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The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic
evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by
reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemical reaction systems
modeled via the Chemical Master Equation and solved by Monte Carlo Methods. Our model predicts the
evolution of the pandemics at the level of municipalities, incorporating for the first time (i) a variable infection
rate to capture the effect of mitigation policies on the dynamic evolution of the pandemics (ii) SIR-with-jumps

taking into account the possibility of multiple infections from a single infected person and (iii) data of viral load
quantified by RT-qPCR from samples taken from Wastewater Treatment Plants. The model has been successfully
employed for the prediction of the COVID-19 pandemics evolution in small and medium size municipalities

of Galicia (Northwest of Spain).

1. Introduction

Since the emergence of the COVID-19 pandemics caused by the
SARS-CoV-2 virus, great efforts have been made for the purposes of
virus detection and epidemics forecasting. COVID-19 modeling ap-
proaches generally fall into one of the following categories, see [1]:
statistic models for short-term forecasts; and mechanistic models,
whether they are based on differential equations (like compartmental
models) or agent-based [2,3], for analyzing the spread dynamics of
SARS-CoV-2, investigating future possible scenarios and/or simulate
interventions to control virus spreading. In this work, we introduce a
stochastic mechanistic model valid for both testing scenarios and short-
term forecasting. The model has been developed to study and predict
the evolution of the pandemics at the level of municipalities, and it has
been calibrated and tested during a one year study in Galicia (northwest
of Spain) using measurements from the health system and viral load
from wastewater samples. The model developed for SARS-CoV-2 can be
easily adapted to the surveillance of other pathogens and therefore, the
methodology presented makes a significant contribution to wastewater
based epidemiology [4].

Epidemiological compartmental deterministic models, like the
Susceptible-Infected-Recovered (SIR) model firstly described by [5]

(and extended versions of it) have been employed to predict COVID-
19 spread [e.g. 6-10]. However, predictability issues arise and models
(whether they are phenomenological, mechanistic, or agent-based) are
not efficient to predict the COVID-19 pandemics in the long term [e.g.
11,12]. Model predictive control approaches have been proposed to ef-
ficiently deal with the uncertainty and predict the effects of mitigation
and suppression strategies [13].

The unpredictable nature of the pandemic spread has been tackled,
on the one hand from the perspective of deterministic chaos [e.g.
14-16] and, on the other hand, using stochastic models [e.g. 17,18].
Dynamic stochastic models for COVID-19 spread prediction can be
broadly categorized into: (i) stochastic differential equations based in
classical SIR models [8,17], and (ii) compartmental models combined
with Mote Carlo methods [6,19-21].

Here we use a reinterpretation of the classical compartmental mod-
eling of infectious diseases (SIR type models) as chemical processes,
which are inherently stochastic and governed by the Chemical Mas-
ter Equations (CME). The CME describes the evolution in time of
probability distributions [22,23], and the Stochastic Simulation Algo-
rithm (SSA) by [24] can be used to compute exact realizations (time
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course trajectories) of the CME. Data series of new infected persons,
as provided by the public health systems, are indeed realizations of a
stochastic process or random walks on the positive integers. Therefore,
approaches based on a CME equation solved by the SSA algorithm are
particularly convenient to develop COVID-19 predictive models [25-
271.

Data from the health system have an inherent delay (from the time
of infection until the positive case is reported). Moreover, the signifi-
cant percentage of asymptomatic cases characteristic of the COVID-19
pandemics, hampers the prompt detection by the health systems (efforts
including screening or contact tracing have been implemented to over-
come this difficulty). In this regard, wastewater have been proven to
be a good complementary tool for COVID-19 surveillance. The analysis
of SARS-CoV-2 viral load in sewage at wastewater treatment plants can
be interpreted as one pooled test for the area where they are located.
Pooled or group testing is an excellent tool for surveillance of diseases
spread in animals and humans [28], indicated also to expand COVID-19
surveillance [29]. Different studies confirmed wastewater monitoring
as a convenient complementary approach to COVID-19 surveillance and
testing strategies [30-32] and, in fact, viral RNA detection in Wastew-
ater Treatment Plants (WWTPs) has shown an anticipative capacity
with respect to the cases reported by the health system in several
studies [e.g. 33-36].

