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Abstract—Statechart diagrams allow specifying complex sys-
tems in which there may be several states active at the same
time and a large number of events and transitions to evaluate.
Statecharts have been found useful in the design and implemen-
tation of control systems in research facilities, such as particle
accelerators. Automatic tools may convert statechart-based spec-
ifications into hardware descriptions. During the development of
one of those tools, the convenience of implementing statecharts
as microprogrammed control systems was considered. In this
work, we propose a method for implementing generic micropro-
grammed architectures that support statecharts upgradable on
the field. This approach is evaluated showing its advantages and
disadvantages.

I. INTRODUCTION

Control systems in critical applications require fast and

jitter-free synchronization in order to trigger a large number

of actuators at the right time in a variety of situations. The

required control signals are better produced and transmitted

by dedicated circuits, instead of programmable processors, in

order to prevent undesired delays.

Statecharts are a design tool that extends traditional finite

state machines. They have been found to excel in designing

complex control systems with concurrent decision making.

Hardware implementation of statecharts by hand, however,

could be time consuming and error prone. Therefore, auto-

matic tools have been proposed in the past and in recent works.

Those tool produce bespoke circuits that implement most

of the functions described in the statecharts. Whereas those

tools have some limitations that will be briefly described in

Section II, they produce HDL (hardware description language)

code that may be synthesized onto ASICs or FPGAs.

In the developing of one of those tools, the convenience

of implementing a generic statechart architecture that could

be upgraded through firmware came out. Such an architecture

would incur in a significant overhead, but it would also bear

some advantages, not only over ASICs, but also FPGAs:

• configuration changes could be deployed in a short time

skipping logic synthesis

• updating the firmware does not depend on the version of

the synthesis software, making the control system easier

to maintain. Ever-changing software versions, expiring

licenses, and devices that are no longer supported, are

serious concerns when planning a infrastructure that must

last for decades.

Hence, we propose a method to create microprogrammed

architectures [1] [2] that implement statecharts with a high

degree of upgradability. Microprogramming was widely used

inside microprocessors some decades ago. At that time, com-

puter aided design was not developed, and design errors were

quite common. Those errors were often hidden in corner cases

and would only show up after the computer was put into the

market. Microprogramming allowed vendors to issue control

updates and correct those mistakes even in-field. Statecharts

may be implemented by mapping concurrent processes (called

super-states) into a microprogram. As for microprocessors, the

main advantage consists of being able to update the control

by just loading a new configuration.

In this work we describe statecharts’ characteristics; propose

a methodology to convert them into a microprogram; describe

de hardware components of the architecture; carry out an

evaluation based on a complex example; and present the final

conclusions. 1

II. STATECHARTS

Statecharts were introduced by Harel [3] in 1987 as a tool

to overcome the limitations of Finite State Machines. (FSM)

in describing the behaviour of complex systems [4]. FSMs

are state-based models where only one state is active at any

given time, which can be changed by external inputs or internal

conditions. The change between states is called transition.

The aspect that limits the usability of FSMs is that they can

greatly grow in complexity when adding states. Statecharts

deal with this issue by extending the conventional state-

transition diagrams allowing for hierarchy and nested states,

concurrency, and better communication among the states. This

allows for more compact, expressive and modular diagrams,

that can describe complex behaviour with smaller diagrams

when compared to FSMs. As such, Statecharts are a visual

formalism for describing states and transitions. At the same

time Statecharts maintain all of the characteristics of FSMs,

such as conditions, outputs, etc. Their main contributions are:

1This work was funded in part by the Ministry of Economy and Com-
petitiveness of Spain, Project TIN2016-75845-P (AEI/FEDER, UE), Xunta
de Galicia and FEDER funds of the EU under the Consolidation Program
of Competitive Reference Groups (ED431C 2017/04), and under the Centro
Singular de Investigación de Galicia accreditation 2016-2019 (ED431G/01).
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Fig. 1. Simple Statechart with superstates, actions and conditions

• Orthogonality: as opposed to classical FSMs, where only

one state can be active at a time, Statecharts can have

more than one state active concurrently. These are called

AND-states, while the traditional approach are called

OR-states. Orthogonality is very useful for describing

subsystems.

• Depth: there is a hierarchy in the state structure, allowing

for states or even complete FSMs or sub-Statecharts

to live inside other states, connected with inter-level

transitions. In the nested structure the state containing

other states is called super-state. Depth allows for great

modularity, clustering, and ease of movement between

levels of abstraction by zooming in or out. It is also

possible to define entry and default states, and have

history in the states, as explained in Section III-B.

