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In this article we mainly extend a newly introduced deterministic model for the COVID-
19 disease to a stochastic setting. More precisely, we incorporated randomness in some
coefficients by assuming that they follow a prescribed stochastic dynamics. In this way,
the model variables are now represented by stochastic process, that can be simulated
by appropriately solving the system of stochastic differential equations. Thus, the model
becomes more complete and flexible than the deterministic analogous, as it incorporates
additional uncertainties which are present in more realistic situations. In particular,
confidence intervals for the main variables and worst case scenarios can be computed.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The coronavirus disease 2019, renamed as COVID-19, is an infectious disease produced by the virus SARS-CoV-2, which
as declared pandemic by the World Health Organization (WHO) in March 11, 2020. This disease has posed many novel
cientific challenges, ranging from contagious patterns, medical treatments or vaccine developments, to data analytics,
pread modelling or evolution forecast. The research on all of these topics has been intensive in the last few months,
s so will be in the near future. Thus, many disciplines from interconnected fields, like bio-sciences, mathematical and
tatistical modelling or artificial intelligence, will be involved and they will play an important role to rapidly overcome
his exceptional emergency situation.

From the mathematical modelling point of view, epidemiological compartmental models have been often used to
nderstand and analyse the behaviour of the contagious diseases, with the article [1] being the pioneering work.
hese models provide useful tools to make predictions about the future evolution of the epidemic and to control its
ropagation. In the literature of epidemic modelling, many examples of general-purpose models have been proposed
see [2], for a review), each of them accounting for some specific characteristics of the diseases, like the well-known
xamples SIR (Susceptible–Infected–Recovered), SEIR (Susceptible–Exposed–Infected–Recovered) or SIS (Susceptible–
nfected–Susceptible) models.
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In addition, compartment models are building blocks of more involved approaches like the Agent-Based (AB) models,
ee [3] for example. This type of models are potentially interesting, as they are designed to include heterogeneity in the
odelling, in contrast to the homogeneity that characterizes the compartmental counterparts. Such models are then able

o incorporate individual attributes and the interaction among the agents themselves and with the environment, at cost of
ncreasing the model complexity. However, AB models exhibit certain relevant disadvantages. Firstly, they are not suitable
andidates at the initial stages of diseases when the lack of high quality data, specially when considering lower (micro)
evels, can cause a problematic calibration of model parameters and erroneous predictions. As stated in [4], this fact can
roduce catastrophic consequences due to the butterfly effect. In addition, overparameterized AB models can result in a
oor balance between complexity and interpretability, a key aspect for policy makers to decide the control measures and
eliver clear messages. Furthermore, AB models are computationally intensive, while the analogous compartmental ones
ften turn out to be much faster alternatives. Adding extra compartments to the classical SIR-like models to accounting
or different groups of interest can be understood as an intermediate strategy, aiming to preserve the advantages of both
ind of models, while mitigating its own disadvantages. All in all, here we focus on an advanced compartmental model
hat includes enough information keeping a sufficient degree of flexibility.

Typically, the compartmental models are originally formulated following a deterministic approach, i.e., in terms
f a system of Ordinary Differential Equations (ODEs), although, usually, they are readily extended to a stochastic
ersion. There are two common approaches to include stochasticity into a deterministic model, relying on either the
ontinuous Time Markov Chain (CTMC) or Stochastic Differential Equations (SDEs), see [5] and the references therein. The
tochastic models allow to capture many kinds of circumstances including all types of uncertainty that may influence
he compartments dynamics: behavioural effects, public interventions, seasonal patterns, environmental factors, etc. For
xample, in [6,7], the authors consider a statistical inference-based approach to include random noise arising from
ifferent sources/components. Furthermore, while the solution of a deterministic model is given by a set of functions
f time uniquely dependent on the initial data, the solution of the stochastic model is a set of stochastic processes,
ontaining much more information than the deterministic analogous. In fact, at each time instant we can exploit the
nformation provided by the probability distribution associated to the underlying random variable. A statistical analysis
an be therefore performed, producing useful quantities like expected outcomes, quantiles or worst case scenarios.
In this work we present a stochastic extension of the deterministic compartmental model in [8], that has been proposed

s an ad hoc model for the COVID-19 disease. However, note that the stochastic extension proposed here is model-
ndependent and it can be exploited in a similar fashion under any compartmental-based approach. Unlike to the classical
odels (SIR, SEIR, SIS), the selected model is adapted to the specific characteristics of the COVID-19, taking into account,
esides the usual factors, the undetected infectious cases, the hospitalized population or the deaths, for example. Thus,
he so-called θ-SEIHRD model proposed in [8] was developed as a very general and sophisticated model (based on a
reviously introduced model [9]) in order to be able to study the spread of the disease worldwide. In the same work,
he authors proposed a simplified version which reduces the mathematical complexity towards a more tractable model,
ut yet preserving the ability to capture the most relevant features. Other recent studies addressing the mathematical or
tatistical modelling in the context of the COVID-19 include [10–13], for example. As the literature focusing on COVID-19
odelling is increasing a lot during last months and weeks, it results quite difficult for the authors to select a list of

he more relevant papers more recently arising in the topic, surely some of them being developed in parallel to this
ontribution.
Here, we will follow the SDE-based approach where the randomness is typically achieved by incorporating a Brownian