In this work, we developed a stochastic SIR model with good
predictive capacity which incorporates the data from health system and
wastewater analysis. The model has been calibrated and tested during
a one year study with health system data and wastewater analysis
data from five different small-medium size municipalities in Galicia
(Northwest of the Iberian peninsula) [36]. We implemented the model
in a software package that can be used for predictions in different
scenarios and forecasting.

+ The model is a stochastic SIR: importantly, in stochastic mech-
anistic models uncertainty increases as we move into the future
(like in the case of statistical models and unlike in the case of
mechanistic deterministic models).

The model is simple in terms of number of states and parameters,
and it shows a good predictive capacity with very few parameters.
Simplest SIR models were previously reported to perform better
than other models with greater complexities [9].

The model integrates, for the first time to the best of authors
knowledge, SARS-CoV-2 viral load data from WWTPs within a
mechanistic model with predictive capacity.

The model is very robust (we obtain similar values of the param-
eters for the WWTPs tested).

The model is capable to predict superspread events.

The model can be used to test different scenarios and for forecast-
ing in small and medium size municipalities with WWTPs in time
horizons of 7-10 days.

.

.

.

.

.

In the next section we introduce the model with its different ex-
tensions. First, we develop a simple stochastic SIR (which proves to
correctly predict the evolution of infected individuals from health
system in small and medium-size municipalities). Then, we extend the
model with the capability of incorporating variable degradation rates
(SIRv). In order to be able to predict superspread events, we also
introduce a SIR model with jumps (SIRj) allowing for the infection of
various persons at the same time from one infected individual. Finally,
we incorporate the WWTP data together with the public health system
data into an integrated model (SIRO).

The SIR model and its extensions (SIRv, SIRj and SIRO) have been
developed and tested in the context of COVID-19 surveillance of small
and medium size municipalities in the Northwest of the Iberian penin-
sula [36] from June 2020 to December 2021.
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2. Methods

In this section we introduce the models developed to predict the
evolution of the COVID-19 pandemics. Our aim was to obtain a good
predictive capability with the simplest possible model. Importantly, our
model is intended to predict the evolution at the local level (municipal-
ities), and for short term time horizons (7-10 days maximum). First, we
start with a stochastic SIR model with standard rate expressions.

2.1. SIR model

We consider a total population of N individuals, distributed in the
following types (or compartments):

+ Susceptible, S, susceptible to acquire the disease.
+ Infected, I, capable of spreading the disease to a susceptible

person.
+ Recovered, R, recuperated/dead from disease.

Considering the three categories §, I and R, we can represent their
interactions as follows:

Bl
S+I1—— 21

1 R m

with § and « being parameters (infection and recovery rate constants,
respectively). The equation govemning the dynamics of this process
taking into account its inherent stochasticity is the Chemical Master
Equation (CME) [22]. Let x = (S, I, R) be the states of the system and
P : [0 NI’ xR* - [0 1] be a probability density function of the state x
at time ¢ > 0. The CME governing the process (1) reads:

dPx,) _  S+1 S
y =4 N IP(S+1,I-1,R,1) ,BNIP(x,t}

+a(l + )P, I+1,R—1,1) — al P(x, 1). @

We use the Stochastic Simulation Algorithm (SSA) [24] to simulate re-
alizations of the SIR process (1). A trajectory of a single SSA simulation
(or realization) is an exact sample from the probability function that is
the solution of the CME (2), therefore, the solution of the CME can be
approximated by a reasonable number of realizations.

In this way, the number of infected persons reported daily by the
health system can be considered as single realization of the SSA for the
SIR process (1). To calibrate with data, make predictions or forecasting
for a given time horizon, we use the mean and standard deviation of
103 — 10* SSA realizations.

2.1.1. SIR with variable infection rate

The infection rate § for the SIR model is constant. The SIR model
with constant parameters cannot capture a turning point in the evo-
lution of the pandemics unless the number of susceptible remains a
limiting factor (which was never the case at least in the first two years
of the COVID-19 pandemics). However, in many territories (including
the municipalities under study) a series of policies (including lock-
downs, travel bans, capacity limitations for social gatherings and other
restrictions) have been applied by the authorities, at different stages of
the pandemics, to decrease the infection rate. Therefore, time course
data of infected people used for calibration might show changes of
tendencies (turning points) that cannot be captured correctly by the
standard SIR. Here we define a turning point (T75) as a point in time in
which a (sustained) change in the sign of the slope of the total number
of infected individuals is detected.

