SUPPLEMENTAL TABLE

Table S1. Studies of Photopheresis in Heart Transplantation

Study Design	Ν	Туре	Outcome	Ref.*
	60	Dura hadaada		1.
International, Multicenter,	60	Prophylaxis	• Reduction in ARE (1.44 vs. 0.91 per patient, p = .04).	1s
Double-Blind,			• Fewer patients had ≥ 2 ARE (p = .02).	
Randomized control trial			• Reduction in CMV infection (p = .04).	
Prospective, Interventional	15	Prophylaxis	• ECP groups had fewer ARE at follow-up (p = .007).	2s
study			• ECP groups had fewer infections (p = .026).	
Prospective, Randomized study	23	Prophylaxis for AMR and CAV	 Reduction in PRA at 3–4 months (p < .03) and 5–6 mos. (p < .05) post-HT. Coronary artery thickness at 1 and 2 years was reduced (p < .04) and (p < .02). 	3s
Case series	16	Prophylaxis, high- risk groups	 15 patients were alive and with good graft function at follow-up, 8.3 mos post-HT. 	4s
			• 12.5% of patients had EMB with evidence of ACR.	
			• No evidence of AMR after treatment.	
			Infection complications were 24%.	
Prospective study	343	Prophylaxis,	• Rejection risk was reduced after 3 mos of ECP (p = .04).	5s
		recurrent, rejection with HC	• Reduction in risk for HC rejection or rejection death (p = .006)	
Retrospective case series	20	Prophylaxis,	• Survival at 1 and 3 years was 53% and 84%.	6s
		Recurrent ACR	• 11 deaths at 3.1 years.	
		Persistent ACR,		
		AMR +HC		
Prospective randomized study	16	ACR	• ECP may be as effective as steroids for the treatment of grades 2, 3A, and 3B ACR	7s
Study				
Case series	7	ACR	• 8 of 9 ARE were reversed with ECP as assessed by EMB 7 days after treatment.	8s
Case series	14	ACR	• Improvement in EMB following treatment with CS vs. ECP—100% and 56%, respectively (p < .005).	9s
			 Interstitial infiltrates of >90% T lymphocytes were greater in percentage in the ECP group (p < .005). 	

Case series	6	Recurrent ACR	• Decrease in moderate ARE per month (p < .02).	10s
Case series β	11	Recurrent ACR	• EMB with Grade 0/1A rejection increased from 46% to72%.	11s
			• EMB with Grades 3A/3B decreased from 42% to 18%.	
Case series	8	Recurrent ACR,	Low response rate of 37.5%.	12s
		Persistent ACR,	• 3 patients had negative biopsies at the end of treatment.	
		Mixed rejection	• No statistically significant reduction in overall survival at 26 mos. follow-up.	
		with HC	• Two patients died at 6 and 21 mos.	
Retrospective study	235	ACR, AMR or ATR	• Lower 5-year survival in the ECP group (40% vs. 79%, p = .0001).	13s
			• 6 patients died within 5 years.	
			• No difference in 5-year freedom from CAV, NF-MACE, ATR, ACR, and AMR.	
Case series	4	AMR	ARE were less common at follow-up.	14s
			Reduction in PRA.	
Case series	7	Chronic LV	• Improvement in baseline echo (38 ± 14%–51 ± 8%, p = .048).	15s
		dysfunction	• Decrease in baseline mean peak PRA (83 ± 17%–38± 42%, p = .022).	
		and AMR	• Decrease in inflammatory cytokine TGF-B1 (p = .009).	
Case series	13	Chronic LV	• Reduction in 6 patients with IL-6 (p = .03) and 5 patients with IFN- γ (p =	16s
		dysfunction	.06).	
		and/or AMR	• 6 patients had improved EF (35 ± 20–45± 23%)(p = .004)	
			• Only 4 patients showed a reduction in PRA>20%.	

ACR, acute cellular rejection; AMR, antibody-mediated rejection; ARE, acute rejection episodes; ATR, any treated rejection; CAVcoronary artery vasculopathy; CMV, cytomegalovirus; CS, corticosteroids; ECMO, extracorporeal membrane oxygenation; ECP, extracorporeal photopheresis; EMB, endomyocardial biopsy; HC, hemodynamic compromise; NF-MACE(myocardial infarction, congestive heart failure, percutaneous cardiac intervention, placement of pacemaker/defibrillator, stroke); PRA, panel-reactive antibodies. *References are in the Supplementary Material

Supplemental References:

1s. Barr ML, Meiser BM, Eisen HJ, et al. Photopheresis for the prevention of rejection in cardiac transplantation. Photopheresis transplantation study group. *N Engl J Med*. 1998;339(24):1744-1751.