otion, also known as Wiener process, to the ODEs of the deterministic system. There are two common ways of addressing
his stochastic extension. On the one hand, an arbitrary random noise can be added to some of the equations in the ODE
ystem, thus transforming them into SDEs. On the other hand, one (or more) of the existing model parameters can be
erturbed, meaning that it (they) becomes a random variable or a stochastic process. Although both approaches have
een well investigated, recent examples are [5,14,15] for the random noise approach and [16–18] for the parameter
erturbation, here we prefer the second alternative. When adding random noise to an equation, it often comes with either
n extra parameter to control the level of volatility or a covariance term (usually relying on the Cholesky decomposition
s in [5]). Both methodologies might lack biological interpretation, specially when employing a mid-high number of
ompartments (SDEs), as it is the case of the model considered in this work. Furthermore, in practice, the uncertainty
ill have impact on a particular model component, typically represented by a model parameter. Therefore, a randomly
erturbed parameter can be reasonably explained in terms of the variability produced by the source of the considered
ncertainty.
In this work, we will employ a randomly perturbed disease contact rates. The approach proposed here is however

onceptually different than the ones typically found in the literature, aiming to deal with some of the observed incon-
istencies in the COVID-19 context. As a natural choice, many stochastic SIR-like models rely on a normally distributed
erturbation for the disease contact rate parameters (see [16,18], for example). However, this approach allows negative
alues for the rates, which is biologically non-sensical, potentially appearing when the rate is close to zero (a pattern
bserved in practice for the COVID-19, see [19]). This issue is overcome in [17], by employing an exponential Ornstein–
hlenbeck (OU) process to model the contact rate. Although this process indeed ensures positiveness, it presents another
ndesirable feature: an increasing variance in time. When analysing the disease transmission dynamics, there is not an
bjective evidence of more variability in the disease contact rates in the long-term [20]. Actually, one can expect more
2
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control of the disease spread patterns over the course of the epidemic. For all the reasons mentioned above, we propose to
model the contact disease rates by means of the so-called CIR process, named after its authors Cox, Ingersoll and Ross [21].
he CIR process is widely employed to simulate the evolution of interest rates in the quantitative finance framework. In
ome sense, the interest rates in computational finance and the disease contact rates in epidemiology present a rather
imilar behaviour: positiveness, controlled variability and long-term stability.
The article is organized as follows. In Section 2 we introduce the proposed mathematical model. Section 3 describes

he numerical methods for solving the model and compares it with a simpler alternative. Section 4 contains the obtained
esults and their numerical and statistical analysis. Finally, Section 5 points out some conclusions and possible future
esearch lines.

. A stochastic compartmental model for the COVID-19

As mentioned in the previous introduction, we base our approach on the the so called θ-SEIHRD model first proposed
in [8], which provides an advanced extension of the classical SIR-like models and adds to the usual compartments in
the SEIR model the very specific ones for COVID-19: undetected infectious, hospitalized and deaths compartments. In
fact, it results in a very sophisticated, well motivated and general model, with a significant number of free parameters,
allowing an enormous flexibility (including several territories). In order to make this model more practically tractable, the
authors also proposed a simplified version by imposing several assumptions: single territory, regular natality/mortality is
neglected, and no imported/exported cases. Furthermore, some predefined forms for the open parameters of the model
are adopted.

For the sake of completeness, we devote the following section to briefly describe the most relevant components of the
simplified θ-SEIHRD model, before presenting its extension with randomly perturbed parameters towards the stochastic
θ-SEIHRD model here proposed.

2.1. Original model

The original model consists of nine compartments, including classical ones like susceptible, exposed or infected
(although some have a slightly different interpretation in comparison with the usual meaning) and other ones that are
COVID-related, i.e., they account for the particular features of the disease. As it is common in this kind of models, an
individual stays in a compartment a period of time and then moves to another compartment according to some transition
rates. More precisely, the simplified θ-SEIHRD model in [8] is given by the following system of differential equations:

dS
dt

(t) = −
S(t)
N

(
mE(t)βEE(t) + mI (t)βI I(t) + mIu (t)βIu (θ (t))Iu(t)

)
−

S(t)
N

(
mHR (t)βHR (t)HR(t) + mHD (t)βHD (t)HD(t)

)
,

dE
dt

(t) =
S(t)
N

(
mE(t)βEE(t) + mI (t)βI I(t) + mIu (t)βIu (θ (t))Iu(t)

)
+

S(t)
N

(
mHR (t)βHR (t)HR(t) + mHD (t)βHD (t)HD(t)

)
− γEE(t),

dI
dt

(t) = γEE(t) − γI (t)I(t),

dIu
dt

(t) = (1 − θ (t))γI (t)I(t) − γIu (t)Iu(t),

dHR

dt
(t) = θ (t)

(
1 −

ω(t)
θ (t)

)
γI (t)I(t) − γHR (t)HR(t),

dHD

dt
(t) = ω(t)γI (t)I(t) − γHD (t)HD(t),

dRd

dt
(t) = γHR (t)HR(t),

dRu

dt
(t) = γIu (t)Iu(t),

dD
dt

(t) = γHD (t)HD(t),

(1)

here the first two compartments, S(t) and E(t), denote the persons not affected by the disease pathogen (Susceptible)
and the ones in incubation after being infected without clinical signs (Exposed), respectively. The compartment I(t)
(Infectious) includes the persons in the very preliminary stage of the infection, where nobody is expected to be detected
yet, although they may infect other people after finishing the incubation period. After this period, they can either remain
undetected and enter in the compartment I (t) (Undetected Infectious), or be taken in charge by sanitary authorities
u
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and enter in the hospitalized/quarantined group. People in compartment Iu can infect others and develop the disease,
lthough they are not reported by sanitary authorities. Moreover, it is assumed that people in compartment Iu present
o (or very weak) symptoms, so that they directly pass to recovered state after an infectious period of time. Among
ospitalized persons (which include those ones in quarantine at home), we distinguish between those ones who will
ecover, placed in compartment HR(t), and others who will die, placed in compartment HD(t). Note that people in hospital
an still infect others. Among recovered people, we distinguish between persons who were previously detected, Rd(t),
rom those ones who were undetected, Ru(t). Individuals in recovered compartments are not contagious anymore and
ave developed immunity. Finally, D(t) denotes the persons who did not overcome the disease and died from COVID-

19. As every compartment presents a dependence in time, we incorporate this time dependence by referring to each
compartment’s situation at instant t . More detailed explanations about this deterministic model can be found in [8].