For calibration purposes, when the data show a turning point,
we propose an extended SIR model starting from (1) with a variable
infection rate g defined as:

_ R ift<Typ
ﬂ_{ﬁu i 1> Typ, 3)

where the ¢ is the simulation time, and T;p is a new parameter of the
SIR model representing the tuming point date. Note that, if g, = §;,
SIRv is equivalent to the SIR model.
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2.1.2. SIR with jumps

Standard SIR models consider the infection of one person at a time
(the stoichiometric S/I ratiois 1 : 1). This is the reason why SIR models
cannot capture the jumps observed in time course data from SARS-CoV-
2 infected individuals. One infected individual can infect more than
one susceptible person as a result of the same interaction event (in
this case the stoichiometric S/I ratio is n : 1 with n > 1, n being a
positive integer). In order to consider these bursting (superspreading)
events, we generalize the reactions associated with the SIR model (1)
as follows:

mjs-n
— I
nS+l—— (n+ 1)1
I
I = R 4)

In this work we consider n = 5 which is compatible with the mass
gathering restrictions established by the health authorities in the period
and geographic area under study. Note that, for n = 1, SIR]j is equivalent
to the simplest SIR model proposed.

Let x = (S, I, R) be the system states and P : [0 N]* x Rt — [0 1]
be a probability density function of being in state x at time ¢ > 0. The
associated CME to the reaction set (4) reads:

dPen _ S+1 _ _ S
S = PP IPS + 1,1 - LR ) - PP,
" k (S+k
Y (ﬂH’:Lk*—)IP(S+k,I —k,R,1)
k=2 N
M-
P I, )
oI+ )P(S,T+1,R— 1,1) — al P(x,1). )

Note that this CME is an extension of the one obtained for the simplest
SIR model, Eq. (2), by adding the new terms related to the new
reactions (more than one infected at the same time) in the second line
of expression (5).

2.2. SIRO model

The SIRO model is an adaptation of the SIR formulation described
in Section 2.1 to incorporate the number of infected people (I) observed
through the viral load monitoring in WWTPs, together with the subset
of the total infected people (O) observed by the public health system,
through the following set of reactions:

Bl
S+I——2I
apl
I— R
¥l
I—I+0 (6)
0
0= R,

where S, I and R are the susceptible, total infected and total recovered
individuals in a given municipality. The infected individuals detected
and reported by the health system are denoted by O, whereas Ry are
recovered individuals that had been previously reported as infected. Let
x = (S,1,R,0,R,) be the states of the system and P : [0 N’ X Rt —
[0 1] be a probability density function of the state x at time ¢ > 0.
The CME governing the dynamics of the process described by the set
of reactions in (6) reads:

dP(x,1) S+1 s
2 2 TIPS + 1,1 - 1,R,0,Rp, 1) — BT P(x,t
o = PP TP+ LI, 0.0) = BAIP(1)

+a;(I+ 1)P(S,T+1,R—1,0,Rp,t) — a;IP(x,1)
+7IP(S,1,R,0—1,Rp,t)—yIP(x,1)
+a,(0 + )P(S,I,R,0 + 1,Ry — 1,1) — agOP(x, 1). %))

We consider two observables of the model, denoted by y;,y,; on the
one hand, the subset of the total infected people being reported by the
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health system is y; = O, and on the other hand the viral number of

gene copies detected in wastewater is:
_ LCs

¥ 1000-Q - p

where C,,, Cy, Q and p are defined in Table 1. This formula is consid-

ered to properly normalize the wastewater data. In weeks where the

number of total infected detected by viral load in WWTP at first day

(I) is lower than the infected number reported by the health system at

first day (O), we re-normalize as follows:

_ 2

ya(day 1)

y=C ®)

Y2 =y(day 1) 9)

3. Results and discussion

In this section, we first describe the scripts implemented for the
proposed SIR and SIRO models. Then, we illustrate how the simplest
SIR model has the capacity to represent the data provided by the public
health system. After that, we show the capacity of the SIRO model to
predict in a week time horizon the evolution of the number of infected
people, starting from the WWTP viral load levels detected during the
previous week.