2s. Meiser BM, Kur F, Reichenspurner H, et al. Reduction of the incidence of rejection by adjunct immunosuppression with photochemotherapy after heart transplantation. *Transplantation*. 1994;57(4):563-568.

3s. Barr ML, Baker CJ, Schenkel FA, et al. Prophylactic photopheresis and chronic rejection: effects on graft intimal hyperplasia in cardiac transplantation. *Clin Transplant*. 2000;14(2):162-166.https://doi.org/10.1034/j.1399-0012.2000.140211.x

4s. Goekler J, Zuckermann A, Worel N, et al. Extracorporeal photopheresis immediately after heart transplantation in high risk patients. *J Heart Lung Transplant*. 2020;39(4):S229. <u>https://doi.org/10.1016/j</u>. healun.2020.01.882

5s. Kirklin JK, Brown RN, Huang ST, et al. Rejection with hemodynamic compromise: objective evidence for efficacy of photopheresis. *J Hear Lung Transplant*. 2006;25(3):283-288.https://doi.org/10.1016/j.healun.2005.10.004

6s. Carlo WF, Bennett Pearce F, George JF, et al. Single-center experience with extracorporeal photopheresis in pediatric heart transplantation. *J Hear Lung Transplant*. 2014;33(6):624-628.https://doi.org/10.1016/j.healun.2014.01.863

7s. Costanzo-Nordin MR, Hubbell EA, O'Sullivan EJ, et al. Photopheresis versus corticosteroids in the therapy of heart transplant rejection: preliminary clinical report. *Circulation*. 1992;86(5SUPPL):242-250.

8s. Costanzo-Nordin MR, Hubbell EA, O'sullivan EJ, et al. Successful treatment of heart transplant rejection with photopheresis. *Transplantation*. 1992;53(4):808-814.

9s. Winters GL, Costanzo-Nordin MR, Hubbell EA, et al. Endomyocardial biopsy findings after photopheresis treatment of cardiac transplant rejection. *Cardiovasc Pathol*. 1993;2(2):145-153. https://doi.org/10.1016/1054-8807(93)90026 -X

10s. Giunti G, Schürfeld K, Maccherini M, et al. Photopheresis for recurrent acute rejection in cardiac transplantation. *Transplant Proc.* 1999;31(1–2):128-129. https://doi.org/10.1016/S0041-1345(98)01471 -7

11s. Dall'Amico R, Montini G, Murer L, et al. Extracorporeal photochemotherapy after cardiac transplantation: a new therapeutic approach to allograft rejection. *Int J Artif Organs*. 2000;23(1):49-54. https://doi.org/10.1177/03913 98800 02300108

12s. Savignano C, Rinaldi C, Tursi V, et al. Extracorporeal photochemotherapy in heart transplant rejection: a single-center experience. *Transfus Apher Sci.* 2017;56(4):520-524.https://doi.org/10.1016/j.trans ci.2017.07.009

13s. Patel J, Kittleson M, Chang D, et al. 5-Year outcome of photopheresis in hearttransplantation with refractory/persistent rejection. *J Hear Lung Transplant*. 2019;38(4):S276. <u>https://doi.org/10.1016/j.healun.2019.01.689</u> 14s. Rose EA, Barr ML, Xu H, et al. Photochemotherapy in human heart transplant recipients at high risk for fatal rejection. *J Hear Lung Transpl*. 1992;11(4 Pt 1):746-750.

15s. Kobashigawa J, Watanabe J, Shafi H, et al. Clinical and mechanistic outcomes of photopheresis after heart transplantation [abstract].*Am J Transpl*. 2013;13(suppl 5). https://atcme eting abstr cts.com/abstr act/clini cal-and-mechanistic-outcomes-of-photopheresis-after-heart-transplantation/.

16s. Watanabe J, Shafi H, Patel J, et al. Extracorporeal photopheresis (ECP) improved allograft function and significantly reduced inflammatory cytokines in patients (Pts) with refractory heart allograft dysfunction. Abstract# 683. *Transplantation*. 2014; 98:56.