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Abstract: Supervised classification of 3D point clouds using machine learning algorithms and
handcrafted local features as covariates frequently depends on the size of the neighborhood (scale)
around each point used to determine those features. It is therefore crucial to estimate the scale or
scales providing the best classification results. In this work, we propose three methods to estimate said
scales, all of them based on calculating the maximum values of the distance correlation (DC) functions
between the features and the label assigned to each point. The performance of the methods was
tested using simulated data, and the method presenting the best results was applied to a benchmark
data set for point cloud classification. This method consists of detecting the local maximums of
DC functions previously smoothed to avoid choosing scales that are very close to each other. Five
different classifiers were used: linear discriminant analysis, support vector machines, random forest,
multinomial logistic regression and multilayer perceptron neural network. The results obtained were
compared with those from other strategies available in the literature, being favorable to our approach.

Keywords: 3D point clouds; multiclass classification; feature selection; distance correlation; func-
tional data

1. Introduction

As a result of the advances in photogrammetry, computer vision and remote sens-
ing, accessing massive unstructured 3D point cloud data is becoming easier and easier.
Simultaneously, there is a growing demand for methods for the automatic interpretation of
these data. Machine learning algorithms are among the most used methods for 3D point
cloud segmentation and classification given their good performance and versatility [1–4].
Many of these algorithms are based on defining a set of local geometric features obtained
through calculations on the vicinity of each point (or the center of a voxel when voxeliza-
tion is carried out to reduce computing time) as explanatory variables. Local geometry
depends on the size of the neighborhood (scale) around each point. Thus, a point can be
seen as belonging to an object of different geometry, such as a line, a plane or a volume,
depending on the scale [5]. As a result, the label assigned to each point can also change
with this variable. The neighborhood around a point is normally defined by a sphere of
fixed radius centered on each point [6] or by a volume limited by a fixed number of the
closest neighbors to that point [7]. A third method, which is normally applied to airborne
LiDAR (Light Detection and Ranging) data, consists of selecting the points in a cylinder of
a fixed radius [8]. The local geometry of each point on the point cloud is mainly obtained
from the covariance matrix, although other alternatives are possible, such as in [9], where
Delaunay triangulation and tensor voting were used to extract object contours from LiDAR
point clouds.
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Given the importance of the scale in the result of the classification, there has been a
great interest in estimating the scale (size of the neighborhood) or combination of scales
(multiscale approach) [10–13] that provide the best results (the smallest error in the clas-
sification). Unfortunately, this is not a trivial question, and several methods have been
proposed to determine optimum scales. A heuristic but largely used method is to try a few
scales considering aspects such as the density of the point cloud, the size of the objects to be
classified and the experience of the people solving the problem and select the scale or scales
that provide the best solution. Differences in the density through the point cloud lead to
errors in the classification [14]. In [15], the sparseness in the point cloud was addressed
through upsampling by a moving least squares method. Another possibility is to select
several scales at regular intervals or at intervals determined by a specific function, such
as in [16], where a quadratic function of the radius of a sphere centered in each point was
used. Obviously, these procedures cannot guarantee an optimal solution, so some more
objective and automatic alternatives have been proposed. One of them is to estimate the
optimum scales taking into account the structure of the local covariance matrix obtained
from the coordinates of the points, and a measure of the uncertainty, such as the Shannon
entropy [17,18]. Another alternative is to relate the size of the neighborhood with the
point density and the curvature at each point [19]. The size of the neighborhood can be
fixed across the point cloud, but the results can improve when it is changed from point to
point [20].

There are different approaches for feature selection in classification problems. Some of
them, for example, the meta algorithm optimal feature weighting [21], random forests [22]
or regularization methods, such as Lasso [23], select the features at the time of performing
the classification. By contrast, other methods (known as filter methods), such as Anova,
Kruskel, AUC test [24] or independent component analysis [25], perform the selection
prior to establishing the classification model. In this work, we propose a method inside
this second category. As in [26], we assume that a good approach to the optimum scale
selection should be that for which the distance correlation [27] between the features and the
labels of the classes has high values, but in this case we look for a combination of scales that
provides the best classification, instead of selecting just one scale. In summary, we propose
a simple, objective and model independent approach to address an unsolved problem: the
determination of the optimal scales in 3D point cloud multiscale supervised classification.

2. Methodology

Given a a sample
{

X j
i , Yi

}n

i=1
, where X j represents the predictors, j = 1, . . . , p,

and Yi ∈ Z+, we are interested in determining a model that assigns values to Y given the
corresponding features X j. Each feature depends on the values of a variable k observed
in k = 1, ..., K discretization points. Accordingly, X j is a vector in RK. For each X j, the re-
sponse variable Y follows a multinomial distribution with L possible levels C1, . . . , CL and
associated probabilities Pl(X j) = P(Y = Cl |X j), l = 1, . . . , L.

