A portable and adaptable fault tolerance solution for
heterogeneous applications

Nuria Losada, Basilio B. Fraguela, Patricia Gonzalez, Maria J. Martin

{nuria.losada, basilio.fraguela, patricia.gonzalez, mariam} Qudc.es
Grupo de Arquitectura de Computadores, Universidade da Coruna, Spain
(+34) 881 011212; (+34) 981 167160 (faz). Corresponding author: Nuria Losada.

Abstract

Heterogeneous systems have increased their popularity in recent years due
to the high performance and reduced energy consumption capabilities pro-
vided by using devices such as GPUs or Xeon Phi accelerators. This paper
proposes a checkpoint-based fault tolerance solution for heterogeneous appli-
cations, allowing them to survive fail-stop failures in the host CPU or in any
of the accelerators used. Besides, applications can be restarted changing the
host CPU and/or the accelerator device architecture, and adapting the com-
putation to the number of devices available during recovery. The proposed
solution is built combining CPPC (ComPiler for Portable Checkpointing),
an application-level checkpointing tool, and HPL (Heterogeneous Program-
ming Library), a library that facilitates the development of OpenCL-based
applications. Experimental results show the low overhead introduced by the
proposal and prove its portability and adaptability benefits.

Keywords:

checkpointing, fault tolerance, heterogeneous systems, OpenCL, portability

Preprint submitted to Journal of Parallel and Distributed Computing January 10, 2017

1. Introduction

The usage of heterogeneous devices has become increasingly popular, as it
provides important improvements in runtime and power consumption with re-
spect to approaches solely based on general-purpose CPUs [1]. The November
2016 TOP500 list (http://www.top500.org/) clearly shows this tendency,
with 86 systems with accelerators in comparison with the 64 on June 2014,
which means a 34% increase in the last couple of years. Heterogeneous ap-
plications are those capable of exploiting more than one type of computing
system, gaining performance not only by using CPU cores but also by incor-
porating specialized accelerator devices such as GPUs or Xeon Phis. From a
fault tolerance perspective, these applications can suffer failures both in the
main processor (host) or in the accelerators.

Di Martino et al. [2] have studied the Cray heterogeneous supercomputer
Blue Waters, reporting that 1.53% of applications fail due to system prob-
lems. Moreover, applications using heterogeneous nodes displayed a higher
percentage of failures due to system errors, which also grew larger when scal-
ing. Overall, failed applications noticeably run for about 9% of the total
production node hours. These results bring to light the necessity of fault tol-
erance mechanisms in High Performance Computing (HPC) heterogeneous
applications to ensure the completion of their execution.

Checkpointing is a widely used fault tolerance technique in which the
computation state is periodically saved to stable storage, allowing the recov-
ery of the application when a failure occurs. This work proposes an adapt-
able checkpoint-based solution for heterogeneous applications by combining

CPPC (ComPiler for Portable Checkpointing) [3, 4], a portable and transpar-

ent checkpointing infrastructure for sequential and MPI parallel applications,
and HPL (Heterogeneous Programming Library) [5], a C++ library for pro-
gramming heterogeneous systems on top of OpenCL [6], a widely adopted
standard for heterogeneous computing. The proposal tolerates fail-stop fail-
ures in the host and/or in the accelerator devices used by the application.

The main contributions of this work are:

e An application-level checkpointing solution for heterogeneous applica-
tions that applies a host-side approach (checkpoints are performed by
the host between kernels invocations) and allows recovering from both

host and devices failures.

e A low-overhead checkpointing protocol which minimizes host-device

data transfers during the checkpoint operation.

e A highly portable restart process that allows applications to be recov-
ered on different machines. The recovery is completely independent of
the architecture of the host and the devices, the operating system and

any higher level frameworks used.

e A highly adaptable restart process that allows the recovery of the ap-

plications adapting the computation to the available number of devices.

To the best of our knowledge no other work provides such portability and
adaptability features to the recovery process of heterogeneous applications.
In heterogeneous supercomputers, these features enable the completion of the
applications even when those resources that were being used are no longer

available. Also, the approach can improve the exploitation of the resources,

allowing applications to be started in those that are available and to later
continue their execution using a more appropriate or powerful set of resources.

This paper is structured as follows. Section 2 comments upon the main
characteristics of heterogeneous computing and HPL main characteristics.
Section 3 introduces CPPC. The proposed portable and adaptable fault tol-
erance solution for heterogeneous applications is described in Section 4. The
experimental results are presented in Section 5. Section 6 covers the related

work. Finally, Section 7 concludes this paper.

2. Heterogeneous computing

Among the large number of frameworks for the development of appli-
cations that exploit heterogeneous devices, OpenCL is the most widely sup-
ported and, thus, the one that provides the largest portability across different

device families.

2.1. OpenCL

Figure 1 depicts the general hardware model for heterogeneous computing
provided by OpenCL, further described using OpenCL terminology. The
sequential portions of the application run on the host and they can only access
its memory. The parallel tasks are called kernels and they are expressed as
functions that run in the attached devices at the request of the host program.
Each device has one or more processing elements (PEs). All of the PEs in the
same device run the same code and can only operate on data found within
the memory of the associated device. PEs in different devices, however, can
execute different pieces of code. Thus, both data and task parallelism are

supported. Also, in some devices the PEs are organized in groups, called

4

DEVICE 0
Computing Unit 0 Computing Unit CU-1

PRIVATE | |PROCESSING|| s PRIVATE | |PROCESSING|| s
MEMORY || ELEMENTO [2 & | | see (| MEMORY || ELEMENT0 3 &
. () . (8]
[] E) E
PRIVATE | °[PROCESSING| | O PRIVATE | °[PROCESSING| | S iu
MEMORY | |ELEMENT N-1 = MEMORY | |ELEMENT N-1 =

[[
Global memory Constant memory

DEVICE D-1 I

Figure 1: OpenCL hardware model. It is comprised of a host with a standard CPU and

memory, to which a number of computing devices are attached.

computing units in Figure 1, which may share a small and fast scratchpad
memory, called local memory.

Regarding the memory model, the devices have four kinds of memory.
First, the global memory is the largest one and can be both read and written
by the host or by any PE in the device. Second, a device may have a constant
memory, which can be set up by the host and it is read-only memory for its
PEs. Third, there is a local memory restricted to a single group of PEs.
Finally, each PE in an accelerator has private memory that neither the other
PEs nor the host can access.

Since the device and host memories are separated, the inputs and outputs
of a kernel are specified by means of some of its arguments. The host program
is responsible for the memory allocations of these arguments in the memory
of the device. As well, the host program must transfer the data between the
host and the device memory for the input arguments, and vice versa for the

output arguments.

2.2. HPL

The Heterogeneous Programming Library (HPL) [5], available under the
GNU General Public License (GPL) at http://hpl.des.udc.es, supports
the previously described model on top of the OpenCL standard. The library

provides three main components to users:

e A template class Array that allows the definition of the variables that

need to be communicated between the host and the devices.

e An application programming interface (API) that allows inspecting the

available devices and requesting the execution of kernels.

e An API to express the kernels. Kernels can be written using a language
embedded in C+4++, which allows HPL to capture the computations
requested and build a binary for them that can run in the chosen device.
Another possibility is to use HPL as an OpenCL wrapper [7], enabling
the use of kernels written in native OpenCL C in a string, just as regular

OpenCL programs do, and thus, easing code reuse.

The data type Array<type, ndim|, memoryFlag]> represents an ndim-
dimensional array of elements of the C++ type type, or a scalar for ndim=0.
The optional memoryFlag specifies one of the kinds of memory supported
(Global, Local, Constant, and Private). By default, the memory is global for
variables declared in the host and private for those defined inside the kernels.
Variables that need to be communicated between the host and the devices
are declared as Constant or Global Arrays in the host, while those local to
the kernels can be declared Private inside the kernels or Local both in the

host and inside the kernels.

void kernel_1(Array<int, 1, Global> al,/*INPUT*/
Array<int, 1, Global> a2,/*INPUT*/
Array<float, 1, Global> tmp,/*OUTPUT*/
Array<float, 1, Constant> b,/*INPUT*/
Array<int, ©, Global> i);/*INPUT*/

void kernel_2(Array<int, 1, Global> a2,/*OUTPUT*/
Array<float, 1, Global> tmp,/*INPUT*/
Array<int, 1, Local> c,
Array<float, 1, Global> a3);/*INPUT&OUTPUT*/

Array<int, 1, Global> ai(N), a2(N);
Array<float, 1, Global> a3(N), tmp(N);
Array<float, 1, Constant> b(M);
Array<int, 1, Local> c(M);

int main()

[...]
/* kernel_1 and kernel_2 are associated to their
OpenCL C kernels using the HPL API (not shown) */

[...1]

for(i = 0; i < nlters; i++){
eval(kernel_1)(a1, a2, tmp, b, i);
eval(kernel_2)(a2, tmp, c, a3);

Figure 2: Example of an HPL application where two different kernels are invoked nIters

times.

