Facultade de Informatica

>‘ l< UNIVERSIDADE DA CORUNA

TRABAJO FIN DE GRADO
GRADO EN INGENIERIA INFORMATICA
MENCION EN COMPUTACION

Comparing community detection

algorithms in graphs

Estudiante: Manuel Fandifio Garcia

Direccion: Elena Maria Hernindez Pereira

A Coruna, Tuesday 28 June, 2022.

To my family for always being there

Acknowledgements

To the people that helped and supported me along the journey and especially to my tutor, for

having the greatest patience I have ever seen.

Abstract

The detection of communities in graphs has been a very discussed topic in recent years
due to the raise of social networks. This topic is not a simple one, and as such, many different
solutions have been proposed over the years to try and find communities in these networks.
In this project we compare the results of different community detection algorithms when
applied to a real live graph. This comparison is made using a set of quality metrics that will
give us information of the algorithm’s performance. With this information at hand we have
seen that these algorithms perform very differently from each other and that the graph to

which they are applied is a very important part in the results they return.

Resumo

A deteccion de comunidades en grafos foi un tema moi discutido nos tltimos anos debido
ao auxe das redes sociais. Este tema de estudo non é sinxelo, e por iso propuxéronse moitas
solucibns diferentes ao longo dos anos para tratar de atopar comunidades nestas redes. Neste
proxecto comparamos os resultados de diferentes algoritmos de deteccion de cando se aplican
a un grafo real. Esta comparacién realizase empregando un conxunto de métricas de calidade
que nos daran informacion do rendemento dos algoritmos. Coa informacion obtida, vimos
que estes algoritmos tefien un comportamento moi distinto entre si e que o grafo ao que se

aplican é unha parte moi importante nos resultados que devolven.

Keywords: Palabras chave:
+ Graph « Grafo
« Community detection + Deteccion de comunidades
« Louvain « Louvain
+ Modularity + Modularidad
« Label propagation » Propagacion de etiquetas

Connected components « Componentes conexas

Contents

1 Introduction

3

1.1
1.2

2.1
2.2
2.3

2.4

2.5

Objectives
Outline

Graph
Communities in graphs
Measures for community detection
231 Density oo oL
232 Centrality
233 Modularity oL
Community detection algorithms
24.1 Louvain Algorithm
2.4.2 Label Propagation Algorithm

2.4.3 Strongly Connected Components Algorithm
244 Weakly Connected Components Algorithm

Quality metricso
251 Performance.
2.5.2 Clustering coefficient
253 Coverage,
2.5.4 Structural metrics

Neo4j & Dataset

3.1
3.2
3.3
34

Methodology L

CostEstimates,

Contents

4 Development
4.1 Dataset setup
4.2 Importing the

dataset

5 Results and discussion

5.1 Algorithm Configuration Parameters

5.2 Ground Truth

5.3 First Iteration

5.4 Second Iteration
5.5 Third Iteration
5.6 Fourth Iteration

5.7 Fifth Iteration

6 Conclusions

6.1 Conclusions

6.1.1 Knowledge acquired

6.2 Future work

Bibliography

ii

List of Figures

2.1

2.2

3.1
3.2
3.3
34
3.5

4.1

Example of (a) directed graph, (b) undirected graph, and (c) weighted directed

graph . . .o 3
Example of a graph with communities 5
Example of graph representation in Neo4j Bloom 18
Representation of the DatasetinNeo4j 19
Representation of part of the DatasetinNeo4j 20
First half of theGantt chart 22
Second half of theGanttchart. 22
Output of the graph creation process 27

1ii

List of Figures

iv

List of Tables

3.1
3.2

5.1
5.2
53
5.4
5.5
5.6
5.7

Personnel cost estimate L L o 23
Resource costestimate Lo L 23
Quality metric results for the Ground Truth 30
Parameter values for Louvain algorithm 31
Louvain algorithmresults Lo o oL 32
Parameter values for the Label Propagation algorithm 33
Label Propagationresults 33
Strongly Connected Components Algorithmresults 35
Weakly Connected Components Algorithm results 35

List of Tables

vi

Chapter 1

Introduction

Many real life networks, such as, social networks, cities, stock exchanges and emails can be
represented using graphs. This is usually done in such a way as to make them easier to read,
interpret and work with, as graphs have been studied for a very long time.

One of the biggest problems faced when using graphs to represent real world scenarios is
finding the communities hiding underneath these massive graphs. The finding of this com-
munities has become very attractive recently because of the rise of social networks such as
Twitter, Facebook or Instagram, and studying the communities that form in them would give
an idea as to how information moves in our world and how relationships between different
elements affect it.

For this purpose a great many community detection algorithms have been developed over
time. The existence of so many community detection algorithms can be attributed to the fact
that there exist as many graphs as there are algorithms to find communities in them. Each of
them applies a different definition of what a community is and a different way to find them in
the graph; as such, it becomes very hard to determine which one is more optimal for finding
the communities in any given real world graph.

Taking all of this information into account, the need to know which community detection
algorithm is better for any given graph has become increasingly more attractive. As such, we
set out to compare the results of various community detection algorithms applied to a real
world graph. These results will be compared using various quality metrics applied to them
and a Ground Truth, which will give us an idea of which one performs better when applied

to graphs of the same nature as the one used for our testing.

1.1 Objectives

The main objective of this project is to perform a comparison between different community

detection algorithms in graphs on a public dataset, in order to identify their strengths and

1.2. Outline

weaknesses. This objective can be divided in the following sub-objectives:

1. Attain knowledge of graph theory as well as community detection algorithms.

2. Analyze and determine which quality metrics are better to compare the results of the

algorithms.
3. Analyze the use of these community detection algorithms in real world datasets.
4. Select a real world dataset upon which to execute the algorithms.
5. Apply these algorithms to a real world dataset and compare their results.

6. Determine which ones perform better under the selected real world dataset.

1.2 Outline

The document has been divided into five sections, each of which presents a part of the project.

The first section, Introduction, presents the motivations for this project and the objectives
to be achieved.

The second section, Domain Description, presents terminology of the field of study of
the project, as well as descriptions of community detection algorithms and metrics for the
comparison of their results.

The third section, Neo4j and Dataset, describes the tools used to perform the tasks that
comprise this project as well as the dataset used for testing. We also include in this section
the methodology used and the cost estimates for this project.

The fourth section, Development, explains the process followed to prepare and import the
Dataset into Neo4;.

The fifth section, Results and Discussion, deals with the tests performed on the dataset
with the algorithms defined above, and a comparison of the results of these tests.

And finally, in the sixth section, Conclusions, we will discuss the conclusions found after

the completion of the project and the work that could be done in the future.

Chapter 2

Domain Description

This chapter will cover the basics of the domain and will explain the different community de-
tection algorithms used. To evaluate the quality of each of these algorithms, different quality

metrics will be described.

2.1 Graph

A graph is defined as a pair G = (V,E), where V is a finite set of nodes or vertices and E is
a set of pairs of elements, belonging to V, called edges. Edges can be directed or undirected
depending on whether the pairs (u,v) are ordered or not. Directed edges are represented as
lines ending in an arrow while undirected edges are represented as simple lines [1]. In some

cases the edges have a value or weight that represents the strength of the relationship.

(@) (b) ©

Figure 2.1: Example of (a) directed graph, (b) undirected graph, and (c) weighted directed
graph

In addition to weight, both nodes and edges can incorporate information in the form of
properties.

Among the properties of a graph, adjacency or neighborhood and incidence or degree
stand out. Two nodes are said to be adjacent (or neighbors) if they are connected by an edge.

The adjacency of a node u € V is expressed as:

2.2. Communities in graphs

N(u) = veV|(u,v)eE (2.1)

The degree of a node is defined as the number of nodes adjacent to it and is formally

expressed as:

g9(u) = [N (u)] (2.2)

Graphs are represented by adjacency lists and adjacency matrices. An adjacency list is a
list containing all the nodes of the graph that maintains for each node a list of its adjacent
nodes. The adjacency list is used when the graph is sparse and/or large, since the memory it

occupies is proportional to the number of edges in the graph.

