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Nobody looks like what they really are on the inside. You don't. I don't. People are much more 
complicated than that. It's true of everybody. 

 
The Ocean at the End of the Lane 

by Neil Gaiman





Abstracts 

Abstract 

Frailty is a multidimensional syndrome characterised by an increased vulnerability. 

Nowadays, frailty identification is based on phenotypical features. Use of biomarkers for frailty 

identification would provide a more accurate detection of frail subjects in early stages, when 

frailty can still be potentially reverted. 

The main objective of this study was to evaluate the possible association between frailty 

and several cellular and molecular biomarkers – genomic instability, DNA damage, and DNA 

repair capacity – so that they can be proposed as frailty biomarkers. To that aim, a cross-sectional 

study was conducted in a population of older adults (aged 65 or over) classified according to their 

frailty status. 

A systematic review of the literature on genetic outcomes related to frailty was conducted 

to establish the current knowledge on the topic. Besides, the most critical issues limiting the use 

of the phosphorylated H2AX assay as DNA damage biomarker in human population studies were 

addressed.  

Results from the population study showed a significant and progressive increase of 

micronuclei in lymphocytes and phosphorylated H2AX with frailty severity, supporting their use 

for frailty identification. No association of frailty with micronuclei in buccal cells, frequency of 

mutation in T-cell receptor, comet assay, or DNA repair capacity was found.  

Resumen 

La fragilidad es un síndrome multidimensional caracterizado por una vulnerabilidad 

aumentada. Actualmente, la fragilidad se identifica basándose en características fenotípicas. El 

uso de biomarcadores para la identificación de fragilidad proporcionaría una detección más 

precisa de individuos frágiles en sus etapas iniciales, cuando puede ser revertida. 

El principal objetivo del presente trabajo fue estudiar la posible relación entre 

biomarcadores celulares y moleculares - inestabilidad genómica, daño en el ADN y capacidad de 

reparación del ADN - para su propuesta como biomarcadores de fragilidad. Para este propósito, 

se realizó un estudio transversal en ancianos (65 ó más años) clasificados según su estado de 

fragilidad. 

Se realizó una revisión sistemática de la literatura sobre biomarcadores genéticos 

relacionados con fragilidad para establecer el conocimiento actual sobre el tema. Además, se 

abordaron los puntos críticos que limitan el uso del ensayo de γH2AX en estudios poblacionales 

humanos.  

Los reultados mostraron un aumento significativo y progresivo de micronúcleos en 

linfocitos y γH2AX con el grado de fragilidad, apoyando su uso como biomarcadores. No se 

observó relación entre el estado de fragilidad y la frecuencia de micronúcleos en células bucales, 
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frecuencia de mutación en receptores de células T, ensayo del cometa o capacidad de reparación 

del ADN. 

Resumo 

A fraxilidade é unha síndrome multidimensional caracterizada por una vulnerabilidade 

aumentada. Actualmente, a identificación da fraxilidade baséase en características fenotípicas. O 

emprego de biomarcadores na identificación da fraxilidade ofrecería unha detetección máis 

precisa nas sus primeiras etapas, cando pode ser revertida. 

O obxectivo principal deste traballo foi estudar a posible relación dunha serie de 

biomarcadores celulares e moleculares - inestabilidade xenómica, dano no ADN  e capacidade de 

reparación do ADN- co estado de fraxilidade, para a súa proposta coma biomarcadores de 

fraxilidade. Para este propósito, realizouse un estudo transversal nunha población de anciás (65 

ou máis anos) clasificados segundo o seu estado de fraxilidade. 

Se realizou unha revisión sistemática da literatura sobre biomarcadores xenéticos 

relacionados coa fraxilidade, para establecer o coñecemento actual sobre o tema. Ademais, se 

abordaron os puntos críticosque limitan o uso do ensaio de γH2AX en estudos en poboacións 

humanas. 

Os resultados amosaron unha asociación significativa e progresiva entre micronúcleos en 

linfocitos e γH2AX co estado de fraxilidade, dando apoio o se uso coma biomarcadores. Non se 

observou asociación do estado de fraxilidade con micronúcleos en células bucais, frecuencia de 

mutación dos recepteores das células T, ensaio do cometa ou capacidade de reparación do ADN.



Extended summary 

Extended summary in Spanish - Resumen amplio 

El envejecimiento poblacional es un fenómeno que en la actualidad se da en las 

sociedades de todo el mundo. Es debido principalmente a dos causas: un descenso de la fertilidad 

y un aumento de la esperanza de vida. Esta situación es especialmente pronunciada en Europa, en 

donde la fertilidad se sitúa por debajo del nivel necesario para regeneración poblacional (alrededor 

de 2.1 hijos por mujer), mientras que se espera que la esperanza de vida en el momento del 

nacimiento aumente en 6-7 años en 2045-2050, situándose cerca de los 85 años. En este momento, 

el porcentaje de personas mayores de 65 años en Europa es el mayor en todo el mundo, alcanzado 

el 25% de la población. A su vez, se estima que África alcanzará porcentajes similares en 2050, 

mientras Europa podría alcanzar el 35% de acuerdo a las estimaciones de las Naciones Unidas. 

Este fenómeno supondría un cambio dramático en la estructura demográfica de las pirámides 

poblacionales, siendo el grupo de edad de 65-80 años el más numeroso en 2060. 

Sin embargo, el aumento de la longevidad no necesariamente lleva consigo un estado de 

buena salud y bienestar. Muy al contrario, en muchas ocasiones el envejecimiento va acompañado 

de un aumento del riesgo de mala salud, aislamiento social y dependencia, lo que se traduce en 

una pérdida de calidad de vida. Es por ello que es necesario un cambio sistemático de las 

sociedades, no solo en los sistemas de sanidad pública sino en todos los sectores sociales, para 

afrontar los desafíos y el aumento de los costes que supone el envejecimiento de la población. En 

este contexto, Europa ha seguido dos principales líneas de acción: (i) el desarrollo de iniciativas 

que promuevan el envejecimiento saludable y (ii) la mejora de las metodologías de identificación 

de individuos mayores vulnerables, para prevenir o disminuir el impacto del declive cognitivo y 

funcional, y para promover la especialización y personalización de la asistencia médica. 

A nivel biológico, el proceso de envejecimiento se caracteriza por una acumulación progresiva 

de un amplio rango de alteraciones moleculares y celulares. Por esta razón y bajo el marco del 

segundo curso de acción previamente mencionado, el concepto de fragilidad ha surgido en los 

últimos años como una medida de la edad biológica más precisa que el tradicional concepto de 

edad cronológica. La fragilidad es un importante síndrome geriátrico cuya prevalencia aumenta 

con la edad. Es una condición que supone un incremento del riesgo de aparición de efectos 

adversos para la salud en adultos mayores, incluyendo discapacidad, dependencia y finalmente 

mortalidad.  

La fragilidad en sus primeras etapas es potencialmente reversible, por lo que su 

identificación temprana resulta de gran importancia. En la actualidad, no existe un consenso en 

cuanto a la definición de fragilidad o a los criterios específicos para identificar a personas frágiles, 

existiendo múltiples índices y criterios para ello. Sin embargo, son dos los criterios más 

comúnmente aceptados y utilizados para la identificación del estado de fragilidad en personas de 
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65 años o más: El criterio fenotípico, propuesto por Fried y colaboradores en 2001, y el modelo 

de acumulación de déficits descrito por Mitnitski y colaboradores en el mismo año.  

El criterio de Fried se basa en la presencia o ausencia de cinco parámetros fenotípicos: (i) 

pérdida de peso involuntaria, (ii) actividad física reducida, (iii) reducción de la velocidad al 

caminar, (iv) pérdida de fuerza muscular medida como fuerza de prensión, y (v) fatiga 

autorreportada. Aquellos individuos que presentan tres o más de estos parámetros se clasifican 

como frágiles, los que presentan uno o dos, como pre-frágiles, y aquellos que no presentan 

ninguno se consideran no frágiles o robustos. Es por lo tanto un método muy sencillo de 

implementar y aplicar, y por esta razón se utiliza de forma muy amplia tanto en investigación 

como en clínica.  

Por otro lado, Mitnitski, junto con Rockwood y colaboradores, definen la fragilidad como 

el efecto acumulativo de una serie de déficits que ocurren con la edad, incluyendo síntomas, 

signos, valores de análisis clínicos anormales, enfermedades y discapacidades. Se trata de un 

índice cuantitativo en el cual, cuanto mayor es el número de déficits que presente el individuo, 

maor será la probabilidad de ser frágil. 

La fragilidad tiene un fuerte componente biológico, afectando a multitud de sistemas y 

procesos fisiológicos; sin embargo, su etiología es todavía desconocida. Esto se debe en parte a 

que no hay una única alteración, sino que todo parece indicar que se trata de una red 

interconectada de multitud de anomalías a diferentes niveles (celular, sistémico, del organismo) 

los que llevan a un estado de fragilidad. A nivel celular, la fragilidad se ha relacionado 

previamente con la acumulación de daño genético como consecuencia de alteraciones en los 

mecanismos de reparación del ADN. La inestabilidad genómica es una de las posibles 

consecuencias de esta acumulación de daño. Por lo tanto, un mayor conocimiento de los procesos 

a nivel celular podría aportar una potencial herramienta para la detención temprana de la 

fragilidad, ya que el uso de biomarcadores permitiría detectar individuos vulnerables a desarrollar 

un estado de fragilidad con anterioridad a la aparición de los signos clínicos. 

El principal objetivo de este estudio ha consistido en la evaluación de la posible 

asociación existente entre el estado de fragilidad en personas mayores y varios biomarcadores 

celulares y moleculares, para que puedan ser propuestos para su utilización como biomarcadores 

de fragilidad. Para ello, se realizó un estudio epidemiológico transversal en una población de 

adultos mayores (de 65 años o más) clasificados como frágiles, pre-frágiles o no frágiles, de 

acuerdo con los criterios fenotípicos propuestos por Fried et al. (J. Gerontol. A Biol. Sci. Med. 

Sci. 2001; 56:M146-156). Además de la determinación de los biomarcadores, se evaluó también 

la influencia de parámetros clínicos (estado nutricional y estado cognitivo). 



Extended summary 

Con la finalidad de conocer el estado actual de la cuestión y para entender en mayor 

profundidad las bases biológicas de la fragilidad, en el Capítulo II de esta tesis se llevó a cabo 

una revisión bibliográfica sistemática de estudios poblacionales en personas de 60 años o más 

publicados hasta la fecha en los que se estudia la posible asociación entre fragilidad y 

biomarcadores de estrés oxidativo, alteraciones genómicas, y reparación del ADN. Como 

resultado de la búsqueda se encontraron 26 estudios, publicados entre 2006 y 2017, que cumplían 

los criterios de inclusión y exclusión establecidos. De estos 26 estudios, 8 evaluaron 

biomarcadores de estrés oxidativo, mientras que 17 incluían biomarcadores genómicos. Además, 

un estudio evaluó biomarcadores tanto de estrés oxidativo, como genómicos y de reparación del 

ADN.  