3.1. Data and scripts

The models proposed in the previous section have been
implemented in MATLAB and are available at https://github.com/
manuelpajaro/stochasticSIR_O inside the folder stochasticSIR_0.
The main programs are SIR_ppal.m for the simplest SIR model,
SIRv_ppal.m and SIRj_ppal.m for the SIRv and SIRj model
extensions respectively, and STRO_ppal .m for the SIRO model. The
data used for this study are saved in the DATA.mat archive which
is available within the folder sotchasticSIR_0. The data of new
infected persons per day and municipality were provided by the Gali-
cian Health System (Servizo Galego de Satide SERGAS). The data from
SARS-CoV-2 viral load in the WWTPs under study were obtained within
the DIMCoVAR project consortium [36]. Specifically, we provide the
number of infected persons detected by the health system per day
(I_Locality variables) and the corresponding cumulative infected
cases for fourteen days (Icum14_Locality variables). The variable
I in (8) computed from the measurements of viral load in sewage is
stored in WTP_Locality.

The main programs (SIR_ppal.m, SIRv_ppal.m,
SIRj_ppal.m, and STRO_ppal.m) share the same structure. The
user can choose the municipality by modifying the value of the Li
variable in the following code:

%8 Locality selection one from [Ares,Baiona, Gondomar,
Melide , Nigran]

localities = {’Ares’, 'Baiona’, 'Gondomar’, 'Melide’, 'Nigran’
IS
Li = 1; % 1 —> Ares; 2 —> Baiona; 3 —> Gondomar; 4 —>

Melide; 5 —= Nigran
locality = localities{Li}; % to select one of the previous
localities

where currently Li = 1, ...,5 to select Ares, Baiona, Gondomar, Melide
or Nigrdn, respectively (of course the list can be extended to other
municipalities of interest if access to data is provided). The starting date
of the simulation can be chosen by assigning to variable f the date in
the format year month day, [yyyy mm dd], as follows:

U8 Select a date with format year month day f= [yyyy mm dd
1 from 01,/03/2020 to 27/06/2021
f= [2021 03 21];
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Table 1
Notation and units.
Notation Units Description
Cy copies/L Copies per Liter of wastewater [37,38]
Q m’/day Inlet flow by GESECO Aguas https://www.gesecoaguas.es/
P g faeces/mL faeces Faeces density [39]
Cy copies/mL faeces Average number of copies per mL of faeces in infected person [37,38]
& g faeces/person/day Average weight of faeces per person per day [39]

Finally, the free parameters for each model are indicated next. In the
SIR model (SIR_ppal.m) the parameters « (recovery rate constant)
and g (infection rate constant) are free a priori. To avoid autocorrelation
problems, we fix the parameter « = 1/14 (cumulated incidence is calcu-
lated for a time interval of 14 days). Importantly, the mitigation policies
do not affect the value of the recovery rate constants of individuals
(which is coherent with fixing the parameter «), but the infection rate
constant f (which should be therefore calibrated from data).

%8 Model Parameters

beta = 0.14; % beta in {0.03,0.07,0.14,0.22}

alpha = 1/14; % it can be 1/7 or 1/10 for strong decrease
in infected persons (beta = 0.03)

For the SIRv model (SIRv_ppal.m), the parameters f;, p; and T, se
can be calibrated. T, is the point in time where a change in the
sign of the slope of the dynamics occurs (i.e. a tuming point as defined

in the previous section).

%8 Model Parameters (Pajaro et al 2022)
% Choose the ones given for each week (f) in Table 3
beta0 = 0.14;

betal = 0.03;
Tchange = 3;
alpha = 1/14; % fixed

For the SIRj model (SIRj_ppal.m) the parameter § can be used for
calibration purposes.

%8 Model Parameters (Pajaro et al 2022)

% Choose the ones given for each week (f) in Table 4
beta = 0.02; % beta in {0.02,0.03}

alpha = 1/14; % fixed

In the SIRO model (SIR0O_ppal .m), the parameters § and y can be
used for calibration. Generally, the recovery rate constant should be
equivalent, i.e. a; = ap.

%8 Model Parameters (Pajaro et al 2022)

% Choose the ones given for each week (f) in Table 5
beta = 0.1;

gamma = 0.06;

alphal = 1/14;

alphaO = 1/14;

3.2. SIR predictions

The SIR model is calibrated from the data of infected persons pro-
vided by the public health system. The parameter f§ for the SIR model
described in Section 2.1 is estimated from the data of infected persons
provided by the public health system in order to fit the trajectory
of fourteen days cumulative infected cases. Calibrations are done per
week. As justified in the previous section, the recovering rate constant
is fixed at a = .

