
Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(4) 506–510
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015585846
hpc.sagepub.com

Large-scale genome-wide association
studies on a GPU cluster using a
CUDA-accelerated PGAS
programming model

Jorge González-Domı́nguez1, Jan Christian Kässens2, Lars Wienbrandt2

and Bertil Schmidt1

Abstract
Detecting epistasis, such as 2-SNP interactions, in genome-wide association studies (GWAS) is an important but time
consuming operation. Consequently, GPUs have already been used to accelerate these studies, reducing the runtime for
moderately-sized datasets to less than 1 hour. However, single-GPU approaches cannot perform large-scale GWAS in
reasonable time. In this work we present multiEpistSearch, a tool to detect epistasis that works on GPU clusters. While
CUDA is used for parallelization within each GPU, the workload distribution among GPUs is performed with Unified
Parallel C++ (UPC++ ), a novel extension of C++ that follows the Partitioned Global Address Space (PGAS)
model. multiEpistSearch is able to analyze large-scale datasets with 5 million SNPs from 10,000 individuals in less than 3
hours using 24 NVIDIA GTX Titans.

Keywords
PGAS, CUDA, GPU, UPC++ , bioinformatics

1. Introduction

Modern high-throughput technologies are able to
gather information of millions of single nucleotide
polymorphisms (SNPs) from thousands of individuals
for genome-wide association studies (GWAS). The
most common phenotype classification is a binary trait,
i.e. the presence (case) or absence (control) of an asso-
ciated disease. 2-SNPs analyses try to find pairs of
SNPs whose joint genotype frequencies show a statisti-
cally significant difference between cases and controls
which potentially explains the effect of the genetic var-
iation leading to disease (epistasis). Computing epista-
sis is highly time-consuming due to the large number of
pairwise tests to be calculated. Targeting this problem
with high-performance computing (HPC) architectures
can help to speedup the process. Parallel codes exist to
detect epistasis (González-Domı́nguez et al., 2014;
Yung et al., 2011). The best of these approaches are
able to reduce the time to analyze a moderately sized
dataset from several days on a traditional CPU (Wan
et al., 2010) to around 1 hour. Nevertheless, to the best
of the authors’ knowledge, none of them is able to

perform the analysis of datasets that contain millions
of SNPs in an acceptable time.

In this paper we present multiEpistSearch, a tool to
detect epistasis on a GPU cluster. Our approach
employs a hybrid implementation with CUDA for
intra-GPU parallelism and Unified Parallel C++
(UPC++) (Zheng et al., 2014) to distribute data
among different GPUs. UPC++ is a novel extension
of C++ that combines the advantages of both
Partitioned Global Address Space (PGAS) and object-
oriented paradigms. To the best of the authors’ knowl-
edge, this is the first hybrid implementation of an appli-
cation using CUDA and UPC++, as most of

1Parallel and Distributed Architectures Group, Johannes Gutenberg

University-Mainz, Mainz, Germany
2Department of Computer Science, Christian-Albrechts-University of

Kiel, Kiel, Germany

Corresponding author:

Jorge González-Domı́nguez, Parallel and Distributed Architectures

Group, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz,

Germany.

Email: j.gonzalez@uni-mainz.de

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342015585846&domain=pdf&date_stamp=2015-05-17


scientific codes for GPU clusters employ MPI for inter-
GPU parallelism.

2. Hybrid implementation

Our GWAS tool works with datasets containing infor-
mation about a large number of biallelic genetic mar-
kers from many individuals. For each marker (SNP)
there are three genotypes numerically represented as
{0, 1, 2}. Each individual is further characterized as case
or control, depending on the presence or absence of an
associated disease. Two SNPs present epistasis or inter-
action if their combination discriminates between cases
and controls significantly better than discrimination
using each SNP individually. The number of SNPs and
individuals is denoted asM and N, respectively.