De los nueve estudios que relacionan fragilidad y estrés oxidativo, cuatro midieron la 

capacidad celular antioxidante total o de algún antioxidante específico. Mientras que siete de ellos 

midieron los efectos directos de las ROS (reactive oxygen species) en lípidos (71%), proteínas 

(57%), y ADN (29%). Además, en dos de ellos se determinaron los niveles d-ROM. (derivatives 

of reactive oxygen metabolites). En cuanto a la relación entre biomarcadores genómicos y 

fragilidad, de los 17 estudios incluidos en la revisión, seis de ellos (35.3%) evaluaron el contexto 

genético de individuos frágiles, incluyendo variantes tanto del ADN nuclear (tres estudios) como 

mitocondrial (otros tres estudios), ocho (47%) investigaron la relación entre inestabilidad 

genómica y fragilidad, y tres (17%) estudiaron las posibles características epigenéticas del estado 

de fragilidad. De los ocho estudios que evaluaron biomarcadores de inestabilidad genómica, siete 

analizaron la longitud telomérica, el octavo estudio analizó la frecuencia de micronúcleos (MN) 

en linfocitos.  

Los resultados de esta revision mostraron que varios biomarcadores de estrés oxidativo, 

incluyendo sistemas antioxidantes, aumento de los niveles de peroxidación lipídica y daño 

oxidativo en el ADN, así como metilación del ADN y algunos polimorfismos genéticos 

específicos, están asociados con el estado de fragilidad en personas mayores. Por el contrario, la 

inestabilidad genómica, o al menos los dos biomarcadores estudiados hasta el momento – MN y 

longitud telomérica – no parece estar asociada a la fragilidad. El único estudio que ha evaluado 

la posible relación entre fragilidad y reparación del ADN tampoco encontró ninguna asociación.  

A pesar del número de alteraciones orgánicas inicialmente asociadas con la fragilidad, 

todavía hay muy pocos estudios y se limitan a unas pocas de las posibles dianas celulares. Por lo 

tanto es necesaria una mayor investigación encaminada a la exploración de estas alteraciones 

antes de ser utilizadas como biomarcadores para la identificación de individuos frágiles. Sin 

embargo, dada la fuerte relación entre la inestabilidad genómica, la capacidad de reparación del 

ADN y la edad, así como enfermedades relacionadas con el envejecimiento, no se debería 

descartar esta línea de investigación. 
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En base a ello, para el estudio epidemiológico se decidió evaluar biomarcadores que 

atendieran a diferentes dianas a nivel celular. Para el estudio de la inestabilidad genómica se eligió 

el ensayo de MN, ya que la frecuencia de estas alteraciones es un biomarcador de inestabilidad 

genómica bien establecido. Este ensayo se realizó en linfocitos, consideradas buenas células 

indicadoras (reveladoras de lo que sucede en el resto del organismo por sus propiedades 

circulantes), y en células de exfoliado bucal, obtenidas mediante un procedimiento no invasivo. 

Además, en el estudio de la mucosa bucal se evalúan otras alteraciones (citoma) que han sido 

previamente utilizadas como biomarcadores de daño en el ADN (yemas nucleares), defectos en 

la citoquinesis (células binucleadas), alteraciones en el potencial de proliferación (frecuencia de 

células basales), y anomalías en la muerte celular (células picnóticas, cariorréxicas, cariolíticas o 

con alteraciones en la condensación de la cromatina).  

El estudio de la relación entre fragilidad y mutagenicidad se llevó a cabo mediante el 

ensayo de mutación del receptor de las células T (TCR). La frecuencia de mutación en el TCR se 

ha utilizado previamente como biomarcador de biomonitorizacion y como predictor de riesgo de 

cáncer. El TCR es un complejo formado por proteínas integrales de la membrana plasmática que 

participa en la activación de las células T en respuesta a un antígeno. Mutaciones en los genes 

TCR pueden resultar en la expresión fenotípica de células T defectuosas para TCR, y por lo tanto 

en una deficiencia en la respuesta de las células T.  

El ensayo del cometa y el ensayo de fosforilación de la histona H2AX, se emplearon para 

estudiar la posible relación entre fragilidad y daño en el ADN. El ensayo del cometa está basado 

en una electroforesis en microgel de una suspensión celular tras su lisis. El material genético que 

presente roturas será capaz de migrar a través de los poros del gel por su carga negativa, 

adquiriendo finalmente la célula la forma de un cometa. Este ensayo es capaz de detectar un 

amplio espectro de lesiones primarias en el ADN mientras que la γH2AX identifica un tipo de 

daño específico, las roturas de doble cadena. Como respuesta a las roturas de doble cadena tiene 

lugar la fosforilación del extremo C-terminal de las histonas H2AX que se encuentran en las 

proximidades de las roturas, como un mecanismo de respuesta temprana al daño en el ADN. De 

esta forma, evaluando los niveles de γH2AX es posible cuantificar las roturas de doble cadena en 

el ADN y/o estudiar la respuesta temprana a un tipo específico de daño genético. 

Finalmente, se decidió estudiar la posible relación de la fragilidad con alteraciones en la 

capacidad de reparación del ADN, utilizando para ello el ensayo de competencia de reparación, 

basado en el tratamiento de las células (linfocitos periféricos) con un agente genotóxico conocido 

(bleomicina). Tras permitir la reparación durante un periodo de tiempo prefijado, se evalúa el 

daño remanente en las células mediante el ensayo del cometa. 
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Sin embargo, para poder llevar a cabo el ensayo γH2AX fue necesario realizar un estudio 

previo para determinar las condiciones experimentales óptimas para su aplicación en estudios 

poblaciones, debido a la gran diversidad de condiciones empleadas en los estudios recogidos en 

la bibliografía, que dificultan la reproducibilidad del mismo y la comparación de los resultados 

entre diferentes laboratorios. Este trabajo se recoge en el Capítulo III de esta Tesis. Se testó el uso 

de linfocitos frescos vs. congelados, así como de linfocitos estimulados vs. no estimulados, frente 

a diferentes concentraciones de cuatro agentes genotóxicos con diferentes mecanismos de acción: 

bleomicina (BLM), agente radiomimético que actúa de forma directa; camptotecina (Campt), 

genotóxico indirecto que causa roturas de cadena simple que se convierten en roturas de doble 

cadena durante la replicación; actinomicina D (Act-D), agente intercalante; y 

metilmetanosulfonato (MMS), agente alquilante que produce roturas de cadena simple. 

En los resultados obtenidos se pudo observar que, en el caso de la BLM, para todas las 

condiciones testadas (linfocitos frescos y congelados, estimulados y no estimulados) se obtuvo 

un incremento del %γH2AX respecto al control negativo. Los resultados fueron similares para 

los linfocitos frescos tratados con Campt y Act-D. Sin embargo, en los linfocitos congelados 

únicamente se observó un incremento significativo en las células estimuladas tratadas con la 

concentración más alta de Campt y todas las concentraciones de Act-D. En el caso del MMS, sólo 

los linfocitos congelados estimulados tratados con la mayor concentración mostraron un aumento 

significativo del %γH2AX, no así los no estimulados ni los frescos. 

De acuerdo con los resultados obtenidos, tanto los linfocitos estimulados como los no 

estimulados se pueden emplear en ensayo de fosforilación de la histona H2AX. Sin embargo, 

cuando no se estimulan, las células se encuentran en estado quiescente y, por lo tanto, se debe 

tener en cuenta que las roturas de doble cadena, o más exactamente la respuesta temprana de 

reparación que se está evaluando, son consecuencia del daño directo sobre el ADN, mientras que 

en células estimuladas, que se encuentran en proliferación, las roturas de doble cadena que se 

están analizando puede formarse a partir de otros tipos de daño que se hacen detectables durante 

la división celular. Por lo tanto, la decisión de estimular o no los linfocitos antes de realizar el 

ensayo de la γH2AX se debe de tomar en función del tipo de daño que quiera evaluar o que se 

espere en los individuos del estudio. 

Por otra parte, en los estudios poblaciones con humanos no siempre es posible realizar la 

recogida de muestras y su procesado de forma inmediata. En estos casos, la criopreservación 

parece ser la mejor solución a este problema. De acuerdo a los resultados obtenidos en este 

estudio, cuando se utilizan linfocitos congelados para el análisis de la γH2AX, la estimulación de 

las células es necesaria, ya que el daño basal observado en las células congeladas sin estimular es 

demasiado alto, probablemente como consecuencia del proceso de congelación y descongelación. 

En base a todos estos resultados, se decidió utilizar en el estudio poblacional linfocitos de sangre 
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periférica congelados y estimulados para el análisis de la fosforilación de la histona H2AX como 

indicador de daño persistente en el ADN. 

Como se mencionó con anterioridad, en el Capítulo IV de esta tesis se estudió la posible 

relación del estado de fragilidad con una serie de indicadores genéticos que han sido previamente 

empleados como biomarcadores, en una población de 257 personas de 65 años o más, a los cuales 

se les clasificó como frágiles (34%), pre-frágiles (50.6%) o no frágiles (15.4%), atendiendo al 

criterio fenotípico de Fried et al. Además, se evaluó el estado nutricional y el estado cognitivo de 

todos los participantes en el estudio, mediante el uso de las escalas Mini Nutritional Assessment-

Short Form y la versión española del Mini-Mental State Examination, respectivamente. 

La implicación de la inestabilidad genómica, como resultado de un desequilibrio entre el 

daño producido en el ADN y los mecanismos de reparación, en fenotipos relacionados con la edad 

ha sido previamente descrita. Además, el ensayo de MN es uno de los más comúnmente utilizados 

para evaluar daños cromosómicos, siendo la frecuencia de MN un biomarcador de inestabilidad 

genómica ampliamente reconocido y empleado en diferentes tejidos. El ensayo de MN con 

bloqueo de la citoquinesis en linfocitos de sangre periférica se utiliza habitualmente para la 

evaluación de daño en el ADN en estudios de biomonitorización de humanos expuestos a agentes 

genotóxicos. Además, la frecuencia de MN está fuertemente asociada al proceso de 

envejecimiento, y se han observado incrementos de este biomarcador en enfermedades 

relacionadas con la edad. Por otra parte, el ensayo de MN en células bucales es un interesante 

candidato para el estudio de poblaciones humanas debido a que, además de permitir la 

identificación de las anomalías indicativas de otros tipos de alteraciones celulares previamente 

mencionadas, presenta un carácter no invasivo para la toma de muestras.  