Remarkably, the evolution of the number of infected persons de-
tected by the health system could be accurately predicted for most
weeks (more than 70% of the total of 265) during the frame of the
study with the simplest stochastic SIR model with a fixed a = 1—14 and
only four different values of the infection rate constant . Specifically,

Table 2
Total number and percentage of weeks for which the specified model (left column)
provided an accurate prediction.

Model Ares Balona Gondomar Melide Nigran Total %
SIR (a= L) 40 39 36 33 39 187 706
SIR (a < ﬁ) 11 11 9 13 10 54 204
SIRv 1 1 2 2 5 11 4.1
SIRj 1 1 4 4 3 13 4.9
Total 53 52 51 52 57 265 100

p € P, = {0.03,007,0.14,0.22}, see Fig. 1 and Table 2. This has impor-
tant implications for assessment and forecasting. First, the model can
be used for quantitative assessment of COVID-19 mitigation policies,
i.e. to quantify the impact of restrictions on the infection rate constant.
Second, this facilitates the use of the model for forecasting purposes,
to the point of needing only the one parameter (which can be fixed
to the value obtained for the previous week) and the initial condition
(number of infected reported by the health system) at the starting date,
in order to obtain predictions at one week time horizon.

As it is indicated Table 2, the SIR model accurately predicts the
evolution in time of the infected cases detected by the health system
(90% of the weeks by the simplest stochastic SIR with fixed § € §,,,
and fixed a, 4.1% of the weeks showed a variable f, and 4.9% of the
weeks showed jumps).

In Fig. 2 we show two exceptional cases in which the best fits were
obtained with a # 14 (this might happen for example for those weeks
in which many infected persons are recovered in the first days) as it
happened in Melide for the week of 18 April 2021.

3.2.1. SIRv predictions

Those exceptional weeks for the overall time of the study showing
turning points are specified in Table 3. Two selected examples are
depicted in Fig. 3 where the predictions obtained by SIR and SIRv are
compared. We show the 36th week of Ares and the 43rd week of Ni-
grén. As it can be seen in Fig. 3, the SIR model with two infection rates,
B and p;, generates much more precise predictions of the cumulative
level of infection. Note that SIRv can be used for calibration, and to
analyze the conditions under which the tumming point is produced, but,
without additional information on the time of the tuming, it cannot be
used for forecasting (in the conclusion we propose as future work the
implementation of real time calibration and machine leaming methods
to overcome this limitation).

3.2.2. SIRj predictions

The SIR model fails to predict superspreading events. Using the
SIRj model developed in the Methods section, we not only reproduce
the dynamics of cumulative cases, but also obtain better realizations
than those obtained using the simplest SIR model. In order to measure
the accuracy of the realizations for new infected cases we define the
following metrics:

D
ERROR = Z |Inew; — Data;|  with D=1, (10)
i=1

where Data is a vector of real data provided by the health system
whereas Inew is one realization obtained from SSA simulation. We
define E; as the number of realizations with ERROR = i, where E|
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Baiona, 2020
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Fig. 1. From 10° SSA realizations of the SIR model we compute the infected mean (blue line) and standard deviation (dotted blue lines). Black squares represent the accumulated
infected cases reported by the health system. a= 1/14 for all cases. The infection rate constants are: §= 0.03 for Gondomar, § =0.07 for Baiona, # =0.14 for Ares and §=0.22

for Nigrin.

7 Melide, 2020

Infected

8t B Real oy
—meang., ‘H—“‘u
6 }|---meang,, +std ., Te-
k- -mean,, -std..,
ktlm' 29 Dec 01 Dec 03 Dec 05

Melide, 2021

Infected

-0.5
Apr 18 Apr 20 Apr 22 Apr 24

Fig. 2. From 10° SSA realizations of the SIR model we compute the infected mean (blue line) and standard deviation (dotted blue lines). Black squares represent the accumulated
infected cases reported by health system. The infection rate is §=0.03 for both cases. The recovered parameters are a = 1/10 and a = 1/2 for the 40th and 60th weeks of Melide,

respectively.