• A super-state has History if it can remember its present

state and return to it later after being disable for a while.

A super-state without History, however, will always re-

sume its activity starting at its initial state.

In Figure 1, a Statechart is shown. At the top level, there

are 2 OR super-states, because either active OR wait super-

states may be running at a given time. The active super-state

is made up of 2 super-states, send and receive. This illustrates

the concept of hierarchy, as one super-state may be made up

of several ones. In this case, both super-states are running in

parallel, allowing to describe concurrent processing. This is

called an AND state (denoted by the divider line). Contrarily,

when wait is active, either idle or background are running, but

not both at the same time. A black dot and an arrow point at

the initial node for each super-state. Moreover, 2 super-states

are denoted to have history (an H within the dot). Therefore

when processing returns to wait, it remembers whether it was

running in idle or background and, in the latter case, in which

of the 3 nodes.

The complexity of an statechart can greatly grow, but

its functionality still be understood with little effort. In the

original paper by Harel, a digital watch example is proposed,

which we recreate in Figure 2, and will use in the remaining

of the paper as it is complex enough to illustrate all the

implementation aspects. On it, the main superstate is managed

concurrently with the status, light and power superstates,

forming an AND state. The hierarchy is quite deep, mainly as

OR superstates, but new AND states are used in regular-beep-

test and stopwatch. History is also used in several superstates,

some of then within other superstates that also use history

themselves.

III. MAPPING A STATECHART INTO A MICROPROGRAM

A number of papers have been published on statechart

synthesis [5] [6] [7]. To the best of our knowledge, however,

microprogrammed implementations have never been proposed.

In this section, a number of implementation challenges are

addressed.

A. Supporting concurrency and hierarchycal structure

The microprogrammed architecture must implement a num-

ber of processing elements able to run AND states concur-

rently and communicating among them. This will be addressed

by implementing several independent micro-programs running,

each of them, one AND state. How those micro-programs run

on micro-memories is addressed in detail in Section IV-A. In

Figure 2, 5 AND states are contained into main, but there are

additional ones within display.

Also, the hierarchical structure must be mapped onto the mi-

croprogram. Moving the execution from one state to another,

or between OR states, is similar to jumping to another process

in any sequential piece of software. However, jumping to an

AND state creates the problem of spawning another process.

Hence, some computing resources should be idle waiting to

be activated from a different superstate.

The straightforward way to implement this possibility im-

plies that micro-instructions must be able to transition to a

new one in a different superstate and, at the same time, send

a message to another micro-memory triggering the execution

of a given micro-instruction. However, that made the micro-

instruction format too verbose, so the following solution was

preferred instead. Inner AND superstates are supported by

one or more ghost micro-program that mimic the superstate

transitions of main micro-programs doing nothing until one

of those transitions falls into an AND-superstate. Despite this

scheme seems to waste resources, ghost micro-programs often

contain significant parts of useful code.

Looking at the left side in Figure 2, let’s consider reg-

ular, beep-test and, within stopwatch, display and run. The

whole displays superstate could be partitioned into 2 micro-

programs as shown in Figure 3. Each microprogram starts at

time and beep-test respectively. If button a is pressed, both

microprograms jump to out, only that the micro-instructions

at the main microprogram are fully functional, while those

at the ghost one just apply state transitions without updating

any variable of producing any output. If button b is pressed at

state stopwatch/zero, the ghost microprogram will transition

to superstate run, which instructions are fully functional. If

button a is the pressed, the main microprogram will transition

to regular, and the ghost one to beep-test.
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Fig. 2. Recreation of Harel’s description of an statechart to control a digital watch
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B. History

Implementing history may represent a significant challenge

in some cases. In this sense, most papers [8] [9] [10] on

automatic synthesis of statecharts, do not consider implement-

ing History. Also, in all the cases we have checked, some

restrictions apply. The main challenge consists of applying

History correctly in a hierarchy of superstates. Let’s take as

an example superstate displays, which must be implemented

with History so that, if transitioning back from alarms-beep,

it should resume at the last executed state. This requires

the microprogrammed control to be aware of the difference

between deep and shallow superstates in the hierarchy.

For the sake of simplicity, we have chosen the following

history scheme. History is kept track of at superstate level.