Los resultados obtenidos mediante análisis estadísticos univariantes mostraron un 

incremento progresivo de la frecuencia de MN en linfocitos y células bucales binucleadas con el 

estado de fragilidad. Por el contrario, se observó a su vez un descenso de la frecuencia de células 

bucales picnóticas en el grupo frágil respecto a los otros dos grupos, y de las células cariolíticas 

respecto al grupo de no frágiles. Además, se obtuvieron incrementos altamente significativos en 

la frecuencia de MN en linfocitos en individuos positivos para el criterio “baja actividad física”. 

Los análisis multivariantes, ajustando por edad, sexo y consumo de tabaco, confirmaron los 

resultados anteriores. 

Por lo tanto, este estudio muestra una posible asociación entre la frecuencia de MN en 

linfocitos con el estado de fragilidad, al contrario que el único estudio relacionado hasta la fecha. 

Además, el incremento en la frecuencia de células bucales binucleadas podría indicar a defectos 

de la citoquinesis en individuos frágiles, mientras que el descenso de las células picnóticas y 

cariolíticas muestra alteraciones en la muerte celular en individuos frágiles. Todo esto, junto al 
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hecho de que en nuestro estudio no se encontraron células basales, sugiere que estos individuos 

presentan una menor capacidad de regeneración de la mucosa bucal. 

El estudio de la posible influencia del estado nutricional y el estado cognitivo sobre los 

parámetros estudiados mostró que los individuos malnutridos o en riesgo de malnutrición 

presentaban valores significativamente más altos de MN en linfocitos y células bucales 

binucleadas, y frecuencias de células picnóticas significativamente menores, que aquellos con un 

estado nutricional normal. Resultados equivalentes se obtuvieron en individuos con deterioro 

cognitivo respecto a los sujetos con un estado cognitivo normal. Esto sugiere una posible 

influencia tanto del estado nutricional como del estado cognitivo en los resultados obtenidos en 

el estudio de la relación con el estado de fragilidad. 

Los datos obtenidos del estudio de mutagenicidad, daño primario del ADN y capacidad 

de reparación celular no mostraron asociación con el estado de fragilidad. Este es el primer 

estudio, para nuestro conocimiento, que evalúa la relación de estos dos parámetros con la 

fragilidad, y el segundo en evaluar la capacidad de reparación del ADN. A pesar de que los 

resultados de la capacidad de reparación muestran una tendencia a descender con la severidad de 

la fragilidad, no se llegan a observar diferencias significativas, lo que concuerda con los resultados 

obtenidos previamente. 

El análisis de los niveles de γH2AX mostró una asociación con la fragilidad. Además al 

estudiar su relación con cada uno de los criterios de fragilidad, se observaron resultados paralelos 

a los obtenidos en el análisis de MN, obteniéndose una importante contribución de la actividad 

física, velocidad de desplazamiento y fuerza de prensión, mientras que la pérdida de peso 

involuntaria y el agotamiento apenas contribuyen a la variación del %γH2AX y a la frecuencia de 

MN. Estos resultados dan mayor apoyo a la relación entre el daño genético fijado y la fragilidad, 

sugiriendo además que una combinación de criterios fenotípicos y biomarcadores puede mejorar 

la identificación de la fragilidad.Considerando conjuntamente los resultados de la frecuencia de 

MN en linfocitos y el ensayo γH2AX, la hipótesis de la existencia de una conexión entre la 

inestabilidad genómica, entendida como daño genético fijado, y el estado de fragilidad parece 

plausible y apoyada por los datos de este trabajo. Puesto que ambos biomarcadores, las tasas de 

γH2AX y MN, aumentaron significativa y progresivamente con la fragilidad, podrían proponerse 

como herramientas para la identificación o predicción de fragilidad. Sin embargo, la validación 

posterior de estos resultados es necesaria para su confirmación. Por otra parte, los niveles de 

γH2AX resultaron alterados tanto en sujetos pre-frágiles como en frágiles, mientras que la 

frecuencia de MN únicamente se incrementó en el grupo de frágiles. En consecuencia, la 

combinación de ambos parámetros podría proporcionar información útil sobre la severidad de la 

fragilidad, permitiendo a los clínicos distinguir entre los estados de pre-fragilidad y fragilidad y 
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ayudándoles así a proporcionar cuidados personalizados. Por tanto, los resultados del presente 

trabajo pueden contribuir a mejorar las estrategias de cuidados terapéuticos en pacientes mayores. 

Sin embargo, se requiere profundizar en la investigación en este sentido para probar si estos 

resultados son consistentes y reproducibles en diferentes poblaciones y mayores tamaños de 

muestra, para estandarizar estos biomarcadores antes de que puedan ser utilizados en clínica, y 

para entender completamente la influencia del deterioro cognitivo sobre estos parámetros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index 

Index 

LIST OF ABBREVIATIONS I 

LIST OF FIGURES V 

LIST OF TABLES IX 

 

CHAPTER I. Introduction 1 

I.1. Introduction 3 

I.2. Frailty 5 

  I.2.1. Concept and history 5 

     I.2.2. Prevalence 6 

     I.2.3. Frailty identification 6 

     I.2.4. Biological basis of frailty 9 

I.3. Biomarkers 10 

  I.3.1. Genomic instability 10 

           I.3.1.1. The cytokinesis-block micronucleus assay 11 

           I.3.1.2. The buccal MN cytome assay 12 

  I.3.2. T-cell receptor mutation assay 14 

  I.3.3. Alkaline comet assay 15 

  I.3.4. γH2AX assay 16 

     I.3.5. DNA repair competence assay 18 

 

OBJECTIVES 21 

 

CHAPTER II. Systematic review on oxidative stress, genomic features and DNA repair in 
frail elderly 25 

II.1. Introduction 27 

II.2. Material and Methods 28 

  II.2.1. Bibliographic search 28 

     II.2.2. Selection criteria 28 

II.3. Results and Discussion 30 

  II.3.1. Oxidative stress biomarkers 32 

  II.3.2. Genomic biomarkers 40 

        II.3.2.1. Individual genetic background 41 

        II.3.2.2. Genomic instability 47 

        II.3.2.3. Epigenetics 48 

  II.3.3. DNA repair ability 49 

II.4. Conclusions 50 



María Sánchez Flores   

 

 

CHAPTER III. γH2AX assay as DNA damage biomarker for human population studies 53 

III.1. Introduction 55 

III.2. Material and Methods 57 

  III.2.1. Chemicals 57 

     III.2.2. Leucocyte isolation and processing 57 

  III.2.3. Treatments 58 

  III.2.4. γH2AX analysis 59 

     III.2.5. Statistical analysis 59 

III.3. Results  60 

III.4. Discussion  65 

III.5. Conclusions 70 

 

CHAPTER IV. Exploring genetic outcomes as biomarkers 71 

IV.1. Introduction 73 

IV.2. Material and Methods 75 

   IV.2.1. Subjects and sample collection 75 

      IV.2.2. Frailty criteria 78 

   IV.2.3. Clinical assessment 78 

   IV.2.4. Biological sample collection and leucocyte isolation 79 

      IV.2.5. Lymphocyte miscronucleus assay 79 

      IV.2.6. Buccal micronucleus assay 80 

      IV.2.7. T-cell receptor mutation assay 81 

   IV.2.8. Alkaline comet assay 81 

   IV.2.9. γH2AX assay 82 

      IV.2.10. DNA repair competence assay 82 

      IV.2.11. Statistical analysis 83 

IV.3. Results  84 

      IV.3.1. Micronucleus evaluation in lymphocytes and buccal cells 84 

      IV.3.2. Other genetic outcomes 90 

IV.4. Discussion 93 

      IV.4.1. Micronucleus evaluation in lymphocytes and buccal cells 93 

      IV.4.2. Other genetic outcomes 97 

IV.5. Conclusions 100 

 

CONCLUSIONS 103 

REFERENCES 107 



List of abbreviations 

I 

 

List of Abbreviations 

%RC percentage of repair capacity 

γH2AX phosporilated H2AX 

53BP1 p53 binding protein 1 

8-OHdG 8-hidroxy-2’-deoxyguanosine 

Act-D Actinomycin 

ADL  Activities of daily living 

ATC  Anatomical therapeutic chemical 

ATM  Ataxia telangiectasia mutated 

BAP Biological antioxidant potential 

BH4 5,6,7,8-tetrahydrobiopterin  

BLM  Bleomycin 

BMI  Body mass index 

BMNCyt  Buccal micronucleus cytome 

BN Binucleated cells 

Campt Camptothecin 

CBMN  Cytokinesis-block micronucleus 

CES-D Center for epidemiological studies-depression 

cf-DNA Cell free DNA 

CHS Cardiovascular health study 

CI  Confidence interval 

Cond-chrom-B Condensed chromatin cells in buccal cells 

CPT Cell preparation tube 

Cyt-B Cytochalasin-B 

DDR DNA damage response 

DMSO Dimethyl sulfoxide 

d-ROM  Derivatives of reactive oxygen metabolites 

DSB Double strand breaks 

E Exhaustion 

EDTA  Ethylenediaminetetraacetic acid 

ELISA  Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting 

FBS Foetal bovine serum 

FI  Frailty Index 

FITC  Fluorescein isothiocyanate 

FRAIL  Fatigue, Resistance, Ambulation, Illness and Loss 



María Sánchez Flores   

 

II 

 

GDS Geriatric Depression Scale 

GI  Genomic instability 

GSH Glutathione, reduced glutathione 

GSSG Glutathione disulfide, oxidized glutathione 

HARP Hospital admission risk profile 

HAS Healthy ageing sites 

HNE 4-hidroxy-2,3-nonenal 

HPLC  High performance liquid chromatography 

HR Homologous recombination 

IADL  Instrumental activities of daily living 

IAGG  International Association of Gerontology and Geriatrics 

ICAM -1 Intracellular adhesion molecule-1 

iPF2 Isoprostane F2  

LC  Liquid chromatography 

LGS Low grip strength 

LINE-1  Long interspersed nuclear elements 1 

LPA  Low physical activity 

LpPLA-2  Lipoprotein phospholipase A2 

MCP-1 Monocyte chemoattractant protein-1 

MDA  Malondialdehyde 

MDC1 Mediator of DNA damage check point 1 

MHC  Major histocompatibility complex 

MLTA  Minnesota Leisure Time Activity 

MMS  Methyl methanesulfonate 

MMSE  Mini Mental State Examination 

MN  Micronucleus 

MNA-SF Mini nutritional assessment-short form 

MN-B  Micronucleus in buccal cells 

MN-L  Micronucleus in lymphocytes 

MR  Mean ratio 

MRN  MRE11-RAD50-NBS1 complex 

MS Mass spectrometry 

mtDNA  Mitochondrial DNA 

na Not available 

NBUD Nuclear buds 

NHEJ Non-homologous end joining 

PBL Peripheral blood lymphocytes 



List of abbreviations 

III 

 

PBS Phosphate-buffered solution 

PE Phycoerythrin 

PHA Phytohaemagglutinin 

PI Propidium iodide 

PMA  phorbol 12-myristate 13-acetate 

qPCR Quantitative PCR 

RC Repair capacity  

ROS Reactive oxygen species 

RPMI  Roswell Park Memorial Institute Mmeédium 

SI Smoking index 

SNP Single nucleotide polymorphisms 

SOF Study of Osteoporotic Fractures 

SSB Single strand breaks 

SWT Slow walking time 

T/S ratio Mean telomere repeat copy to single gene copy number 

TBARS Thiobarbituric binding acid reactive species 

TCR T-cell receptor 

TCR-Mf  TCR mutation frequency 

TDNA  DNA in the comet tail 

TL  Telomere length 

TTL  Total thiol levels 

UWL  Unintentional weight loss 

Vit-E  Vitamin E 

WHO  World Health Organisation  





 List of figures 

V 

 

List of Figures 

FIGURE I.1. Age structure of the population in 2013 (dark bars) and 2060 (light bars), in the 28 

countries of the European Union (modified from The 2015 Ageing Report, Underlying 

Assumptions and Projection Methodologies, Joint Report prepared by the European 

Commission (DG ECFIN) and the Economic Policy Committee (AWG), European 

Economy Series 8/2014).  