Table 3

Parameters for the SIR model with 2 different beta, g, §,.
Week Locality Date By B a T ohange
36 Ares 01/11/20 0.14 0.03 1/14
36 Baiona 01/11/20 0.14 0.03 1/14 4
is Gondomar 25/10/20 0.14 0.03 1/14 3
46 Gondomar 10/01/21 0.22 0.03 1/14 5
46 Melide 10/01/21 0.22 0.14 1/14 3
48 Melide 24,/01/21 0.03 0.07 1/14 3
31 Nigréan 27/09/20 0.14 0.03 1/14 2
is Nigréan 25/10/20 0.14 0.03 1/14 3
36 Nigréan 01/11/20 0.14 0.03 1/14 3
43 Nigréan 20/12/20 0.14 0.03 1/14 4
60 Nigréan 18/04/21 0.22 0.03 1/14 5

is the number of exact realizations (see for example the last plot in
Fig. 4) and E, is the number of realizations which have exact number
of infected for all days except one for which there is only a difference
of one (see for example the first plot of the second row in Fig. 4).

In Fig. 4 we compare the results obtained after 10* SSA realizations
for the SIR and the SIRj models. We selected the 35th week of Melide
which stars at 25 November 2020 for which the SIR model does not
capture the infection spread using the four values of § proposed as
reference. So, we use § = 0.35 and a = 1/14 for the simplest SIR, and
for the model with jumps the parameters are given in Table 4, § = 0.02
and « = 1/14. For the parameters chosen, both models reproduce the
real cumulative cases accurately, as it can be seen in the first row of
Fig. 4. However, when we observe the number of new infected persons
per day, the SIRj model generates the best realizations with three exact
realizations, E; = 3 (last plot in Fig. 4) and several realizations with
ERROR = 1 from the 10* computed, E, = 85. For the SIR model there
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parameters for SIR is f=0.14, for both localities f, = 0.14 and p, = 0.03 for the SIRv model. T,

Table 4

Parameters for the SIR with jumps model
Week Locality Date B @
34 Ares 18/10/20 0.03 1/14
55 Baiona 14/03/21 0.02 1/14
23 Gondomar 07/08/20 0.02 1/14
33 Gondomar 11/10/20 0.02 1/14
39 Gondomar 22/11/20 0.02 1/14
55 Gondomar 14/03/21 0.02 1/14
3 Melide 20/03/20 0.03 1/14
25 Melide 16/08/20 0.02 1/14
35 Melide 25/10/20 0.02 1/14
45 Melide 03/01/21 0.02 1/14
2 Nigrdn 12/03/20 0.02 1/14
23 Nigran 02/08/20 0.03 1/14
55 Nigrdn 14/03/21 0.02 1/14

are not exact realizations (E; = 0) and only 7 of the 10* realizations
are obtained with ERROR = 1 (E| = 7), one of them is shown in
the first plot in the second row in Fig. 4. Again, SIR models cannot
predict superspreader events in absence of a priori information, but we
can use SIRj model to detect and quantify a posteriori the occurrence of
a superspreader event.

3.2.3. Probability density distributions

The realizations of the SSA algorithm are used to compute the
mean number of infected cases and the standard deviation to assess the
accuracy of the predictions of the stochastic model. Besides this, for all
SIR models we also obtain the probability density distribution of (new
and accumulated) infected cases from the 10° SSA realizations which is
an approximation of the solution of the associated CME (2). In Fig. 5
we depict the probabilities of a given number of cumulative cases for a
specific week (we chose the 36th week of Ares, already discussed, see
first row of Eq. (3)). As it can be observed in Fig. 5 the cases reported

hange 15 TeSpectively 3 and 4 for the weeks under study.

by the health system are close to the mode of the obtained probability
distributions, which means that the proposed model captures well the
evolution of the epidemics. Moreover, the SSA algorithm can be used
to estimate the new infected cases per day. The probability distribution
of these new cases is shown in Fig. 6 where the data provided by the
health system (vertical black dotted lines) fall within the most probable
cases predicted.