In the context of our particular problem, X j(k) represents each of the features obtained
from the point cloud to be classified, whose values are calculated, for each training point,
at a finite number of scales k = 1, ..., K, each of them representing the size of the local vicinity
around each point. In contrast to the standard procedure, by which only a few scales are
used, here the features are calculated at a much larger number of scales in order to be able
to select those containing the relevant information to solve the classification problem.

The initial hypothesis is that for each feature only a few values of k (scales) provide
useful information to perform the classification, and that these scales correspond to high
values of the distance correlation between the features and the labels representing each
category. Generally speaking, the distance correlation [27,28] between two random vectors
X ∈ Rp and Y ∈ Rq is defined as
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R2(X, Y) =


V2(X,Y)√
V2(X)V2(Y)

, V2(X)V2(Y) > 0

0, V2(X)V2(Y) = 0
(1)

V2(X, Y) = || fX,Y − fX fY||2

where V2(X, Y) = 1
cpcq

∫
Rp+q

| fX,Y(t,s)− fX(t) fY(s)|2
|t|1+p |s|1+q dtds represents distance covariance (see [29]

for an application of distance covariance for variable selection in functional data classi-
fication), a measure of the distance between fX,Y =

∫
R
∫
R ei(sx+ty) f (x, y)dxdy, {s, t} ∈ R,

the joint characteristic function of random vectors X and Y, and the product fX fY of the
characteristic functions of X and Y, respectively. For their part, cp and cq are constant
depending on the dimensions p and q, respectively.

A distance correlation has some advantages over other correlation coefficients, such as
the Pearson correlation coefficient: (1) it measures non-linear dependence, (2) X and Y do
not need to be one dimensional variables, (3)R(X, Y) = 0⇔ X, Y are independent, that is,
independence is a necessary and sufficient condition for the nullity of distance correlation.

Given that R(X ,Y) is defined for X and Y random vector variables in arbitrary
finite dimension spaces, in this study, the distance correlation was calculated both for
a single scale R(k) = {R(X(ks), Y)}K

s=1 or for a set of scales (discretization points)
R(k1, . . . , kv) = R(X(k1, . . . , kv), Y). Our aim is to select a set of critical scales (those which
contain transcendental information for the classification) k̃ = k̃1, k̃2, . . . , k̃K̃, with K̃ < K,
which maximize the distance correlation. Solving this problem can be time consuming
given that it requires calculating the distance correlation from a very high number of
combinations. In this work, three different approaches have been proposed to determine
the arguments providing the maximum distance correlation values.

The first approach (Algorithm 1) is an iterative method that looks for the best combi-
nations of all the combinations of the scales K, taking a number K̃ of scales at a time. It is a
procedure that in each iteration fix the last K̃− 1 values of vector k̃ and randomly selects
the remaining value until a maximum ofR(k̃) is reached. This is a force brute procedure
that does not look for local maximums directly.

The second approach (Algorithm 2.a) calculates the DC at each value of k for each
feature and looks for the local maximums of the distance correlation, sorting them in
decreasing order, and finally selecting the first K̃ values of k.

Finally, the third approach (Algorithm 2.b) only differs from the second approach
in that the distance correlation is smoothed before calculating the local maxima. Then,
the values of DC calculated at discrete scales are considered as coming from a smooth
function m(k) so that R(k) = m(k) + ε, ε being a zero mean independent error term and
k ∈ [1, K]. In this way, close local maximums providing redundant information are avoided.
In particular, this work follows the same idea as [29] but using a B-spline base instead of
kernel-type smoothing.

Each algorithm is run several times, and the values of k in k̃ = (k̃1, . . . , k̃K̃) obtained
in each step are stored. Those values of {k̃ j}K̃

j=1 that are the most frequent are considered
as the critical points (scales). Once these critical scales have been selected, a classification
model is fitted to the features at these scales, avoiding the inherent drawbacks of high-
dimensional feature spaces. The algorithms for each of the methods are written below,
although the second and third methods are written together, since they only differ in a
sentence corresponding to the adjustment of a smooth function to the vector of distance
correlation. In each algorithm, n represents the size of the data, K the number of scales
used to calculate the features and K̃ the number of critical points selected.
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Algorithm 1 For scale selection by brute force of the DC.

Step 0: Randomly select the initial estimates k̃0 = (k̃0
1, . . . , k̃0

K̃) taking a sample of K̃ << K
size without replacement.
Step 1: Cycle s = 1, . . . , K̃ calculating the update

k̂s = argmax
k
R(k̃1, . . . , k̃s−1, k, k̃0

s+1, . . . , k̃0
K̃)

Step 2: Repeat Step 1 replacing k̃0 = (k̃0
1, . . . , k̃0

K̃) by k̃ = (k̃1, . . . , k̃K̃) until there is no
change between k̃0 and k̃.

Algorithm 2 For scale selection by local maxima of the DC.
(Algorithm 2.a)
Step 1: CalculateR(k) for k = 1, 2, . . . , K.
Step 2: SmoothR(k) as a function of k (only for the third approach-Algorithm 2.b).
Step 3: Compute (k̃1, . . . , k̃K̃) corresponding to local maxima of R(k), sorting them in
decreasing order: R(k̃1) > R(k̃2),> . . . > R(k̃K̃).