Following the same approach as in González-
Domı́nguez et al. (2014), three filters (KSASA, KSA
and log-linear) are applied to identify which of the
M(M�1)

2
SNP-pairs present interaction. All of them use a

3 3 3 3 2 contingency table per pair that needs to be
calculated from the N individual genotype pair values
before the filters are applied. Our parallel implementa-
tion creates one UPC++ process per GPU and distri-
butes the workload among them. Each GPU analyzes
whether different SNP pairs present epistasis through a
CUDA kernel. In order to balance the memory usage
per node, the biallelic information of the SNPs is dis-
tributed in blocks in a round-robin way, where the user
can specify the number of blocks per process. This
information is stored in shared memory so it can be
directly accessed by all processes. A similar data distri-
bution has been used in our UPC++ implementation
for multicore clusters (see Kässens et al., 2014 for more
details). When adapting this distribution to the hybrid
CUDA&UPC++ implementation the GPUs may
need information stored in remote memory to analyze
the SNP pairs. In this scenario the UPC++ process
associated to that GPU must access the corresponding
remote data and load it into the GPU before calling
the kernel.

The flowchart in Figure 1 summarizes the behavior
of each UPC++ process. The term ‘‘metablock’’
describes each block of SNP pairs that must be com-
puted, i.e. all possible combinations with the blocks of
SNPs. In an example with 3 processes where the bialle-
lic data is distributed using 2 blocks per process (6
blocks in total) there are 21 ‘‘metablocks’’ of SNP
pairs. For each associated metablock, if necessary, the
process initially reads the biallelic information from
remote memory and loads it into the GPU memory.
Then, it launches the CUDA kernel so that the GPU
searches for epistasis in all of the SNP pairs within the
metablock. Thanks to the shared global memory space
and the one-sided communications available in
PGAS, remote copies can be performed without

synchronization with the owner. Moreover, the execu-
tion of the CUDA kernel and the copy of the informa-
tion needed to compute the next metablock are
overlapped using asynchronous communication.

We have developed two approaches to distribute the
metablocks among the processes and GPUs. First, a
static distribution where the metablocks are initially
associated to processes. The workload is balanced (by
analyzing similar number of metablocks per GPU). The
number of copies from remote memory is also mini-
mized. Our distribution guarantees that metablocks are
computed by processes that already have at least one of
the necessary information blocks in their local memory.
Second, an on-demand distribution has been implemen-
ted, where metablocks are not initially assigned to cer-
tain UPC++ processes. A table of UPC++ locks,
with one open lock per metablock, is created in global
memory (accessible by all processes). Every time one
kernel call finishes, the process accesses this shared
table to know which metablocks have not been or are
not being computed at the same time by other GPUs,
i.e. those metablocks whose lock is still open. Once one
idle process finds a metablock to compute, it closes the
associated lock.

To increase the efficiency of the UPC++ code, a
set of optimization techniques has been applied, mostly
focused on minimizing the communication cost. The
utilized CUDA kernel is similar to the one explained in
González-Domı́nguez et al. (2014), but it includes two
optimizations: (1) a reorder of the biallelic information
before loading it to the GPU to improve coalescence;
(2) exploitation of fast shared memory by the threads
of the same thread block.

3. Experimental evaluation

Two different test systems have been employed in the
experimental evaluation. (1) Eight nodes of the Mogon
supercomputer, installed at the JGU Mainz, connected
through a QDR InfiniBand network. Each node con-
tains 3 NVIDIA GTX Titan GPUs (i.e. 24 GPUs in
total). (2) Twelve nodes of Pluton, installed at the
University of A Coruña, connected through a Gigabit
Ethernet network. Eight of the nodes contain one
NVIDIA Tesla K20m and four nodes contain two
NVIDIA Tesla 2050.

We have used a real-world dataset obtained from the
Wellcome Trust Case–Control Consortium (WTCCC)
(The Wellcome Trust Case Control Consortium, 2007)
consisting of 3004 controls and 2005 cases genotyped at
500,568 SNPs. In order to provide a fair comparison,
the influence of the number of blocks per process is
removed by always showing the result for the best block
size for each scenario. multiEpistSearch provides an
autotuning option in order to automatically identify the
best value for this parameter. The autotuning process

González-Domı́nguez et al. 507



uses information about the runtime of previous
executions.