3.3. SIRO predictions

The SIRO model can be used to predict, via SSA simulations, the
cumulative cases reported by the public health system (observed cases
0) and those reported by wastewater treatment plant samples (we
assume they are a proxy of the total infected cases I). The viral load
in the WWTP samples was quantified using by RT-qPCR [36]. We
consider periods of ten days as depicted in Table 5 together with the
parameters obtained for the SIRO model. The mathematical model
shows a good predictive capacity allowing us to forecast the evolution
of infected persons, both total (I) and observed (O) by the health
system in the municipalities within a horizon of 10 days. In Fig. 7
we show, as a representative illustration of the model outcome, the
predictions of the SIRO model using 10% SSA realizations for the five
municipalities: Melide, Nigrdan, Baiona, Gondomar and Ares. The model
predictions, mean and standard deviations (continuous and dashed
lines, respectively) for the total number of infected (blue lines) and the
observed number of infected (black lines) are depicted in Fig. 7 together
with the real data obtained from viral load in sewage (blue circles) and
health system (black squares).

4. Conclusions
In this work we present a stochastic model based in the classical

compartmental models (SIR type) for which we have incorporated
the stochastic character of viral spread. We consider the transitions
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row) or the new infected cases (second row) reported by the health system. Red squares are the new infected cases obtained from the best SSA realization. The results obtained
with SIR and SIRj models are shown in the first and second columns, respectively. The parameters are, f=0.35 and a= 1/14 for SIR and § = 0.02 and a = 1/14 for SIRj.
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Fig. 5. Probability density distribution for accumulated cases obtained from 10° SSA realizations of the SIR with variable infection rates for Ares starting the 1 November 2020.
The vertical black dotted line represent the real cases reported by the health system. The parameters considered are, f =0.14, §; =003, a=1/14 and T, =3.

between each group of persons in which the total population is subdi-
vided (for example, Susceptible, Infected and Recovered) as reactions
of chemical species. The Chemical Master Equation (CME) is the model
that incorporates the inherent stochasticity of chemical reaction sys-
tems and therefore, by using this new formulation and proposing the
corresponding CME, we are able to incorporate the noise of the viral
infection propagation in a natural form. Moreover, in this article we
solve the different models proposed using the Stochastic Simulation
Algorithm (SSA) of Gillespie, which allow us to obtain the solution
of the CME (the time evolution of the probability density function

of infected persons) together with realizations (possible trajectories
of the time evolution of the number of infected persons). Whereas
deterministic SIR models only capture a unique trajectory for a set
of parameters, their stochastic versions produce a high number of
realizations providing us automatically with a measure of the noise in
the epidemics spread. We can observe how the uncertainty grows with
time as the standard deviations reported or the tails of the distributions
obtained are higher as we move forward in time.

The stochastic version of the classical SIR model presented in this
work has been developed with the aim to analyze and predict the
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evolution of the COVID-19 epidemics at the level of municipalities in
Galicia (Northwest of Spain) integrating data from wastewater and the
public health system in Galicia. The model has been calibrated and
successfully applied for SARS-CoV-2 surveillance in different municipal-
ities [36], using data from the galician public health system (SERGAS),
and RT-gPCR measurements from wastewater samples. The SIRO model
presented is fed by the total number of infected persons estimated using
the viral load in sewage to predict the number of positives observed by
the health system during the following week.

The software with the model implementation is provided, such that
it can be calibrated and used to make analysis and predictions in other