3. Simulation Study

This section reports the procedure followed in order to evaluate the practical perfor-
mance of the proposed methodology using simulated data. We consider each simulated
feature {Xi(k)}n

i=1 drawn from

Xi(k) =
4

∑
j=1

wij exp

(
k j − k

σj

)2

+ εi(k) k ∈ (0, 100)

with (k1, k2, k3, k4) = (20, 40, 60, 80) being the critical points or points of interest to be
detected, (σ1, σ2, σ3, σ4) = (3, 2, 2, 3) a measure of how much sharpness is Xi(k) around k j,
and wij weights that have been simulated independently from a uniform distribution in the
interval [−2.5, 3.0]. The errors εi(k) were generated from a random Gaussian process with
covariance matrix Σ = σ0I, being σ0 a scalar. A set of predictors (features) for σ0 = 0.05
and σ0 = 0.25 is represented in Figure 1.

0 20 40 60 80 100

−4
−2

0
2

4

scales

X
(k

)

0 1 2

0 20 40 60 80 100

−4
−2

0
2

4

scales

X
(k

)

0 1 2

Figure 1. Functional predictors Xi(k), i = 1, . . . , n, colored by the corresponding outcome variable
(C1 in black, C2 in red and C3 in green) for two different values of the standard deviation in the error
term (σ0 = 0.05 in the left, and σ0 = 0.25 in the right).

Given Xi, the corresponding outcome variable Yi was generated from a multinomial
distribution with three possible results C1, C2 and C3, with associated probabilities Pj(Xi) =
P(Yi = Cj|Xi), j = 1, 2, 3, given by
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Pj(Xi) =
exp

(
ηj(Xi)

)
exp(η1(Xi)) + exp(η2(Xi))

for j = 1, 2

and P3(Xi) = 1− P1(Xi)− P2(Xi). We specifically define η1(Xi) = Xi(20) + Xi(60) and
η2(Xi) = Xi(40) + Xi(80).

A number n = ne + np of independent samples {(Xi, Yi)}n
i=1 were generated under

the above scenario for different variance parameters σ0. Moreover, we randomly split the
sample into a training set (ne = 140), used in the estimation process, and a test set (np = 60),
for prediction. The curves were discretized in k = 100 equi-spaced points in k ∈ (0, 100).

The performance of the algorithms was evaluated for each of the critical points
(as mentioned above, the theoretical critical points in the simulation scenario were k =
(20, 40, 60, 80) by means of the mean square error on a number of repetitions R (we specifi-
cally chose R = 400):

MSE =
1
R

R

∑
r=1

(k̂r
j − k j)

2, j = 1, ..., 4

where k̂r is the estimated optimal subset of scale points in the simulation r.
MSE(k) values for the different proposed algorithms and different values of σ0 are

summarized in Table 1. For the three algorithms, the mean squared error and the dispersion
of the estimated critical points around the mean increases with σ0, as expected. Algorithm 2.a
produced the worst results, both in detecting the critical points as well as in the uncertainty
of the points detected. In contrast, Algorithm 2.b presented the best performance, so
smoothing the distance correlation functions before calculating the critical points had a
positive effect. Despite the fact that Algorithm 1 produces reasonable results in terms of
accuracy in estimating the critical points, it is striking that the standard deviation is too
large in opposition to Algorithm 2.b.

Table 1. Mean values of MSEj, j = 1, ..., 4 (standard deviation in brackets) for different values of σ0.

σ0 Algorithm MSE1 MSE2 MSE3 MSE4

0.05
1 1 (6.0) 9 (138.3) 1 (93.1) 9 (72.5)

2.a 361 (932.6) 289 (578.3) 361 (282.1) 16 (515.5)
2.b 1 (28.9) 0 (35.4) 1 (46.5) 1 (0.3)

0.10
1 1 (13.7) 9 (172.9) 1 (136.9) 9 (93.2)

2.a 9 (492.8) 400 (282.1) 484 (595.2) 400 (991.9)
2.b 0 (0.5) 0 (0.4) 1 (0.2) 1 (0.3)

0.25
1 0 (8.1) 289 (179.0) 0 (164.5) 9 (128.8)

2.a 324 (649.3) 324 (474.1) 361 (240.4) 4 (388.7)
2.b 1 (74.7) 0 (98.0) 1 (100.3) 1 (0.5)

Figure 2 shows boxplots representing the results of the simulation to detect each
of the critical points (20, 40, 60, 80) for three different values of σ0 and for each algo-
rithm. Clearly Algorithm 2.b is the most accurate, while the worst results corresponded
to Algorithm 2.a. Increasing σ0 produces uncertainty in the determination of the critical
points for Algorithms 1 and 2.a, but hardly affects Algorithm 2.b.
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Figure 2. Boxplots of the estimated critical scales together with the theoretical scales (red lines) for
σ0 = 0.05 (top), σ0 = 0.10 (middle) and σ0 = 0.25 (bottom) under Algorithm 1 (left), Algorithm 2.a
(middle) and Algorithm 2.b (right).