Figure 2 shows an example of an HPL application. The host code in-
vokes the kernels with the HPL function eval (), specifying with arguments
the kernels inputs and outputs. These arguments can be Arrays in global,
constant or local memory, as well as scalars. Global and constant Arrays
are initially stored only in the host memory. When they are used as ker-
nel arguments, the HPL runtime transparently builds a buffer for each of
them in the required device if that buffer does not yet exist. Additionally,
the library automatically performs the appropriate data transfers to ensure
that all the kernels inputs are in the devices memory before their execution.
Local Arrays can be also used as kernels arguments. In this case, the ap-

propriate buffers will be allocated in the devices, however, no data transfers

will be performed, as Local Arrays are invalidated between kernel runs. As
for the output arrays, necessarily in global memory, they are only copied to
the host when needed, for instance, when the Array data() method is used.
This method returns a raw pointer to the array data in the host. When
this method is called, HPL ensures that the data in the host is consistent
by checking if any device has modified the array, and only in that case HPL
transfers the newest version of the data from the device to the host. In
fact, HPL always applies a lazy copying policy to the kernels arguments that

ensures that transfers are only performed when they are actually needed.

3. CPPC overview

CPPC [4] is an open-source checkpointing tool available under the GPL
at http://cppc.des.udc.es. It is implemented at the application level,
and, thus, it is independent of the operating system and any higher-level
framework used.

CPPC appears to the final user as a compiler tool and a runtime library.
The CPPC compiler instruments the user-provided source files, adding calls
to the CPPC library. This is illustrated in Figure 3, where the code inserted
by the compiler is shown in boldface. The CPPC instrumentation performs

the following actions:

e Configuration and initialization: at the beginning of the applica-
tion the routines CPPC_Init_configuration() and CPPC_Init_state()
configure and initialize the necessary data structures for the library

management.

CPPC compiler: inserts fault

state, saving and recovering it
tolerance and flow control code ! 9 9

when necessary

CPPC library: manages application]

— Fault-Tolerant CPPC]
Application Stable
Appllcatlon lbrary Storage

int main() | ..

CPPC_Init_configuration();
CPPC_Init_state();

for(i=0;i<niters;i++)

RESTART_BLOCK_1:
if (CPPC_Jump_next()) ‘ CPPC_Do_Checkpoint();
goto REGISTER_BLOCK_1;
[...]

[...] |

REGISTER_BLOCK_1: [...]
/*CPPC_Register() block*/ ‘ CPPC_Shutdown();
if (CPPC_Jump_next())

goto RESTART_BLOCK_1; ‘ }//end main

Figure 3: At compile time the CPPC source-to-source compiler automatically transforms a
code into an equivalent fault-tolerant version by adding the instrumentation code (marked

in boldface in the figure).

¢ Registration of variables: the routine CPPC Register () explicitly
marks the variables necessary for the successful recovery of the applica-
tion, for their inclusion in checkpoint files. During restart, this routine
also recovers the values from the checkpoint files to their proper mem-

ory location.

e Checkpoint: the CPPC_Do_checkpoint () routine is placed inside the
most computationally expensive loops. A checkpoint file will be gener-

ated every N calls to this function, N being user-defined.

e Shutdown: the CPPC_Shutdown() routine is added at the end of the

application to ensure the consistent system shutdown.

Checkpoint file sizes are reduced by storing user variables and by using a

9

liveness analysis to save only those variables that are essential for the appli-
cation recovery. Besides, CPPC applies the zero-blocks exclusion technique,
which avoids the storage of memory blocks that contain only zeros. More-
over, CPPC provides multithreaded dumping, overlapping the checkpoint
file writing with the computation of the application, and thus, reducing the
checkpointing overhead.

The state files generated by CPPC are portable, allowing the execu-
tion to restart on different architectures and/or operating systems. Porta-
bility is achieved by using HDF5, a portable storage format available at
http://www.hdfgroup.org/HDF5/, and by avoiding the inclusion in the check-
point files of non-portable state. This state is recovered through the re-
execution of the code responsible for creating such state in the original
execution. The compiler automatically identifies both the variables to be
checkpointed and the non-portable code to be re-executed upon restart. The
application stack is an example of such non-portable state, and it is recovered
by recreating the sequence of original function calls that built the stack up to
the checkpoint location. Additionally, CPPC incorporates a portability layer
to deal with different file systems, being able to track open files at runtime,
so that, upon restart, they can be re-opened and re-positioned in the correct
part of the file.

The restart phase has two fundamental parts: reading the checkpoint
data into memory and recovering the application state. The first step is
encapsulated inside the routine CPPC_Init_state(). However, the actual
reconstruction of the application state is achieved through the ordered re-

execution of certain blocks of code: the configuration and initialization block,

10

variable registration blocks, checkpoint blocks, and non-portable state recov-
ery blocks. The compiler inserts control flow code (labels and conditional
jumps) to ensure an ordered re-execution. When the execution flow reaches
the CPPC_Do_checkpoint () call where the checkpoint file was generated, the
recovery process ends and the execution can resume normally.

For more details about CPPC and its restart protocol the reader is re-

ferred to [3, 4].

4. Portable and adaptable checkpoint /restart of heterogeneous ap-

plications

This section describes our proposal to obtain adaptable fault tolerant
HPC heterogeneous applications using CPPC and HPL. First, the design
decisions are described and justified, to latter present the implementations
details of the proposed solution.

Note that, although the adaptability of an application when its execution
starts is a feature of HPL, its adaptability in restarts is exclusively enabled by
the design and implementation decisions presented in this Section. The con-
tributions to support adaptability can be summarized in three main points.
First, applications are analyzed to determine how they should be modified to
be restarted in different device architectures and different numbers of devices.
Second, CPPC is extended to make the required changes in the source codes.
Third, as the restarted code must be executed in a different way depending
whether the application is pseudo-malleable or malleable, an algorithm to de-
tect the kind of adaptability of the application is designed and implemented
in the CPPC compiler.

11

4.1. Design decisions

The first design decision is to determine the optimal location for the
checkpoints, i.e. in which points of the application code its state should be
saved to stable storage. This proposal is focused on long-running HPC het-
erogeneous applications to deal with fail-stop failures both in the host CPU
and in the accelerator devices. The choice of a host-side checkpointing (plac-
ing checkpoints in the host code between kernels invocations) provides sev-
eral performance, portability and adaptability benefits, further commented
in the remain of this section. Moreover, a host-side approach guarantees in
most practical situations an adequate checkpointing frequency because the
execution times of kernels are not expected to exceed the Mean Time To
Failure (MTTF) of the underlying system. This expectation is based both
on physical limitations and on practical observations. Regarding the limita-
tions, a very relevant one is that, as can be seen in Table 4, which describes
the hardware used in our evaluation, accelerators usually have memories that
are considerably smaller than those of regular multi-core servers. As a result,
when huge computational loads are executed in them, it is quite common to
have to alternate stages of transfers to/from the host memory with stages of
kernel computation to be able to process all the data. As for the practical
observations, in order to analyze the typical kernel runtimes, we performed
an experimental evaluation of the most popular benchmark suites developed
with OpenCL: Rodinia [8], SHOC [9], and SNU-NPB [10]. Table 1 shows
the results for the four most time-consuming applications in each benchmark
suite. The experiments took place in System#1, described in Table 4 of

Section 5. Rodinia benchmarks were executed using the default parameters,

12

Table 1: Maximum kernel times (seconds) of the most time-consuming applications from

popular benchmarks suites for heterogeneous computing.