FIGURE I.2. Frailty biological levels. 

FIGURE I.3. Micronuclei formation from a whole chromosome or chromosome fragments 

(modified from Fenech et al., 2007). 

FIGURE I.4. Fluorescence microscopy image of a binucleated lymphocyte with a micronucleus. 

FIGURE I.5. Fluorescence microscopy image of a micronucleus in buccal cells. 

FIGURE I.6. Diagrammatic representation of the different layers and cell types conforming the 

oral epithelium (source: Thomas et al., 2009).  

FIGURE I.7. Diagrammatic representation of the structure of TCR/CD3 complex, involved in 

antigen recognition and T-cell activation. 

FIGURE I.8. Fluorescence microscopy image of leucocyte nucleoids after comet assay: A) not 

damaged nucleoid, B) mildly damaged nucleoid, C) highly damaged nucleoid. 

FIGURE I.9. Scheme of H2AX phosphorylation as response to double strand breaks. ATM, Ataxia 

telangiectasia mutated. (modified from Hoeller and Dikic, 2009). 

FIGURE  II.1.  Flow chart of the systematic review conducted. *One paper (Collerton et al., 2012) 

addressed the three aspects considered in this review. 

FIGURE II.2. Geographical distribution of the studies included in this systematic review, 

according to the affiliation of the first author. 

FIGURE II.3. Distribution of studies regarding the size of the population analysed. 

FIGURE II.4. Distributrion of studies regarding the frailty criteria used. FI, Frailty Index. 

FIGURE III.1.  Scheme of H2AX phosphorylation as response to double strand breaks and its 

involvement in recruitment of the proteins MDC1 (mediator of DNA damage check 

point), 53BP1 (p53 binding protein 1) and MRN (MRE11-RAD50-NBS1) complex in the 

early DNA damage response. ATM, Ataxia telangiectasia mutated. 

FIGURE III.2.  BD Vacutainer® CPT™ tubes: empty (left), after collecting peripheral whole blood 

(middle), and after centrifugation (right) showing the location of plasma, peripheral blood 



María Sánchez Flores   

 

VI 

 

mononuclear cell (PBMC) buffy coat, gel plug and red blood cells (RBCs) and 

granulocytes layers. 

FIGURE III.3.  γH2AX-Alexa Fluor 488/PI dot plot showing the regions of negative cells (a) and 

positive cells (b) for phosphorylated H2AX, in a control cell population (left) and cells 

treated with BLM (right). 

FIGURE III.4. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated with 

BLM. Negative control: dH2O. **P<0.01, significant difference with regard to the control 

(Mann–Whitney U-test). 

FIGURE III.5. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved PBL treated 

with BLM. Negative control: dH2O. *P<0.05; **P<0.01, significant difference with 

regard to the control (Mann–Whitney U-test). 

FIGURE  III.6. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated with 

Campt. Negative control: DMSO. *P<0.05; **P<0.01, significant difference with regard 

to the control (Mann–Whitney U-test).  

FIGURE  III.7. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved PBL treated 

with Campt. Negative control: DMSO. *P<0.05; **P<0.01, significant difference with 

regard to the control (Mann–Whitney U-test).  

FIGURE  III.8. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated with Act-

D. Negative control: DMSO. **P<0.01, significant difference with regard to the control 

(Mann–Whitney U-test).  

FIGURE  III.9. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved PBL treated 

with Act-D. Negative control: DMSO. **P<0.01, significant difference with regard to the 

control (Mann–Whitney U-test).  

FIGURE  III.10. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated with 

MMS. Negative control: dH2O.  

FIGURE  III.11. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved PBL 

treated with MMS. Negative control: dH2O. *P<0.05, significant difference with regard 

to the control (Mann–Whitney U-test).  

FIGURE  III.12. Comparison between the basal γH2AX levels in both negative controls used 

(dH2O and DMSO) for all the experimental conditions tested in this study. **P<0.01, 

significant difference with regard to the corresponding fresh sample; ##P<0.01, #P<0.05, 

significant difference with regard to the cryopreserved unstimulated sample (Mann–

Whitney U-test). 



 List of figures 

VII 

 

FIGURE  IV.1. CD3-FITC / CD4-PE dot plot showing the mutant window (R4) in the 

determination of TCR mutation frequency. 

FIGURE  IV.2. Micronuclei in lymphocytes (MN-L) frequency in the older adult population, 

according to each frailty criterion (Fried et al., 2001). The number of individuals included 

in each group is indicated inside each rod. *P<0.05, **P<0.001, significant difference 

with regard to negative (Student's t-test). Bars represent mean standard error. UWL: 

unintentional weight loss; E: exhaustion; LPA: low physical activity; SWT: slow walking 

time; LGS: low grip strength. 

FIGURE  IV.3. Percentage of H2AX phosphorylation in the older adult population, according to 

each frailty criterion (Fried et al., 2001). The number of individuals included in each 

group is indicated inside each rod. Bars represent mean standard error. **P<0.01, 

*** P<0.001, significant difference with regard to negative (Student's t-test). UWL: 

unintentional weight loss; E: exhaustion; LPA: low physical activity; SWT: slow walking 

time; LGS: low grip strength. 

FIGURE  IV.4. Relationship between frailty and genetic outcomes analysed in the study 

population. Biomarkers of mutagenicity, primary DNA damage and cellular repair 

capacity do not show differences according to frailty status. MN frequency discriminates 

between non-frail and frail subjects, meanwhile H2AX levels are different in non-frail, 

pre-frail and frail groups. A combination of both MN and γH2AX rates shows potential 

to be employed in frailty identification.





 List of Tables 

IX 

 

List of Tables 

TABLE  II.1 . Studies assessing oxidative stress biomarkers. 

TABLE  II.2. Studies assessing genomic biomarkers. 

TABLE  IV.1. Associations of retired older people and nursing homes. 

TABLE  IV.2. Description of the study population. 

TABLE  IV.3. Fried frailty criteria in the population of study [N (%)]. 

TABLE  IV.4. Results of micronuclei evaluation in lymphocytes and buccal cells in the study 

group, classified according to frailty status (univariate analysis). 

TABLE  IV.5. Effect of frailty status on MN tests parameters in lymphocytes and buccal cells; 

models adjusted by age, sex, BMI, and smoking habit. 

TABLE  IV.6. Effect of nutritional status and cognitive status on MN tests parameters in 

lymphocytes and buccal cells; models adjusted by age, sex, BMI, and smoking habit. 

TABLE  IV.7. Results of biomarkers analyzed in the study group, classified according to frailty 

status (univariate analysis). 

TABLE  IV.8. Effect of frailty status on the biomarkers analyzed; models adjusted by age, sex, and 

smoking habits.





 

 

 

Chapter I. 

 

 
Introduction.





I-Introduction 

3 
 

1. Introduction 

The phenomenon known as population ageing is rapidly occurring at a global level. This 

process is due to two main causes: the decline of fertility and the rise of life expectancy. This 

situation is especially pronounced in Europe, where fertility is nowadays below the level needed 

for the replacement of the population (around 2.1 births per woman) whereas life expectancy at 

birth is projected to rise in 6-7 years by 2045-2050 (from 77.2 years in 2010-2015). At present, 

the percentage of population aged 65 or over in Europe is the highest in the world (25%); however, 

the rapid ageing is not a phenomenon exclusive of Europe. It is expected that all regions of the 

world, with the exception of Africa, will reach similar percentages of population aged 65 or over 

by 2050, while Europe could reach 35% (United Nations, 2017). In this context, the 2015 Ageing 

Report from the European Commission, predicts a dramatic change in the structure of 

demographic population pyramids. In 2013 the most numerous cohorts were reported to be those 

around 45 years old, for both males and females. This will change in 2060 in favour of the older 

people groups (65-80 years old) (Figure I.1). 

 

FIGURE I.1. Age structure of the population in 2013 (dark bars) and 2060 (light 
bars), in the 28 countries of the European Union (modified from The 2015 Ageing 
Report, Underlying Assumptions and Projection Methodologies, Joint Report 
prepared by the European Commission (DG ECFIN) and the Economic Policy 
Committee (AWG), European Economy Series 8/2014). 
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This increase in longevity does not necessarily mean prolonged health-span and welfare. 

On the contrary, in many cases old age comes with a high risk of social isolation, poor health and 

financial privation, accompanied with limited access to affordable, high-quality health care and 

social services. For this reason, a systematic change in all societies is needed. A comprehensive 

response, not only in the public-health system but in all social sectors, is required to face the 

challenges and increased expenditures due to the population ageing, to ensure that the strategies 

proposed to assist the wellbeing in old age and the healthy ageing process can extend to everyone, 

regardless where they live or the socioeconomic group they belong to.  

In order to achieve this goal, in the last years Europe has followed two main courses of 

action: (i) developing initiatives (e.g. physical activity, healthy diet, fulfilling social relations, 

participating in meaningful activities…) to promote healthy ageing, defined by the World Health 

Organisation (WHO) as the process of developing and maintaining the functional ability that 

enables wellbeing in older age, and (ii) evolving better methodologies for the screening and 

identification of older subjects in a state of vulnerability, to prevent or diminish the impact of 

cognitive and functional decline, and to develop specialized healthcare policies and personalized 

medical assistance. 