In addition, to measure the effect of the errors in the detection of the critical points
in the estimation of the probabilities, the mean squared error of the probabilities for each
class was also calculated:

MSE(P) =
1

np

np

∑
i=1

1
3

3

∑
j=1

(
P̂j(Xi)− Pj(Xi)

)2

The results are shown in Table 2, considering a different number K̃ of critical points and
values of σ0, again, the best results, that is, small values of MSE (and its standard deviation)
and total accuracy close to that of the theoretical model, corresponded to Algorithm 2.b,
whereas Algorithm 2.a provided the worst results.
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Table 2. Mean values of MSE(P) = (1/400)∑400
r=1 MSE(P)r and accuracy (standard deviation in

brackets) for a different number of critical points. Accth makes reference to the accuracy obtained by
using the true model, while Accsim represents the accuracy values obtained from the simulation.

K̃ σ0 Alg. MSE Accth Accsim

3

0.05
1 0.033 (0.007) 0.74 0.67 (0.03)

2.a 0.060 (0.012) 0.74 0.59 (0.05)
2.b 0.035 (0.003) 0.74 0.66 (0.03)

0.10
1 0.035 (0.008) 0.73 0.66 (0.04)

2.a 0.058 (0.009) 0.73 0.58 (0.04)
2.b 0.034 (0.003) 0.73 0.69 (0.03)

0.25
1 0.038 (0.010) 0.75 0.65 (0.04)

2.a 0.059 (0.014) 0.75 0.61 (0.05)
2.b 0.042 (0.004) 0.75 0.65 (0.03)

4

0.05
1 0.013 (0.011) 0.74 0.71 (0.03)

2.a 0.058 (0.012) 0.74 0.60 (0.05)
2.b 0.008 (0.004) 0.74 0.72 (0.03)

0.10
1 0.022 (0.013) 0.73 0.70 (0.04)

2.a 0.054 (0.009) 0.73 0.60 (0.04)
2.b 0.010 (0.003) 0.73 0.73 (0.03)

0.25
1 0.035 (0.012) 0.75 0.68 (0.04)

2.a 0.042 (0.015) 0.75 0.65 (0.06)
2.b 0.019 (0.008) 0.75 0.69 (0.03)

5

0.05
1 0.013 (0.007) 0.74 0.71 (0.03)

2.a 0.052 (0.014) 0.74 0.62 (0.05)
2.b 0.008 (0.004) 0.74 0.72 (0.03)

0.10
1 0.017 (0.009) 0.73 0.71 (0.03)

2.a 0.051 (0.011) 0.73 0.62 (0.04)
2.b 0.010 (0.003) 0.73 0.73 (0.03)

0.25
1 0.026 (0.012) 0.75 0.69 (0.04)

2.a 0.036 (0.015) 0.75 0.67 (0.05)
2.b 0.019 (0.008) 0.75 0.69 (0.04)

Figure 3 shows boxplots of total accuracy for all the repetitions and for the three
algorithms tested, according to the number of critical points. The red items correspond
to the theoretical model. Again, the best results correspond to Algorithm 2.b followed
by Algorithm 1. Note that more than four critical points were tried, but, either way, for
Algorithms 1 and 2.b these two metrics stabilized at k̃ = 4.

The Bayesian Information Criterion for each Algorithm is represented versus the
number of critical points, for three different values of σ0 in Figure 4. As can be appreciated,
Algorithm 2.a does not work properly: the number of critical points is not detected,
and there is a great dispersion in accuracy. Algorithm 2.b reaches a minimum value of BIC
at the correct number of critical points K̃ = 4, regardless of the value of σ0.

A comparison of the total accuracy for the three algorithms tested with the theoretical
model (in red), fixing K̃ = 4, for different values of σ0, is shown in Figure 5. A decrease in
the accuracy is accompanied by an increase in the standard deviation of the error. Based
on the results of the classification for each algorithm it seems that there is a relationship
between inaccuracy in the estimation of the critical points and errors in the classifica-
tion. As before, the best algorithm is Algorithm 2.b, followed by Algorithm 1, while
Algorithm 2.a behaves badly. Note that inaccuracy in Algorithm 2.b is mainly due to bias
(see right panel of Figure 2), since there is hardly any variability, while for the other two
algorithms there is both bias and variability, especially for Algorithm 2.a (see center panel
of Figure 2).
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Figure 3. Boxplots of the total accuracy obtained with the three algorithms: 1 (top), 2.a (middle), 2.b
(bottom). The theoretical value of these metrics in given by the red line. The red boxplot corresponds
to the theoretical probabilities.