An adjacency matrix allows to represent an undirected graph G = (V,E) in a matrix defined
as A = [ay,] of size n x n, where n is the total number of nodes, such that the entry a,, will
have a value of 1 if there is an edge between nodes u and v, and will have a value of 0 if there is
no such edge. If the graph is weighted the matrix will store the value of the weight associated
with the connection. The adjacency matrix will be used when the graph is dense, because it
will occupy less memory since it does not depend on the number of edges but on the number

of nodes.

In a graph, a path is a sequence of adjacent nodes. Formally, if a pair of nodes u, v eV,
not adjacent to each other, can be connected by a sequence of edges, a path is said to exist
between them. A path is expressed as (u,21),(21,22),(22,23)...(2n—1,v) Where x;eV and the pairs
(zi—1,z;)eE. The length of such a path is the number of nodes that compose the sequence
(n). The shortest path between two nodes is the one that travels the least number of edges to

get from one node to another.

A cycle is a simple closed path, i.e. a path that starts and ends at the same node and where

no nodes are repeated, except the first one.

For a graph G = (V,E) three nodes form a triangle when there are three edges that join
them so that they form a cycle. Formally for three nodes u, v, z € V, the triangle would be

formed by the edges (u,v), (v,z) and (z,u) € E.

2.2 Communities in graphs

Community detection aims to identify, using the topology of a graph, groups of densely con-
nected nodes that share common characteristics within the set of nodes in the graph. Al-

though this task has a specific goal, there is no universal definition of a community.

CHAPTER 2. DOMAIN DESCRIPTION

Figure 2.2: Example of a graph with communities

Beyond the fact that a community must be formed by nodes that share properties with
each other and play similar roles, all the community detection algorithms published in the
last decade present their own definition of community driven by the techniques and metrics

used in the algorithm.

In recent years, various criteria have been presented to indicate what is considered a
community, for example, in 2003 Moody and White [2] proposed that a community is formed

in such a way that when a random node is removed from it, it does not disappear.

Another example of how to define what constitutes a community would be the definition
given by Girvan and Newman [3], by which they proposed that a community must have more

connections between the nodes that form it than with those outside of it.

And finally, another approach to defining a community could be comparing the similarity
of the nodes in the graph and grouping them using that criteria. One example of this line
of thinking would be Stanley Wasserman and Katherine Faust [4], who defined a metric by
which one could compute the distance between two nodes and by taking that into account

and the neighbors of the nodes, one could separate them into communities.

2.3. Measures for community detection

2.3 Measures for community detection

The task of detecting communities within a graph is so complex that many different measures
have been created with the aim of finding the distinct characteristics used by the different
algorithms to identify a set of nodes as a community. In this section we define a couple of the

measures used.

2.3.1 Density

The density §(G) is a measure that indicates the number of relations or edges that a graph G
has.

A graph G = (V,E) is considered dense if the number of relations is close to the maximum
number of possible relations, that is, a graph in which all the nodes are related to each other,

which would be represented as:

|E|=nx*(n—1) (2.3)

A graph is considered sparse when the number of relations is low, close to an empty graph
without edges [5].

Density is formally represented as:

m

T

(2.4)

where m represents the number of edges of the graph G and n represents the number of

nodes of the graph.

2.3.2 Centrality

The centrality measure generally refers to the importance of the nodes in a graph and was
first introduced by Alex Bavelas in 1948 [6]. There are different ways to calculate this measure

which are explained below:

Degree centrality

The degree centrality determines the importance of a node with respect to other nodes, based
on the number of relationships it has with them. This number of relationships represents the
number of edges that start from the node and connect it to other nodes. This measure was
defined by Linton Freeman [7].

Formally for a node u € V, the degree centrality is defined as:

CHAPTER 2. DOMAIN DESCRIPTION

ky = Z(u, v) YoeV (2.5)

v
where (u,v) € E.

The average degree centrality of the graph is defined as:

1
cg =" > kyVveV (2.6)

Betweenness centrality

The measure of betweenness centrality proposed by Freeman [7], quantifies the frequency or
number of opportunities in which a node acts as a connection within a path between two
given nodes.

This type of centrality helps us to differentiate between nodes that are in the center of a
community (those through which many shortest paths pass) and those that are on the outside
of a community, or even those that do not belong to any community. Nodes with high be-
tweenness, have a great importance in the community to which they belong and in the graph
in general, since they can become the controllers of the data flow in the graph.

Formally, the betweenness centrality of a node z € V, is defined as:

gz(u, v)
Cp(z) = Z o (2.7)
Gy 9w v)
where g(u,v) represents the total number of shortest paths between nodes u and v, while

g-(u,v) is the number of shortest paths between nodes u and v that pass through node z.

Eigenvector centrality

This measure, also called prestige score, measures the transitive influence or prestige of a
node within a graph [8]. The value of this measure for a node is obtained through the number
of paths that pass through that node, penalizing the longest distance connections with other

nodes.

It is formally defined as:

o) =5 3 Ov(w) Cvl) =5 Y m-Ov(2) @8)
veAdj(u) zeG

where a,, is the entry in the adjacency matrix for v and v, lambda is a constant and

Adj(u) is the set of all nodes adjacent to w.

2.4. Community detection algorithms

This measure is the basis of the PageRank measure [9], which is used in the Google search

engine to optimize webpage searches.

2.3.3 Modularity

Modularity, formulated by Girvan and Newman [3], is defined as the difference between the
number of links between nodes in a community and the number of links expected in an equiv-

alent random graph. Formally, modularity (M) is defined as:

k
M = Z(eii — a?) where (2.9)
=1
e = |(u,v) : ueVy, veV, (u,v)ekr (2.10)
|E|
: 3]) E
M B ATRLE) o

where e;; is the percentage of edges in community i, a; is the percentage of edges with
a node belonging to community i. The values returned by this metric are always between -1
and 1, where values close to -1 indicate a poorly formed community with too many outgoing
edges, while values close to 1 indicate a well-formed community, with more edges connecting
nodes inside than outside.

Although this measure is commonly used to compare the quality of the divisions in com-
munities of different algorithms, it is also used as a measure in certain algorithms as an aid

when incorporating nodes into a community:.

2.4 Community detection algorithms

The fact that there doesn’t exist a single universal definition for what constitutes a community
in a graph gives rise to varied and very different algorithms that aim to give a definition for
a community and divide the graph accordingly.

In this section we will give definitions to the community detection algorithms that we

will compare in this project.

2.4.1 Louvain Algorithm

This algorithm, developed by Blondel and collaborators [10] is based on the optimization of
the modularity measure. Its objective is to distribute the nodes into communities and then to
evaluate them with respect to the density of relationships with the rest of the communities.

The algorithm is divided into two phases:

CHAPTER 2. DOMAIN DESCRIPTION

1. Initially, as many communities as nodes are generated. For each node in each commu-
nity, the modularity gain is determined by adding this node to the community of each

of its neighbors. The node joins the community with the highest modularity gain.

2. A new graph is then created in which the nodes are the communities created in the

previous phase and the process is repeated until convergence is achieved.

Below is the pseudocode of the Louvain algorithm, where C represents the identified
communities, M the modularity, max_iterations defines the maximum number of iterations
that the algorithm will execute before being forced to stop and threshold is the parameter
that defines the stopping criteria of the algorithm.

1 Input: G = (V,E), threshold, max_iterations
2 Output: communities (C), modularity (M)

6 while true and i < max_iterations do

7 changes = false

8 C = init(G) //each node isa community
9 Mprey = calculate_modularity(G,C)

10 while true do

1 foreach v € V do

12 calculate_modularity_between_neighbours(v)
13 C = move_to_best_community(v)

14 Mprevw = M

15 M = calculate_modularity(G,C) //recalculate modularity
16 if M - Mpreo <= threshold then

17 break

18 changes = true

19 if changes then

20 break

21 i+=0

22

23 return C, M

The algorithm has a computational complexity of O(n*log(n)), where n is the number of
nodes in the graph.

This algorithm can be especially useful in large graphs, since it uses modularity based on
a heuristic, which has a low computational complexity, making the execution of the algo-

rithm faster than other algorithms that do not use heuristics. In dense graphs, it allows the

2.4. Community detection algorithms

identification of community hierarchies, so that both communities and subcommunities can
be studied.