KERNELS
MAX. TIME
NUMBER
(SECONDS)
cfd 14004 | 0.00032
RODINIA
BENCHMARKs | Streamcluster 4833 0.00069
DEFAULT particlefilter 36 0.91775
PARAMETERS hybridsol"t 21 0'10381
SCAN 15360 | 0.00138
SHOC Spmv 10000 0.00320
BENCHMARKS
MD 162 0.00901
SIZE 4
Stencil2D 22044 0.00318
cG 8076 4.10887
SNUNPB FT 111 0.51884
BENCHMARKS
SP 5637 0.05743
CLASS B
BT 3842 0.10504

while in SHOC the largest problem available (size 4) was used. Finally, in
SUN-NPB the configuration used was class B, as it was the largest problem
that fits in the device memory. The studied applications execute a large
number of kernels whose maximum times range from 0.32 milliseconds in
application cfd to 4.1 seconds in CG, thus making host-side checkpointing a
very appropriate alternative.

The next step consists in studying which application data should be in-
cluded in the checkpoint files. The state of a heterogeneous application can

be split into three parts: the host private state, the devices private state (data

13

in the local and private memory of the accelerators), and the state shared
among the host and the devices (data in the global and constant memory of
the accelerators, which may or may not also be in the host memory). By
locating checkpoints in the host code, only the host private state and the
shared state need to be included in the checkpoint files. The fact that nei-
ther private nor local memory data of the devices need to be checkpointed
improves the performance of the proposal because smaller checkpoint file
sizes are obtained, a key factor for reducing the checkpoint overhead.

Also, the solution must guarantee the consistency of the checkpointed
data. During the execution of a heterogeneous application, computations
performed in the host and in the devices can overlap, as the host can launch
several kernels for their execution in the devices and continue with its own
computation. Thus, a consistency protocol is needed to ensure a successful
restart upon failure. The protocol must include synchronizations so that the
kernels that may modify the data included in the checkpoint files are finished
before the checkpointing. In addition, those checkpointed shared variables
modified by the kernels must be transferred back to the host memory.

Finally, further design decisions aim to improve the portability and adapt-
ability of the proposal in order to obtain a solution completely independent
of the machine, that can be employed to restart the applications using differ-
ent hosts and/or devices. The benefits of the migration to a different device
architecture may include performance, however, its main advantage is the
fact that it enables the execution to be completed. In heterogeneous su-
percomputers, this feature is useful in those situations in which the original

resources are no longer available or, for instance, when the waiting time to

14

access them is prohibitive.

As checkpointing back-end, the CPPC tool was chosen because of the
portable application-level approach it provides. The checkpoint files gener-
ated by CPPC allow the restart on different host, while their size is reduced
by checkpointing only the user-variables necessary for the recovery of the
application, thus, reducing the checkpointing overhead.

When placing the checkpoints in the host code, if a non-vendor specific
heterogeneous framework is used, the application can be potentially recov-
ered using a different device architecture. Moreover, if the distribution of
data and computation performed by the application is not tied to the num-
ber of devices available at runtime, applications could be restarted adapting
to a different number of devices. However, decoupling the distribution of data
and computation from the number of devices available at runtime can be a
hard task in some applications. The high programmability of HPL simplifies
the implementation of programs in which the application data and computa-
tion is not tied to the available devices at runtime. This, together with the
fact that HPL is not tied to any specific vendor, operating system or hard-
ware platform, facilitates the implementation of a fault tolerance solution
that enables applications to be restarted using a different device architecture

and/or a different number of devices.

4.2. Implementation details

While no modifications are performed in the HPL library to implement
this proposal, the CPPC tool is extended to cope with the particularities of
HPL applications. Given a HPL program, the CPPC compiler automatically

instruments its code to add fault tolerance support by performing three major

15

actions: inserting checkpoints, registering the necessary host private variables
or shared variables, generating the appropriate consistency protocol routines,
and identifying the non-portable state recovery blocks.

First, the compiler identifies the most computationally expensive loops
in the host code by performing an heuristic computational load analysis [3]
and a CPPC_Do_checkpoint () call is inserted at the beginning of the body
of these loops, in between kernel invocations. The most computationally
expensive loops are those that perform the core of the computation, and thus
take the longest time to execute, allowing the user to specify an adequate
checkpointing frequency.

Once the checkpoints are located, the CPPC compiler automatically reg-
isters the necessary data for the successful recovery of the application during
restart. As established by the design of the proposal, by locating checkpoints
in the host code, only the host private state and the shared state between host
and devices need to be included in the checkpoint files. The CPPC compiler
analyses the host code to identify which host private variables are alive when
checkpointing, inserting the appropriate calls to CPPC_Register (). The com-
piler is extended to cope with HPL Array objects, identifying which of them
correspond to shared variables alive when checkpointing, and using the HPL
data() method to obtain a raw pointer to the data to be registered.

Regarding data consistency, both the CPPC compiler and the CPPC li-
brary have been extended. Now, the CPPC compiler automatically generates
a consistency protocol routine (CONSISTENCY <checkpoint number>()) re-
lated to each checkpoint call introduced in the application code. This rou-

tine performs the synchronizations and data transfers required to ensure the

16

consistency of the data included in the checkpoint files. The consistency
protocol routine works as a callback function: it is passed as an argument
to the new CPPC library CPPC_Consistency_protocol_ref() routine, so
that, when a checkpoint call triggers a checkpoint generation, the appropri-
ate callback consistency protocol routine is invoked. Using the information
from the live variable analysis performed during the registration process, the
CPPC compiler identifies which of the registered shared variables may be
modified within the kernels. These potentially inconsistent shared variables
necessarily correspond with shared Arrays in global memory. The consis-
tency protocol routine is implemented by invoking the HPL data() method
on those shared Arrays, which performs the necessary synchronizations and
data transfers. Moreover, both synchronizations and data transfers are only
performed when the host copy of the variable is inconsistent, otherwise, both
operations are avoided, thus, minimizing the consistency protocol overhead.

In order to preserve the portability features of both the checkpointing and
the heterogeneous framework back-ends, the CPPC compiler is extended to
avoid the inclusion in the checkpoint files of the non-portable state specific
to heterogeneous applications. Instead, such non-portable state is recovered
by the re-execution of those blocks of code responsible for its creation in the
original execution. The CPPC compiler identifies as non-portable state the
setup of the available devices at runtime, as well as the kernels definitions
and compilations. As a result, the proposal is completely independent of
the machine, and applications can be restarted using different hosts and/or
devices.

Figure 4 shows, in boldface, the instrumentation generated by the com-

17

void kernel_1(Array<int, 1, Global> ail,/*INPUT*/ : REGISTER_BLOCK_1:

Array<int, 1, Global> a2,/*INPUT*/ : CPPC_Register(&i, [...]);
Array<float, 1, Global> tmp,/*OUTPUT*/ : CPPC_Register(al.data(), [...]);
Array<float, 1, Constant> b,/*INPUT*/ H CPPC_Register(a2.data(), [...1);
Array<int, 0, Global> i);/*INPUT*/ : CPPC_Register(a3.data(), [...1);
: CPPC_Register(b.data(), [...]);
void kernel_2(Array<int, 1, Global> a2,/*OUTPUT*/ : if (CPPC_Jump_next()) goto RECOVERY_BLOCK_1
Array<float, 1, Global> tmp,/*INPUT*/
Array<int, 1, Local> c, : [...]
Array<float, 1, Global> a3);/*INPUT&OUTPUT*/
: RECOVERY_BLOCK_1:
void CONSISTENCY_1(){ : /* kernel_1 and kernel_2 are associated to their
a2.data(); ' OpenCL C kernels using the HPL API (not shown) */

a3.data();
CPPC_Consistency_protocol_ref (& ONSISTENCY_1);
if (CPPC_Jump_next()) goto CKPT_BLOCK_1;
Array<int, 1, Global> ail(N), a2(N);
Array<float, 1, Global> a3(N), tmp(N); 1 [.

1
Array<float, 1, Constant> b(M); : for(i = 0; i < nIters; ++i){
Array<int, 1, Local> c(M); : CKPT_BLOCK_1:
: eval(kernel_1)(a1, a2, tmp, b, i);

int main() : eval(kernel_2)(a2, tmp, c, a3);

CPPC_Init_configuration(); : [...]