The right hand sides of equations in system (1) contain the balances between the entries and exits of persons in
each compartment. In order to properly pose the initial value problem, the system of equations is completed with the
initial data S(t0), E(t0), I(t0), Iu(t0), HR(t0), HD(t0), Rd(t0), Ru(t0) and D(t0), representing the compartment’s composition at
inception time, t0. Note that the last three equations of the system (1) are uncoupled with the six previous ones, so that
the expression of their solution can be obtained and is given by

Rd(t) = Rd(t0) +

∫ t

t0

γHR (s)HR(s)ds,

Ru(t) = Ru(t0) +

∫ t

t0

γIu (s)Iu(s)ds,

D(t) = D(t0) +

∫ t

t0

γHD (s)HD(s)ds,

once the first six ones have been solved in a first stage. Thus, only the first six coupled equations need to be solved.
The model includes a number of open parameters, which are determined either from the available data/literature or

by calibration. In the following, a detailed explanation of each parameter is provided.

• Efficiency of the control measures: mE,mI ,mIu ,mHR ,mHD ∈ [0, 1]. Here, only one control measure is assumed
(mobility restrictions, for example), implemented at date λ1 and represented by the following decaying function:

mE(t) = mI (t) = mIu (t) = mHR (t) = mHD (t) =

{
1, if t ∈ [0, λ1],

exp (−κ1(t − λ1)) , if t ∈ [λ1, T ],

with the parameter κ1 ∈ [0, 0.2] entering in the calibration procedure. The generalization to more/individualized
control measures is straightforward.

• The fatality rate: ω(t) ∈ [ω, ω] ⊂ [0, 1]. The following form is proposed:

ω(t) = mI (t)ω + (1 − mI (t))ω,

with ω and ω being the fatality rate limits with and without control measures, respectively. As ω ≥ ω, the value of
ω is defined in terms of its difference w.r.t the lower limit, i.e., ω = ω + δω , whose values are calibrated.

• The fraction of infected individuals which are detected and documented by the authorities: θ . We assume that all
deaths are detected, so that θ ∈ [ω, 1], and that it changes in time. More precisely, we consider the expression

θ (t) =

⎧⎪⎨⎪⎩
θ, if t ∈ [t, λ1],

linear continuous, if t ∈ [λ1, λ2],

θ, if t ∈ [λ2, T ],

with θ , θ , λ1, and λ2 inferred from the data.
• The compartment transition rates: γE, γI , γIu , γHR , γHD ∈ (0, +∞). These parameters are constructed in accordance

to the recent literature. They are based on the average duration (in days) of an individual in each infectious
compartment, denoted by dE , dI , dIu , dHR and dHD . Moreover, we assume that dIu = dHR and dHD = dHR + δR, δR > 0.
Thus,

γI =
1
dE

, γI (t) =
1

dI − g(t)
, γIu (t) = γHR (t) =

1
dIu + g(t)

, γHD (t) =
1

dIu + g(t) + δR
,

where g(t) = dg (1 − mI (t)) represents the decrease of the duration of dI due to the application of control measures
at time t , with dg being the maximum number of days that dI can be decreased due to the control measures. The
parameter δR is included in the calibration.

• The disease contact rates: βE, βI , βIu , βHR , βHD ∈ R+. The parameter βI is assumed to be given, after calibration to
the available data. Furthermore, the following relation between βI and the rest of the contact rates is considered:

βE = CEβI , βIu (t) = β +
βI − β

I (1 − θ (t)), βHR = βHD = CH (t)βI , (2)

I 1 − ω(t)

4



Á. Leitao and C. Vázquez Communications in Nonlinear Science and Numerical Simulation 115 (2022) 106731

2

k
p
p
i

w

w

d
c
d
t
p

where β
I
= CuβI , with CE , CH (t) and Cu ∈ [0, 1]. Parameters CE and Cu are also obtained by calibration, while CH (t)

is determined by the following expression:

CH (t) =

αH

(
βI

γI (t)
+

βE
γE (t)

+ (1 − θ (t)) βIu (t)
γIu (t)

)
(1 − αH )βIθ (t)

((
1 −

ω(t)
θ (t)

)
1

γHR (t)
+

ω(t)
θ (t)

1
γHR (t)

) , (3)

with αH being the percentage of cases (healthcare workers) infected by individuals in compartments HR or HD.
Expression (3) results from the use of the available data for infection transmissions within hospitals, which is a
trustworthy and more easily gathered information, specially at the beginning of the pandemic. The term incorporates
a relation with the other disease contact and transition rates (including a temporal dependency).

.2. Stochastic extension

Our aim is to introduce stochasticity in the simplified θ-SEIHRD model previously described. Moreover, in order to
eep the interpretability of the proposed stochastic model, we will add some randomness to a set of parameters. More
recisely, we will add randomness on the disease contact rates, β ’s. Note that in the simplified deterministic version
roposed in [8] all the β ’s depend on βI , as indicated in Eq. (2). Therefore, we propose to add uncertainty in βI by turning
t into a stochastic process, i.e., a random variable at each time instant.

Then, we start by writing the model in terms of βI . From Eq. (2), we have

βE = βIAE, βIu = βIAIu , βHR = βIAHR , βHD = βIAHD ,

here
AE = CE,

AIu (t) = Cu +
(1 − Cu)(1 − θ (t))

1 − ω(t)
,

AHR (t) = AHD (t) =

αH

(
1

γI (t)
+

AE
γE

+ (1 − θ (t)) AIu (t)
γIu(t)

)
(1 − αH )θ (t)

(
(1 −

ω(t)
θ (t) )

1
γHR (t)

+
ω(t)
θ (t)

1
γHD (t)

) .

