltages [1], the use of higher order

elements (linear or parabolic) are more advantageous in comparison with constant elements [5].

E. R. BARBER�A GROUNDING SYSTEM:

1D BEM MODEL & RESULTS

Type of Element: Constant

Number of Nodes: 238

Number of Elements: 408

Fault Current: 31.75 kA

Equivalent Resistance: 0.315 


CPU Time: 450 s

Computer: PC486/66MHz

Table 2.|E.R. Barber�a Substation: Numerical Model and BEM Results.

6 Conclusions

A Boundary Element approach for the numerical computation of substation grounding systems developed

by the authors in the last years has been presented. For 3D problems, some reasonable assumptions allow

to reduce the general 2D BEM formulation to an approximated less expensive 1D version. E�orts have

been particularly made in getting a drastical reduction in computing time by means of new completely

analytical integration techniques, while semi-iterative methods have proved to be specially e�cient for

solving the involved system of linear equations.

On the other hand, several widespread intuitive methods (such as the Average Potential Method) can

be identi�ed in this general formulation as the result of suitable assumptions introduced in the BEM

formulation to reduce computational cost for speci�c choices of the test and trial functions. Problems

encountered by other authors with the application of these methods can now be mathematically explained

and sources of error pointed out, while more e�cient and accurate formulations can now be derived.

The numerical approach proposed is a general methodology that |for the �rst time| allows to obtain

high accuracy results in the grounding grid analysis of electrical substations of medium/big sizes, using a

low cost and widely available conventional computer. Obviously, study of big installations should require

higher computing e�orts with more powerful computers, although always with a very reasonable cost.
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-- E. R. Barberá Substation: Plan of the grounding grid, Potential distribution on ground surface (kV),
Potential profile along a line, 3D view of potential level on ground surface.
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