CPPC_Init_state(); :

if (CPPC_Jump_next()) goto REGISTER_BLOCK_ 1; : CPPC_shutdown();

[...] P

Figure 4: The CPPC compiler locates the checkpoint at the beginning of the main loop,
generates the appropriate registration calls for the live variables, and determines that the
consistency protocol must be applied only to the Arrays a2 and a3, as no other registered

Array may be modified by the kernels.

piler for the HPL application used as example in Section 2.2 (Figure 2).
HPL simplifies the application of the consistency protocol, as the library au-
tomatically tracks at runtime the most recently updated copy of a variable.
Moreover, HPL also ensures that the correct copy of a shared variable is
saved. For example, if OpenCL applications were targeted, there could exist
situations in which a compile-time analysis could not be able to detect which
copy of a shared variable is the most recent one. In that situation, to ensure
correctness, the compiler would need to register both the copy of the variable
in the host memory and the copy in the device memory (assuming for sim-
plicity that it is only used in one device), doubling the state included in the

checkpoint files and, thus, introducing more overhead when checkpointing.

18

4.3. Restart portability and adaptability

As commented previously, the implementation of the proposal pays spe-
cial attention to the preservation of the portability features of both frame-
works, allowing applications to be restarted using different hosts and/or de-
vices. Additionally, by exploiting the high programmability of HPL via the
instrumentation introduced by CPPC, applications can be restarted using a
different number of devices. Two types of applications can be distinguished:
pseudo-malleable applications and malleable applications, being the late ones
able to fully adapt to a different number of devices at restart time. The CPPC
compiler inserts the same instrumentation for both types of applications and
it distinguishes one from another by activating a flag in the instrumentation
code.

Pseudo-malleable applications are those in which the distribution of data
and /or computation must be preserved when restarting, otherwise, the restart
will not be successful. The CPPC compiler determines that an application is
pseudo-malleable when any of the checkpointed variables has a dependency
with the number of devices available at runtime. For instance, in the example
code shown in Figure ba, the registered variable d has such a dependency.
These applications can be restarted using a larger or smaller number of phys-
ical devices but the same number of virtual devices. When fewer physical
devices are used to recover the application, some of them will have to per-
form extra computations. When using a larger number of physical devices,
some of them will not perform any computation. As shown in Figure 5b, the

CPPC compiler inserts the instrumentation to perform the following actions:

e Saving and recovering the number of devices originally used by the

19

int pseudomalleable=1;

int num_devices = /*Available number of devices*/
int real_devices=num_devices;

int orig_devices=num_devices;

int num_devices = /*Available number of devices*/
/*Register/Recover original number of devices*/

[...] CPPC_Register(&orig_devices,[...]);
Array<int, 1, Global> d(num_devices*N); if (CPPC_Jump_next() && (pseudomalleable==1)){
[...] /*Force same number of devices during restart*/

num_devices=orig_devices;
for(j =0; j <T; j++){
for(i = 0; i < num_devices; i++){
device = HPL::Device(DEV_TYPE,1i); Array<int, 1, Global> d(num_devices*N);
eval(kernel).device(device)(CPPC_Register(d.data(),[...]);
d(Tuple(i*N, (i+1)*N-1)));
} for(j =0; j <T; j++){
CPPC_Do_checkpoint(1);
[...] for(i = 0; i < num_devices; i++){
} device = HPL::Device(DEV_TYPE, i%real_devices);
eval(kernel).device(device)(
[...] d(Tuple(i*N, (i+1)*N-1)));

(a) Original. (b) Instrumented by CPPC.

Figure 5: Automatic instrumentation of pseudo-malleable applications.

application (with the variable orig devices).

e Setting the number of devices used to the original number when the

pseudomalleable flag is activated.

e Modifying all the references to particular devices to ensure they corre-

spond with a physical device by using the real devices variable.

At runtime, HPL transparently manages the data allocations and transfers
into the devices memory, releasing the CPPC instrumentation of this duty.
On the other hand, malleable applications are those which can be adapted
to a different number of devices during the restart, obtaining an optimal data
and computation distribution while ensuring the correctness of the results.
The CPPC compiler identifies malleable applications when none of the reg-

istered variables presents dependencies with the number of devices available

20

int num_devices = /*Available number of devices*/

Array<int, 1, Global> d(N);
Array<int, 1, Global> * v_d[MAX_GPU_COUNT];
for(i = 0; i < num_devices; ++1){
//Tuple builds HPL subarrays references
v_d[i] = &d(Tuple(ini_p,end_p));

|

for(j = 0; j <T; j++){
eval(kernel_1).device(v_devices)(v_d)
[...]

3

3}
[.

int pseudomalleable=0;

int num_devices = /*Available number of devices*/
int real_devices=num_devices;

int orig_devices=num_devices;

/*Register/Recover original number of devices*/

CPPC_Register(&orig_devices,[...]);

if (CPPC_Jump_next() && (pseudomalleable =1)){
/*Force same number of devices during restart*/
num_devices=orig_devices;

Array<int, 1, Global> d(N);
Array<int, 1, Global> * v d[MAX GPU_COUNT];
CPPC Reglster(d data(),[.);
//BLOCK OF CODE REEXECUTED UPON RESTART
for(i = 0; i < num_devices; ++i){
//Tuple builds HPL subarrays references
v_d[i%real_devices] = &d(Tuple(ini_p,end_p));

[...] }//END BLOCK OF CODE REEXECUTED UPON RESTART

[...]

for(j = 0; j <T; j++){
CPPC_Do_checkpoint(1);
eval(kernel_1).device(v_devices)(v_d);
[...]

}

(a) Original. (b) Instrumented by CPPC.

Figure 6: Automatic instrumentation of malleable applications.

at runtime. The high programmability of HPL simplifies the implementation
of malleable applications. A tipical pattern is shown in Figure 6a, in which
an array of references v_d is built from a single unified image of the data, the
array d. These references represent a particular distribution of data among
the devices, which is actually performed by the eval routine. As shown in
Figure 6b, the CPPC compiler registers the single unified image of each ar-
ray, which can then be split among an arbitrary different number of devices
when the application is restarted. The compiler includes the instrumentation
used for pseudomalleable applications, but now the pseudomalleable flag is

deactivated.

21

Table 2: Testbed benchmarks description and original runtimes.

BENCHMARCK 2 | rRUNTIME
DESCRIPTION g (SECONDS)
Fourier Transform
FT 1 43.31
8 Class B
5
A Floyd-Warshall algorithm
3 Floyd 1 260.64
14
o on 2'* nodes
Z
n Sparse matrix-vector product
Spmv 15 . 1 153.14
2*°rows, led iters
Fourier Transform 1 51.27
FTMD
Class B 9 34.58
Matrix multiplication 1 45.50
Summa 13
8 NxN, N=2 2| 2620
>
3 Multi-Grid 1 26.45
£ | MGMD
5 Class B 9 20.06
>
Shwalls | Simulation of a contaminant | 1 271.48
Short 1 week, 400x400 cell mesh 9 238.03
Shwalls | Simulation of a contaminant | 1 | 10203.89
Large 6 week, 800x800 cell mesh 9 6515.67

5. Experimental results

The application testbed used, summarized in Table 2, is comprised of
seven applications already implemented in HPL by our research group: three
single-device applications (FT, Floyd, Spmv) and four multi-device applica-
tions (FTMD, Summa, MGMD, and Shwalls). Spmv is a benchmark of the
SHOC Benchmarks suite [9]. Floyd is from the AMD APP SDK. FT, FTMD,
and MGMD are benchmarks of the SNU NPB suite [10]. Summa implements

22

the algorithm for matrix multiplication described in [11]. Finally, Shwalls
is a real application that performs a shallow water simulation parallelized
for multiple GPUs in [12]. Most of the experimental results shown in this
section were carried out with Shwalls-Short configuration, since it presents
a reasonable execution time to carry out exhaustive experiments. However,
some of the experiments have also been conducted with the Shwalls-Large
configuration, so as to show the impact of the checkpointing operation in a
long-running application. Table 3 further characterizes the testbed hetero-
geneous applications. Regarding the kernels, it shows the number of kernel
functions, the total number of invocations to the kernels, and the execution
time of the longest kernel in the application. Additionally, the table presents
how many buffers in global and local memory are used (showing both the
number and their total size), and also the overall ratio between the applica-
tion data inputs and outputs and the intermediate results. As can be seen
in the table, the testbed applications cover a wide range of scenarios.