This algorithm has been used in different fields: to predict the appearance of new species
in a complex prebiotic graph [11], to track the growth of communities in dynamic social

graphs [12] or to obtain partitions of social graphs [13].

2.4.2 Label Propagation Algorithm

This algorithm was proposed by Raghavan and collaborators [14], and its operation is based
on using the structure of the graph to propagate labels that indicate to which community each
node of the graph belongs. Instead of trying to optimize a measure such as modularity, labels

are assigned to nodes depending on the most repeated labels among their neighbors.

The execution of the label propagation algorithm begins with the assignment to each node
of a different label, which represents the community to which it belongs. In each iteration
of the algorithm, a node is chosen and is assigned the majority label among its neighbors;
the node then becomes part of the community represented by that label. This process will
be repeated until all the nodes have the majority label among all their neighbors or until we
reach a previously defined number of iterations that determines the end of the algorithm’s

execution.

For the initial assignment of the labels, we can use seeds assigned by the user, an heuristic,
or they can be assigned randomly. These seeds will indicate which label each node will have
in the first iteration of the algorithm. The heuristics used for label assignment can be based
on different factors such as the weight of the nodes in the graph or the name of the nodes

themselves.

The more the labels propagate through the graph, the more groups of densely connected
nodes quickly converge to a single label, thus creating each of the communities. This can
be a problem for graphs with densely connected nodes as a single label could quickly spread

throughout the graph, dominating the rest and becoming the majority label for all nodes.

A pseudocode for this algorithm is described below. where max_iterations defines the

maximum number of iterations that the algorithm will execute before being forced to stop:

10

CHAPTER 2. DOMAIN DESCRIPTION

1 Input: G = (V,E), max_iterations
2 Output: G
3 //initialize the labels of all nodes in the graph

4 for node u ¢ V:
5 u.label = x
6 i=0

7 end = false

8 repeat:

9 randomize_nodes (V)

10 for u e Vv:

11 u.label = mayority_neighbours(u)

12 if labels_converge()
13 end = true

14 else

15 i+= 1;

16 until end or i > max_iterations

18 return G

The computational complexity of this algorithm is O(imn) where n is the number of nodes
of the graph, mis the number of edges of the graph, and i is the number of iterations performed

by the algorithm.

This algorithm can be used in large graphs as a first algorithm to find an initial distribution
of communities. It is especially useful in weighted graphs as it makes the selection of the
label to assign to each node simpler. This method can become extremely fast as it can be

parallelized, thus dramatically increasing the speed of assigning labels to nodes.

Among the applications of this algorithm are the assignment of names to people in televi-
sion news [15], the prediction of defects in software [16] or the identification of overlapping

communities [17].

2.4.3 Strongly Connected Components Algorithm

This algorithm was proposed by Sambasiva Rao Kosaraju but published by Micha Sharir in
1981 [18]. Its objective is the identification of fully connected nodes representing a commu-
nity. This means, nodes form a community if there is a path between all pairs of nodes [19].

The algorithm makes use of depth-first search to identify the different connected components.

A pseudocode of this algorithm is presented below:

11

2.4. Community detection algorithms

41

42

43

44

Input: G = (V,E)
Output: components

STACK = create_stack()

//start arrays with enough size to fit all the nodes
visited[] = startvVisitedArray(n)

components[] = startArrayComponents(n)

numComponents = 0

for all u eV
if !visited[u]
depth_first_search(u)

depth_first_search(u):
visited[u] = true
for all neighbor of u
if (!visited[neighbor])
depth_first_search(neighbor)
STACK. push(u)

reverse_depth_first_search(u):
component [numComponents] .add (u)
visited[u] = true
for all reverse_neighbor of u //we take the relationships
backwards
if (!visited[reverse_neighbor])
reverse_depth_first_search(reverse_neighbor)

main():
for all u eV
if !visited[u]
depth_first_search(u)

for all u ¢ V //empty visited array
visited[u] = false
end for

while !STACK.isEmpty()
u = STACK.pop()
if(!visited[u])
component = reverse_depth_first_search(u)
components.add(component)
numComponents++

return components

12

CHAPTER 2. DOMAIN DESCRIPTION

The algorithm with this implementation has a complexity of O(n+m) where n represents
the number of nodes of the graph and m the number of edges.

This algorithm is commonly used to check that the graph does not contain islands (com-
ponents that have no connection with the rest of the graph), which provides a first approxima-
tion of the distribution of communities in the graph at the simplest level. These communities
can be used as inputs for other algorithms to perform a more in-depth analysis of the com-
munities.

Some examples of the use of this algorithm are: analysis of the flow of ecological subsys-
tems [20], mathematical analysis of the asymptotic behavior of a graph [21] or the automatic

discovery of secondary targets in reinforced training [22].

2.4.4 Weakly Connected Components Algorithm

This algorithm was described by Robert Endre Tarjan in 1974 [23]. The goal of the algorithm
is to find weakly connected components in an undirected graph, which are defined as sets
of nodes connected to each other by one or more edges and which have at least one path by
which they can reach any other node in the component. This algorithm uses breadth-first
search to find components, as opposed to depth-first search used to find strongly connected
components.

Pseudocode for this algorithm is included below:

1 Input: G = (V,E)
2 Output: components

4 //start arrays with enough size to fit all the nodes

5 visitedNodes[n] = startArrayNodes()
6 component[n] = startArrayNodes()
7 components[n] = startArrayComponents()

9 for all u eV

10 if !visitedNodes[u] then

11 connectedNodes = breadthFirstSearch(u)
12 visitedNodes.add(connectedNodes)

13 component . add(connectedNodes)

14 end if

15 components.add(component)

16 emptyArray(component)

17 end for

19 return components

13

2.5. Quality metrics

This implementation of the algorithm has a computational complexity of O(n+m), where
n is the number of nodes in the graph and m is the number of edges.

The most common use for this algorithm is in the preprocessing of graphs before applying
more complex algorithms, in order to check if the graph in question is completely connected or
if it is divided into different subgraphs that are not connected between them. This is especially
useful for algorithms that require the graph to be fully connected, as it helps us to know if
they can be applied to the graph or not.

Some examples of the use of this algorithm are: characterization and citation graph min-

ing of computer literature [24] and duplicate Database detection [25].

2.5 Quality metrics

To determine the quality of the communities identified by the different algorithms, a set of
metrics are used. These metrics will allow us to compare the mentioned algorithms and to
determine which one best represents the behavior of the graph in terms of communities.
Among these metrics, modularity (described in section 2.2.3), performance, clustering coeffi-

cient, coverage, and a set of structural metrics will be used.

2.5.1 Performance

This metric consists of the count of the edges between nodes of the same community divided
by the pairs of nodes that are composed of a node of that community and a node that does

not belong to it, which are not joined by an edge. Formally it is defined as:

€ . 4
perf(G) = Z M, where (2.12)
P §n(n -1)
F(Ci) = {(u,v)eE|u, veC;} (2.13)

g(C:) => > [{{u,v} ¢ Elu € Ci,v € Cj}| (2.14)

U P>
where G is the graph to be analyzed, |C| is the number of communities, C; is a community
of the graph, f(C;) computes the number of edges between nodes of the community and
9(C;) counts the number of pairs containing a node that belongs to that community and a
node that doesn’t, which are not joined an edge.
The values returned by this metric are in a range between 0 and 1, where higher values
indicate a distribution of communities in which there are many more edges between nodes

within communities than edges between a node that belongs to that community and one that

14

CHAPTER 2. DOMAIN DESCRIPTION

doesn’t, which makes it a good distribution of communities. Values closer to 0 indicate a
distribution that contains many edges connecting nodes from different communities, which
indicates that it is not a good distribution.

One problem with this metric is that complex graphs tend to be more sparse, which makes
the component g(C};) tend to be larger and thus causes the equation to return indiscriminately
larger values. This can cause a community distribution to return a high value, which would

indicate good quality, independent of the quality of the community.

2.5.2 Clustering coefficient

This metric quantifies the strength of a node’s connection with its neighbors. Its value for a
given node is obtained from information on the number of triangles and the number of paths

of length two of which the node is a part.
Formally defined as:

Nac

Co=—"-—— 2.15
¢ Poc+ Nac ()

Where Nac is the number of triangles in the community and P»c is the number of paths
of length 2 in the community.