Mathematics 2021, 9, 1328 9 of 19

1 2 3 4 5 6 7

14
0

16
0

18
0

20
0

22
0

24
0

number of critical points

B
IC

σ0 = 0.05

1 2 3 4 5 6 7

19
0

20
0

21
0

22
0

23
0

24
0

number of critical points

B
IC

σ0 = 0.05

1 2 3 4 5 6 7

14
0

16
0

18
0

20
0

22
0

24
0

number of critical points

B
IC

σ0 = 0.05

1 2 3 4 5 6 7

16
0

18
0

20
0

22
0

24
0

Algorithm 1

number of critical points

B
IC

σ0 = 0.10

1 2 3 4 5 6 7

20
0

21
0

22
0

23
0

Algorithm 2.a

number of critical points

B
IC

σ0 = 0.10

1 2 3 4 5 6 7

14
0

16
0

18
0

20
0

22
0

Algorithm 2.b

number of critical points

B
IC

σ0 = 0.10

1 2 3 4 5 6 7

16
0

18
0

20
0

22
0

24
0

number of critical points

B
IC

σ0 = 0.25

1 2 3 4 5 6 7

16
0

18
0

20
0

22
0

24
0

number of critical points

B
IC

σ0 = 0.25

1 2 3 4 5 6 7

16
0

18
0

20
0

22
0

24
0

number of critical points

B
IC

σ0 = 0.25

Figure 4. BIC vs. number of critical points K̃ under the Algorithm 1 (left), Algorithm 2.a (middle)
and Algorithm 2.b (right), for σ0 = 0.05 (top), σ0 = 0.10 (middle) and σ0 = 0.25 (bottom).
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cal model.
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4. Case Study

In addition to testing our method on simulated data, we also applied it to a real
dataset where the objects to be labeled are elements of an urban environment. Figure 6
shows the operations followed to perform the classification of the point cloud using the
proposed methodology.

Figure 6. Workflow of the proposed methodology to select the optimum scales (impact points) and
perform the multiscale classification.

4.1. Dataset and Feature Extraction

The real dataset used to test our approach was the Oakland 3D point cloud [30],
a benchmark dataset of 1.6 million points that has been previously used in other studies
concerning point cloud segmentation and classification. The objective is to automatically
assign a label to each point in the point cloud from a set of features obtained from the the
coordinates (X, Y, Z) of a training dataset. Specifically, there are six categories (labels) of
interest, as is shown in Figure 7.

The point cloud was collected around the CMU campus in Oakland-Pittsburgh (USA)
using a Mobile Laser Scanner system (MLS) that incorporates two-dimensional laser
scanners, an Inertial Measurement Unit (IMU) and a Global Navigation Satellite receptor
(GNSS), all calibrated and mounted on the Nablab 11 vehicle. Figure 7 shows a small part
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of the point cloud, where a label represented with a color has been assigned to each point.
A total of six labels have been considered.

Figure 7. Oakland MLS point cloud. The classes to be extracted have been represented in differ-
ent colors.

The features representing the local geometry around each point were obtained through
the eigendecomposition of the covariance matrix Σ [13,31]:

Σ =
1
N

N

∑
i=1

(pi − p̄)T(pi − p̄) = VΛV−1 (2)

where vector pi = (Xi, Yi, Zi) represents each point in the point cloud, V a matrix whose
columns are the eigenvectors vi, i = 1, ..., 3, and Λ a diagonal matrix whose non-zero
elements are the eigenvalues λ1 > λ2 > λ3 > 0.

The three eigenvalues and the eigenvector v3 were used to calculate the five features
registered in Table 3. Z range for each point is calculated considering the points in a vertical
column of a specific section (scale) around that point. In order to avoid the negative effect
of outliers, instead of using the range of Z coordinates we used the values between the 5th
and 95th percentiles. An explanation of the geometrical meaning of these and other local
features can be obtained in [12,16].

Table 3. Features extracted from the point cloud.

Name Formula

Linearity λ1−λ2
λ1

Planarity λ2−λ3
λ1

Sphericity λ3
λ1

Horizontality acos(v3·z)
‖v3‖

Z range Zmax − Zmin

The spatial distribution of these features at different scales are shown in Figure 8.
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Figure 8. Example of the features extracted at different scales.

4.2. Neighborhood Selection

The proposed methodology for optimum scale selection (detection of critical points)
was applied to solve the previous classification problem. Thus, we have a vector of input
variables X = (XL(k), XP(k), XS(k), XH(k), XZ(k)) representing the features (linearity L,
planarity P, sphericity S, horizontality H and Z range Z) measured at different scales, and an
output variable Y = {C1, ..., C5}, which can also take five discrete values, the labels assigned
to each type of object (cars, buildings, canopy, ground and poles). Our aim is to estimate
an optimum neighborhood (scale) for each feature by means of distance correlation (DC),
taking into account its advantage with respect to the Pearson coefficient. For each sample,
each feature was evaluated at a regular grid of K = 100 scales measured in centimeters in a
linear scale from 50 to 300 cm. Figure 9 shows a sample of n = 150 curves for each feature
registered Xi(k), i = 1, ..., 5 in the interval k ∈ [k1 = 50, k100 = 300] and the corresponding
functional mean X̄i(k), both colored by a class label.
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Figure 9. A sample of n = 150 curves representing the features measured on K = 100 scales. Each
color represents a label or type of object: poles (green), ground (blue), vegetation (red), buildings
(magenta), and vehicles (cyan). Mean values for each class are represented as wider lines.