Each superstate that implements History will remember which

microinstruction it was running before jumping out, but no

one will remember which superstate in the hierarchy was

running. Coming back to Figure 2, this means that if returning

to superstate displays from alarms-beep we must choose an

specific superstate to return to. We could choose time and

beep-test, for example, despite the user could actually be

setting the chime. History, however would still be usable, as

when moving to chime, the superstate will remember which

microinstruction it was running. Despite this choice may not

fit all the needs, engineers should be able to find workarounds

to avoid undesirable situations in most design cases.

C. Microinstruction format

At the beginning of this section, we have addressed the main

challenges in mapping a statechart into a microprogram, and

suggested a number of restrictions that make implementation

feasible. Now, we will propose a microinstruction format

and analyse the limitations that the format imposes on the

microprogram.

The proposed microinstruction format is divided in to parts:

condition evaluation in order to decide which microinstruction

to execute next; and actions to take. The latter ones may

consist of producing an output of updating an internal variable.

Actions are associated to the microinstruction itself, not the

transitions. Therefore, it behaves like a Moore automate.

The format is shown in Figure 4. The first part consists of

a number of conditions that are evaluated in order. Hence, if

the first condition is fulfilled, the remaining ones are ignored.

Conditions are based on the values of inputs and/or internal

variables, implemented as counters. Conditions may be and-

ed using the chaining bit (Di). A condition with the chaining

bit on is only valid if the next one (or ones) are also valid.

Conditions may be or-ed by specifying the same target address

for 2 or more conditions. Thus, (a+b) ·c → target is actually

implemented as 2 different conditions: a · c → target and b ·
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c → target. A number of slots for specifying conditions exist.

This number is a design parameter, large enough to hopefully

cope with any variation of the original design, but not too

large to slow down condition evaluation in highly demanding

applications.

In most cases, enough slots should be provided at design

time to evaluate any condition. That would not be the case for

an specific application, the designer must consider whether

it is acceptable to evaluate conditions in more than one step.

That should usually be possible unless time restrictions are ex-

ceptionally tight. Hence, a first microinstruction will evaluate

a limited number of general conditions diverting the program

flow to more specific microinstructions that will refine decision

taking. An example is shown in Figure 5. Instead of evaluating

6 multi-variable conditions in a single microinstruction, only

4 single-variable conditions are evaluated at most. As it can be

seen in this example, 2 transitions are made in a single step,

whereas the remaining 4 need 2 steps.

The second part of the format consists of a list of actions,

which are of 2 types: outputs and updates. A number of outputs

are defined in the architecture, with a set of predefined values

(more about this on Section IV-E. A microinstruction may

select an output specifying the index of the output and the

code of the value. Regarding updates, internal variables are

managed as counters. As it is explained in Section IV-B, those

counters may be updated in several ways. Actions on counters

are encoded as the index of the counter followed by the action

code. Outputs and counters indexes are consecutive in the same

list, so any mix of both is allowed in the list of actions.

It must be understood that, in the case of a large number of

conditions and/or actions, the length of the microinstructions

will grow accordingly. On the one hand, designers may

decide to limit the maximum number of conditions or actions

simultaneously encoded in a microinstructions. On the other

hand, using tens of memory blocks from any modern FPGA

should not be a problem. Therefore, it should be possible to

create long microprograms made of wide microinstructions

without serious cost concerns. In Section VI, the cost of micro-

instruction decoding will be addressed.

IV. ARCHITECTURE

We now describe a generic architecture focusing on the

following aspects: storing and accessing the microprogram;

evaluating and updating counters, inputs and conditions; gen-

erating outputs; and loading the configuration.

A. Storage

A number of RAM blocks are used to store the micro-

program. Generally, several blocks are laid out horizontally

forming a row so that, the more the blocks, the longer the

microinstruction format. Each row of RAM blocks may be

accessed using 2 ports. Therefore, it is possible to fetch 2

microinstructions in the same cycle. This allows implementing,

for example, 2 AND states. However, more AND states could

be needed. Therefore, several rows must be instantiated in

order to allow further concurrency.

Hence, the microprogram is stored in a set of rows of RAM

blocks. Each row is long enough to allow long microinstruc-

tions. Each row hosts (potentially) 2 AND states, although one

or both could be idle.

Each AND state is accessed using one PC register (program

counter). Each AND state is built of one or more states or

super-states. As RAM blocks in FPGAs support hundreds

or thousands of data words, any AND state should fit in it

allocated space even if it embraces a significant number of

sub-states. PC is used to address the memory directly but, most

importantly it must be updated allowing the implementation

of history when switching between different OR superstates.