When the value of this metric is close to 1 it indicates that the community contains
strongly connected nodes, while if it is close to 0 it indicates that the nodes in the community
have few relationships with each other.

It is common to calculate the mean of this metric for all of the nodes in a community and

using it as the value of the metric for that community. It is represented as avg C,

2.5.3 Coverage

The coverage metric is defined as the ratio of the total number of edges between nodes in the
same community to the total number of edges in the graph.
mc

Cov(G) = o (2.16)

where m(is the total number of edges between nodes of the same community and m is
the total number of edges of the graph.

Intuitively it can be seen that this metric will have a value of 1 when there are no edges
between nodes of different communities, while it will be closer to zero the more edges join
nodes of different communities. Therefore, this metric helps us to see how far apart are the

communities found by a detection algorithm.

15

2.5. Quality metrics

2.5.4 Structural metrics

There are a set of metrics that allow to analyze the structure of the communities identified by
the community detection algorithms. These metrics are called structural metrics and refer to
the size of the communities. Among their utilities is that of identifying dominant communi-
ties, large communities with a high standard deviation value, that eclipses all other commu-
nities.

The structural metrics chosen for this project are: average, lowest and highest number of
components, which refers to the number of nodes in the communities found with the com-
munity detection algorithms; and the standard deviation of the number of components.

We chose these metrics because they compliment the information given by the other met-

rics chosen nicely and help us draw better conclusions from the results obtained.

16

Chapter 3

Neo4j & Dataset

Although there are several options for working with graphs, the choice of Neo4j as the de-
velopment tool for this project was motivated by its ease of use, its complete documentation,

and its large community of users.

In this chapter we describe the Neo4j Graph Data Platform, as well as the dataset on which
the detection of communities has been performed, the methodology followed in this project

and the cost estimates.

3.1 Neo4j

Neo4j Graph Data Platform [26] is a suite of applications created by Emil Eifrem in 2007 with
the aim of creating a non-relational database [27] more efficient than the alternatives that
existed at the time and the platform includes the Neo4j Graph Data Science [28] an analytics
workspace for graph data, the graph visualization and exploration tool Bloom [29], the Cypher
query language, and numerous tools, integrations and connectors to help developers and data

scientists build graph-based solutions with ease.

At the core of the Neo4j Graph Data Platform is the Neo4j Graph Database, a native graph
data store built from the ground up to leverage not only data but also data relationships.
Unlike other types of databases, it connects data as it’s stored, enabling queries much more

complex to be executed much more quickly.

Finally, Neo4j Bloom is an easy-to-use graph exploration application for visually inter-
acting with Neo4;j graphs. Bloom gives graph novices and experts alike the ability to visually

investigate and explore graph data from different business perspectives.

17

3.1. Neodj

21421 Cluster 1

23723 Cluster2

26/26 Clusterd

SENDS_MONEY.TO A

Figure 3.1: Example of graph representation in Neo4j Bloom

The operation of Neo4j involves the creation of graphs from a data set and the execution

of algorithms on the created graph.

The query language used by Neo4;j is Cypher[30], created in 2011 by Andres Taylor. This
language bases its syntax on ASCI-art, making the language very visual and the queries easy
to formulate. The nodes in this language are represented in brackets, while the relationships
are represented with an arrow (directed or not) with the type of the relationship in square

brackets. An example of a query in this language would be:

MATCH (u:Item)-[:RELATED]-(v:Item)
2l WHERE u.comm = v.comm
3] RETURN u.id

This example query contains the three most common keywords in Cypher, which are:
MATCH, used before describing the search pattern for nodes, relations or a combination of
both. In this example, the nodes u and v of type Item connected with an edge of type RE-
LATED; WHERE, that adds more restrictions to the search. In our example it compares that
the comm attributes of the nodes u and v are equal; and RETURN, that defines what data will

be returned and its format. For our example it will return the id attribute of the node w.

18

CHAPTER 3. NEO4J & DATASET

3.2 Data Set

Several repositories specialized in network datasets suitable for community analysis were
consulted for the choice of the dataset, such as: Colorado Index of Complex Networks[31],
Institute for Web Science and Technologies (WeST) [32], Stanford Network Analysis Project
(SNAP) [33] or Canadian Institute for Cybersecurity[34].

The repository of choice for this final degree project was SNAP, as it contains a large
number of high quality datasets. More specifically, within SNAP we have focused on the
Stanford Large Network Dataset Collection which, as its name suggests, contains large net-
work datasets.

The chosen dataset is called email-Eu-core network[35], core of a larger set, named email-
EuAll[36], and represents the emails exchanged by members of a European development in-
stitution between October 2003 and May 2005. This set was collected for a study by Jure
Leskovec, Jon Kleinberg and Christos Faloustsos.[37] on how graphs evolve over time.

The email-Eu-core set contains 1005 nodes, representing the employees of the institu-
tion, conveniently anonymized; and 25571 edges, representing the emails exchanged between
members of the organization. These employees belong to 42 different departments within the
institution.

The following figure represents the whole graph as seen in Neo4j Bloom, showing the

nodes and relationships that form it:

Figure 3.2: Representation of the Dataset in Neo4;

As it can be seen, if we want to view the whole graph, the information is lost due to the

19

3.3. Methodology

fact that there are so many relationships and nodes to be presented at a given time.
In the next figure we show just a part of the Dataset; more precisely, we represent the

relationships that join three nodes with the rest of the graph, incoming and outgoing:

Figure 3.3: Representation of part of the Dataset in Neo4;j

Here we can see that even though we only represent the relationships that concern just

three nodes, we get a huge amount of outgoing and incoming relationships.

3.3 Methodology

The methodology followed in this project was the spiral methodology, first defined by Barry
Bohem [38]. This methodology is one of the most important ones for software development
and is based on the definition of different tasks that will comprise a phase of work. When all
the tasks are completed the results are evaluated, the risks assessed, and it is decided if the
next phase begins or not if the results are satisfactory. In our case, the risks to be assessed are
purely determining if a determined algorithm can be run efficiently with our current graph
and if some changes can be made to adapt it. Typically, each phase is divided into four tasks:
determine the objectives, risk analysis, develop and test; and planning.

For our purposes the planning task has been divided into the following stages:

1. Acquisition of knowledge about graph theory and the different community detection

algorithms that exist.

20

CHAPTER 3. NEO4J & DATASET

2. Analysis of different community detection algorithms and selection of the most relevant

ones.

3. Analysis of different public datasets and selecting the most suitable one for the com-

munity detection task.

4. Analysis of the quality metrics of community detection algorithms and selecting the

most appropriate for the comparison.

5. Implementation of community detection algorithms and their quality metrics.

6. Testing and evaluation of the selected algorithms on the basis of the metrics chosen
above. This stage will be divided into four separate task, one for each algorithm we will

test.

6.1. Test and evaluate the Louvain Algorithm
6.2. Test and evaluate the Label Propagation Algorithm
6.3. Test and evaluate the Strongly Connected Components

6.4. Test and evaluate the Weakly Connected Components

The selection of the working dataset was done by searching for a set of relevant size taking

into account the chosen community detection algorithms.

The different iterations of the work were performed for the implementation, testing, and
evaluation phases of the community detection algorithms. In each iteration, the implemen-

tation of an algorithm, its testing and the quality metrics were evaluated.

We understand by implementation of an algorithm, the adaptation of an existing algo-
rithm to work on the selected dataset. The testing phase focuses on the execution of the

algorithm with different configuration parameters.

The last iteration consisted of evaluating the results obtained in terms of the communities

identified and their quality.

The following figure depicts a simple Gantt chart of the organization of these phases and

how they where executed.

21

3.4. Cost Estimates

Mar 27, 2022 Apr 03, 2022 Apr10, 2022 Apr 17, 2022
Name
§ M T wW T F § 5§ M T W T F § § M T W T F § § M T W T F

Phase 3

Phase 4 g-’_T—I
Phase 5 |

Phase 6.1
Phase 6.3
Phase 6.2
Phase 6.4

Writing the memoir

Figure 3.4: First half of theGantt chart

Apr 24, 2022 May 01, 2022 May 08, 2022 May 15, 2022
Name
F 8§ 8§ Mm T w T F §8 §8 M T W T F § s M T W T F 8§ § M T V

Phase 1
Phase 2

Phase 3

Phase 4 ;—‘
Phase 5

Phase 6.1
Phase 63

Figure 3.5: Second half of theGantt chart

3.4 Cost Estimates

To make an estimate of the cost of this project, only one developer will be taken into account.
The developer in question is tasked with importing the dataset into a database, conducting
the execution of the algorithms, applying the quality metrics to those results, and drawing

conclusions from those quality metrics.

