Supplemental Table 1.

Crude and age-standardized incidence rates of the most frequent cancer sites (excluded non-melanoma skin cancer), both in the study population and in the general Spanish population. Incidence rates are expressed in episodes per 100,000 patients-years. IR, Incidence Rate.

	Women					Men				
	Study population			General Spanish population*		Study population			General Spanish population**	
	Cases	$\begin{aligned} & \text { Crude IR } \\ & (95 \% \text { CI) } \end{aligned}$	Agestandardize d IR	Crude IR	$\begin{gathered} \text { Age- } \\ \text { standardized } \\ \text { IR } \end{gathered}$	Cases	$\begin{aligned} & \text { Crude IR } \\ & \text { (95\% CI) } \end{aligned}$	Age- standardized IR	Crude IR	Age- standardized IR
Lung	7	$\begin{gathered} 275.1 \\ (71.3-478.8) \end{gathered}$	272.2	22.4	15.6	28	$\begin{gathered} 447.3 \\ (281.6-613) \end{gathered}$	210.3	100.5	69.7
Colorectal	1	$\begin{gathered} 39.3 \\ (1.0-218.9) \end{gathered}$	-	63.1	35.5	17	$\begin{gathered} 271.6 \\ (142.5-400.7) \end{gathered}$	142.8	104.7	70
Breast	8	$\begin{gathered} 314.4 \\ (96.5-532.2) \end{gathered}$	260.3	125.2	94.4	1	$\begin{gathered} 16.0 \\ (0.4-89.0) \end{gathered}$	-	-	-
Prostate	-	-	-	-	-	23	$\begin{gathered} 367.4 \\ (217.3-517.6) \end{gathered}$	135.6	144	101.7

*Crude and age-standardized incidence rates of selected cancer sites (lung, colorrectum, breast) expected for the general Spanish population of women aged ≥ 15 years in the year 2010, according to the Global Cancer Observatory. Source: https://gco.iarc.fr/overtime/en.
**Crude and age-standardized incidence rates of selected cancer sites (lung, colorrectum, prostate) expected for the general Spanish population of men aged ≥ 15 years in the year 2010, according to the Global Cancer Observatory. Source: https://gco.iarc.frrovertime/en.

Age-standardized rates were calculated by the direct method, taking the modified world standard population proposed by Doll et al as a reference. Doll R, Payne P, Waterhouse J. Cancer incidence in five countries: a technical report. Berlin: Springer-Verlag Berlin Heidelberg; 1966. Available in https://www.springer.com/gp/book/97835400347

Supplemental Table 2. Univariate coefficients of all baseline variables explored as potential risk factors for malignancy in the study cohort: Fine-Gray competing risk regression analyses.

Variable	Univariate Hazard Ratio	$\mathbf{9 5 \%}$ Confidence Interval	\mathbf{P} value*
Age (years)	1.03	1.02-1.04	<0.01
Female gender	0.68	0.46-1.01	0.05
Previous history of malignancy	1.29	0.83-1.99	0.258
History of alcohol abuse	1.21	0.86-1.70	0.27
History of smoking	1.45	1.04-2.03	<0.01
Body mass index (kg/m2)	1.00	0.98-1.03	0.88
Hypertension	1.16	0.84-1.59	0.37
Diabetes mellitus	1.09	0.78-1.52	0.61
Dyslipidaemia	1.19	0.87-1.65	0.26
Coronary artery disease	1.31	0.95-1.79	0.09
Chronic pulmonary obstructive disease	1.71	1.12-2.61	0.01
Chronic renal dysfunction	1.13	0.81-1.59	0.47
Anaemia	1.16	0.82-1.64	0.39
New York Heart Association class III or IV	0.79	0.56-1.12	0.19
Serum NTproBNP (ng/ml)	1.00	0.99-1.00	0.36
Left ventricular ejection fraction (\%)	1.00	0.99-1.01	0.67
Diuretic use	0.98	0.66-1.65	0.92
Angiotensin converter enzyme inhibitor use	1.40	1.00-1.95	0.05
Angiotensin II receptor blocker use	0.85	0.54-1.35	0.49
Sacubitril-valsartan use	0.74	0.34-1.56	0.43
Beta-blocker use	1.13	0.67-1.91	0.64
Mineralocorticoid receptor antagonists	0.80	0.58-1.10	0.17
Digoxin use	1.08	0.63-1.85	0.77
Ivabradine use	0.94	0.46-1.92	0.86

*Variables that showed a univariate p -value <0.10 were selected for entering the first step of multivariable backward stepwise analysis.

Supplemental Table 3. Causes of death in patients with heart failure and a history of pre-existing malignancy, newly diagnosed malignancy during follow-up or no malignancy.

Causes of death (n=536)	Pre-existing malignancy (n=98)	Newly diagnosed malignancy (n=77)	No malignancy $(\mathbf{n}=\mathbf{3 6 1})$
Cardiovascular			
Sudden death	$14(14.3 \%)$	$9(11.7 \%)$	$109(30.2 \%)$
Heart failure	$22(22.4 \%)$	$10(13 \%)$	$140(38.8 \%)$
Other cardiovascular causes	$22(22.4 \%)$	$52(67.5 \%)$	$32(8.9 \%)$
Non cardiovascular	$18(18.4 \%)$	$4(5.2 \%)$	$45(12.5 \%)$
Cancer	$11(11.2 \%)$	$1(1.3 \%)$	$24(6.6 \%)$
Infection	0	0	$11(3 \%)$
Other non-cardiovascular causes			
Not specified			

Supplemental Table 4. Source of data about cancer diagnoses in previous studies that addressed the incidence of cancer in patients with heart failure.

Authors	Reference	Region/country	Source of data	Description
Hasin et al.	J Am Coll Cardiol 2013; 62: 881-86.	Oldmest County (Minnesota, United States)	Rochester Epidemiology Project	Medical records linkage system
Hasin et al.	J Am Coll Cardiol 2016; 68: 265-71.	Oldmest County (Minnesota, United States)	Rochester Epidemiology Project	Medical records linkage system
Banke et al.	Eur J Heart Fail 2016; 18: 260-66	Denmark	Danish National Patient Registries	Administrative database
Kwak S et al.	J Cardiol 2021; 77: 231-38.	South Korea	Korean National Health Insurance Database	Administrative database
Roderburg C et al.	ESC Heart Fail 2021; 8: 3628-33	Germany	Disease Analyzer Database	Administrative database
Bertero E et al.	JACC CardioOncol 2022; 4: 98-109	Puglia (Italy)	Various administrative databases	Administrative databases
Scwartz B et al.	Int J Cardiol 2020; 316:209-213.	Denmark	Danish Nationwide Administrative Database	Administrative database