At a biological level, the ageing process is characterised by a progressive accumulation 

of a wide range of molecular and cellular alterations that occur in a non-linear or consistent way. 

For this reason and under the frame of the second course of action previously mentioned, the 

concept of frailty has emerged in the last years as a more accurate measure of biological age than 

the traditional concept of chronological age. Frailty is an important geriatric syndrome with 

increasing prevalence in advanced age (Topinkova, 2008). Frailty syndrome represents an 

increased risk of poor health outcomes for those over 65 years old, which offers an interesting 

and reliable tool to identify people in a state of vulnerability (Cesari et al., 2016). Frailty, 

especially in its early stages, is potentially reversible, thus early identification of this syndrome 

may be crucial for the implementation of personalised preventive strategies against age-related 

conditions (Gill et al., 2006; Espinoza et al., 2012; Roland et al., 2014). Even though the critical 

time frame for interventions that target frailty has not yet been unmistakably established, frailty 

prevention should start at early ages in adulthood, and not be exclusively delegated to older age, 

in order to avoid negative outcomes in the old age (Cesari et al., 2016). 
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2. Frailty 

2.1. Concept and history 

As mentioned above, the chronological age criterion traditionally employed for 

determining whether an individual must be referred to geriatric care or not is no longer reliable 

(Cesari et al., 2016). Instead, frailty criteria should be used by geriatricians and healthcare 

professionals in order to provide a proper and personalized care to the individual. However, until 

this moment there has not been a consensus in an international official definition of frailty, being 

considered as a condition, syndrome or status depending on the author or publication. 

The concept of frailty appeared for the first time in the research literature in 1968 in a 

study carried out by O’Brien et al. In this study the authors outlined the gradual development of 

frailty as an excessive and disproportionate reaction of subjects to adverse events. However, it 

was not until 1988 that a first quantitative measure of frailty was established by Winograd et al. 

According to their operational definition, frail older adults had one or more of 15 common 

geriatric clinical conditions including malnutrition, depression, impairment of activities of daily 

living, incontinence or confusion. Since these pioneer studies, frailty has long been considered 

synonymous of disability and comorbidity, to be highly prevalent in old age and to confer a high 

risk for falls, hospitalization and mortality (Lang et al., 2009). 

The quantitative and qualitative change in frailty concept comes at the beginning of this 

century with two independent studies. Firstly, Fried and colleagues (2001) introduced a 

phenotypical definition of frailty, defining it as the display of three or more out of five 

physiological deficits (muscle weakness, low gait speed, unintentional weight loss, exhaustion, 

and low physical activity). Those people presenting one or two of these deficits were classified 

as pre-frail. Closely, Mitnitski, Rockwood, and colleagues (Mitnitski et al., 2001; Rockwood et 

al., 2005) defined frailty as the cumulative effect of individual deficits occurring with ageing that 

include symptoms (e.g., low mood), signs (e.g., tremor), abnormal clinical laboratory values, 

disease states, and disabilities. The more deficits present in an individual, the more likely to be 

frail (Rockwood and Mitnitski, 2007). 

Throughout all this time to present, the definition of frailty has evolved from a description 

of a state of dependency to a more dynamic model that encompasses biomedical and psychosocial 

aspects (Lang et al., 2009). Consequently, numerous definitions and measurements of frailty have 

arisen in the literature in these last years. However, these two previously described criteria, Fried’s 

and Rockwood’s, or their variants, are still the most accepted and used ones.  

Trying to reach a consensus, in 2008, the International Academy of Nutrition, Health and 

Aging postulated a new definition of frailty combining components of both Rockwood's and 

Fried's definitions in the acronym “FRAIL”: Fatigue, Resistance (cannot climb one flight of 
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stairs), Ambulation (cannot walk one block), I llnesses (more than five) and Loss of weight (>5% 

over one year or less) (Abellan van Kan et al., 2008). Later, in 2013, a group of experts from both 

North America and Europe released a consensus on the definition of physical frailty that suggests 

it is an important medical syndrome, caused by multiple factors, characterized by decreased 

strength, endurance and physiological function, which increases the vulnerability of a person for 

greater dependency and/or death (Morley et al., 2013). 

Several international groups, including the WHO and the International Association of 

Gerontology and Geriatrics (IAGG), are currently working on an internationally accepted 

standard frailty definition (Dent et al., 2016). Nevertheless, there is no consensus yet, although 

there is an increasing tendency to consider not only physical criteria but also cognitive and 

sensorial loss, and even biological parameters. 

2.2. Prevalence 

The prevalence of frailty varies largely between studies mainly due to the different tools 

employed to identify frailty, but also because of the own features (gender, age, ethnic…) of the 

populations considered. Collard et al. (2012) carried out a systematic review to estimate the 

prevalence of frailty in the elderly including data from 61,500 older adults from 21 different 

studies. The reported prevalence varied substantially across studies, ranging from 4.0% to 59.1%. 

When analyses were restricted to studies using the phenotype model proposed by Fried 

and colleagues (2001), the weighted average prevalence was 9.9% and 44.2% for frailty and pre-

frailty, respectively. And even using the same criteria, factors as gender, race, or socioeconomic 

conditions have been reported to influence this prevalence, with higher values in women 

compared with men (Collard et al., 2012; Theou et al., 2015), in Hispanic and African Americans 

regarding other ethnic groups (Espinoza and Hazuda, 2008), and in people showing limited 

education and poverty regarding other more socially favourable populations (Fried et al., 2001). 

A recent cross-sectional study including 331 Spanish institutionalized older people of both 

genders, showed that the prevalence of frailty reached 68.8% (González-Vaca et al., 2014). 

2.3. Frailty identification 

Currently, several tools are used in clinics for frailty screening in older adults. As 

previously mentioned, the two most well-known instruments to identify frailty are the phenotypic 

model proposed by Fried and colleagues (2001), and the deficit accumulation model developed 

by Rockwood, Mitniski and collaborators (Mitniski et al., 2001; Rockwood et al., 2005). The 

model proposed by Fried et al. is based on five criteria that include shrinking or unintentional 

weight loss, muscular weakness, self-reported exhaustion, slow walk and low physical activity 

level. Those individuals with three or more of those criteria are considered frail, while those with 
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one or two are considered pre-frail, and those individuals who do not show any of those are 

considered non-frail or robust (Fried et al., 2001). 

The cumulative model proposed by Rockwood and Mitniski (Mitniski et al., 2001; 

Rockwood et al., 2005), also called frailty index (FI), is calculated as the ratio between the number 

of deficits the individual presents divided by the total of deficits considered in the computation. 

The deficits evaluated are a total of 92 parameters that include physical criteria, neurological 

examinations, psychological symptoms, and clinical laboratory values, among others. FI is a 

simple calculation of the presence or absence of each variable as a proportion of the total.  

These two instruments are evidently very different in their constructs, but also in their 

objectives. In particular, frailty phenotype is more focused on screening the physical domain of 

frailty, while the deficit accumulation model stems from the results of a comprehensive geriatric 

assessment. Indeed, FI was previously suggested to better identify older adults at high risk for 

adverse outcomes than the frailty phenotype in the early stages of frailty (Blodgett et al., 2015). 

Still, a recent study compared these two approaches and confirmed their agreement and their 

association with falls and overnight hospitalizations (Zhu et al., 2016). 

In another study, the capacity to predict future disability and mortality of four different 

frailty models – including again Fried criteria and FI, plus the FRAIL model proposed by the 

International Academy of Nutrition Health and Aging, and the SOF (Study of Osteoporotic 

Fractures) frailty scale – were compared in a longitudinal study on an African American 

population (Malmstrom et al., 2014). Together with validating the use of FRAIL scale in clinical 

practice, results from this study concluded that FI and the FRAIL scale exhibited the strongest 

predictive validity for disability and mortality. 

Together with the two more common models, there are many other screening tools to 

identify frailty, including a number of variants of these pioneer ones. For instance, in a recent 

review the existence of more than 260 different versions of the frailty phenotype published in the 

literature was reported. And even though all of them might potentially identify frailty, the 

modifications introduced in the original phenotype criteria had important impact on its 

classification and predictive ability (Theou et al., 2015). This observation was later confirmed by 

Dent et al. (2016), who published another complete review collecting all the frailty measurements 

employed to date to identify this syndrome, and also pointed out that many frailty measurements 

were modified somewhat from their original validated version, and that this could eventually have 

a striking impact on frailty classification. Dent et al. (2016) reviewed a total of 422 studies 

classifying older adults (aged ≥65 years) according to frailty status by employing any method, 

thus reporting 29 different frailty instruments. Fourteen out of these 29 instruments were 

previously validated to be used in older people and they were deeply compared, concluding that 
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there is no “one” perfect frailty measurement in existence today; some measurements are better 

for population-level frailty screening and others are more suitable for clinical use. In that study, 

authors also claimed the necessity of unifying criteria, or even developing a new gold frailty 

measurement, in order to establish a standard measurement for frailty, especially to be employed 

in clinical practice, and to make the different studies comparable. This would also help to know 

the actual frailty prevalence worldwide. But, as it was also pointed out, several reasons would 

explain why reaching this objective is so complicated, including the complex frailty aetiology, 

the differences between populations, or the inherent difficulty in distinguishing frailty from both 

ageing and disability, among others. 

Until a standard criterion to identify frailty is adopted, the choice of the most appropriate 

frailty instrument has been suggested to rely on the purpose of the evaluation, the outcome for 

which the definition was originally validated, the validity of the tool, the studied population, and 

the setting in which the assessment will be conducted (Cesari et al., 2016). 

Still, despite the high number of available instruments to measure frailty and their 

different bases and criteria, it seems that the predictive value of frailty for negative health 

outcomes, including falls, hospitalizations, disability, institutionalization, and mortality, is 

consistently confirmed across assessment instruments, target populations, and settings (Fried et 

al., 2009; Clegg et al., 2013; Theou et al., 2013).  

Even though all efforts focused on establishing a common definition and a more accurate 

measurement of frailty, the truth is that the one proposed by Fried and collaborators is, even 

nowadays, the most worldwide extended and employed criteria to identify frail individuals in 

clinical practice and research. Indeed, the ‘Frailty Task Force’ of the American Geriatrics Society 

adopted the suggestion of Fried et al. as the best current working definition (Lang et al., 2009).  

This working definition of frailty, based on Fried’s criteria, is very useful; however, it is 

only based on physical symptoms and signs. It neglects other potentially important components 

of the syndrome such as mood, cognition, sensory impairments and socioeconomic aspects of 

older adults’ lives (Abellan van Kan et al., 2008; Zaslavsky et al., 2013). Moreover, no biological 

markers are included in the frailty syndrome defined by Fried et al. (2001). Numerous researchers 

have argued that frailty is a multidimensional and multisystem process that cannot be 

comprehensively captured by applying physical criteria only (Dent et al., 2016; Zaslavsky et al., 

2013).  