Figure 2 compares the runtime of the distributions
described in Section 2 for a varying number of GPUs.
The top graph shows that static distribution is better
for clusters with the same type of GPUs, with parallel
efficiency over 95%. When all of the GPUs are similar,
the on-demand version tends to equally distribute the
workload. Thus, the workload distribution is the same
for both approaches but the accesses to the locks pres-
ent in the on-demand version lead to a performance
overhead that makes it less efficient. However, results
for the on-demand distribution are better on the cluster
with heterogeneous GPUs, even though it includes the
overhead of working with locks; e.g. it is 15% better
when using all of the GPUs. While in the static distribu-
tion all GPUs analyze a similar number of SNP pairs,
the on-demand approach distributes the workload so
that the faster GPUs (Tesla K20m) compute more pairs
than the slower ones (Tesla 2050).

Table 1 gathers the runtime of multiEpistSearch and
other approaches when analyzing the WTCC dataset.
Regarding the related work, we have executed the fast-
est publicly available tool (GBOOST (Yung et al.,
2011)) utilizing only one GPU, as it does not support

computation for multiple GPUs. Finally, we have esti-
mated the execution time for BOOST (Wan et al.,
2010) on an Intel Core i7 by analyzing a smaller simu-
lated dataset and assuming quadratic increase of time
with the number of SNPs. The experimental results
show that our CUDA implementation is 2.78 times
faster than GBOOST using the same hardware (one
GTX Titan). An additional advantage of our tool is
the multi-GPU support, which allows us to obtain a
speedup of 54.93 using 24 GTX Titans. According to
the estimation of the sequential CPU-based BOOST,
multiEpistSearch obtains speedups of more than 373
and 8500 against a 3 GHz CPU using 1 and 24 GTX
Titans, respectively. Finally, thanks to the on-demand
approach, the runtime on Pluton is reduced from 5
minutes and 40 seconds using only 8 Tesla K20m to 4
minutes and 20 seconds on the whole cluster, even
though the Tesla 2050 is around 1.5 times slower than
the Tesla K20m.

A simulated dataset with 5 million SNPs and 10,000
samples has also been analyzed by multiEpistSearch in
2 hours and 45 minutes using 24 GTX Titans. A similar
execution using only 1 GPU would need several days,
which demonstrates the need of multi-GPU GWAS
tools in order to perform large-scale GWAS analyses in

Figure 1. Procedure within each UPC++ process.

508 The International Journal of High Performance Computing Applications 29(4)



reasonable time. Such a large dataset could not be ana-
lyzed by GBOOST due to out-of-bounds problems in
the internal arrays.

4 Conclusions

We have presented multiEpistSearch, a tool that
exhaustively measures the interaction of all SNP pairs
of a GWAS dataset on GPU clusters using CUDA and
UPC++, a new PGAS extension of C++. Static and
on-demand approaches have been implemented for the
workload distribution among GPUs. They have been
tested on two different GPU clusters. The static distri-
bution, that initially assigns metablocks to GPUs,
obtains the best performance on Mogon, a cluster with
24 GTX Titans. The on-demand distribution, where
the workload is dynamically assigned to the GPUs dur-
ing execution time, is more suitable for clusters such as
Pluton, where there are different types of GPUs. Our
evaluation shows that multiEpistSearch is able to
exhaustively look for epistasis in large-scale SNP data-
sets in feasible time. For instance, it takes less than 3
hours to analyze a dataset with 5 million SNPs and
10,000 individuals on Mogon.

Acknowledgements

This study makes use of data generated by the Wellcome
Trust Case-Control Consortium. A full list of the

investigators who contributed to the generation of the data is
available from http://www.wtccc.org.uk. We gratefully thank
the Computer Architecture Group at the University of A
Coruña for providing access to Pluton.

Funding

This work was supported by the Wellcome Trust (award num-
bers 076113 and 085475).

References

González-Domı́nguez J, Schmidt B, Wienbrandt L, et al.