The time cost is calculated using a salary of 15€/hour and the estimation and associated

costs are represented in the following table:

22

CHAPTER 3. NEO4J & DATASET

Phase | Aprox. effort (hours) | Cost (€)

1 48 720
2 33 495
3 24 360
4 21 315
5 75 1125
6 60 900

Total: 261 3895

Table 3.1: Personnel cost estimate

For the realization of this project computers and other resources were necessary, all of

them having costs associated with them that are represented in the following table:

FElement Cost
Internet 75
Electricity 100

Development equipment | 1500
Total: | 1675

Table 3.2: Resource cost estimate

The total cost comes to an estimate of 5570¢€.

23

3.4. Cost Estimates

24

Chapter 4

Development

In this chapter we will explain the preparation of the data for further processing, the cre-
ation of the corresponding graph as well as the creation of the existing relationships, and the

configuration of the different community detection algorithms that will be studied.

4.1 Dataset setup

From the email-Eu-core [35] dataset we have used all of the nodes and relationships present
within it for the testing of the algorithms used in this project. More over we have used the
community distribution described in this dataset to setup a Ground Truth to be used as ref-

erence for the quality of the results we get.

The preparation of the dataset to be imported into the database used for the testing of the
different algorithms was rather simple, as the data was already anonymized and put into a

format suitable to be imported into Neo4;.

The changes made to the data were to add names to the columns of data in the files that
represent the relationships between nodes and the nodes that comprise each community as
defined by the Ground Truth; and transforming those files to CVS format. This is done to

make importing them to Neo4j much easier.

It’s necessary to import the dataset into a Neo4j database because all of the algorithms we
want to test are executed on a graph created from a database and their results are saved, also,
on the database. Another reason to import the dataset into a database is the simplicity with
which we can execute queries on the nodes and relationships; and also the ease with which

we can implement the different quality metrics.

25

4.2. Importing the dataset

4.2 Importing the dataset

In order to import the dataset into our Neo4j database, we had to follow the steps detailed
bellow:

First, we created an index on the id property of the nodes. This helps with the efficiency
of the queries we will execute to create the graph, the import of the dataset and with the
execution of the algorithms; but it also affects the size of the database and write times since
it is creating a redundant copy of the property.

The index is created with the command bellow:

|| CREATE INDEX FOR (c:Item) ON (c:id)

Next, we will import all of the nodes that will comprise the database, as well as the com-
munity they belong to in the Ground Truth, which we will write as a property in the node.
The community to which they belong is given to us in one of the files that comprises the
dataset and lists all of the employees in one column and their respective department in the
next.

The process is done using the following command:

LOAD CSV WITH HEADERS
FROM "file:///email-Eu-core-department-labels.csv" AS row
CREATE (:Item {id:row.Nodeld,Department:row.Department});

)

The next task is to import the relationships that connect the nodes of the dataset. This is
done using the other file in the dataset that represents in the first column the employee that
sent the email is represented and in the next column the employee that received it.

The relationships are created in the following command:

LOAD CSV WITH HEADERS FROM "file:///email-Eu-core.csv'" AS row
MATCH (pl:Item {id:row.FromNodelId}), (p2:Item {id:row.ToNodeId})
CREATE (p1)-[:RELATED]->(p2);

o

We will also need to assign to each node a random label that we will need later in the
execution of the Label Propagation Algorithm. As Neo4j doesn’t have the option for creating
random properties, we created a small Python program to create a file with two rows, one
with the nodes in order and the next with their random labels. This file is then imported into

our database with the next command:

LOAD CSV WITH HEADERS FROM "file://email-eu-core-randomLabels.csv"
AS row

MATCH (u:Item {id:row.nodeId})

3l set u.seed = row.label

™o

26

CHAPTER 4. DEVELOPMENT

Finally we will create the graph upon which we will execute the algorithms with the

command:
1|CALL gds.graph.create(
2 'myGraph',
3 'ITtem',
4 "RELATED' ,
5 {
6 nodeProperties: ['Department', 'seed']
7 ¥
5

After creating the graph we can see this output in Neo4j informing us of the properties

of the graph created:

nodeProjection relationshipProjection graphName nodeCount relationshipCount createMillis

{) { (] "myGraphDept" 1005 25571 101

"Ttem": { "RELATED": {
"label®: "Item", "orientation”:
"properties”: { "NATURAL",
"Department”: { "aggregation"”:
"defaultValue": "DEFAULT",
null, “type": "RELATED",
"property”: "properties”: {
"Department”

i i
"seed”: { }
"defaultvalue": }
null,

“property”: "seed"
}
}

Figure 4.1: Output of the graph creation process

In the figure above we can see the information given to us when creating a graph. It shows
the name and properties of the nodes added to the graph in the nodeProjection column, the
name and properties of the relationships added to the graph in the relationshipProjection
column; the name of the graph, the number of nodes and relationships it has, and the time it
took to create in milliseconds.

As was explained in section 3, we need to asses if each algorithm can be run efficiently
with our graph. After due review of our graph and the algorithms to be executed, we found
the execution time and results to be satisfactory and decided to not make any changes to

either the graph or the algorithms to be run.

27

4.2. Importing the dataset

28

Chapter 5

Results and discussion

This chapter will detail the tests performed with the different algorithms; present the results
of the algorithms as well as the quality metrics, and compare the community detection algo-
rithms in view of the values of these metrics. The tests of the algorithms were divided into
four iterations, one per algorithm, as well as a first establishing the values of the parameters
we will use to make the testing and applying the quality metrics to the Ground Truth provided

to us in the Dataset.

5.1 Algorithm Configuration Parameters

Different parameters and values have been used for the execution of the algorithms. The
parameters used in the execution of each algorithm are described below:

The Louvain algorithm is configured using the following parameters:

1. Iteration Limit: this parameter determines how many iterations the algorithm will per-

form. Its purpose is to stop its execution if convergence is not reached.

2. Tolerance: this parameter determines the minimum increase in the modularity measure

to continue with the execution of the algorithm.

3. Maximum Levels: this parameter determines the maximum number of divisions made

to the graph that are later condensed.

The configuration of the Label Propagation algorithm is done through the following pa-

rameters:

1. Iteration Limit: as for Louvain’s algorithm, this parameter determines the maximum

number of iterations the algorithm will perform.

2. Label Property: this parameter indicates which property of the network nodes will be

used as the initial value of the labels assigned by the algorithm.

29

5.2. Ground Truth

The two Connected Component algorithms do not require the initial configuration of any

parameters.

5.2 Ground Truth

In order to determine the goodness of the results of the different community detection algo-
rithms, it is necessary to compare them with the original distribution of communities in the
Dataset, that is, the Ground Truth. To do this, it is necessary to calculate the quality metrics
on this distribution and compare these metrics with those calculated on the results of the

different community detection algorithms.

The following table presents the results of the quality metrics on Ground Truth:

Quality Metric Value
Performance (Perf) 0.95
Coverage (Cov) 0.36
Modularity (Mod) 0.68
Average clustering coefficient (avg C.) 0.32
Number of Communities (# C) 42
Average number of components (avg N¢) 24
Largest Number of Components (max N¢) 109
Lower Number of Components (min N¢) 1
Standard deviation (1 N¢) 24.22

Table 5.1: Quality metric results for the Ground Truth

Analyzing the values in the table, the high value of the performance metric stands out,
due to the existence of a large number of small communities, which are isolated or poorly
connected with the rest of the communities. It is also important to highlight the low value
of the coverage metric compared to the performance value. This is due to the fact that the
number of edges of the network linking nodes from different communities is high. The value
of the mean and standard deviation of the number of components of the communities allows

us to determine the size range of the communities, which is between 1 and 48 nodes.