Table 4 details the hardware used for the experiments. The first system
is used for the experiments in Sections 5.1 and 5.2, while all the systems are
used in Section 5.3 to show the portability and adaptability of the solution.
The tests were performed writing and reading the checkpoint files from the
local storage of the node (SATA magnetic disks). The CPPC version used
was 0.8.1, working in tandem with HDF5 v1.8.11. The GNU compiler v4.7.2
was used with optimization level O3 in systems #1 and #2, while Apple
LLVM version 7.3.0 (clang-703.0.31) is used in system#3. Each result is the
average of 15 executions. The original runtimes of the testbed benchmarks

on system#1, shown in Table 2, are on average only 0.4% slower than their

23

Table 3: Testbed benchmarks characterization.

* Application data ratio calculated as TnputDat

KERNELS GLOBAL LOCAL
o] BUFFERS BUFFERS APP.
% o) LONGEST
)|z DATA
Z | D #CALLS KERNEL
i TivE (8) | # SIZE # | sizg | RATIO*
. FT 1| 8 111 0.63757 | 10| 2307 MB | 1 | 512 B 0.64
0]
2
a Floyd 1|1 16384 0.01959 312048 MB | 0 0B 0.60
5
Z
n
Spmv 11 10000 0.01369 6| 410MB | 1| 512B 1.00
1 (17 156 0.49146 | 22| 2560 MB | 1 | 736 B 0.80
FTMD
2 |17 312 0.24630 | 22| 3072MB | 1 | 736 B 0.80
1|1 8 4.97366 | 14| 1536 MB | 2 | 256 B 0.92
Summa
8 211 64 0.61972 | 50| 1536 MB | 8 | 512 B 0.92
E 1 |43 5623 6.50812 | 25| 456 MB | 2 16 B 0.57
8| MGMD
g 2 (43 17182 3.25574 | 25| 466 MB | 4 32 B 0.57
=)
= Shwalls 1| 3| 3356465 0.00024 | 17 17TMB | 1| 256 B 0.68
Short | 9| 3| 6712930 | 0.00025 | 23| 17MB | 2 |256B | 0.81
Shwalls | 1 | 3 40327770 0.00083 | 17 68 MB | 1 | 256 B 0.68
Large 2 | 3| 80655540 0.00072 | 23 68 MB | 2 | 256 B 0.81
InputData+OutputData

native OpenCL equivalents.

5.1. Instrumentation and checkpoint overhead

a+Output Data+Intermediate Data

In a failure-free scenario, two main sources of overhead can be distin-

guished: the instrumentation of the code and the checkpoint operation over-

24

Table 4: Hardware platform details

SYSTEM#1 SYSTEM#2 SYSTEM#3
OPERATING SYSTEM CentOS 6.7 MacOS X 10.11
PROCESSOR 2x Intel E5-2660 Intel 17-3770
B FREQUENCY GHz 2.20 3.4
g #CORES 8 (16 HT) 4 (8 HT)
MEM. CAPACITY GB 64 16
MEM. BANDWIDTH GB/s 51.2 25.6
PROCESSOR Nvidia K20m | Xeon PHI5110p | | GeForee
GTX 675MX
@ FREQUENCY GHz 0.705 1.053 0.6
é #CORES 2496 60 (240 HT) 960
: MEM. CAPACITY GB) 8 1
MEM. BANDWIDTH GB/s 208 320 115.2
DRIVER NVIDIA 325.15 | Intel OpenCL 4.5.0.8 | NVIDIA 310.42

head. The instrumentation overhead corresponds to the CPPC instrumented
applications without generating any checkpoint files. The checkpoint over-
head is measured in the execution of the CPPC instrumented versions gen-
erating one checkpoint file, and it includes the instrumentation, the consis-
tency protocol and the checkpoint file generation overheads. Note that the
checkpointing frequency is a user-defined parameter, that can be modified to
generate more or fewer checkpoint files depending on the user requirements.
In all the experiments the dumping frequency is set to take a single check-
point when 75% of the computation has been completed, as this accounts
for an adequate checkpointing frequency given the testbed applications run-

times. In order to assess the performance also in long-running applications

25

where more checkpoints would have to be done during a normal execution,
we also show results for the Shwalls-Large application, where 10 checkpoint
files (one every 17 minutes when using one GPU and one every 11 minutes
when using 2 GPUs) are performed.

Table 5 analyses the instrumentation and checkpoint overheads. First, the
original runtimes (in seconds) are presented. Then, both the instrumentation
overhead absolute value (the difference with the original runtimes, in seconds)
and relative value (that difference normalized with respect to the original
times, in percentage) are shown. The instrumentation overhead is negligible,
always below a few seconds. In the application Summa running on two GPUs,
the instrumentation overhead is negative, explained by the optimizations
applied by the GNU compiler.

Regarding the checkpointing overhead, Table 5 also presents, for each
experiment, the number of checkpoints taken, and their frequency, i.e. every
how many iterations of the most computationally expensive loop a checkpoint
file is generated, as well as the absolute and relative values of the checkpoint
overhead. Note that the checkpointing overhead includes both the cost of
the instrumentation and the cost of taking as many checkpoints as specified
in the table. In addition to this, the times of the actions performed when a
single checkpoint is taken, as well as the checkpoint file size, are included in
the table under the title “Checkpoint operation analysis”. Figure 7 presents
a summary of this information: the runtimes when generating one checkpoint
file are normalized with respect to the original runtimes of each application.
In addition, both the consistency protocol and the checkpoint file generation

times are highlighted.

26

Table 5: Instrumentation and checkpoint overhead analysis for the testbed benchmarks.

— . ; E’n ~ E ; CHECKPOINT
R Z N g % = 0
< = D < 8 Z, 8 g OPERATION ANALYSIS
2| £ 2 £ g ¥ X T = %] & o
51 o & w o % 0z O - | z
0 = B Z B < B g zZ 2| 5 [
z & Z =S z F S & o] o8| N o
° 3 8 0 o B8 EE| DS
A) %] | # N | A % | g §ElEc
<N
SE| 80
“ FT 1 43.31 | 0.65 [1.5] | 1 15| 2.56 [5.9] | 0.140| 1.835| 769.54
0
2
a Floyd 1 260.64 | 0.31 [0.12] | 1 12288 |6.03 [2.32] | 4.323| 4.878|2048.02
9
Z
’ Spmv 1 153.14| 0.18 [0.12]| 1 7500 | 1.95 [1.27] | 3.320| 0.980| 410.15
1 51.27| 098 [1.91]| 1 15]2.74 [5.34] | 0.138| 1.823| 768.04
FTMD
2 34.58 | 0.58 [1.67]| 1 15(1.79 [5.17]| 0.145| 1.827| 768.04
“ 1 4550 | 0.26 [0.57]| 1 314.08 [8.97]| 5.101| 3.665/1536.07
S | Summa
>
E 2 26.20 |-0.09 [-0.35] | 1 12 14.21 [16.06] | 0.768| 3.660| 1536.1
B 1| 2645| 055 [2.08]| 1 15| 1.77 [6.71]| 0.513| 1.072| 300.78
2 | MGMD
= 2 20.06 | 0.74 3.7 1 15| 1.8 [8.98]| 0.130| 1.085| 303.53
Shwalls | 1 | 271.48] 078 [0.29] | 1 503470 [0.78 [0.29] | 0.003| 0.022| 5.96
Short 2 238.03| 0.98 [0.41]| 1 503470 |1.04 [0.44]| 0.003| 0.022 5.96
Shwails | 1 [10203.89| 1.18 [0.01] [10 733236 |2.61 [0.03]| 0.010| 0.077| 21.42
Large 2 | 6567.82| 1.39 [0.02] |10 733236 |2.33 [0.04] | 0.013| 0.082| 21.41

x1) A(s) absolute overhead in seconds. [%)] relative overhead with respect to the original

runtimes.

*9) # Total number of checkpoints taken. N checkpointing frequency, iterations between

checkpoints.