By using the previous notation, the simplified θ-SEIHRD model (1) can be rewritten as
dS
dt

(t) = −βI
S(t)M(t)

N
,

dE
dt

(t) = βI
S(t)M(t)

N
− γEE(t),

dI
dt

(t) = γEE(t) − γI I(t),

dIu
dt

(t) = (1 − θ (t))γI I(t) − γIu Iu(t),

dHR

dt
(t) = θ (t)

(
1 −

ω(t)
θ (t)

)
γI I(t) − γHRHR(t),

dHD

dt
(t) = ω(t)γI I(t) − γHDHD(t),

dRd

dt
(t) = γHR (t)HR(t),

dRu

dt
(t) = γIu (t)Iu(t),

dD
dt

(t) = γHD (t)HD(t),

(4)

here

M(t) = mEAEE(t) + mI I(t) + mIuAIu Iu(t) + mHRAHRHR(t) + mHDAHDHD(t). (5)

As previously indicated, we incorporate a stochastic component into the model by replacing the parameter βI of the
eterministic model with a random variable. Instead of considering a constant value for βI , the disease contact rate in
ompartment I follows a newly introduced stochastic process β̃I (t). In order to preserve the positiveness in the parameter
efinition (imposed by its biological interpretation), we choose the well-known CIR process [21]. The main advantage of
he CIR process is that it theoretically ensures the spacial states to be non-negative. Moreover, as it is a mean-reverting
rocess, the dynamics of the CIR process tends to a prescribed value in the long term. This property can have the following
5
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biological interpretation: at the early stages of the disease, the contacts between people are less controlled (so more
volatile), while in the mid-long term the individual contacts and the disease spread patterns are more studied and the
ranges of variability are more reduced. Accordingly, the dynamics of β̃I satisfies the following stochastic differential
equation:

dβ̃I (t) = νβI (µβI − β̃I (t))dt + σβI

√
β̃(t)dW (t), (6)

where νβI is the mean reverting speed, µβI is the long-term average, σβI is the volatility, and dW (t) is a Brownian motion
increment. Therefore, the stochastic θ-SEIHRD model is governed by the following system of Random Ordinary Differential
Equations (RODEs):

dS(t) = β̃I (t)
S(t)M(t)

N
dt,

dE(t) =

(
β̃I (t)

S(t)M(t)
N

− γEE(t)
)
dt,

dI(t) = (γEE(t) − γI I(t)) dt,
dIu(t) =

(
(1 − θ (t))γI I(t) − γIu Iu(t)

)
dt,

dHR(t) =

(
θ (t)

(
1 −

ω(t)
θ (t)

)
γI I(t) − γHRHR(t)

)
dt,

dHD(t) =
(
ω(t)γI I(t) − γHDHD(t)

)
dt,

dRd(t) = γHR (t)HR(t)dt,
dRu(t) = γIu (t)Iu(t)dt,
dD(t) = γHD (t)HD(t)dt,

dβ̃I (t) = νβI (µβI − β̃I (t))dt + σβI

√
β̃I (t)dW (t),

(7)

with M(t) as defined in Eq. (5). Although only one source of randomness is introduced, the solution of the whole system
becomes a set of stochastic processes, due to the dependence of the remaining equations on the first equations for S and
E, and their own dependence on β̃I . Note also that we could add time dependency to β̃I both in the deterministic model
(which is not the case in [8]) as well as in the stochastic version (by considering either νβI , µβI or σβI time dependent).

Remark. Note that our approach could be generalized to a setting where some of the parameters were independent, in
this case we would consider each one as a Gaussian random variable with possible correlations between (some or) all of
them. In this more general setting, a certain number of different (possibly correlated) Brownian motion processes would
come into place.

3. On the stochastic θ-SEIHRD model

In this section, we provide a detailed analysis of the stochastic θ-SEIHRD model defined in (7).

3.1. Existence and uniqueness of solution

First, note that (7) is a system of RODEs driven by an Itô process, which defines the CIR model. Since the paths of
the Itô process are at most Hölder continuous, the solution of the system of RODEs is at most continuously differentiable
independently of the smoothness of the functions that define the right hand side of the system of ODEs [14]. Therefore,
the usual arguments based on Taylor expansions to obtain the order of convergence for the classical numerical methods
does not apply. For example, classical Runge–Kutta methods do not achieve their order of convergence in ODEs when
applied to RODEs (see [22] and the references therein).

Secondly, in order to establish the existence of solution for the system of RODEs (7) driven by the CIR process, we
introduce the notation

X(t) = (S(t), E(t), I(t), Iu(t), HR(t), HD(t), Rd(t), Ru(t),D(t))T ,

where the super-index (·)T denotes the transpose operator. Moreover, we introduce the following notation for the
coefficients of the CIR process,

a(β̃I ) = νβI (µβI − β̃I ), b(β̃I ) = σβI

√
β̃I .

By using the previous notation, the system (7) can be equivalently written as

dX(t) = F (t, X(t))dt,
˜ ˜ ˜

(8)

dβI (t) = a(βI (t))dt + b(βI (t))dW (t),

6
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where F is the function that defines the right hand side of the system of RODEs. Note that (8) can be understood as a
system of SDEs where the diffusion coefficients for all equations are equal to zero except for the last equation which
is equal to b(β̃I (t)). For a set of constant initial data S(0), E(0), I(0), Iu(0), HR(0), HD(0), Rd(0), Ru(0), D(0), and β̃I (0), the
ystem (8) has a unique strong solution. This follows from the fact that the coefficients of the system (8) of SDEs are
ocally Lipschitz continuous and the initial condition is a constant value (see [23], for example). Therefore, the existence
nd uniqueness of solution for the θ-SEIHRD model defined by (7) follows.