Note the different performance of the features for the different classes and scales.
For instance, horizontality takes high values for the ground, and it is uniform at different
scales. However, this feature shows abrupt jumps at certain scales for the poles, that could
correspond to edge effects. As expected, linearity takes high values for the poles and low
values for the buildings, while planarity is high for buildings and low for poles.
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Figure 10 shows the distance correlation functions between a dummy matrix represen-
tation of the categorical response and the covariates (XL(k), XP(k), XS(k), XH(k), XZ(k))
for 100 repetitions of random samples of size ne = 750 (150 per class), corresponding to
each of the features extracted. DC functions were calculated using the fda.usc package [32].
They are quite uniform, with not many peaks, and some of them are close together. This
could cause problems in finding the relevant scales, similar to the effect of increasing the
standard deviation observed with the simulated data. A histogram of the global maximum
of distance correlation curves for those repetitions is depicted at the bottom of the figure.
As can be appreciated, most of the relative maximums correspond to low scales (impact
points), except for the Z range variable (5th-95th range of z axis).
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Figure 10. Distance correlation functions for each of the features (top)) and histogram of critical
points. There are 100 curves, hence the same number of impact points, that were obtained by random
sampling the data.

Again, smoothing the DC function before searching for the local maximums helped
to discriminate the most important points. However, even when the number of local
maximums decreases after smoothing DC, some of them have little influence on the
classification. In fact, no more than three critical points were needed to obtain the best
results of the classification for the different classifiers tested. The three most frequent scales
in each histogram are shown in Table 4. As can be appreciated, the important scales take
low values for all the features, with the exception of the Z range, for which important scales
correspond to low to medium grades.

Table 4. Most frequent values of scales selected using Algorithm 2.b.

k̃1 k̃2 k̃3

Linearity 60.1 72.7 82.8
Planarity 60.1 50.0 75.2
Sphericity 50.0 70.1 133.2

Horizontality 50.0 67.7 85.3
Z range 146.0 108.1 156.1

The performance of our approach was contrasted with the proposal in [18], on which
the optimal scale kλ was calculated as the minimum of the Shannon entropy Eλ, which
depends on the normalized eigenvalues ei = λi/Σλ, i = 1, ..., 3, of the local covariance
matrix Σ:

Eλ = −e1ln(e1)− e2ln(e2)− e3ln(e3) (3)
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4.3. Classification

In this step we evaluate how the classifier translates the information of critical points
of X (all features) into a classification error. This is a quite an interesting question in
the functional context or when dealing with high-dimensional spaces. However, new
important questions arise related to how representative the selected critical points (scales)
shown before are or how to select a useful classifier for the classification problem among
all the possibilities. Unfortunately, detecting the critical scales is not a simple task, as was
proved in the simulation study by introducing Gaussian errors with standard deviation
of different magnitude in a model relating features and classes. The greater the standard
deviation, the greater the error in determining the exact values of the relevant scales. This
is because these scales correspond to the peaks of Ri(k), and they are less sharp as the
standard deviation of the error increases. In this situation, the best results were obtained
when DC was smoothed before searching for the local maximum, and this was the method
applied to perform the classification with real data.

Now, we have to deal with a purely multivariate classification problem in dimension
KN (the number of critical points for each functional variable) and many procedures are
known to handle this problem (see, for example, [33]). Many classification methods have
been described in the literature, but we limit our study to four proven methods that are
representative of most of the types of classifiers, linear or non-linear, hard or probabilis-
tic, ensemble or not. Specifically, the chosen methods are: linear discriminant analysis
(LDA) [34,35], multiclass logistic regression (LR) [36,37], multiclass support vector ma-
chines (SVMs) [38,39], random forest (RF) [22] and feed-forward neural networks with
a single hidden layer (ANN) [40]. They are among the top classification algorithms in
machine learning, although there are some other classification methods that could be em-
ployed here such as, for example, Quadratic Discriminant Analysis (QDA) or Generalized
Additive Models (GAMs).

The choice among the different classifiers could be influenced by their theoretical
properties and/or the easiness to draw inferences. Better inferences can be drawn from
more simple classifiers such as LDA or LR models. Furthermore, as is discussed in [41],
such simple classifiers are usually hard to beat in real life scenarios, adding interpretability
to the classification rule which is sometimes more important than predictability.

We consider three possibilities for the classification, depending on the number of
critical scales used, according to Table 4:

1. A unique scale (impact point), k̃N1 =
{

k̃L
1 , k̃P

1 , k̃S
1 , k̃H

1 , k̃Z
1
}

, for each of the features,
corresponding to the most frequent value of the impact points.

2. Two scales, k̃N2 =
{

k̃N1 , k̃L
2 , k̃P

2 , k̃S
2 , k̃H

2 , k̃Z
2
}

, corresponding to the two most frequent
critical scales for each of the features.