This is done using the circuit in Figure 7. Up to 8 history

registers are proposed, as it is not expected that an AND state

contains a larger number of OR states. Each of those resisters

stores the target address for entering a given OR state.

Every time a microinstruction is evaluated, a proposed next

value of PC is produced (newPC). If newPC is lower than

8, it signals jumping to a new OR state. In that case, the

history register of the current OR state is updated, and the

target address for the new OR state is retrieved from the history

register. These selection operations are performed using the

multiplexers and de-multiplexers in the figure. Naturally, those

superstates that do not support history, will not update their

history register. This scheme is simple, and only 8 lines in the

micromemory are wasted.

B. Counter operation

Counters are implemented as 32-bit registers connected to

a 32-bit adder, as shown in Figure8. By selecting the inputs

at the multiplexer, it is possible to update the content of the

counter in several ways: reset; increment and decrement; set

to ref0 or ref1; add ref0 or ref1; and set to ref0 + PC,

which has special uses as it will be shown in Section V.

The value of each counter is always compared with its

2 reference values. The outcome of those comparisons will

control the execution of the microprogram. Reference values

are both used for comparison (as a proper counter), and to set

new values (as a variable). Normally, each counter will use

reference values in only one of those ways.

C. Input evaluation

Similarly to counters, inputs are evaluated by means of

comparisons. However, inputs cannot be updated by the

statechart, so the circuit for evaluating inputs consists of
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just 2 comparators plus the registers to load and hold the

configuration. This scheme is shown in Figure 9.

D. Condition chaining

Transitions from one state to another depends on the eval-

uation of one or more conditions. The engineers must specify

the conditions sorted by priority. Each condition consists of

4 fields. The first one is the index of the counter or input

evaluated for that condition. The length of this field depends

on the total number of counters and inputs. The second field is

a code that selects the specific condition: equal/lesser/greater

than the first/second reference value. An additional bit negates

the condition, allowing to evaluate different, greater or equal

and lesser or equal. The third field is a single bit (Di) that

encodes if another condition must be and-ed or not. Finally,

the fourth field is the address of the next microinstruction, if

the condition is evaluated positively.

Condition chaining is implemented by the circuit shown in

Figure 10. In this case, up to 8 conditions can be cascaded,

but a simpler scheme could sufficient in most cases. Only one

of the 8 output bits is true. If all are false, the same micro-

instruction will be evaluated next cycle. Those bits are and-ed

with their corresponding address, and then or-ed together. This

implements a multiplexer with a decoded selection signal.

E. Output selection

A number of different outputs are implemented, even if

the system does not make use of all of them. Similarly to

counters, outputs may use 2 reference values that are loaded

at configuration time. The microprogram will select the value

of a number of outputs in each microinstruction using an

index that selects one input of a multiplexer. This is shown in

Figure 11. The microprogram will select among the reference

values and the content of several counters. Some outputs may

be significant only at a given time, while others should hold its

value until changed. This is implemented by using a register

and an multiplexer. Similarly to what happens in FPGA’s logic

blocks, the output may be registered or not. We consider that

this behavior does not change at run time, so a flag is loaded

during configuration that rules the multiplexer.

F. Loading configuration

Configuration is to be loaded word by word using the data

network and propagated through the hardware in a serial fash-
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ion. This emulates the configuration of FPGAs through JTAG.

All the memories and registers are chained in order to allow

propagating the configuration, which includes: microprogram;

the initial content of History registers; initial and reference

values of counters; and reference values for outputs.

In Figure 12, it is shown how the microprogram is loaded.

A configuration counter is kept that enables writing in selected

RAM blocks. In this particular example, memory blocks are

32-bit wide, and input words are byte sized. Hence, 4 bytes

have to be gathered before issuing the write signal. Each block

stores 512 words, and there are 4 rows with 4 blocks each.

Naturally, this layout can be easily changed. In Figure 13,

a double-ported RAM block is shown. Each port serves one

AND state, and the most significant bit is hardwired (’0’ for

port A, and ’1’ for port B) to differentiate the address space

of each super-states. In configuration mode, however, port A

is used to write all configuration words.

The configuration of History registers can be explained

using Figure 7. For each potential OR super-state, and 8-

bit register holds the target state, and one flag signals if that

super-state makes use of History or not. The state registers are

chained together, and the 8 flags are actually implemented as

an 8-bit register chained with the other ones.