The analysis of all the metrics as a whole indicates that most of the communities in Ground
Truth are small in size and not very connected to the rest of the communities, while there are

other much larger communities that are connected to each other.

30

CHAPTER 5. RESULTS AND DISCUSSION

5.3 First Iteration

The first iteration will be performed with Louvain’s algorithm, which will be executed with

the following values for the parameters described in section 4.1:

Execution 1 2 3 4 5 6
Iteration Limit 1000 | 1000 | 1000 | 1000 | 1000 | 1000
Maximum Levels (maxL) 10 10 10 1000 | 1000 | 1000
Tolerance (T) 1073 10° 1077|1073 | 107® | 1077

Table 5.2: Parameter values for Louvain algorithm

In Neo4j the execution of the algorithms will be done using the Graph Data Science library

through commands, as shown below:

CALL gds.louvain.write('myGraph', { writeProperty: 'community',
maxIterations: 1000, tolerancia: $107~{-3}$, maxLevels: 10 })
2| YIELD communityCount

where:

« write is the execution option that writes on a property of the database nodes to which

community they belong.

« myGraph indicates the previously created graph on which the algorithm is executed.

« writeProperty indicates on which property of the database nodes the result of the

algorithm will be written

The rest of the parameters are the concrete configuration parameters of the Louvain al-

gorithm.

The algorithm provides the number of communities identified through the output param-

eter communityCount.

The results of the six different executions of the Louvain algorithm are presented below:

31

5.3. First Iteration

maxL T t (ms) | Perf | Cov | Mod | avg C, | #C | avg N¢ | max N¢ | min No | p N¢o
1073 301 0.89 | 0.59 | 0.43 0.09 122 7 199 1 31.42

10 107° 515 0.89 | 0.59 | 0.43 0.10 121 8 198 1 29.74
1077 326 0.90 | 0.57 | 0.42 0.07 179 5 127 1 20.87

1073 1526 | 0.87 | 0.59 | 043 0.3 38 26 221 1 55.17

1000 | 107° 1213 | 0.87 | 0.59 | 0.42 0.42 27 37 225 1 63.24
1077 | 1879 | 0.86 | 0.59 | 0.43 0.42 27 26 217 1 52.80

Table 5.3: Louvain algorithm results

where T is the execution time of the algorithm in milliseconds.

The results obtained are very similar to each other except for the clustering coefficient,
which shows variations between 0.07 and 0.42. The highest values coincide with high values
of the parameter Maximum number of levels (maxL), which indicates that the increase in the
value of this parameter implies an increase in connections and their density within the com-
munities. This implies an improvement in the quality of these communities with respect to
communities identified with lower values of this parameter.

With small values for the maxL parameter, many communities with a single node are
identified, resulting in values close to 0 for the clustering coefficient. In turn, the mean of the
number of nodes per community (1 N¢) reflects these results with low values.

For the remaining metrics, the following conclusions can be drawn:

1. The Performance (Perf) presents high values, close to 1, which indicates that all the

communities have many more edges relating nodes inside the community than outside.

2. The Coverage (Cov) presents intermediate values, indicating that slightly more than half

of the relationships in the entire network are formed by nodes of the same community.

3. The Modularity (Mod) presents values of 0.4, which indicates that the nodes of the
communities have more relationships with nodes of the same community, but even so,

they have a considerable number of relationships with nodes outside the community.

The difference between the Performance and Coverage metrics, which should normally
present similar values, is due to the fact that there are in all iterations a high number of
single-node communities that were not combined with any other because they did not provide
sufficient modularity gain. These single-node communities cause an increase in the value of
the Performance metric by having a large number of nodes outside the community to which
they are not connected.

We can also see that, when using a lower value of the Maximum Levels parameter, the

number of communities found is generally much higher than when using a higher value. This

32

CHAPTER 5. RESULTS AND DISCUSSION

change is due to the fact that many of the single-node communities mentioned above have
been combined together to create larger communities.

The communities found by the algorithm when using a higher value of the Maximum
Number of Levels parameter have a higher standard deviation than those found with a lower
value. This is due to the fact that there are still quite a few communities formed by a single
node.

The algorithm execution time depends on the Maximum Levels parameter, since as more
divisions are allowed, the number of iterations of the algorithm increases, thus increasing the
algorithm execution time.

With respect to Ground Truth, it can be seen that executions with a higher Maximum
Number of Levels value give community distributions closer to those of Ground Truth with

similar values in the quality metrics.

5.4 Second Iteration

The second iteration will be performed with the Label Propagation algorithm, with the fol-

lowing values for the parameters described in section 4.1:

Execution 1 2 3
Maximum Iterations 1000 1000 1000

Label Property Automatic | Ground Truth | Random

Table 5.4: Parameter values for the Label Propagation algorithm

The values of the Label Property parameter correspond to automatic, so that the algorithm
chooses the label to propagate; Ground Truth value, in which the label corresponds to the one
presented by the Dataset; random value, for which we assign each node a label randomly.

The results of the Label Propagation algorithm executions are presented below:

Labels t (ms) | Perf | Cov | Mod | avg C,. | #C | avg N¢ | max N¢o | min N¢o | p Ne
Automatic 38 0.95 | 093 | 0.71 0.01 183 5 769 1 54.86
Ground Truth | 30 0.88 | 0.93 | 0.72 0.07 36 28 760 1 126.34
Random 89 0.98 | 0.93 | 0.71 0.01 179 5 730 1 54.73

Table 5.5: Label Propagation results

where the Label column represents the value of the corresponding parameter.
These results show how the use of the Ground Truth value as a Label Property leads to a

lower number of communities, close to the reference value (42). The rest of the metrics present

33

5.4. Second Iteration

similar values except those related to the number of communities, such as the mean number
of nodes per community and the standard deviation. This indicates that the distribution of
the nodes in the communities is similar in the three cases, although in one of them there is a
lower number of communities.

This is reflected in the values of the last four columns of Table 4.5, which present a small
mean size and a high standard deviation, indicating that most of the communities found have
a size of 1 or close to 1, while there is a single large community comprising most of the nodes
in the network.

More generally, the following conclusions can be drawn:

1. The Performance (Perf) has a very high value. This is because there are many isolated

communities with a single node that will therefore have a high performance value.

2. The Coverage (Cov) presents a high value, which means that a large number of the
edges of the network are within the identified communities. This is due to the fact that,
since there is a community of such a large size, many of the edges of the network will

be found within this community, which will greatly increase the value of this metric.

3. The Modularity (Mod) presents a high value because there is a large community that
eclipses the rest and contains many relationships within the same community. Like-
wise, the number of relationships with nodes of another community is scarce, which
results in this high modularity value that is not representative of the quality of the

partition.

4. The Clustering Coefficient (C.) presents low values for any of the executions, although
its value increases slightly in the case of using as reference label that of the original
Dataset. This is because communities that are not the largest return a minimum clus-

tering coeflicient value, which directly affects the value of the mean.

The execution time of this algorithm was very low for the different executions due to the
low complexity of the algorithm and the composition of the network.

Comparing the results of this algorithm with those of the Ground Truth, we can see that
we would only come close to the number of communities found in this one using the Ground
Truth tags. But even so, the quality metrics do not come close in any of the executions to the
results achieved with the Ground Truth.

This is due to the fact that in the Label Propagation Algorithm parts of the graph with
many connections tend to have the same label, as the labels propagate much faster in those
areas; and as we have seen, the graph is very dense with relationships. This results in a very
large community comprised of all the nodes that have many connections with each other and

then several small communities of one node that don’t have relationships with other nodes.

34

CHAPTER 5. RESULTS AND DISCUSSION

5.5 Third Iteration

The third iteration will be performed with the Strongly Connected Components algorithm:

t (ms) | Perf | Cov | Mod | avg C, | #C | avg N¢ | max N¢ | min N¢ | u Neo
41 0,77 | 0.97 | 0.72 0.004 203 5 803 1 56.29

Table 5.6: Strongly Connected Components Algorithm results

As can be seen, these results are similar to the Label Propagation algorithm ones, since
a large community and a large number of communities with a small number of nodes are
identified. This can be seen in the last four columns of the table.

Both Performance as well as Coverage and Modularity have high values due to the ex-
istence of a large size community that overshadows the results of these metrics in smaller
size communities. While the clustering coefficient has a very small value due to the fact that
there are many minimum size communities that also have a minimum value of the clustering
coeflicient.