3. Three scales, k̃N3 =
{

k̃N2 , k̃L
3 , k̃P

3 , k̃S
3 , k̃H

3 , k̃Z
3
}

, corresponding to the three most frequent
critical scales for each of the features.

In order to contrast the performance of our approach, the same classification algo-
rithms were applied to the feature values obtained using other scales. Specifically, we used
the following values of the scale k:

a. kλ =
{

kL
λ, kP

λ, kS
λ, kH

λ , kZ
λ

}
, obtained according to Equation (3).

b. kseq =
{

kL
seq, kP

seq, kS
seq, kH

seq, kZ
seq

}
, linearly spaced scales corresponding to the following

values of k in centimeters (cm): 50, 112, 175, 237, 300.

Training data (ne = 200 per class) and test data (np = 400 per class) were sampled
from different areas of the point cloud in order to ensure their independence. Table 5
compares the total accuracy obtained using LR, LDA, SVM, RF and ANN classifiers for all
the scales studied: no important discrepancies between them were appreciated, with SVM
having a narrow advantage over the others. A quick look at this table informs us that
our proposal is better than using sequential scales or kλ. Furthermore, using a multiscale
scheme provides a slight improvement in accuracy with respect to using just one scale



Mathematics 2021, 9, 1328 15 of 19

(k̃N1) for almost all the classifiers. The feature selection and classifier functions available in
the R package fda.usc were used with the default parameters (without previous tuning).

Table 5. Total accuracy (and standard deviation) in % of the classification using five different
classifiers depending on the scales evaluated in np = 2000 samples in B = 100 repetitions. The values
were calculated by averaging the total accuracy in each repetition. The numbers in bold represent
maximum values.

LR LDA SVM RF ANN

k50 80.7 (1.0) 79.6 (0.8) 82.0 (0.8) 80.5 (1.3) 79.6 (2.3)
k112 76.8 (1.1) 78.9 (0.9) 81.8 (0.9) 81.0 (1.4) 79.0 (4.2)
k175 69.6 (1.3) 71.8 (1.3) 74.4 (1.4) 72.6 (1.7) 71.8 (4.6)
k237 58.7 (4.6) 57.1 (3.3) 72.3 (1.9) 69.4 (2.2) 66.0 (4.7)
k300 51.9 (4.1) 51.1 (1.7) 71.5 (1.4) 67.3 (1.7) 62.8 (5.3)
kλ 74.6 (9.0) 75.5 (8.7) 79.9 (4.6) 78.3 (5.4) 76.2 (6.7)

kN1 83.1 (1.0) 81.9 (0.8) 84.9 (0.9) 82.9 (1.3) 82.7 (3.0)
kN2 83.6 (0.9) 82.4 (0.8) 85.6 (0.7) 82.9 (1.6) 79.9 (6.4)
kN3 83.3 (1.0) 82.7 (0.7) 85.7 (0.7) 83.3 (1.4) 74.8 (7.8)

Table 6 shows the results of the classification for the test sample, in terms of precision
and recall, for each of the scales tested, using a multinomial logistic regression LR and SVM
classifiers. We limited the results to these two classifiers because there are few differences
with the other three classifiers. Although some non-optimal scales provided the best results
for some types of objects (ground and buildings), in global terms it can be concluded that
the largest values of precision and recall correspond to k̃N2 and k̃N3, and that they are
practically the same in both cases.

Table 6. Metrics (precision and recall) of the classification by classes using LR and SVM for different scales in a test sample
np = 2000. The numbers in bold represent maximum values in each column. Both metrics correspond to the average values
in 100 repetitions.

LR Classifier

Precision % Recall %

Pol Gro Veg Bui Veh Ave
(sd) Pol Gro Veg Bui Veh Ave (sd)

k50 70.6 96.9 73.7 88.0 75.7 81.0
(10.2) 73.6 99.1 71.4 77.0 82.3 80.7 (10.2)

k112 63.3 98.0 69.7 74.5 79.7 77.0
(12.0) 77.6 97.7 49.5 78.4 80.7 76.8 (15.7)

k175 51.1 96.8 66.6 63.7 75.2 70.7
(15.4) 63.4 92.4 32.5 77.9 82.1 69.6 (21.0)

k237 36.1 97.3 57.8 53.6 62.5 61.4
(21.2) 48.5 90.0 29.4 78.8 46.6 58.7 (24.5)

k300 27.8 95.3 49.5 48.2 46.8 53.5
(23.5) 33.1 87.3 32.1 80.3 26.5 51.9 (27.8)

kλ 61.0 97.2 69.0 73.8 74.9 75.2
(15.8) 70.3 96.2 52.5 78.1 75.7 74.6 (19.1)

kN1 75.0 97.8 75.8 89.1 79.2 83.4
(9.2) 78.2 99.0 72.4 78.6 87.5 83.1 (9.5)

kN2 75.1 97.8 76.3 90.9 79.4 83.9
(9.2) 78.5 98.7 73.3 78.7 88.6 83.6 (9.2)

kN3 74.8 96.9 77.0 89.0 79.9 83.5
(8.6) 79.1 98.3 72.9 78.5 87.7 83.3 (9.2)
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Table 6. Cont.