municipalities (with WWTP data available), and for different purposes.
The model is easy to calibrate (only 2 parameters for calibration from
time course data) and, as it has been shown in Section 3.2, it is very
robust, as it allows estimating the number of infected persons in all
the municipalities studied during more than one year by using only
four different infection rate parameters. Remarkably, we have obtained
a set of 4 parameters for the stochastic SIR model which are enough
to describe the viral infection in the hole period of time for the five
municipalities considered. These parameters can be explained by the
restrictions imposed (lockdowns) during the pandemic. Therefore, we
provide evidences of the usefulness of this kind of stochastic models,
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Table 5 Table 5 (continued).
Parameters obtained for the SIRO model. Locality Date 8 ¥ a ap
Locality Date B Y a % 1 Nigrén 21/12/20 013 0.04 1/14 1/14
1 Ares 29,/08/20 0.005 0.5 1/5 1/14 12 Nigrén 09,/01/21 0.12 0.07 1/14 1/14
2 Ares 10/09/20 0.005 0.05 1.7 1/14 13 Nigrén 18/01/21 0.005 0.15 1/7 1/7
3 Ares 17/10/20 0.35 0.035 1/14 1/14 14 Nigrén 25/01/21 017 0.005 1/14 1/14
4 Ares 24,/10/20 0.005 0.08 1/5 1/5 15 Nigrén 01,/02/21 0.02 0.02 1/14 1/14
5 Ares 31/10/20 0.03 0.005 1/14 1/14 16 Nigrén 08,/02/21 0.13 0.005 1/14 1/14
6 Ares 10/01/21 0.005 0.5 1/5 1/14 17 Nigrén 15/02/21 0.06 0.005 1/7 1/7
7 Ares 16,/01/21 0.2 0.08 1/14 1/14 18 Nigrén 22,/02/21 0.1 0.01 1/14 1/14
8 Ares 24,/01/21 0.02 0.12 1/10 1/10 19 Nigrén 01,/03/21 0.1 0.06 1/14 1/14
9 Ares 31/01/21 0.005 017 1/5 1/5 20 Nigrén 22/03/21 017 0.06 1/14 1/14
10 Ares 07,/02/21 0.02 0.005 1.7 1/7
11 Ares 28/02/21 0.005 0.0005 1/5 1/5
12 Ares 07/03/21 0.005 0.025 1.7 1/7
13 Ares 14/03/21 0.25 0.015 114 1/14 makes a significant contribution to wastewater based epidemiology.
14 Ares 21,/03/21 0.02 0.0005 1.7 1/7 . — . .
- As a future work, we propose to incorporate artificial intelligence
1 Baiona 16/08/20 03 002 114 /14 techniques for automated real time calibration of the parameters, which
2 Baiona 11/10/20 0.3 0.1 1/14 1/14 L. . . N .
3 Baiona 18/10/20 0.12 o1 1/14 114 can significantly facilitate the forecasting of turning points.
4 Baiona 25/10/20 0.12 0.01 1/14 1/14
5 Baiona 02/11/20 0.005 0.025 1/7 v7 Software availability
6 Baiona 08/11/20 0.08 0.1 1/14 1/14
7 Baiona 17/11/20 0.05 0.17 1/14 1/14 i i .
8 Baiona 25/11/20 0.07 012 1/14 1/14 The scripts for the models used are available under GPLv3 license
9 Baiona 01,/12/20 0.03 0.17 1/14 1/14 at https://github.com/manuelpajaro/stochasticSIR_O.
10 Baiona 05/12/20 0.1 0.07 1/14 1/14
11 Baiona 14/12/20 0.05 0.05 1/14 1/14 . + . +
12 Baiona 2 ,/12/2 02 0025 1714 114 CRediT authorship contribution statement
13 Baiona 29/12/20 0.12 0.05 1/14 1/14
14 Baiona 04,01/21 0.05 018 1/5 1/14 Manuel Pjjaro: Conceptualization, Methodology, Software, Data
15 Baiona 16/01/21 0.005 0.02 1/14 1/14 curation, Writing — original draft, Writing — review & editing, Super-
16 Baiona 25/01/21 0.005 0.02 1/14 1/14 P + P . . . us . .
17 Baiona 30,/01/21 0.005 025 s 114 vision. Noelia M Fajar: Data curation, ‘Valtdatlon, Writing - origi
18 Baiona 06/02/21 01 0.05 1/14 114 nal draft. Antonio A. Alonso: Conceptualization, Methodology, Fund-
19 Baiona 20,/02/21 0.1 0.005 1/14 1,14 ing acquisition. Irene Otero-Muras: Conceptualization, Methodology,
20 Baiona 01/03/21 0.005 0.12 1/10 1/10 Writing — original draft, Writing — review & editing, Supervision.
21 Baiona 07/03/21 0.005 32 1.7 1/14
22 Baiona 13/03/21 0.25 0.07 1/14 1/14 i .
23 Baiona 20/03/21 0.08 0.005 1/10 1/10 Declaration of competing interest
1 Gondomar 11/01/21 0.3 0.02 1/14 1/14 )
2 Gondomar 18,01/21 0.005 0.03 1/7 1/7 The authors declare that they have no known competing finan-
3 Gondomar 25/01/21 0.3 0.0005 1/14 1/14 cial interests or personal relationships that could have appeared to
4 Gondomar 01,/02/21 0.005 0.12 177 1/7 influence the work reporlaad in this paper.
1 Melide 23/08/20 0.005 0.07 1/5 1/5
2 Mehde 30/08/20 0.02 0.01 1/14 1/14 Acknowled ents
3 Melide 07/09/20 0.05 0.01 1/14 1/14
4 Melide 12/09/20 0.003 0.001 1/14 1/14
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