Consequently, in the last years, more and more authors agree with the fact that it is not 

satisfactory to define frailty in the physical domain only, highlighting the need for searching for 

other markers of frailty at different levels, and even several publications started to address 
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separately physical and cognitive frailty (Dulac and Aubertin-Leheudre, 2016; Kelaiditi et al., 

2013; Woods et al., 2013). 

2.4. Biological basis of frailty 

Although, frailty was initially linked to physical decline and considered as synonymous 

of disability or comorbidity, currently it is becoming recognized as a distinct clinical syndrome 

with a biological basis (Lang et al., 2009). Indeed, frailty is commonly accepted to have a strong 

biological component that result from cumulative cellular damage over the life-course (Dent et 

al., 2016). As people age, many systems and processes can be modified (reviewed in Fielding, 

2015). Similarly, a number of physiological processes/functions have been demonstrated to be 

altered in frail subjects (reviewed in Walston, 2004).  

However, the specific pathophysiological changes involved in frailty aetiology remain 

undefined. This is mainly due to the fact that no single system impairment characterizes frailty. 

Instead, it seems that an intertwined network of biological anomalies at different levels is likely 

to be part of the pathophysiological chain of events leading to frailty (Zaslavsky et al., 2013). In 

2009, Lang et al. already highlighted the importance of improving our understanding on the 

complex biological factors leading to age-related muscle loss (sarcopenia, a typical clinical sign 

in frail subjects) beyond those attributable to a simple decrease in physical activity and to 

deleterious chronic undernutrition. 

All the processes or physiological functions known to be altered in frail patients can be 

grouped into three different dimensions according to the organizing level affected (Figure I.2). At 

the cellular level, frailty status has been linked to deficiencies in cellular repair ability and 

consequent DNA damage accumulation (Dent et al., 2016). The biological consequences of 

increased levels of this damage can be wide ranging, including altered gene expression, genomic 

instability, mutations, loss of cell division potential, cell death, impaired intercellular 

communication, tissue disorganization, organ dysfunctions, and increased vulnerability to stress 

and other sources of disturbance (Rattan, 2006). At the systematic level, more and more evidence 

suggests that frailty-associated physiological dysregulation involves multi-organ systems, 

including the musculoskeletal, immune, endocrine, hematologic, and cardiovascular systems 

(Fried et al., 2009). Finally, as more systems show abnormal function, frailty severity increases, 

and all these dysregulations, although initially silent, become physically evident, affecting the 

whole organism and showing up as the clinical signs of frailty: muscle mass loss, cognitive 

impairment and sensorial loss, among others.  
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FIGURE I.2. Frailty biological levels. 

Recent research efforts have helped to better define the clinical and physiological 

characteristics of frailty (Lang et al., 2009; Sieber, 2017). However, and despite these last 

evidences on the biological basis of frailty, up to now no biological feature has been validated to 

be used as a useful biomarker to identify frailty status.  

3. Biomarkers 

3.1. Genomic instability  

As mentioned above, many physiological processes altered in frail individuals as well in 

many age-related diseases (cancer, neurodegenerative disorders) and ageing signs are related to a 

dysregulation between DNA damage and the correct function of cellular DNA repair mechanisms. 

This loss of balance can lead to a gradual destabilization of the genomic integrity, which is known 

as genomic instability (GI), one of the ageing process hallmarks (Garm et al. 2013; Gorbunova 

and Seluanov, 2016; Li et al. 2016a; Fischer and Riddle, 2017). Cytogenetic assays are often used 

to detect GI; among them the micronucleus (MN) test is one of the most widely accepted (Maslov 

and Vijg, 2009). Micronuclei (MN) originate from chromosome acentric fragments or whole 

chromosomes that lag behind at anaphase during nuclear division (Figure I.3). During telophase, 

these fragments and whole chromosomes are surrounded by a nuclear envelop, acquiring a 

morphology similar to a small interphase nucleus or MN. Hence, the presence of MN in the cell 

cytoplasm is indicative of chromosome damage (Fenech, 2000) and the MN assay provides a 

reliable measure of both chromosome damage and chromosome loss. 
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FIGURE I.3. Micronuclei formation from a whole chromosome or chromosome 
fragments (modified from Fenech et al., 2007). 

3.1.1. The cytokinesis-block micronucleus assay 

Since one cell division is necessary for the MN to be displayed, it is essential to 

discriminate those cells that have undergone one mitosis to be considered for the MN scoring. 

The cytokinesis-block micronucleus (CBMN) assay, firstly described by Fenech and Morley in 

1985, allows to identify cells that have experienced a cell division due to their appearance as 

binucleated cells after blocking cytokinesis with cytochalasin-B (Cyt-B) (Figure I.4). This 

chemical is an inhibitor of microfilament ring assembly required for the completion of cytokinesis 

(Fenech, 2007); hence, in its presence cells divide their nuclei normally (mitosis), but cytoplasm 

division is avoided, thus appearing as binucleated. MN frequency in peripheral blood 

lymphocytes (PBL) is a reliable measure and widely employed in molecular epidemiology and 

cytogenetics to evaluate chromosomal damage in human populations (Valdiglesias et al, 2015; 

Hintzche et al., 2017). PBL present several biological and practical advantages. These cells are 

routinely collected and considerable amounts of cells are easily obtained from a small blood 

sample, cell cycle effects do not interfere since unstimulated lymphocytes are non-cycling (they 

are quiescent in the G0 phase of the cell cycle), show reproducible results, and have been 

demonstrated to be suitable surrogate cells, since their level of DNA damage reflects the level of 

genetic damage in other types of cells and tissues (Lee et al, 2003; Pardini et al., 2017). For these 

reasons, MN frequency in peripheral blood lymphocytes evaluated by the CBMN assay has 

traditionally been one of the most used tests for evaluation of chromosomal alterations and is 

considered a reliable biomarker of GI (Fenech et al., 2007; Bonassi et al, 2011a). 
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FIGURE I.4. Fluorescence microscopy image of a binucleated lymphocyte 
with a micronucleus. 

It has been previously reported that the ageing process is highly associated with the MN 

frequency. Also age-related disorders, like cancer, arthrosis, cardiovascular disease and diabetes 

alongside neurodegenerative diseases (i.e. Alzheimer’s or Parkinson’s) are characterised by an 

increase in the MN frequency (Petrozzi et al., 2002; Andreassi et al., 2011; Bonassi et al., 2011; 

Migliore et al., 2011; Corbi et al., 2014; Franzke et al., 2014). Moreover, high MN frequency in 

PBL of healthy subjects has been shown to reflect a higher risk of developing cancer later in life, 

suggesting a predictive role of this biomarker (Bonassi et al., 2007). 

3.1.2. The buccal MN cytome assay 

In recent years a new alternative assay to evaluate MN frequency as a biomarker of GI in 

population studies has emerged: the buccal MN cytome (BMNCyt) assay (Figure I.5). This assay 

was firstly proposed in 1983 by Stich and Rosin, and since then it has been used to assess the 

impact of nutrition and lifestyle factors (e.g., alcohol, smoking, drugs, and stress) as well as 

exposure to genotoxic agents. It has also been studied in cancer-associated congenital syndromes, 

such as ataxia telangiectasia or Bloom's syndrome, and other disorders also characterised by 

defects in the DNA repair processes (reviewed in Bolognesi et al., 2015). The buccal epithelium 

is the first barrier for the inhalation or ingestion, main absorption routes of carcinogenic agents; 

for this reason, buccal cells are likely to be highly exposed to genotoxic agents (Holland et al, 

2008). In this context, the BMNCyt assay is nowadays commonly employed in biomonitoring 

studies assessing environmental or occupational exposures to genotoxic agents (Bonassi et al., 

2011b; Benedetti et al., 2013; León-Mejía et al., 2014). Besides, it has been reported an existing 

strong correlation of MN frequency in buccal exfoliated cells with MN frequency in lymphocytes 

(Ceppi et al., 2010). This means that buccal cells can also report systemic genotoxic effects 

present in the bloodstream (Bonassi et al., 2011b). 
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FIGURE I.5. Fluorescence microscopy image of a micronucleus in buccal cells. 

In addition, the BMNCyt assay presents a series of advantages. It is a non-invasive and 

relatively simple technique that do not involve cell culturing, and, therefore, it is well suited for 

large biomonitoring studies (Bonassi et al, 2011b). Moreover, BMNCyt assay allows the 

evaluation of a variety of complementary toxicological events related to cell proliferation, 

differentiation and cell death. Hence, the BMNCyt assay provides several biomarkers associated 

with increased risk of accelerated ageing, cancer and neurodegenerative diseases (Holland et al, 

2008; Thomas et al., 2009).  

The oral epithelium is composed of four strata of structural, progenitor, and maturing cell 

populations (Figure I.6). These strata, from base to surface, are (i) the lamina propria, connective 

tissue or stratum germinativum, (ii) the basal cell layer or stratum basale, (iii) the prickle cell 

layer or stratum spinosum, and (iv) the keratinised layer or stratum corneum. The basal cell layer 

is continuously producing new cells by mitosis that migrate to replace the cells that are constantly 

shed as a result of the wear and tear of the surface tissue. The stem cells present in the basal cell 

layer may express DNA damage as chromosome breakage or loss during nuclear division that 

may or may not originate MN (Thomas et al., 2009). 

During this renewal cell process of oral epithelium, several types of cells and nuclear 

anomalies are originated. For this reason, BMNCyt assay is a useful tool that provides biomarkers 

for DNA damage (MN and/or nuclear buds), cytokinetic defects (binucleated cells), proliferative 

potential (basal cell frequency) and/or cell death (condensed chromatin cells, karyorrhectic cells, 

pyknotic cells and karyolytic cells) (Thomas et al., 2008, 2009). 
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FIGURE I.6. Diagrammatic representation of the different layers and cell types 
conforming the oral epithelium (source: Thomas et al., 2009).  

3.2. T-cell receptor mutation assay 

The T-cell receptor (TCR) is a heterodimeric cell surface receptor, composed by alpha 

and beta chains, present in almost every mature T lymphocyte (Kronenberg et al., 1986). These 

alpha and beta chains contain each, one constant and one variable domain to specifically recognise 

an enormous number of peptide antigens bound to and presented by major histocompatibility 

complex (MHC) proteins (Hou et al., 2016). The recognition of the antigenic peptide/MHC 

complexes by TCR is a crucial step in the activation and regulation of the adaptive immune 

response (Li et al., 2016b).   