(2014) Hybrid CPU/GPU acceleration of detection of 2-

SNP epistatic interactions in GWAS. In: Proceedings 15th

international European conference on parallel and distribu-

ted computing (Euro-Par’14).
Kässens JC, González-Domı́nguez J, Wienbrandt L and

Schmidt B (2014) UPC++ for bioinformatics: a case

study using genome-wide association studies. In: Proceed-

ings 15th IEEE international conference on cluster comput-

ing (Cluster’14).
The Wellcome Trust Case Control Consortium (2007) Gen-

ome-wide association study of 14,000 cases of seven com-

mon diseases and 3,000 shared controls. Nature 447(7145):

661–678.
Wan X, Yang C, Yang Q, et al. (2010) BOOST: a fast

approach to detecting gene–gene interactions in genome-

wide case–control studies. American Journal of Human

Genetics 87(3): 325–340.
Yung LS, Yang C, Wan X, et al. (2011) GBOOST: a GPU-

based tool for detecting gene–gene interactions in genome-

wide case control studies. Bioinformatics 27(9): 1309–1310.
Zheng Y, Kamil A, Driscoll M, et al. (2014) UPC++: a

PGAS extension for C++. In: Proceedings 28th IEEE

international parallel and distributed processing symposium

(IPDPS’14).

Author biographies

Jorge González-Domı́nguez received the BSc, MSc and
PhD degrees in Computer Science from the University
of A Coruña, Spain, in 2008, 2010 and 2013, respec-
tively. He is currently a postdoctoral researcher in the
Parallel and Distributed Architectures Group at the

 0

 200

 400

 600

 800

 1000

2 4 8 16 24

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of GTX Titan

WTCCC Dataset on Homogeneous GPUs

(1.93)
(1.83)

(3.91)

(3.21)

(7.77)
(6.93)

(15.68)
(12.20)

(22.82)
(16.51)

static
on-demand

 0

 500

 1000

 1500

 2000

 2500

 3000

1+1 2+2 4+4 8+8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of GPUs

WTCCC Dataset on Heterogeneous GPUs

(0.90)

(1.31)

(2.24)
(2.47)

(4.44) (4.93)
(7.98) (9.43)

static
on-demand

Figure 2. Performance comparison of the two multiEpistSearch workload distribution schemes. The labels indicate the speedup
compared to multiEpistSearch executed on a single GTX Titan (left) and on one Tesla K20m (right).

Table 1. Runtime of different designs when looking for
epistasis in the WTCCC dataset. *The results for CPU BOOST
were estimated from a smaller dataset.

Design Architecture Runtime

multiEpistSearch 24 GTX Titan 1 m 11 s
multiEpistSearch 8 Tesla K20m+ 8 2050 4 m 20 s
multiEpistSearch 8 Tesla K20m 5 m 40 s
multiEpistSearch 8 Tesla 2050 10 m 12 s
multiEpistSearch 1 GTX Titan 27 m
GBOOST 1 GTX Titan 1 h 15 m
BOOST* Intel Core i7 7 d

González-Domı́nguez et al. 509



Johannes Gutenberg University Mainz, Germany. His
main research interests are in the areas of high-
performance computing for bioinformatics and PGAS
programming languages.

Jan Christian Kässens received his MSc in Computer
Science from the Christian-Albrechts-University of
Kiel, Germany, in 2012. He is currently a research
assistant at the Technical Computer Science group at
the CAU and working on his PhD. His research focus
lies on hardware/software co-development, hardware-
assisted parallelization and FPGA technology.

Lars Wienbrandt received his MSc (Dipl-Inf.) in
Computer Science from the Christian-Albrechts-
University of Kiel, Germany, in 2009. He is currently a
research assistant at the Technical Computer Science
group at the CAU and working on his PhD. His
research area includes the parallelization and

implementation of bioinformatics algorithms on
FPGA architectures.

Bertil Schmidt (M’04–SM’07) is tenured Full Professor
and Chair for Parallel and Distributed Architectures at
the University of Mainz, Germany. Prior to that he
was a faculty member at Nanyang Technological
University (Singapore) and at University of New South
Wales (UNSW). His research group has designed a
variety of algorithms and tools for bioinformatics
mainly focusing on the analysis of large-scale sequence
and short read datasets. For his research work, he has
received a CUDA Research Center award, a CUDA
Academic Partnership award, a CUDA Professor
Partnership award and the Best Paper Award at IEEE
ASAP 2009. Furthermore, he serves as the champion
for bioinformatics and computational biology on
http://www.gpucomputing.net.

510 The International Journal of High Performance Computing Applications 29(4)