The total overhead introduced in the applications when checkpointing is

small. Its absolute value ranges from a minimum of 0.78 seconds for Shwalls

27

Consistency protocol time &X3 Checkpoint file size —— L
Checkpoint file generation time &z 12GB
1.50GB 1.50GB [

1.35¢ 2.00GB

768.04MB768.04MB

b 300,78MB303.53MB [151
1101 .96MB 5.96MB [21.42MB 21.41MB| 25
L A —— A 40

Normalized runtimes
o
[{e]
(5]

0.50 FT Floyd Spmv FTMD FTMD Summa Summa MGMD MGMD Shwails Shwails Shwalls Shwatls
1GPU 1GPU 1GPU 1GPU 2GPUs 1GPU 2GPUs 1GPU 2GPUs sShort Short Large Large
1GPU 2GPUs 1GPU 2GPUs

1 checkpoint taken 10 checkpoints
taken

Figure 7: Normalized checkpoint overhead for the testbed benchmarks.

running on one GPU and generating a 5.96 MB checkpoint file, to a maximum
value of 6.03 seconds for Floyd when saving 2 GB of data. The checkpoint
file generation overhead includes the state management operations, the copy
in memory of the data, and the creation of a thread to dump the data to
disk. The actual dumping to disk is performed by the multithreaded dump-
ing of CPPC in background, overlapping the checkpoint file writing to disk
with the computation of the application. As can be observed, the check-
point file generation overhead heavily depends on the size of the checkpoint
files. Besides, the impact of this overhead obviously depends on the original
application runtime.

Regarding the consistency protocol times, they are inherently dependent
on the application. These times are the addition of the time spent in the
synchronizations and the data transfers performed by the protocol. For the
applications Floyd, Spmv and Summa, the absolute checkpoint overhead is

lower than the addition of the consistency protocol and checkpoint file gen-

28

eration times. This situation can also be observed in Figure 7, where the
consistency protocol is represented below the value 1 for those applications.
This occurs because some operations in the original application take slightly
less time when a checkpoint file is generated, due to the synchronizations per-
formed by the consistency protocol. In Floyd, experimental results show that
these synchronizations reduce the time spent by OpenCL, used as back-end
by HPL, in some inner operations. In Summa and Spmv these synchro-
nizations reduce the time spent in further synchronizations that exist in the
original application code. This situation can happen quite frequently, since
heterogeneous applications present synchronizations at some point of their

execution.

5.2. Restart overhead

The restart overhead plays a fundamental role in the global execution
time when failures arise. The restart process includes all the operations
required to reach the point where the checkpoint file was generated. It can
be broken down into two parts: reading the checkpoint file and positioning
in the application. In heterogeneous applications, the positioning overhead
can be split in the host and the devices positioning. The host positioning is
determined by the operations that must be re-executed in the host during
the restart and by the state that has to be moved to the proper memory
location. The devices positioning is the set-up of the devices, including the
kernels compilation and the transfers of the recovery data to their memory.
Figure 8 shows the restart runtimes when the applications are recovered
from a failure using the checkpoint files generated when the application has

completed the 75% of its computation (right bars). These times include all

29

® 'f’ﬂ, AN ¢
100 - -
Reading Computation =3
%ooes Host positioning Original runtime
90 % Devices positioning T—1 Checkpoint file size —&— 12GB

80 r 1.50GB 1.50GB
11.5GB
70 —
60 |] {1GB
769/54MB 768.04MB 768,04MB

Runtimes (seconds)

50
W 1512MB
40 - U 300.78MB 303.53MB
96118 9611B
30 - 4% 10MB

20
10
0— T Floyd Spmv FTMD FTMD Summa Summa MGMD MGMD Shwatls Shwalls

F
1GPU 1GPU 1GPU 1GPU 2GPUs 1GPU 2GPUs 1GPU 2GPUs Short Short
1GPU 2GPUs

Figure 8: Runtimes for the testbed benchmarks after a failure. When a failure occurs,
applications can be restarted from a checkpoint file instead of starting the execution from

the beginning, which would consume more time.

the costs: the restart overhead (reading and positioning) and the application
computation from the restart point to the end (the 25% of the total execution
in these experiments). Upon a failure, when non-fault tolerance mechanisms
are used, the applications have to be re-executed from the beginning. Thus,
for comparison purposes the original runtimes are also represented in the
figure (left bars).

Note that the restart overhead is always below 25 seconds, the position-
ing overhead being at most 3 seconds. Thus, the restart overhead is mainly
determined by the reading phase, which is related to the checkpoint file sizes.
Only in Shwalls the positioning times represent a larger percentage of the

restart overhead, due to the small checkpoint file size of this application.

30

In some applications the reading phase has a high impact due to the short
runtimes, making the restart runtime close to the original runtime. How-
ever, restarting the application from a previous checkpoint is always better
than starting it from the beginning of the computation, and the benefits
of including fault tolerance mechanisms in long-running HPC heterogeneous

applications will be unquestionable.

5.8. Portability and adaptability benefits

The restart experiments presented in the previous subsection recovered
the application using the same host and devices available during the original
execution. This subsection presents the results when restarting using a dif-
ferent host or device architecture and/or a different number of devices. All
the systems described in Table 4 will now be used.

Figure 9 shows the restart runtimes when recovering the applications
using the same host and different devices: the same GPUs, Xeon Phi accel-
erators, and the CPU. The checkpoint file sizes are also shown. The devices
positioning times vary with the device architecture, as the kernels compila-
tion times are larger when using the Intel OpenCL driver in the Xeon Phi
and CPU experiments. The computation times on the different devices are
consistent with the original runtimes in the same device. For instance, in
Spmv the original runtime is larger when using a GPU than when using a
Xeon Phi accelerator, thus, the same tendency can be observed in the restart
runtimes.

Figure 10 presents the restart runtimes when using a number of GPUs
that is different from the one used in the execution where the checkpoint

files were generated. In our testbed benchmarks, Summa and MGMD are

31

o o LA

100 " LS Pa®
Reading Computation =2
90 | 2,0068 Host positioning Ml Checkpoint file size —4— 1oGB
Devices positioning T
80 7
1.50GB 1.50GB
11.5GB
@ 70+ f 1
° L
c - —
g 60 11GB
ﬁ 769.54MB 76804MB__ 768.04MB
P 50
Q 4101 1512MB
£ 40 300,78MB 303.53MB
€
3 96118 5/9611B
T 30 ™ 10MB
20
=
10 ¢ !-i N
0 \ AN ‘. \ A)\ AN AN AN [\ AN B =
DY OO OO O O O O O O O OO
LK LR UKL R L R LKL UKL R L LR LKL UL
Fonet] 958 O8F I8¢ O5F $9 OFF 59 I8¢ gi¢ 89 449 |
FT Floyd Spmv FTMD FTMD Summa Summa MGMD MGMD Shwalls Shwatls

Short Short

Original"yGpu 1GPU 1GPU 1GPU 2GPUs 1GPU 2GPUs 1GPU 2GPUs 1GPU 2GPUs]

Figure 9: Restart runtimes for the testbed benchmarks on different device architectures.