Mature T cells are believed to experience a mechanism of allelic exclusion similar to the 

one which occurs to immunoglobulin genes in B lymphocytes; as a consequence, they only 

actively express one of the two TCR alleles (they are phenotypically hemizygous) (Kronenberg 

et al., 1986). Hence, a single mutation at the functional TCR gene will lead to the absence of the 

phenotypic expression of TCR in the cell surface (Kyoizumi et al., 1992). Moreover, TCR does 

not possess itself signalling domains, it needs to form a non-covalent bound with the surface 

protein CD3 (Figure I.7). T cell mutants lacking one or more of the TCRαβ chains are able to 

form TCR/CD3 complexes in the cell cytoplasm but are unable to transport these complexes to 

the cell membrane surface (Clevers et al., 1988). 
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FIGURE I.7. Diagrammatic representation of the structure of TCR/CD3 
complex, involved in antigen recognition and T-cell activation. 

Mutations in any of the TCRαβ chains can be detected by flow cytometry employing 

antiCD3 specific antibodies. This technique allows to identify and quantify TCRαβ mutants 

(CD3− cells) within the population of T helper cells (Th cells) expressing CD4 (CD4+) (Akiyama 

et al., 1995). Total mutations in TCR genes are considered, without differentiating between α or 

β chains. Besides, the analysis is relatively rapid and only requires a small sample of fresh whole 

peripheral blood. 

TCR mutation frequency (TCR-Mf) has been previously employed as a biomarker of 

mutagenicity in occupational exposure biomonitoring studies as well as a predictor of cancer risk 

(Lanza et al., 1999; Vershenya et al., 2004; Chen et al., 2006; Taooka et al., 2006; García-Lestón 

et al, 2011, 2012). 

3.3. Alkaline comet assay 

The single cell gel electrophoresis assay, commonly known as comet assay, is a simple, 

fast and sensitive technique for DNA damage identification and quantification in single cells 

(Singh et al., 1988). The comet assay protocol was originally proposed by Ostling and Johanson 

in 1984 and later modified by Singh et al. (1988).  

Depending on the pH employed, the comet assay allows detection of several types of 

DNA damage, such as single and double strand breaks, incomplete excision repair sites, 

crosslinks, and alkali-labile sites (Collins et al., 2014). The alkaline version of the comet assay is 
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the most commonly used. In brief, this assay consists of obtaining nucleoids displayed in an 

agarose layer over a slide by cellular lysis employing a solution containing a detergent, to remove 

the membranes, and high salt concentrations, to eliminate the nuclear proteins. Subsequently, the 

nucleoids are incubated in an alkaline solution to facilitate DNA unwinding. After running the 

electrophoresis, DNA is stained with a fluorescent dye. During the electrophoresis, DNA 

fragments migrate to the anode wandering off from the nucleoid due to their negative charge, 

forming a comet shape (Figure I.8). The more damaged the DNA, the farther migration to the 

anode. Length and intensity of the comet tail is proportional to the number of breaks in the DNA. 

Not damaged cells will not show a tail. 

 
FIGURE I.8. Fluorescence microscopy image of leucocyte nucleoids after comet assay: 
A) not damaged nucleoid, B) mildly damaged nucleoid, C) highly damaged nucleoid. 

The comet assay is widely and commonly employed to evaluate primary DNA damage. 

It is used in (i) genotoxicity testing, to screen novel drugs, cosmetics, or chemicals for potential 

carcinogenic properties, both in vivo and in vitro, (ii)  in human biomonitoring, to evaluate the 

effects of toxic agent at DNA level, the effect of lifestyle factors, or its involvement in diseases 

or individual variations, for instance in DNA repair capacity, (iii) in ecogenotoxicology, as a 

marker of genetic damage by pollutants, and (iv) in basic research into mechanisms of DNA 

damage and repair (Azqueta and Collins, 2013). 

As mentioned before, both ageing and processes involved in frailty development, such as 

loss of muscle mass, are associated with high levels of DNA damage (Franzke et al., 2015). So 

far, several authors have studied the relationship of DNA damage and age, by means of the 

alkaline comet assay, obtaining different results: however, the use of this methodology in 

population studies on frailty is still an unexplored field. 

3.4. γH2AX assay  

DNA double strand breaks (DSB) can be the result of several endogenous processes (i.e. 

normal cellular procedures, senescence, generation of reactive oxygen species) and exogenous 

exposures (i.e. ionizing radiation or genotoxic compounds) (Mah et al., 2010). Due to the severity 

of this kind of DNA damage, the organism has DNA damage response (DDR) mechanisms that 

are quickly initiated at the side of the DSB with the aim of repairing it. The phosphorylation of 
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the C-terminal of the histone variant H2AX (Figure I.9) is an early response to DNA DSB and an 

important step in the DDR process that has been employed as a biomarker of DNA damage 

(Siddiqui et al., 2015). 

 

FIGURE I.9. Scheme of H2AX phosphorylation as response to double strand breaks 
(DSB). ATM, ataxia telangiectasia mutated (modified from Hoeller and Dikic, 2009). 

The H2AX histone was firstly reported by West and Bonner in 1980, as a specific variant 

of the H2A histone family. H2AX is ubiquitously distributed along the genome and differs from 

the other members of the family by the presence of an evolutionarily conserved C-terminal motif: 

KKATQASQEY (Rogakou et al. 2000; Takahashi and Ohnishi 2005). In response to the 

formation of DSB, H2AX flanking the DSB sites are rapidly phosphorylated at the serine 139 

residue to become γH2AX (Redon et al. 2011). For each DSB, a γH2AX focus is formed, making 

it possible to estimate the number of DNA DSB by measuring the γH2AX foci (Ivashkevich et 

al., 2011). Hence, the formation of γH2AX foci is a sensitive marker for DSB, for both number 

and location (Banath and Olive, 2003). Under normal conditions, they appear within few minutes 

after the lesion, reach maximum levels after about 30 min and then decline and disappear after 

approximately 24 h (Rogakou, et al., 1999; Bourton et al., 2011). In the main, the half-life of 

γH2AX foci after DNA damage has been estimated to be 2–7 h (Bouquet et al., 2006). Therefore, 

H2AX phosphorylation represents an early event in the DNA damage response against DSB and 

plays a central role in sensing and repairing these lesions (Matsuzaki et al. 2010; Scarpato et al. 

2013). Two different types of γH2AX foci were detected in cells: one is transitory while DSB 

repair is being carried out, and the other one remains after DSB repair suggesting that it may 

represent DNA lesions with unrepairable DSB due to cellular senescence (Sedelnikova et al., 

2004; Siddiqui et al., 2015).  

According to the idea of a gradual accumulation of DNA damage with age leading to a 

lack of DNA integrity, recent studies have reported the implication of H2AX phosphorylation and 

DDR in age-related diseases, such as Werner syndrome, Alzheimer’s disease, obesity, diabetes, 
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prostate cancer, hypertension, and Hutchinson-Gilford progeria syndrome (Sedelnikova et al., 

2008; Schurman et al., 2012). 

However, there is a notable lack of standardization in the methodological procedure used 

to determine the levels of γH2AX, which leads to a wide heterogeneity in the results obtained and 

their interpretation. This heterogeneity is mainly due to extensive variability in the experimental 

procedures, affecting the reliability of the assay. Therefore, it is necessary to standardize γH2AX 

assay and to determine the main experimental factors influencing its results, in order to establish 

this technique as a routine biomarker in population studies. 

3.5. DNA repair competence assay 

DNA repair mechanisms are the cell defence system to protect and maintain the genome 

integrity. DNA repair involves three main mechanisms: direct reversal of the damage, excision 

repair – which involves three pathways, according to the type of DNA damage induced: base 

excision repair, nucleotide excision repair and mismatch repair – and DSB repair, which may be 

conducted by two routes, depending on the cell cycle phase: homologous recombination and non-

homologous end-joining (Walker and Rapley, 1997). 

Deficiencies in these systems are often considered the cause of the development of age-

related diseases or cancer (Valdiglesias et al., 2011a). It has also been proposed that frailty 

syndrome might be driven by alterations in the cell repair mechanisms (Dent et al., 2016). DNA 

repair capacity of human leucocytes has been previously investigated as a biomarker in human 

biomonitoring and cancer prediction (Bausinger and Speit, 2015). 

The DNA repair competence assay, or challenge assay, is a cytogenetic approach to 

measure the repair competence of cells. In this technique, cells are challenged by exposure to a 

defined dose of a genotoxic agent that induces a finite amount of DNA lesions (e.g., γ rays or 

bleomycin). After an additional incubation in fresh medium, during which DNA repair is allowed, 

the remaining damage is measured by using different cytogenetic techniques (Au, 1993). 

The use of comet assay to measure DNA damage in the DNA repair competence assay 

provides a powerful tool to detect repair ability. Besides, it offers the advantage of quantifying 

the repair as progress of the DNA damage levels since, in contrast with other cytogenetic 

techniques such as chromosome aberrations, it allows evaluating the damage in different time 

points (i.e., after damage induction and after the incubation period in fresh medium) (Rajaee-

Behbahani et al., 2001; Schmezer et al., 2001). 

On the basis of what was explained in this memory so far, it is necessary to develop 

biomarkers that may help identify individuals in the early stages of frailty or at risk of developing 

this syndrome, when it can be prevented or even reverted. Due to their association with ageing 

and age-related diseases, biomarkers related to genetic outcomes are promising for this objective. 
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Thus, as the first step of this work, a systematic review of the epidemiological studies published 

till date evaluating the association of frailty with biomarkers of oxidative stress, genomic 

alterations and DNA repair was carried out (Chapter II).  According to the results obtained in the 

systematic review, and in order to acquire a better understanding of the biological basis of frailty, 

a set of biomarkers of genomic instability, and DNA damage and DNA repair was selected to be 

applied in a cross-sectional study with older adults aimed at determining their possible 

relationship with frailty status and thus their potential  as biomarkers of frailty (Chapter IV). Since 

one of these biomarkers was phosphorylated H2AX histone, a quite novel assay for DSB 

evaluation, optimization of the γH2AX assay experimental conditions to be applied to human 

population studies was necessary (Chapter III).
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The rapid ageing of the global populations and the social, economic and health challenges 

that come with it require a comprehensive response to ensure the wellbeing of the older people 

through a healthy ageing. Frailty represents an increased risk of poor health outcomes in the old 

age. In this context, the main objective of this work was to improve the understanding of the 

biological basis of frailty evaluating alterations at the cellular level in a population of people aged 

65 years and over classified according to their frailty status following the Fried et al. (2001) 

criteria. 

This overall goal will be achieved through the following specific objectives: 

1. To carry out a systematic review of the literature published containing epidemiological 

studies conducted in older adults, evaluating any alteration at the cellular level, including 

biomarkers of oxidative stress, genomic alterations and DNA repair, in relation to frailty 

status. 