Due to the simplicity of the Strongly Connected Components algorithm, the execution
time is very low.

Comparing the quality metrics and the number of communities found with this algorithm
with those found in Ground Truth, we can see that the results are very different, especially
in the metrics of coverage, clustering coeflicient and size of the largest community.

These results can be explained due to the fact that this algorithm only takes into account
the direction of the relationships and if we can make paths from one node to another. In
the case of our graph we can see that many nodes can be reached from one another in both

directions due to the results of this algorithm.

5.6 Fourth Iteration

The fourth iteration will be performed with the Weakly Connected Components algorithm.

The results of running this algorithm are as follows:

t (ms) | Perf | Cov | Mod | avg C, | #C | avg N¢ | max N¢ | min N¢ | p N¢o
10 0.13 1 0.75 0.04 20 50 986 1 220.25

Table 5.7: Weakly Connected Components Algorithm results

As can be seen in these results, there are 20 communities of unconnected nodes with the

rest of the network which, as in the previous algorithms, correspond to a large community

35

5.7. Fifth Iteration

containing most of the nodes of the network and several smaller communities with the rest
of the nodes of the network.

With respect to quality metrics, the following conclusions can be drawn:

1. The Coverage (Cov) of the graph indicates that the distribution of communities is cor-
rect since the Weakly Connected Components, by definition, do not have edges joining

them, so there will only be edges between nodes within the communities themselves.

2. The Performance (Perf) presents a very low value due to the fact that the number of
communities found is very low and as such the component that counts the number of

edges that don’t connect to nodes outside of the community is in turn much lower.

3. The Modularity (Mod) has a value similar to that of the Strongly Connected Compo-
nents algorithm, since the component that contains most of the nodes has a high mod-

ularity that makes the global modularity also high.

4. The Clustering Coeflicient metric (C.) presents a very low value since there are a large

number of communities formed by a single node, which makes the average very low.

As can be seen, the execution time of the algorithm is the shortest of all the algorithms
we have tested since it is also the simplest.

Finally, comparing these results with those of Ground Truth, we can see that they are not
similar either in the number of communities or in the quality metrics.

Similarly to the Strongly Connected Components Algorithm, this algorithm only takes
into account if a path can be drawn between two nodes, which explains the results found and

how they are not similar to those of the Ground Truth.

5.7 Fifth Iteration

In this iteration, an analysis of the results from the different algorithms used in relation to the
Ground Truth is presented.

Comparing the results obtained with the best parameter values, we can see that a pattern is
repeated in all four algorithms: a large community is always found accompanied by a number
of communities of very small size. This pattern coincides with the Ground Truth.

It can be seen, also, that the Label Propagation and Strongly Connected Components
algorithms give very similar results in all their executions. Therefore, it can be said that these
two algorithms work in the same way in this graph. This is due to the fact that by having
many nodes with few relations to other nodes, a label spreads quickly through the nodes, and
if these have a high number of relations with other nodes, the algorithm generates a large

community and other small ones around it.

36

CHAPTER 5. RESULTS AND DISCUSSION

The Label Propagation, Strongly Connected Components and Weakly Connected Compo-
nents algorithms return a distribution of communities in the network that is not very effective
but can be used to identify the areas of the network with the most information exchange, since
the relationships between nodes represent e-mail exchanges between employees.

The algorithm that performs best and gives the best results is the Louvain algorithm. This
algorithm returns a distribution of communities similar to the one found in Ground Truth
with good consistency.

But there are still cases in which it finds a high number of communities, a distribution

very different from the one found in Ground Truth.

37

5.7. Fifth Iteration

38

Chapter 6

Conclusions

In this final degree work we have identified a variety of community detection algorithms and
quality metrics with which to compare them. We have used algorithms on a real world dataset
to identify its community structure and compared the results using the previously mentioned
quality metrics. The results of this comparison have shown that each algorithm behaves very
differently from the others and that its output it’s greatly defined by the structure of the graph
upon which it is applied.

6.1 Conclusions

The main objective of this project has been achieved as I have compared four different com-
munity detection algorithms with each other based on quality metrics applied to their results
when executed on a real world dataset.

The following conclusions can also be drawn from the results of this work:

1. The use of community detection algorithms is highly affected by the choice of the graph
on which they are going to be executed, since a graph containing many relationships
between nodes will be more suitable for one algorithm than for another. Therefore,
before executing a specific algorithm on a graph, we must know its structure and apply
the one that best adapts to this structure.

For example, in this work we have used a graph with many nodes connected to each
other that form a big congregation with smaller ones surrounding it, thus resulting in

most of the algorithms finding one big community and many smaller ones.

2. The community detection algorithms return very important and different information
about the structure of the network, some tell us in which part of the network there are
more connections between nodes, while others will tell us which parts of the network

have a similar structure depending on how the communities are found.

39

6.2. Future work

For example with the Weakly Connected Components Algorithm, it finds a community
where every node can be reached from any other node of the same community, thus
giving us groups of nodes that may not have properties in common but are densely

connected.

3. Analyzing the results provided by the algorithms that allow an initial configuration
through parameters, it can be concluded that there are significant differences in the
results obtained by varying these parameters. This fact makes it necessary to study the
configuration parameters for each data set on which community detection algorithms
are to be applied. The most significant case is the label propagation algorithm, where

the parameter that establishes the starting labels constitutes the core of the algorithm.

6.1.1 Knowledge acquired

In this project I have used knowledge acquired through the different subjects studied in this
degree; for example, I have used knowledge learned in the databases subject and concepts of
graphs learned in algebra and discrete mathematics.

More over, during the time I've spent working on this project I have expanded my knowl-

edge on those topics and have gained knowledge on other topics, such as:
1. Theoretical knowledge of communities in graphs and community detection algorithms.
2. Configuration and use of NoSQL databases.

3. Practical knowledge on the execution and the inner workings of community detection

algorithms.

4. Interpretation of quality metrics applied to the results of the execution of an algorithm.

6.2 Future work

After the completion of this work, certain paths can be identified for the continuation of the
work carried out.

The execution of the Louvain and Label Propagation algorithms with other configuration
parameters would be interesting to see if the results become better or maybe worse if they
are changed.

Seeing the results obtained for the four compared algorithms, it would be interesting to
perform these tests on other community detection algorithms, using the metrics that were
applied to those already compared and adding more. This would broaden our frame of refer-
ence for the interpretation of the results already found, as well as those we would find with

these new algorithms and metrics.

40

CHAPTER 6. CONCLUSIONS

Following this line, tests could also be run on other data sets with a different number and
distribution of nodes and relationships, as this would give us an idea of how these algorithms

react to other networks with different characteristics.

41

6.2. Future work

42

Bibliography

[1] K. H. Rossen, Discrete Mathematics and Its Applications, 7th ed. McGraw-Hill, 2012.

[2] J. Moody and D. White, “Structural cohesion and embeddedness: A hierarchical
concept of social groups,” American Sociological Review, pp. 103-127, 2003.
[Online]. Available: http://scholar.google.de/scholar.bib?q=info:2c¢7bh3rVpdc]:
scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0

[3] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in
networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, Feb. 2004. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.69.026113

[4] S.Wasserman and K. Faust, Social Network Analysis: Methods and Applications, ser. Struc-
tural Analysis in the Social Sciences. Cambridge University Press, 1994.

[5] W. de Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis
with Pajek (Structural Analysis in the Social Sciences), illustrated edition ed.
Cambridge University Press, 2005. [Online]. Available: http://www.amazon.com/
Exploratory-Network- Analysis-Structural-Sciences/dp/0521602629

[6] A. Bavelas, “A mathematical model for group structures,” Applied Anthropology, vol. 7,
no. 3, 1948. [Online]. Available: http://www jstor.org/stable/44135428

[7] L. C. Freeman, “A set of measures of centrality based upon betweenness,” Sociometry,

vol. 40, 1977.