100

Reading Computation &3
90 | Host positioning 8@ Checkpoint file size —4— loGB
Devices positioning &=
80 1.50GB 1.50GB
11.5GB
70 —
) I
2 60 11GB
o
]
o 50 ¢
] 1512MB
g 40+
F 5.96MB
30 10MB
20 7 .
10
L
oLl |
NEEN] NN NEEN] D NEEN] NEEN] NEEN] D
T Q LT Q QT Q QT Q < Q T Q QT Q T Q
Pl €9 €6 S ¢ ¢ S5 OS¢ S]
FTMD FTMD Summa Summa MGMD MGMD Shwatls Shwatls
Short Short

Original” 4GPy 2GPUs 1GPU 2GPUs 1GPU 2GPUs 1GPU 2GPUs]

Figure 10: Restart runtimes for the testbed benchmarks using a different number of GPUs.

pseudo-malleable applications, while FTMD and Shwalls are fully malleable

applications. As can be observed, it is possible to restart all the applications

32

Reading Computation B3
500 Host positioning HEM Checkpoint file size —4—
Devices positioning 1
400 2GB
E
E 1.5GB
9 300 1GB
)
Y 512MB
o
E 200 5.96MB| 5.96MB oMB
[
100 r
0
Restart SYSTEM#3 SYSTEM#1 SYSTEM#1
system 1GPU 1GPU 2GPUs
Shwatls Shwatls
. Short Short
Original SYSTEM#3 SYSTEM#3]
system 1GPU 1GPU

Figure 11: Restart runtimes for Shwalls using a different host, a different number and

architecture of devices, and a different operating system.

using a larger or a smaller number of devices. Besides, the restart runtimes
of the malleable applications (FTMD and Shwalls) are not conditioned by
the number of devices used for the checkpoint file generation, and, instead,
these times are only influenced by the number of devices used during the
restart execution, as an optimal distribution among them is performed.
Finally, Figure 11 shows the restart times when the application Shwalls
is recovered in system#3 and system#1 from the checkpoint files generated
in system#3. In this scenario, the application is restarted using a different
host with a different operating system, a different device architecture and a
different number of devices, demonstrating the portability and adaptability
benefits of the proposal. The combination of CPPC and HPL allows applica-
tions to continue the execution after a failure occurs in one or several of the
running devices, and/or in the host CPUs. Besides, in heterogeneous cluster

systems, the proposed solution allows any application to start its execution

33

using the available devices, even without using any accelerators at all, and
to later continue its execution using a more appropriate set of devices, or

vice-versa, depending on the availability of resources in the cluster.

6. Related work

Fault tolerance for parallel applications is a very active research topic
with a large number of approaches published in the last two decades. Re-
garding fault tolerance in heterogeneous applications, approaches exist based
on Algorithm-Based Fault Tolerance (ABFT), in which extra information in
the application is used to check the results for errors. Such a solution is
presented in A-ABFT [13], which describes an ABTF proposal for matrix
operations on GPUs. However, these solutions are highly specific for each
particular application and algorithm.

More generic solutions are based on checkpointing. On the one hand,
solutions exist that have focused on detecting soft errors, which usually do
not result in a fail-stop error but cause a data corruption. A solution of
this kind is VOCL-FT [14], which combines ECC error checking, logging of
OpenCL inputs and commands, and checkpointing for correcting those ECC
errors in the device memory that cannot be corrected by the device. On the
other hand, the following paragraphs comment on other proposals that, like
the one presented in this paper, are focused on fail-stop failures.

Bautista et al. [15] propose a user-level diskless checkpointing using Reed-
Solomon encoding for CPU-GPU applications. The checkpointing frequency
is determined by the data transfers in the host code. When the CUDA kernels

and the data transfers are finished, an application-level strategy checkpoints

34

the host memory. The main drawback of diskless checkpointing is its large
memory requirements. As such, this scheme is only adequate for applications
with a relatively small memory footprint at checkpoint. Besides, some GPU
applications postpone the data transfers until the end of the execution, which
will be translated in an unsuitable checkpointing frequency.

CheCUDA [16] and CheCL [17] are checkpointing tools for CUDA and
OpenCL applications, respectively. Both are implemented as add-on pack-
ages of BLCR [18], a system-level checkpoint/restart implementation for
Linux clusters. Checkpointing is triggered by POSIX signals: after receiving
the signal, in the next synchronization between the host and the devices, the
user data from the device memory is transferred to the host memory, and the
host memory is checkpointed using BLCR. Also, both use wrapper functions
to log the CUDA or OpenCL calls, in order to enable their re-execution dur-
ing the restart process. CheCUDA requires no CUDA context to exist when
checkpointing, as otherwise BLCR fails to restart. For this reason the con-
text is destroyed before every checkpoint and recreated afterwards, as well
as during the restart process, using the log of CUDA calls. In CheCL a dif-
ferent strategy is used. The OpenCL application is executed by at least two
processes: an application process and an API proxy. The API proxy is an
OpenCL process and the devices are mapped to its memory space, allowing
the application process to be safely checkpointable.

NVCR [19] uses a protocol similar to CheCUDA, however, it supports
CUDA applications developed using the CUDA driver API and CUDA run-
time API | without the need to recompile the application code. NVCR, uses
wrapper functions to log the CUDA calls. It is also based in BLCR, thus, as

35

in CheCUDA, all CUDA resources have to be released before every check-
point and recreated afterwards, as well as during the restart process, using
a replay strategy to re-execute the CUDA calls from the log. However, the
replay during the restart process relays on the reallocation of the memory
chunks at the same address as before checkpointing, which is not guaranteed
by NVIDIA and could not work correctly in certain environments.

Laosooksathit et al. [20] model and perform simulations to estimate the
performance of checkpoints relying on virtualization and CUDA streams that
are applied at synchronization points under the control of a model, but they
offer no actual implementations.

HeteroCheckpoint [21] presents a CPU-GPU checkpointing mechanism
using non-volatile memory (NVM). The application is instrumented by the
programmer, explicitly indicating where and when a checkpoint is taken and
which CUDA variables need to be checkpointed. CUDA streams are used to
enable parallel data movement and the programmer can specify which CUDA
variables are not modified in the kernels executed before a checkpoint, allow-
ing variables to be pre-copied before a checkpoint starts. Also, redundant
data between two checkpoints, as in an incremental checkpointing, do not
cause unnecessary data transfers. In this proposal, when checkpointing, the
host and the device are synchronized and data is transferred from the device
memory to the NVM via the host memory.

Snapify [22] is a specific solution for Xeon Phi accelerators. It is a trans-
parent, coordinated approach to take consistent snapshots of the host and
coprocessor processes of Xeon Phi offload applications. It is based on BLCR

and it applies a device-side checkpointing taking into account the data pri-

36

vate to an offload process, and dealing with the distributed states of the
processes that conform the offload application. When the host receives a
checkpoint signal, it pauses the offload application, drains all the communi-
cation channels, captures a snapshot of the offload processes and the host,
and resumes the execution. Snapify can be used for checkpoint and restart,
process migration, and process swapping.

Table 6 summarizes the main features of the fail-stop checkpoint-based
solutions commented above, specifying: the supported devices, the check-
pointing granularity (application level vs. system-level) and frequency, and
whether the restart process is portable (can take place in a different machine,
using both different host and devices) and adaptable (can take place using a
different number of accelerator devices). Most of the proposals are focused
on CUDA applications, which restricts them to GPUs from a specific vendor.
Five of them use a system-level approach. System-level checkpointing sim-
plifies the implementation of a transparent solution, in which no effort from
users is needed to obtain fault tolerance support, however, it results in larger
checkpoint files and, thus, in larger overhead introduced in the application.
Moreover, system-level checkpointing binds the restart process to the same
host, thus, the restart will not be possible on different host architectures
and/or operating systems, as the checkpoint files may contain non-portable
host state. Furthermore, in order to allow the successful checkpointing of
the application, the system-level strategy forces the use of an API proxy in
CheCL, or the destruction and reconstruction of the devices context every
time a checkpoint is taken in CheCUDA and NVCR, which have a negative

influence in the checkpointing overhead.

37

Table 6: Related work overview.

SUPPORTED

CHECKPOINTING RESTART
DEVICES
B
- 0 | A
2B E 2 | 2
= % 7 | GRANULARITY FREQUENCY H E
1R s | 3
® | O 9 2
Bautista Y Application | Timer decides when data
et al. [15] level transfer originates ckpt
System level Signal triggers ckpt in
CheCUDA [16 v
¢ [16] (BLCR [18]) | next host-devs synchro.
System level Signal triggers ckpt in
CheCL [17
eCL [17] Y (BLCR [18]) | next host-devs synchro.
System level Signal triggers
NVCR [1 :
R [19 Y (BLCR [18)]) checkpoint
Laosooksathit v System level | In kernels at synchros.
et al. [20] (VCCP [23]) chosen by a model
Application Indicated by the
HeteroCkpt [21] | v
eteroCkpt [21] level user in the host code
) System level Signal triggers
S fy [22 v
napity [22] (BLCR [18)]) checkpoint
Proposal: Y Application User-defined freq. at v v
CPPC+HPL level points chosen by the tool

The solution presented in this work targets HPL applications, based on
OpenCL. Thus, this proposal is not tied to a specific device architecture or
vendor. By combining an OpenCL back-end and a host-side checkpointing
strategy, the approach provides several advantages to the checkpoint files:

their size is reduced and they are decoupled from the particular character-

38

istics and number of devices used during their generation. Moreover, the
application-level portable checkpointing further reduces the checkpoint files
size and also decouples them from the host machine. Therefore, applica-
tions can be recovered not only using a different device architecture and/or
a different number of devices, but also using a host with a different archi-
tecture and/or operating system. To the best of our knowledge, no other
work provides such portability and adaptability benefits to heterogeneous

applications.