The same chaining mechanism is used to load the reference

values of counters and outputs. For each of them, 1 initial

value and 2 reference values are loaded, each of them 32-bit

long. Also, for convenience, micro-memory is located at the

end of the configuration chain so that when the microprogram

is fully loaded, all the other configuration words are loaded as

well.
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32-bit

x 512

DinA (only configura$on)

weA (only configura$on)

AddrA

DoutA

AddrB ( ‘1’ & PC B)

DoutB

conf. counter

‘0’ & PC A

Fig. 13. Dual-ported RAM block. Two AND states may be addressed
simultaneously. Configuration is loaded using port-A, exclusively.

V. CASE EXAMPLE

As an implementation example, we will now adapt the

statechart in Figure 2 and look into some specific parts

in detail. The statechart is unambiguously defined, but our

architecture will leave some room for changes.

The inputs are: 4 buttons labeled a, b, c and d; plus status

inputs labeled chimeOnOff, oclock, batteryStatus, testT1 and

testT2. Buttons’ input values may be 0 (nothing), 1 (pressed)

or 2 (released). The counters are Timer1 and Timer2 (their

reference values may be set during configuration, allowing to

fine-tune the behavior of the watch); displayUpdate; alarmUp-

date1 and alarmUpdate2; chimeOnOff; countStopWatch; and

countAlarm. The outputs are: light, beep, display and change.

We have spotted 7 AND states from Figure 2. Rounding up

to 8 will provide some room for future changes. Therefore,

4 rows of memory blocks will be needed. Super-states will

be laid out as shown in Figure 14. In order to provide a

significant, but not too long example, the implementation

of alarm1 and update1 in main/displays/out is shown in

Figure 15. Possible transitions are: time-out after 120 seconds

without pressing any button (Timer2 is used); and pressing

chime

-

status

alarm1

-

status

poweralarm2

-

status

light

alarms-beep

regular beep-test

out

stopwatch / display

idle(out)

stopwatch / run

idle(alarms-beep)

chime
update2 update1

alarm2 alarm1

time

date

00
0110

11
wait

alarm1
alarm2both

update

Fig. 14. Super-states layout for the example in Figure 2. Dashed lines separate
AND superstates. The leftmost one carries out most of the tasks, while its
neighbour is mainly a ghost superstate with the exception of beep-test and
stopwatch/run. The remaining 5 are very simple but, hierarchically, are at the
same level as the main ones.

one of the buttons, with different effects. Actions require

more explanations: alarmUpdate1 is a counter used to keep

track of the current micro-instruction. It value is send to

display (an output) so that the display of the watch reflects the

settings currently edited. By configuring ref0 for that counter

to X−PC(alarm1), alarmUpdate1 will send codes X , X+1,

X + 2, and so on to the display. Output Change is activated

(ref1 = 1) when some value is updated.

Conditions are (potentially) evaluated over the value of 9

inputs and 8 counters, totalling 17. Rounding up to 32, 5 bits

would be use to encode the condition index. A reasonable

distribution could be 16 inputs and 16 counters. In this par-

ticular case, some microinstructions may jump to 4 different

addresses, never more. However, we may consider to allow

up to 6 different transitions in order to have a future-proof

design. Each transition needs 4 bits for the index; 2 bits for

the comparison (equal, greater, lesser); 1 bit for the reference

value (refj0 or refj1); 1 bit to invert the comparison; 1 bit

for chaining conditions; and 8 bits for the destination address.

In total, 18 bits times 6 conditions, equals 108 bits.

Also, up to 3 actions should be taken for the same microin-

struction. Again, we extend this number to 4. Actions apply

on counters and outputs. As using 16 counters was proposed,

and there are 4 possible outputs, the number of outputs may be

also extended to 16 so that 32 indexes are supported encoded

as 5-bit numbers. The proposed number of operations on each

counter or output is 8. Hence, each action is encoded as 5 + 3

bits, and the 4 actions are encoded using 32 bits. Added to the

previous 108, 140 bits are needed per microinstruction. Using

32-bit words on each memory block, memory rows should be

5 blocks wide. In that case, the memory scheme would be

very similar to the one in Figure 12 only that a slightly more

sophisticated counter would be needed in order to deal with 5

memory blocks, as 5 is not a power of 2.