[8] M. E. J. Newman, Networks: an introduction. Oxford; New
York: Oxford University Press, 2010. [Online]. Available: http:
//www.amazon.com/Networks- An-Introduction-Mark-Newman/dp/0199206651/
ref=sr_1_57ie=UTF8&qid=1352896678&sr=8-5&keywords=complex+networks

43

http://scholar.google.de/scholar.bib?q=info:2c7bh3rVpdcJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:2c7bh3rVpdcJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://www.amazon.com/Exploratory-Network-Analysis-Structural-Sciences/dp/0521602629
http://www.amazon.com/Exploratory-Network-Analysis-Structural-Sciences/dp/0521602629
http://www.jstor.org/stable/44135428
http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651/ref=sr_1_5?ie=UTF8&qid=1352896678&sr=8-5&keywords=complex+networks
http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651/ref=sr_1_5?ie=UTF8&qid=1352896678&sr=8-5&keywords=complex+networks
http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651/ref=sr_1_5?ie=UTF8&qid=1352896678&sr=8-5&keywords=complex+networks

Bibliography

[9] L.Page,S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web,” Stanford Digital Library Technologies Project, Tech. Rep., 1998.
[Online]. Available: citeseer.ist.psu.edu/page98pagerank.html

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” 2008. [Online]. Available: http://arxiv.org/abs/

0803.0476

[11] O. Markovitch and N. Krasnogor, “Predicting species emergence in simulated
complex pre-biotic networks” PloS one, vol. 13, 2018. [Online]. Available:
https://doi.org/10.1371/journal.pone.0192871

[12] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of communities
in dynamic social networks” in ASONAM, N. Memon and R. Alhajj, Eds. IEEE
Computer Society, 2010, pp. 176—183. [Online]. Available: http://dblp.uni-trier.de/
db/conf/asunam/asonam2010.html#GreeneDC10

[13] J. M. Pujol, V. Erramilli, and P. Rodriguez, “Divide and conquer: Partitioning
online social networks,” CoRR, vol. abs/0905.4918, 2009. [Online]. Available:
http://arxiv.org/abs/0905.4918

[14] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect
community structures in large-scale networks,” Sep. 2007. [Online]. Available:

http://arxiv.org/abs/0709.2938

[15] P.Pham The, T. Tuytelaars, and M.-F. Moens, “Naming people in news videos with label
propagation,” vol. 18, 2011. [Online]. Available: https://lirias.kuleuven.be/retrieve/
148066

[16] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, “Label propagation based semi-supervised
learning for software defect prediction,” vol. 24, 2017. [Online]. Available:
https://doi.org/10.1007/s10515-016-0194-x

[17] B. Huang, C. Wang, and B. Wang, “Nmlpa: Uncovering overlapping communities in
attributed networks via a multi-label propagation approach,” Sensors, vol. 19, no. 2,
2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/2/260

[18] M. Sharir, “A strong-connectivity algorithm and its applications to data flow analysis,”

vol. 7, pp. 67-72, 1981.

[19] M. Needham and A. E. Hodler, Graph Algorithms Practical Examples in Apache Spark and
Neo4j, 1st ed. O’Reilly Media, Inc., 2019.

44

citeseer.ist.psu.edu/page98pagerank.html
http://arxiv.org/abs/0803.0476
http://arxiv.org/abs/0803.0476
https://doi.org/10.1371/journal.pone.0192871
http://dblp.uni-trier.de/db/conf/asunam/asonam2010.html#GreeneDC10
http://dblp.uni-trier.de/db/conf/asunam/asonam2010.html#GreeneDC10
http://arxiv.org/abs/0905.4918
http://arxiv.org/abs/0709.2938
https://lirias.kuleuven.be/retrieve/148066
https://lirias.kuleuven.be/retrieve/148066
https://doi.org/10.1007/s10515-016-0194-x
https://www.mdpi.com/1424-8220/19/2/260

BIBLIOGRAPHY

[20] S.].Kazemitabar and H. Beigy, “Automatic discovery of subgoals in reinforcement learn-
ing using strongly connected components,” M. Képpen, N. Kasabov, and G. Coghill,
Eds. Springer Berlin Heidelberg, 2009.

[21] J. Treur, “Mathematical analysis of a network’s asymptotic behaviour based on its
strongly connected components,” in Complex Networks and Their Applications VII,
L. M. Aiello, C. Cherifi, H. Cherifi, R. Lambiotte, P. Lio, and L. M. Rocha, Eds.
Springer International Publishing, 2019.

[22] S. Allesina, A. Bodini, and C. Bondavalli, “Ecological subsystems via graph theory: The
role of strongly connected components,” Oikos, vol. 110, pp. 164 — 176, 07 2005.

[23] R. E. Tarjan, “A new algorithm for finding weak components,” Information Processing
Letters, vol. 3, no. 1, pp. 13-15, 1974. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0020019074900404

[24] Y. An, J. Janssen, and E. E. Milios, “Characterizing and mining the citation graph of the

computer science literature,” Knowledge and Information Systems, 2004.

[25] A. Monge and C. Elkan, “An efficient domain-independent algorithm for detecting ap-

proximately duplicate database records,” 1997.

[26] “Graph data platform | graph database management system | neo4j,” 2007. [Online].
Available: https://neo4j.com/

[27] “Native graph database | neo4j graph database platform,” 2007. [Online]. Available:
https://neo4j.com/product/neo4j-graph-database/

[28] “Graph data science library | graph analysis algorithms | neo4j,” 2007. [Online].
Available: https://neo4j.com/product/graph-data-science/

[29] “Bloom - neo4j graph database platform,” 2007. [Online]. Available: https://neo4j.com/
product/bloom/

[30] “The neo4j cypher manual v4.4” 2011. [Online]. Available: https://neo4j.com/docs/

cypher-manual/current/

[31] “The colorado index of complex networks,” 2007. [Online]. Available: https:

//icon.colorado.edu/#!/

[32] “Institute for webscience and technologies,” 2007. [Online]. Available: https:

//west.uni-koblenz.de/research/datasets

45

https://www.sciencedirect.com/science/article/pii/0020019074900404
https://www.sciencedirect.com/science/article/pii/0020019074900404
https://neo4j.com/
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/graph-data-science/
https://neo4j.com/product/bloom/
https://neo4j.com/product/bloom/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-manual/current/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
https://west.uni-koblenz.de/research/datasets
https://west.uni-koblenz.de/research/datasets

Bibliography

[33] “Stanford network analysis project,” 2007. [Online]. Available: http://snap.stanford.edu/

index.html

[34] “Canadian institute for cybersecurity,” 2007. [Online]. Available: https://www.unb.ca/
cic/datasets/ids-2017.html

[35] “email-eu-core network,” 2007. [Online]. Available: http://snap.stanford.edu/data/

email-Eu-core.html

[36] “Eu email communication network,” 2007. [Online]. Available: http://snap.stanford.edu/
data/email-EuAllhtml

[37] L.Leskovec,].Kleinberg, and J. Faloutsos, “Graph evolution: Densification and shrinking
diameters.” ACM Trans. Knowl. Discov. Data, 2007.

[38] B. Boehm, “A spiral model of software development and enhancement,” SIGSOFT
Softw. Eng. Notes, vol. 11, no. 4, p. 14-24, aug 1986. [Online]. Available:
https://doi.org/10.1145/12944.12948

46

http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://snap.stanford.edu/data/email-Eu-core.html
http://snap.stanford.edu/data/email-Eu-core.html
http://snap.stanford.edu/data/email-EuAll.html
http://snap.stanford.edu/data/email-EuAll.html
https://doi.org/10.1145/12944.12948

	Introduction
	Objectives
	Outline

	Domain Description
	Graph
	Communities in graphs
	Measures for community detection
	Density
	Centrality
	Modularity

	Community detection algorithms
	Louvain Algorithm
	Label Propagation Algorithm
	Strongly Connected Components Algorithm
	Weakly Connected Components Algorithm

	Quality metrics
	Performance
	Clustering coefficient
	Coverage
	Structural metrics

	Neo4j & Dataset
	Neo4j
	Data Set
	Methodology
	Cost Estimates

	Development
	Dataset setup
	Importing the dataset

	Results and discussion
	Algorithm Configuration Parameters
	Ground Truth
	First Iteration
	Second Iteration
	Third Iteration
	Fourth Iteration
	Fifth Iteration

	Conclusions
	Conclusions
	Knowledge acquired

	Future work

	Bibliography