3.2. Numerical solution

As the system (7) is nonlinear, it is not possible to obtain a closed-form expression for the solution, as it also happens
with the corresponding deterministic version. Therefore, the use of numerical methods for solving (7) becomes mandatory.
Here, we adopt the following strategy. First, we perform a simulation of the dynamics of β̃I (t), in accordance with the CIR
rocess. After, we solve the resulting ODE system for each simulated path of β̃I (t). In this way, we obtain a set of random

walks for each stochastic process representing a model variable.

Remark. Although in the stochastic θ-SEIHRD model (7) the solution is a finite set of stochastic processes, we keep the
same notation we used for the finite set of real valued functions representing the solution of the deterministic θ-SEIHRD
model.

The CIR process is a well-studied dynamics often employed in computational finance (see [24] for example), which
satisfies the SDE in Eq. (6). From the mathematical point of view, one of its relevant features is that the underlying
distribution is known analytically, relying on the non-central chi-squared distribution. Thus, for s < t , the conditional
distribution of β̃I defined in Eq. (6) reads

β̃I (t)|β̃I (s) ∼ c(t, s) · χ2

(
d,

e−νβI (t−s)

c(t, s)
β̃I (s)

)
,

where

c(t, s) =
σ 2

βI

4µβI

(
1 − e−νβI (t−s)) , d =

4νβI µβI

σ 2
βI

,

and χ2(a, b) is the non-central chi-squared distribution with a degrees of freedom and non-centrality parameter b. This
forms the basis for an exact simulation scheme, which can be used to obtain realizations of β̃I . Given a set of m + 1 time
points, {ti}m0 , where the solution will be computed, we have

c(ti+1, ti) =
σ 2

βI

4µβI

(
1 − e−νβI (ti+1−ti)

)
,

β̃I (ti+1) = c(ti+1, ti)χ2

(
d,

e−νβI (ti+1−ti)

c(ti+1 − ti)
β̃I (ti)

)
,

with the constant parameter d =
4νβI µβI

σ2
βI

and some initial value β̃I (t0) = β̃I (0). By employing this scheme, we can simulate

discrete sample paths of β̃I .
Once the sample paths of β̃I have been obtained, we numerically solve n ODE systems, one for each of these paths. For

his purpose, we choose the explicit Runge–Kutta method of order 5(4) when applied to deterministic ODE systems, known
s RK45, RKDP or Dormand–Prince method, see [25]. Its practical implementation requires that the time discretization
esh includes the time points used in the simulation of β̃I . As previously indicated, the lack of enough smoothness of the
ample paths of the CIR process reduce the regularity of the solution and also the order of convergence of Runge–Kutta
ethod obtained when solving deterministic ODE systems.

emark. Alternative numerical methods for solving (7) could be based on the use of classical numerical stochastic
ethods for solving the equivalent system of SDEs (8). For example, applying the Euler–Maruyama method to (8) would
e equivalent to use the explicit Euler scheme to solve the eight ODEs with random coefficients combined with Euler–
aruyama scheme to approximate the paths of the CIR process. Also note that using a stochastic Runge–Kutta scheme for

he system of SDEs (8) would be equivalent to use a Runge–Kutta scheme for the ODEs in (7) combined with a stochastic
unge–Kutta method to approximate the paths of the CIR process. Both previous alternatives, by Euler–Maruyama and
unge–Kutta stochastic numerical methods for SODEs, have been numerical analysed in the classical book [23]. By using
he equivalence between a RODE driven by an Itô process and the corresponding Stochastic ODE, numerical methods for
his kind of RODEs are analysed in [22].

In our approach, instead of using numerical methods to approximate the sample paths of the CIR process, we employ
hat is known as an exact simulation scheme since we exactly sample the distribution to generate each sample path.
7
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This exact simulation is combined with a Runge–Kutta method to integrate the resulting ODE for each path. In this work
we do not address the numerical analysis of the proposed numerical strategy, but only use it to simulate the proposed
stochastic model.

In order to illustrate the potential of the stochastic version of θ-SEIHRD model, in Figs. 1, 2 and 3 we present the
solution of the deterministic model versus a number of possible scenarios (simulations) obtained by the stochastic model.
Further, we include the so-called ‘‘Average scenario’’, which is nothing else than an estimation of the expected value of the
model variables in time. We can clearly observe that the outcomes produced by the stochastic model provide much more
information about the future evolution of each model compartment, while the deterministic one seems to be somehow
an averaged version of the stochastic formulation. This gives just an initial insight of the potential of the newly introduced
model, which will be completed in Section 4 with a more detailed analysis.

3.3. Comparison with a stochastic SEIR model

In this section, we argue the reasons why we choose to extend the θ-SEIHRD model to a stochastic setting, instead of
any other simpler alternative. For this purpose, let us consider the well known SEIR model. The θ-SEIHRD can be easily
transformed into a SEIR-like model by smartly selecting the values of some of the model parameters. By doing so, we can
still use the rest of the calibrated parameters as SEIR model inputs. Thus, if we take mIu (t) = mHR (t) = mHD (t) = 0 and

= 1 in Eq. (1), and introduce the new compartment R (removed), we obtain
dS
dt

(t) = −
S(t)
N

(
mE(t)βEE(t) + mI (t)β̂I I(t)

)
,

dE
dt

(t) =
S(t)
N

(
mE(t)βEE(t) + mI (t)β̂I I(t)

)
,

dI
dt

(t) = γEE(t) − γI (t)I(t),

dR
dt

(t) = γI (t)I(t),

(9)

here all the model parameters have the same interpretation as in Section 2, while we incorporate a specific disease
ontact rate, β̂I , for compartment I . Since this newly introduced SEIR-like model does not distinguish between detected
nd undetected (actually it considers all the cases detected, i.e., θ = 1), the disease contact rate of compartment I
eeds to be compensated in order to take into account this fact and allow to compare the results provided by both
odels. Therefore, we adopt the following natural formulation, in which we assume that the new disease contact rate of
ompartment I is the addition of the two rates of the original compartments for detected and undetected infections, i.e.,

β∗

I = βI + βIu = βI + β
I
,

here the second equality comes from Eq. (2) and θ = 1. The advantage of this approach is that it enables the use of the
previously defined parameters, which are already calibrated to the data.