SVM Classifier

Precision % Recall %

Pol Gro Veg Bui Veh Ave
(sd) Pol Gro Veg Bui Veh Ave (sd)

k50 70.5 97.4 77.0 96.5 73.7 83.0
(11.7) 78.4 99.0 71.1 77.2 84.6 82.0 (9.8)

k112 67.3 98.7 77.0 84.4 83.1 82.1
(10.5) 77.9 96.5 60.0 80.0 94.4 81.8 (13.4)

k175 55.0 99.1 70.9 74.7 76.8 75.3
(14.4) 67.1 91.2 41.6 76.9 95.0 74.4 (19.5)

k237 51.2 98.6 65.7 78.9 73.2 73.5
(16.1) 64.3 88.9 40.5 76.3 91.4 72.3 (19.1)

k300 49.3 98.1 58.6 87.7 70.5 72.8
(18.2) 60.0 86.6 41.2 77.0 92.7 71.5 (19.0)

kλ 65.7 98.6 74.8 86.0 77.8 80.6
(13.0) 74.5 95.2 60.1 78.2 91.2 79.9 (14.8)

kN1 75.8 98.9 80.1 93.8 79.0 85.5
(9.4) 80.0 98.8 75.1 79.4 91.4 84.9 (9.1)

kN2 76.8 99.2 80.3 94.7 79.8 86.2
(9.2) 80.6 98.9 75.5 80.4 92.7 85.6 (9.0)

kN3 77.3 99.2 80.6 92.9 80.4 86.1
(8.7) 80.5 98.8 75.3 80.2 93.6 85.7 (9.1)

Figure 11 represents boxplots of F1-index for the LR classifier, for each of the classes
depending on the scale. The plot at the bottom right is the average value of F1 for the five
classes. With a few exceptions, the highest F1 values correspond to the case where two
(k̃N2) or three (k̃N3) optimum scales for each feature were used. However, the values of the
median and the interquantile range are almost the same, so we cannot claim that there are
significant differences between both options. For its part, kλ led to the worst performance
with low mean values and great dispersion because sometimes the extreme values of the
scale were selected.
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Figure 11. F1 index for each class and average F1 for all the classes (bottom right).
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A drawback for the practical implementation of the proposed algorithms, specially for
Algorithm 1, is the memory consumption. The overall consumption of memory when stor-
ing the distance matrices for p covariates with n elements each is (p + 1)(n(n− 1)/2− n).
As an example, Table 7 shows the maximum memory consumed (in megabytes) and the ex-
ecution time (in seconds) when the algorithms for different sample sizes and two different
levels of error is executed in an Intel Core i7-1065G7 with 16MB of RAM.

Table 7. Computation times (in sec) and memory consumption (in MB) for computing the three
algorithms using different parameters in B = 100 repetitions.

TIME Mean (sd) MEM Mean (sd)
σ0 Algo. n = 400 n = 1000 n = 400 n = 1000

1 59.17 (4.05) 448.21 (19.61) 132.10 (4.08) 210.45 (9.24)
0.05 2a 3.09 (0.18) 23.17 (0.62) 110.40 (8.92) 194.90 (2.30)

2b 3.20 (0.18) 23.22 (0.48) 113.50 (9.35) 199.75 (1.88)

1 56.03 (0.69) 523.77 (23.80) 133.90 (4.06) 208.55 (9.07)
0.25 2a 3.12 (0.22) 23.28 (0.45) 109.50 (9.36) 196.75 (1.88)

2b 3.08 (0.18) 22.97 (0.47) 112.55 (9.01) 199.75 (1.88)

5. Conclusions

In this work we propose three different algorithms to select optimum scales in multi-
scale classification problems with machine learning. They are based on determining the
arguments (scales) of the features with high distance correlation with the labels assigned to
the objects. Distance correlation provides a measure of the association, linear or non-linear,
between two random vectors of arbitrary dimensions, so it was expected that high correla-
tions correspond to low classification errors. First, the proposed algorithms were tested
simulating the distance correlation function and its relationship with the labels. The results
were encouraging, supporting the validity of our proposal, and allowing us to establish
the order of performance of the three algorithms. The best results were obtained when
the distance correlation functions for each feature were smoothed before calculating the
local maximum. Then, the algorithm that provided the best results with the simulated data
was tested in a real classification problem involving a 3D point cloud collected using a
mobile laser scanning system. Determining the optimum scales simplifies the classification
problem for other point clouds, since they give us important information to limit the scales
at which the features are determined, assuming the quality and density of the point clouds
are similar to those of the training data and, of course, that we are classifying the same
type of objects. The results obtained for the real problem were also positive, outperforming
those obtained with other methods reported in the literature that use unique sequentially
defined scales or the Shannon entropy. A maximum of three scales for each feature was
sufficient to obtain the best results in the classification, measured in terms of precision,
recall and F1-index. In addition, non-significant differences were found between the five
classifiers tested.
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