7. Concluding remarks

This work presents a fault tolerance solution for heterogeneous applica-
tions. The proposal targets HPL applications thus, it is not tied to any
particular accelerator vendor. Fault tolerance support is obtained by using
a host-side application-level checkpointing. The host-side approach avoids
the inclusion in the checkpoint files of the device/s private state, while the
application-level strategy avoids the inclusion of not relevant host data, thus
minimizing the checkpoint files size. This approach provides portability and
efficiency, while ensuring an adequate checkpointing frequency, as most of
HPC heterogeneous applications execute a large number of short kernels.

The proposal is implemented by combining CPPC, a portable and trans-
parent checkpointing infrastructure, and HPL, a C4++ library for program-
ming heterogeneous systems on top of OpenCL. A consistency protocol, based
on synchronizations and data transfers, ensures the correctness of the saved
data. The protocol overhead is minimized by the HPL lazy copying policy

for the data transfers. The host-side application-level strategy and the com-

39

bination of CPPC and HPL maximizes portability and adaptability, allowing
failed executions to be resumed using a different number of heterogeneous
computing resources and/or different resource architecture. The ability of
applications to adapt to the available resources will be particularly useful for
heterogeneous cluster systems.

The experimental evaluation shows the low overhead of the proposed
solution, which is mainly determined by the saved state size. The restart
experiments using hosts with different operating systems, different device
architectures and different numbers of devices demonstrate the portability
and adaptability of the proposal.

Future work includes the study of the proposed solution on heterogeneous
MPI applications, which can also benefit from the use of a local recovery
strategy. Using MPI implementations that provide resilience features, a fail-
ure in one of the devices can be managed locally by one MPI process, instead

of forcing the roll-back of all the MPI processes executing the application.

Acknowledgements

This research was supported by the Ministry of Economy and Competi-
tiveness of Spain and FEDER funds of the EU (Projects TIN2013-42148-P,
TIN2016-75845-P and the predoctoral Grant of Nuria Losada ref. BES-2014-
068066), by EU under the COST Program Action 1C1305, Network for Sus-
tainable Ultrascale Computing (NESUS), and by the Galician Government
(Xunta de Galicia) and FEDER funds of the EU under the Consolidation
Program of Competitive Research (ref. GRC2013/055). Authors would like
to thank Moisés Vinas for his help and support in the use of HPL.

40

References

1]

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, D. Glasco, GPUs
and the future of parallel computing, IEEE Micro 31 (5) (2011) 7-17.

C. Di Martino, W. Kramer, Z. Kalbarczyk, R. Iyer, Measuring and
Understanding Extreme-Scale Application Resilience: A Field Study of
5,000,000 HPC Application Runs, in: IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, 2015, pp. 25-36.

G. Rodriguez, M. J. Martin, P. Gonzélez, J. Tourino, A Heuristic Ap-
proach for the Automatic Insertion of Checkpoints in Message-Passing

Codes, Journal of Universal Computer Science 15 (14) (2009) 2894-2911.

G. Rodriguez, M. J. Martin, P. Gonzélez, J. Tourino, R. Doallo, CPPC:
a compiler-assisted tool for portable checkpointing of message-passing

applications, Concurrency and Computation: Practice and Experience

22 (6) (2010) 749-766.

M. Vinas, Z. Bozkus, B. B. Fraguela, Exploiting heterogeneous paral-
lelism with the Heterogeneous Programming Library, Journal of Parallel

and Distributed Computing 73 (12) (2013) 1627-1638.

Khronos OpenCL Working Group, The OpenCL specification. Version
2.0.

M. Vinas, B. B. Fraguela, Z. Bozkus, D. Andrade, Improving OpenCL
programmability with the Heterogeneous Programming Library, in: In-
ternational Conference on Computational Science, Vol. 51, 2015, pp.

110-119.

41

8]

[11]

[12]

[13]

S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, K. Skadron,
Rodinia: A benchmark suite for heterogeneous computing, in: IEEE
International Symposium on Workload Characterization, 2009, pp. 44—
h4.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, J. S. Vetter, The Scalable Heterogeneous Comput-
ing (SHOC) Benchmark Suite, in: Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, 2010, pp.
63-74.

S. Seo, G. Jo, J. Lee, Performance characterization of the NAS Par-
allel Benchmarks in OpenCL, in: IEEE International Symposium on
Workload Characterization, 2011, pp. 137-148.

R. A. Van De Geijn, J. Watts, SUMMA: Scalable universal matrix mul-
tiplication algorithm, Concurrency-Practice and Experience 9 (4) (1997)
255-274.

M. Vinas, J. Lobeiras, B. B. Fraguela, M. Arenaz, M. Amor, J. A.
Garcia, M. J. Castro, R. Doallo, A multi-GPU shallow-water simula-

tion with transport of contaminants, Concurrency and Computation:

Practice and Experience 25 (8) (2013) 1153-11609.

C. Braun, S. Halder, H. J. Wunderlich, A-ABFT: Autonomous
Algorithm-Based Fault Tolerance for Matrix Multiplications on Graph-
ics Processing Units, in: IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), 2014, pp. 443-454.

42

[14]

[16]

[18]

[19]

A. J. Pena, W. Bland, P. Balaji, VOCL-FT: Introducing Techniques for
Efficient Soft Error Coprocessor Recovery, in: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2015, pp. 71:1-71:12.

L. Bautista-Gomez, A. Nukada, N. Maruyama, F. Cappello, S. Mat-
suoka, Low-overhead diskless checkpoint for hybrid computing systems,
in: International Conference on High Performance Computing (HiPC),

2010, pp. 1-10.

H. Takizawa, K. Sato, K. Komatsu, H. Kobayashi, CheCUDA: A Check-
point /Restart Tool for CUDA Applications, in: International Confer-

ence on Parallel and Distributed Computing, Applications and Tech-
nologies, 2009, pp. 408-413.

H. Takizawa, K. Koyama, K. Sato, K. Komatsu, H. Kobayashi, CheCL:
Transparent Checkpointing and Process Migration of OpenCL Applica-
tions, in: IEEE International Parallel Distributed Processing Sympo-
sium, 2011, pp. 864-876.

P. H. Hargrove, J. C. Duell, Berkeley lab checkpoint/restart (BLCR) for
Linux clusters, Journal of Physics: Conference Series 46 (1) (2006) 494.

A. Nukada, H. Takizawa, S. Matsuoka, NVCR: A transparent
checkpoint-restart library for NVIDIA CUDA, in: IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, 2011, pp. 104-113.

43

[20]

[21]

[23]

S. Laosooksathit, N. Naksinechaboon, C. Leangsuksan, A. Dhungana,
C. Chandler, K. Chanchio, A. Farbin, Lightweight Checkpoint Mecha-
nism and Modeling in GPGPU Environment, in: Workshop on System-
level Virtualization for High Performance Computing, Vol. 12, 2010, pp.
13-20.

S. Kannan, N. Farooqui, A. Gavrilovska, K. Schwan, HeteroCheckpoint:
Efficient Checkpointing for Accelerator-Based Systems, in: 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, 2014, pp. 738-743.

Rezaei, A. and Coviello, G. and Li, C.-H. and Chakradhar, S. and
Mueller, F.; Snapify: Capturing Snapshots of Offload Applications on
Xeon Phi Manycore Processors, in: Proceedings of the 23rd Interna-
tional Symposium on High-performance Parallel and Distributed Com-

puting, 2014, pp. 1-12.

H. Ong, N. Saragol, K. Chanchio, C. Leangsuksun, VCCP: A transpar-
ent, coordinated checkpointing system for virtualization-based cluster
computing, in: IEEE International Conference on Cluster Computing

and Workshops, 2009, pp. 1-10.

44