Next, we compare the outcomes produced by the models defined by Eqs. (1) and (9). In Fig. 4a, we observe that the
curve of infected cases resulting from the SEIR model is very similar to the one obtained with the θ-SEIHRD model (see
Fig. 1e). Therefore, we can conclude that both models provide equivalent outcomes in terms of the infected cases.

Let us now consider a stochastic SEIR-like model that results from simplifying the stochastic θ-SEIHRD of (7) in a similar
way as for the deterministic case, i.e., taking mIu (t) = mHR (t) = mHD (t) = 0 and θ = 1, incorporating the ‘‘removed cases’’
compartment, R. Then, we have the dynamics

dS
dt

(t) = −
S(t)
N

(
mE(t)βEE(t) + mI (t)β̃∗

I I(t)
)
,

dE
dt

(t) =
S(t)
N

(
mE(t)βEE(t) + mI (t)β̃∗

I I(t)
)
,

dI
dt

(t) = γEE(t) − γI (t)I(t),

dR
dt

(t) = γI (t)I(t),

dβ̃∗

I (t) = νβI (µβI − β̃∗

I (t))dt + σβI

√
β̃∗

I (t)dW (t),

(10)

here a new stochastic process, β̃∗

I (t), following a CIR dynamics is considered. By using the stochastic SEIR model defined
by Eq. (10), we can now generate a number of scenarios and compute an estimation of the expected infected cases, E[I(t)],
s we have done in the previous subsection. In Fig. 4b, several of those Monte Carlo scenarios and the expected value of
(t) (labelled as ‘‘Average scenario’’) are depicted. Again, we can easily conclude that this stochastic extension of the SEIR
odel reproduces the observed behaviour for the θ-SEIHRD model (see Figs. 1, 2 and 3), since the deterministic version

can be seen as an averaging scenario of the stochastic generalization.
8
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Fig. 1. Deterministic vs. Stochastic: νβI = 1, µβI = βI and σβI = 0.1, with n = 215 Monte Carlo simulations (only 8 simulations depicted).

Next, the total number of active cases predicted by both models, θ-SEIHRD and SEIR, and their corresponding stochastic
ersions are considered. The obtained results are presented in Fig. 5. We can readily observe that the SEIR model tends
o significantly underestimate the number of active cases, an issue that is highly undesirable. This effect is even more
ronounced when the stochastic models are employed, thus obtaining a gap of around 3000 cases in average (around
000 cases in the worst case scenario).
9
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Fig. 2. Deterministic vs. Stochastic: νβI = 1, µβI = βI and σβI = 0.1, with n = 215 Monte Carlo simulations (only 8 simulations depicted).

The undesired behaviour produced by the simplified SEIR alternative can be very problematic. Although this simpler
odel is able to capture the infected cases (see Fig. 4), an erratic estimation of the total active cases is observed. These
oor predictions of the disease evolution generated with the SEIR model are caused by the concentration of the cases
n a single compartment and the absence of intermediate ones (hospitalized). In addition, the impact of this effect on
he stochastic model outcomes is significantly more important, which makes the introduced SEIR model an inappropriate
andidate to be stochastically extended in the context of the COVID-19 disease.
10
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Fig. 3. Deterministic vs. Stochastic: νβI = 1, µβI = βI and σβI = 0.1, with n = 215 Monte Carlo simulations (only 8 simulations depicted).

emark. In order to employ the stochastic SEIR alternative presented above to model the COVID-19 disease evolution,
t would require ad hoc calibration for its free parameters, both the model related and the CIR process related ones.
owever, our goal here is to compare the extension of an existing and already calibrated deterministic model to its
tochastic counterpart.
11
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Fig. 4. SEIR model: νβI = 1, µβI = β∗

I and σβI = 0.1, with n = 215 Monte Carlo simulations (only 8 simulations depicted).

Fig. 5. θ-SEIHRD vs. SEIR. Total active cases. CIR parameter: νβI = 1, µβI = β∗

I and σβI = 0.1.

. Numerical and statistical analysis

The experiments have been conducted in a computer system with the following characteristics: CPU Intel Core i7-
720HQ 2.6 GHz, 16 GB RAM memory and GPU GeForce GTX 970M. The numerical codes have been implemented in
ython programming language. We consider a uniform time grid, i.e., ∆t := ti+1 − ti, ∀i, with time step ∆t =

1
6 (around

h).
In this section, we perform a numerical and statistical study of the proposed stochastic model. As mentioned, the

olution of the system of SDEs in (7) is a set of stochastic processes, meaning that we can ‘‘extract’’ a random variable
t each time point. In this way, not only a single value (like for the deterministic case), but also some statistics can be
rovided for a prescribed time. In this work, we consider the mean, the interquantile interval, [Q1,Q3] (with Q1 and Q3
eing the first and the third quantiles, respectively), and a worst case scenario (WS), applied to both the evolution of the
odel variables and the possible model outputs.
Here we take advantage of the experiments conducted in [8], referred to the case of China. In Tables 1 and 2 the

eported values for the open coefficients are presented, distinguishing between the ones extracted from the literature or
y experience, and the ones obtained by a calibration procedure, respectively. The initial data is given by S(t0) = N − 1,
(t0) = 1 and I(t0) = Iu(t0) = HR(t0) = HD(t0) = Rd(t0) = Ru(t0) = D(t0) = 0.