In summary, the microprogrammed control would be im-

plemented using 4 rows of 5 memory blocks each; 16 inputs,



nemonic condi!on target condi!on target condi!on target condi!on target cnd tgt cnd tgt ac!on target ac!on value ac!on target ac!on value aT aV aT aV

alarm1 off Timer2==ref0 !me d==ref0 on c==ref0 update1 a==ref0 alarm2 alarmUpdate1 PC+ref0 display alarmUpdate1 Timer2 inc

on Timer2==ref0 !me d==ref0 off c==ref0 update1 a==ref0 alarm2 alarmUpdate1 PC+ref0 display alarmUpdate1 Timer2 inc

update1 Hr Timer2==ref0 !me c==ref0 10min b==ref0 alarm1 d==ref0 incHr alarmUpdate1 PC+ref0 display alarmUpdate1 Timer2 inc

10min Timer2==ref0 !me c==ref0 Min b==ref0 alarm1 d==ref0 inc10min alarmUpdate1 PC+ref0 display alarmUpdate1 Timer2 inc

Min Timer2==ref0 !me c==ref0 alarm1 b==ref0 alarm1 d==ref0 incMin alarmUpdate1 PC+ref0 display alarmUpdate1 Timer2 inc

incHr Timer2==ref0 !me Timer2<>ref0 Hr CHANGE ref1 display alarmUpdate1 Timer2 = 0

inc10min Timer2==ref0 !me Timer2<>ref0 10min CHANGE ref1 display alarmUpdate1 Timer2 = 0

incMin Timer2==ref0 !me Timer2<>ref0 Min CHANGE ref1 display alarmUpdate1 Timer2 = 0

Fig. 15. Micro-code example for 2 selected superstates. The format supports up to 6 transitions and 4 actions. Some transitions are highlighted with arrows
for the sake of clarity. Condition-chaining bits are not shown. Both superstates support History.

TABLE I
FPGA RESOURCE UTILIZATION PARTICULARIZED TO THE WATCH

CONTROL EXAMPLE

Component LUT FF BRAM

AND superstate 872 83 5/2
counter 247 96
input 56 64
output 225 97

total 16203 4776 20

counters and outputs. Of those, 7 inputs; 8 counters; and 12

outputs would be available for upgrading the control algorithm.

Also, and additional AND superstate would be supported and

several microinstructions may be added to any of them.

VI. EVALUATION

With respect to resource usage, this is chiefly related to

the amount of memory blocks required to store the micro-

program; and the number of inputs, counters and outputs. As

the microprogrammed architecture is not tailored to implement

a given application, but all the possible variations of a given

one, the cost of implementing the individual components is

presented in Table I. However, much of the implementation

cost is due to large multiplexers, which size depends on the

number of counters, inputs and outputs. Therefore, figures in

Table I are particularized to the example case in Section V.

Pure logic (LUT, look-up tables) is the most used resource.

Essentially, being able to select and address a large number of

counters and outputs requires an large interconnect network

that is implemented using wide multiplexers and demulti-

plexers. This particular design can be implemented using any

Xilinx Artix-7 device with the exception of the 2 smaller ones

(12T and 15T). Also, this design can be fitted at least 4 times

in any Kintex-7 FPGA [11].

Despite we have not obtained any figures for a hardwired

implementation of the same control system, we assume that

there should be a difference of more than 1 order of magnitude.

Clearly, a hardwired implementation would be preferred when

resource utilization is an important factor. However, not all

designs are as complex as the proposed one and, in any case,

on-field programmability should be the main factor to decide

between a microprogrammed or hardwired approach.

Finally, clock speed has been evaluated for Xilinx xC7A25T

and xC7K70T devices using average speed grades. The mini-

mum speed was 115 MHz, sufficient for our applications.

VII. CONCLUSION

Complex control systems can be clearly specified using

statecharts. Mapping statecharts into hardware allows fast

and jitter-free implementations in mission-critical applications.

This work addresses a specific topic: implementing a statechart

in hardware in such a way that it can be easily upgraded using

firmware, without re-synthesising the architecture. That would

allow maintaining the control systems even if the devices

and/or design tools are no longer supported. Upgradability is

crucial when ASICs are used, but it may be also important

even when using reconfigurable hardware. A substantial hard-

ware overhead must be expected. However, this issue may be a

minor concern considering the substantial amount of resources

currently offered even by de smaller devices. As future work,

it is planned to develop a protocol that would allow upgrading

the firmware using the data connection. Also, an automatic tool

has been developed that converts an statechart specification

into HDL code. We plan to extend that tool to generate

firmware for the microprogrammed architecture.
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