.1. Model variables

We firstly test the evolution of the model variables. Thus, we extract some simulation-based statistics at a couple of
ime instants, the 8th February (inflection point) and the 29th March (final point). Furthermore, the impact of different
evels of uncertainty is also reported by considering several representative values for σ , thus reflecting situations of no
βI

12
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Table 1
Parameters extracted from the experience and/or literature.
Notation Value Description

N 1400812636 Total population.
t0 1-12-2019 Initial date.
T 29-3-2020 Final date.
λ1 23-1-2020 Date when travel restrictions were imposed in Wuhan.
λ2 8-2-2020 Inflexion date.
θ 14% Percentage of documented cases at λ1 .
θ 65% Percentage of documented cases at λ2 .
αH 2.75% Percentage of infection produced by hospitalized people.
dE 5.5 Average days in compartment E.
dI 6.7 Average days in compartment I .
dIu 14 − dI = 7.3 Average days in compartment Iu .
dg 6 Maximum reduction of dI due to the control measures.
Co 14 The period of convalescence.
p(t) 1 Fraction of the infected people hospitalized.

Table 2
Parameters obtained by calibration to the data.
Notation Value Description

βI 0.2887 Disease contact rate of a person in compartment I .
CE 0.3643 Reduction factor of the disease contact rate βE w.r.t βI .
Cu 0.4010 Reduction factor of the disease contact rate β

I
w.r.t βI .

δR 7.0000 Difference between days in compartment HR and HD .
δω 0.0206 Difference between ω and ω.
ω 0.0157 Lower bound of the fatality rate.
κ1 0.1082 Efficiency of the control measures.

Table 3
Variables of the Stochastic θ-SEIHRD model: νβI = 1, µβI = βI and n = 215 Monte Carlo simulations. Columns: Mean, interquartile interval ([Q1,Q3])
nd worst case scenario (WS).

8th February, 2020 (t = 69)

σβI = 0 σβI = 0.1 σβI = 0.5

Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

E(t) 2993 3067 [2506, 3519] 4510 5401 [1049, 5415] 18970
I(t) 1340 1376 [1125, 1578] 2017 2419 [476, 2423] 8522
Iu(t) 3854 3945 [3249, 4505] 5724 6811 [1434, 6940] 23728
HR(t) 3252 3328 [2732, 3806] 4854 5799 [1182, 5863] 20340
HD(t) 214 219 [181, 250] 318 377 [80, 386] 1311
Rd(t) 1846 1888 [1559, 2153] 2726 3231 [701, 3317] 11168
Ru(t) 4296 4390 [3656, 4985] 6238 7301 [1738, 7690] 24654
D(t) 131 134 [112, 152] 190 222 [53, 235] 747

29th March, 2020 (t = 119)

σβI = 0 σβI = 0.1 σβI = 0.5

Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

E(t) 1 1 [1, 1] 2 2 [0, 3] 10
I(t) 0 0 [0, 0] 0 0 [0, 0] 1
Iu(t) 173 177 [146, 203] 259 309 [63, 314] 1075
HR(t) 232 237 [194, 272] 348 416 [83, 420] 1458
HD(t) 30 30 [25, 35] 45 53 [11, 54] 186
Rd(t) 8460 8662 [7118, 9910] 12624 15087 [3101, 15287] 52651
Ru(t) 9969 10198 [8442, 11616] 14681 17386 [3862, 17941] 59616
D(t) 417 426 [353, 486] 614 728 [161, 751] 2502

uncertainty (σβI = 0), low uncertainty (σβI = 0.1) and high uncertainty (σβI = 0.5). In all cases, the long-term mean of
the perturbation is set to the calibrated value of βI for the deterministic model, i.e., µβI = βI . The mean reverting speed
arameter is chosen as νβI = 1, thus representing a regular (not too high, not too low) reversion speed. In Table 3, the

obtained results are presented. We can clearly observe the significant impact of the uncertainty in the disease evolution.
In the case of higher uncertainty, the number of infections, in average, is almost doubled and the worst case scenario
multiplies this value by six. Even when a lower volatility is considered, the increment of cases and deaths in the worst
scenario becomes important, up to 50%.

Next to the previous experiment, in Fig. 6 we present the histograms for the model variable I(t) to give an insight of
the impact of the uncertainty in the infection evolution. First, we clearly observe that the produced distribution is skewed
13
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Fig. 6. Histogram of I(t). Setting: νβI = 1 and µβI = βI , with n = 215 Monte Carlo simulations.

ith a fatter right tail. Secondly, the bigger the volatility of process β̃I (t) (denoted by σβI ), the fatter the right tail becomes,
hus indicating more probability of extreme events.

.2. Outputs

In [8] the authors proposed a set of possible outputs that can be useful for the authorities to plan the resources
llocation (like the number of clinical beds, among other indicators). These outputs are:

• The cumulative number of COVID-19 cases, cm(t), at time t:

cm(t) = HR(t) + HD(t) + Rd(t) + D(t) = cm(t0) +

∫ t

t0

θ (s)γI (s)I(s)ds.

• The cumulative number of deaths due to the COVID-19 at time t: dm(t) = D(t).
• The basic reproduction number, R0, and the effective reproduction number, Re(t), at time t , where R0 = Re(t0), and

Re(t) =
Ue(t)

γEγI (t)γHR (t)γHD (t)γIu (t)
S(t)
N

,

with1

Ue(t) =
((
(mIuβIu (1 − θ )γHR + mHRβHRγIu (θ − ω))γI + mIβIγHRγIu

)
γE + mEβEγIγHRγIu

)
γHD

+ mHDβHDωγEγIγHRγIu .

• Hospitalized people, Hos(t), at time t:

Hos(t) = HD(t) + p(t) (HR(t) + Rd(t) − Rd(t − Co)) ,

where p(t) is the fraction of people in compartment HR that are hospitalized and Co is the period of convalescence.
• Maximum number of hospitalized people in the interval [t0, t]:

MHos(t) = max
τ∈[t0,t]

Hos(τ ).

• The number of individuals infected by others belonging to compartments E, Iu and H = HR + HD:

ΓE(t) =

∫ t

t0

mE(s)βEE(s)
S(s)
N

ds,

ΓIu (t) =

∫ t

t0

mIu (s)βIu Iu(s)
S(s)
N

ds,

ΓH (t) =

∫ t

t0

(mHR (s)βHRHR(s) + mHD (s)βHDHD(s))
S(s)
N

ds,

respectively.

1 The dependence of the coefficients on the time t has been omitted for notational purposes. All the coefficients take their particular values at
time t .
14



Á. Leitao and C. Vázquez Communications in Nonlinear Science and Numerical Simulation 115 (2022) 106731
Fig. 7. Epidemic curves: mean, interquartile interval and worst case scenario. Setting: νβI = 1, µβI = βI and σβI = 0.1, with n = 215 Monte Carlo
simulations.

We therefore perform a similar statistical analysis as before, although now reporting the model outputs. The results
are shown in Table 4. Again, it is clear that the uncertainty can significantly affect the disease evolution, justifying why it
should be taken into consideration. For example, the people requiring hospitalization may vary from around 4500 with
no stochasticity included, to around 30000 including randomness.
15
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Fig. 8. Epidemic curves: mean, interquartile interval and worst case scenario. Setting: νβI = 1, µβI = βI and σβI = 0.5, with n = 215 Monte Carlo
simulations.

As previously pointed out, one of the major advantages of the θ-SEIHRD model is that it accounts for important aspects
of the COVID-19 pandemic, directly affecting the population or the healthcare systems. Particularly, the evolution of some
curves like infected, hospitalized, and deaths is typically reported by the authorities in both cumulative and daily fashion.
In Figs. 7 and 8, we show the stochastic model outcomes for these specific curves, considering two uncertainty levels,
16
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Table 4
Outputs of the Stochastic θ-SEIHRD model: νβI = 1, µβI = βI and n = 215 Monte Carlo simulations. Columns: Mean, interquartile interval ([Q1,Q3])
and worst case scenario (WS).

8th February, 2020 (t = 69)

σβI = 0 σβI = 0.1 σβI = 0.5

Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

cm(t) 5440 5571 [4586, 6362] 8088 9631 [2026, 9812] 33466
dm(t) 131 134 [112, 152] 190 222 [53, 235] 747
Re(t) 0.3363 0.3364 [0.3151, 0.3562] 0.3891 0.3367 [0.2245, 0.4149] 0.6340
Hos(t) 4040 4134 [3395, 4727] 6026 7197 [1471, 7273] 25262
MHos(t) 4040 4134 [3395, 4727] 6026 7197 [1471, 7273] 25262
ΓE (t) 5012 5126 [4255, 5833] 7337 8625 [1979, 9013] 29414
ΓIu (t) 4550 4646 [3864, 5285] 6640 7600 [1764, 7976] 25755
ΓH (t) 198 202 [168, 230] 288 328 [78, 346] 1106

29th March, 2020 (t = 119)

σβI = 0 σβI = 0.1 σβI = 0.5

Mean Mean [Q1,Q3] WS (95%) Mean [Q1,Q3] WS (95%)

cm(t) 9140 9358 [7691, 10704] 13631 16286 [3358, 16526] 56752
dm(t) 417 426 [353, 486] 614 728 [161, 751] 2502
Re(t) 0.0013 0.0013 [0.0012, 0.0014] 0.0015 0.0013 [0.000, 0.0016] 0.0024
Hos(t) 306 314 [257, 360] 459 549 [111, 555] 1927
MHos(t) 4558 4671 [3832, 5347] 6816 8195 [1662, 8258] 28681
ΓE (t) 5259 5379 [4464, 6122] 7705 9070 [2073, 9465] 30925
ΓIu (t) 5388 5504 [4570, 6264] 7886 9082 [2080, 9479] 30911
ΓH (t) 229 234 [195, 266] 334 384 [89, 402] 1298

σβI = 0.1 and σβI = 0.5, respectively. Again, we present the mean, the interquartile interval and the worst case scenario.
rom this experiment, an interesting observation can be extracted. Looking at the different patterns in the results w.r.t. the
olatility parameter, we can see that an increasing uncertainty pushes the mean close to the third quartile, Q3, meaning
hat the disease evolves, in average, according to the 75% worst case scenario. This fact gives an insight of how important
he randomness can be and why it is crucial to include it in the modelling.

. Discussion and conclusions

We have extended the model developed in [8] by incorporating randomness to some relevant coefficients and we have
hown the importance of considering this uncertainty. In this way, besides the information provided by the deterministic
odel (which allows to obtain a proxy to the average of the main variables), we can take advantage of a more complete
odelling approach, which allows not only to compute confidence intervals for these variables in this new random setting
ut also to obtain the worst case scenario. The information about the model variables in this worst case scenario allows to
evelop more conservative policies in the actions against the consequences of the COVID-19 as, for example, to plan larger
ealth resources to take care of a larger number of people requiring hospitalization at different levels. The differences
etween the deterministic and stochastic models in terms of the information contained in the output variables has been
learly illustrated in the previous section.
However, we also understand that research in this line can be extended. A first possible extension comes from making

he parameters independent among each other and use different stochastic processes to characterize their dynamics. In
he current approach, as in [8], we consider that all parameters depend on βI . Also, it seems possible to incorporate
randomness to the more recent model in [26] that mainly considers a new compartment of persons in quarantine (Q) to
model the situation in certain countries like Italy.
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