2. To optimise the experimental conditions of the γH2AX assay for being used as DNA damage 

biomarker in human population studies. 

3. To study the relationship of the frailty status with a set of genetic outcomes (genomic 

instability, DNA damage and DNA repair) in a population of older adults classified into frail, 

pre-frail and non-frail according to Fried et al. (2001) criteria, in order to test their potential 

to be established as biomarkers of frailty. 

Each one of these objectives will be fully explored in chapters II, III and IV of this Thesis, 

respectively.   
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1. Introduction 

The concept of frailty is getting more and more attention as a new and more accurate way 

to define biological age as well as to identify vulnerability in elderly. Identifying frail people as 

early as possible is socially and economically crucial since evidence from different studies 

suggests that frailty status, particularly at its very earliest stages might present characteristics of 

reversibility (Espinoza et al., 2012; Gill et al., 2006; Roland et al., 2014). Thus, frailty criteria 

should be used by geriatricians and healthcare professionals in order to provide a proper and 

personalized care to the older individual. However, currently there is no consensus in an 

international official definition of frailty. 

Due to this lack of an official definition, several screening tools are currently employed 

to identify frailty. However, the two most commonly used instruments are the frailty phenotype 

(Fried et al. 2001) and the frailty index (FI) (Mitnitski et al., 2001; Rockwood et al., 2005). 

Nevertheless, multiple variations of the Fried’s criteria (260 according to Theou et al. 2015) and 

FI, employing different deficits and/or diverse number of deficits (Searle et al., 2008; Dent et al., 

2016), exist which can affect the predictive ability of the specific tool. As it has been mentioned 

in the Introduction of this memory, the instrument chosen in every case depends on a combination 

of factors, such as the study population, the purpose of the evaluation, or the available resources. 

Some examples of these different screening tools are as follows. Montesanto scale is a 

population-specific survey consisting of a cluster analysis based on three phenotypic parameters 

[Mini Mental State Examination (MMSE) (Folstein et al., 1975), hand grip strength, and Geriatric 

Depression Scale (GDS) (Sheikh and Yesavage, 1986)], adjusted by physical and clinical 

parameters (height, weight, knee-to-floor height and waist and hip circumferences, functional 

activity and health status) (Montesanto et al., 2010). Hospital admission risk profile (HARP) is 

another different instrument for stratifying older patients at the time of hospital admission, 

according to their risk of developing new disabilities in activities of daily living (ADL) following 

acute medical illness and hospitalization (Sager et al., 1996). This index is based on demographic 

information (age, gender, mental status, living arrangement, race), ability to perform six ADL 

(bathing, dressing, transferring, walking, toileting, and eating) and seven instrumental activities 

of daily living (IADL) (managing finances, taking medications, telephoning, shopping, using 

transportation, preparing meals, and doing housework) two weeks before admission. An 

abbreviated MMSE (range 0–21) is also obtained during the admission interview.  

Frailty has been reported to have an important biological basis (Lang et al., 2009); still, 

the extent of this basis and its aetiology is still quite unknown. The study of the biological causes 

of frailty and the alterations and interrelations between the different physiological systems 
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affected in the frailty status will contribute to understand the development of frailty, to reduce 

variability among different studies, and to reach a consensual definition of frailty. 

In this frame, the use of biomarkers to identify frail subjects not only would be a more 

precise and objective method for frailty identification, but also would allow to compare 

epidemiological studies and to draw suitable conclusions from them. Due to its link to age and 

age-related disorders, frailty has been suggested to be associated with loss of genome integrity 

caused by an unbalance between DNA damage and the correct functioning of the DNA repair 

mechanisms (Gorbunova and Seluanov, 2016); however, this hypothesis has not been clearly 

demonstrated so far. For this main reason, a thorough search of the literature published related to 

clinical/epidemiological studies conducted in older frail adults, evaluating any alteration at the 

cellular level – including biomarkers of oxidative stress, genomic alterations and DNA repair – 

was performed, and the findings were reviewed in this chapter, in order to identify parameters 

that could be associated with frailty condition and consequently be proposed as biomarkers of 

frailty. 

2. Material and Methods 

2.1. Bibliographic search 

The identification and selection of studies to be included in the review was carried out 

through an extensive literature search using the PubMed database (National Library of Medicine, 

National Institutes of Health, Bethesda, MD, USA; http://www.ncbi.nih.gov/PubMed), and was 

updated to October, 2016. 

The search strategy developed comprised two terms that were intersected using the 

Boolean term “AND”. The first one included descriptors related to frailty (‘frail’, ‘frailty’ or 

‘frailty elderly’), and the second one included descriptors related to biomarkers at the cellular 

level (‘cellular damage’, ‘DNA’, ‘genomic’, ‘oxidative’, or ‘DNA repair’). All searches were 

focused on title or abstract. 

2.2. Selection criteria 

Eligible studies to be included in the review were all studies conducted in humans, written 

in English or Spanish, and focused on populations of older adults (mean age ≥ 60years old). Study 

individuals must have been classified according their frailty status following any of the currently 

validated criteria for frailty identification. Moreover, any cellular or molecular biomarkers must 

have been evaluated using any methods. In particular, the studies selected for this review can be 

classified within the following subgroups: 

- Those evaluating oxidative stress biomarkers in frail and non-frail older adults 
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- Those evaluating genomic biomarkers in frail and non-frail older adults  

- Those evaluating DNA repair ability in frail and non-frail older adults  

Studies not considering frailty but ageing, reviews, studies carried out in animals, and 

articles not written in English or Spanish were excluded. Finally, studies using criteria not 

validated to identify frail individuals, or employing frailty as a confounder instead of outcome, 

were also not included in this review. Whenever the same group of authors published papers on 

the same group of patients, only the most recent or most complete report was considered. 

Two hundred and sixty-six citations (after excluding duplicates) were initially obtained 

and manually reviewed (Figure II.1). Among them, 75 resulted eligible after an initial revision of 

abstracts. The whole publications of all these studies were fully reviewed, finding 21 studies that 

fulfilled the selection criteria. Other five additional publications were identified and included in 

the revision after reviewing the references section of published articles. 

 

FIGURE  II.1.  Flow chart of the systematic review conducted. *One paper (Collerton 
et al., 2012) addressed the three aspects considered in this review. 

 
Pub Med Search 

n= 266 (excluding duplicates) 

Title and abstract review. 

 n= 191 excluded 

 

75 eligibles 

Whole text review. 

 n= 54 excluded 

 

21 eligibles 

References review 
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26 included * 

Oxidative Stress  

 n= 9 

Genomic Biomarkers 

n= 18 

Repair 

n= 1 
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3. Results and Discussion 

As a result of the searching process, a total of 26 studies published from 2006 to 2017 

suited inclusion/exclusion criteria and, consequently, were included in this review. Among them, 

8 evaluated oxidative stress biomarkers and 17 genomic biomarkers. Besides, one study 

(Collerton et al., 2012) evaluated oxidative stress and genomic biomarkers, plus DNA repair 

ability on the same population of older adults. All studies but one (Pereira et al., 2016) were 

written in English. According to the affiliation of the first author, these studies were mostly 

conducted in Europe (54%), USA (27%), and Asia (15%) (Figure II.2). The number of individuals 

analysed per study ranged from 15 to 5,275, with a mean sample size of 499 per group. Four 

papers only (15.4%) included less than 100 individuals, 73% included more than 300, and in eight 

out of 26 reviewed studies (30.8%) the sample population size was larger than 1,000 subjects, 

confirming the robustness of the data evaluated in this review (Figure II.3). The mean age of the 

studied individuals ranged from 61.9 to 99 years per group, with a total mean age of 66.8 years. 

Considering all studies in which patients were classified by frailty, the mean age in frail groups 

was 78.1 years, in pre-frail groups 76.4 years, and in non-frail groups 74.4 years. 

  

FIGURE  II.2. Geographical distribution of the studies included in this systematic 
review, according to the affiliation of the first author. 

Europe

54%
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FIGURE  II.3. Distribution of studies regarding the size of the population analysed. 

Regarding the criteria employed to identify frail people, almost all studies (24 out of 26) 

employed either Fried’s or Rockwood’s criteria (FI), or even both of them. Among these studies, 

the great majority (67%) employed Fried’s criteria for frailty identification, and only in two 

studies a modified version was used instead of the original one. Five out of 24 studies (21%) used 

FI to identify frail subjects, and three out of 24 studies (13%) employed both of them. However, 

the number of items analysed in studies employing FI was always different among studies, 

ranging from 17 to 40. The two remaining studies not using Fried’s or Rockwood’s criteria were 

Bellizi et al. (2012) and Pereira et al. (2016), which employed the Montesanto et al. (2010) 

method, and the Hospital Admission Risk Profile (HARP) together with FI, respectively (Figure 

II.4).  

All studies included in this review are presented in Tables II.1 and II.2, and described in 

the following sections according to the type of parameter evaluated. Although performing a meta-

analysis of these studies was initially considered, it was not possible to carry this out due to the 

high variability in the outcomes addressed together with the limited number of studies assessing 

the same outcome.  
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FIGURE  II.4. Distributrion of studies regarding the frailty criteria used. FI, Frailty Index. 

3.1. Oxidative stress biomarkers 

Reactive oxygen species (ROS) are free radicals formed during the cellular metabolism. 

Generally, these ROS are not harmful for the cell since they are neutralized by cellular antioxidant 

systems, but their production can also be induced by exogenous agents that include ionizing 

radiation, air pollution and a wide range of chemicals (Halliwell, 2007). In such cases, the 

imbalance between increased ROS production and antioxidant defences leads to an oxidative 

stress state which is highly destructive for the cell and the organism. It has been demonstrated 

that oxidative stress plays an important role in neurodegenerative diseases, often associated with 

ageing (Migliore and Coppedè 2002; Perry et al., 2002); indeed, oxidative DNA damage is one 

of the events that can be detected earlier in the pathogenesis of these diseases. Furthermore, 

oxidative stress is considered a risk factor for ageing (Coppedè and Migliore, 2009). 

Besides, increases in oxidative stress with ageing may also contribute to the development 

of chronic inflammation and disease (Woods et al., 2012). Indeed, there are a variety of potential 

mechanisms linking oxidative stress to inflammation, including disturbances in the redox 

equilibrium, decrease of oxidation-sensitive biomolecules related to immune response, such as 

vitamins or 5,6,7,8-tetrahydrobiopterin (BH4), or alterations in pattern recognition receptors of 

the innate immune system, such as toll-like receptors (Gill et al., 2010). Accordingly, a number 

of previous studies have related immune system alterations to frailty (reviewed in Fulop et al., 

2015). Still, this kind of immunological alterations, although may be classified as cellular 

alterations in some cases, were considered biomarkers at systematic level and, consequently, not 

included in the present work. 
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The relationship between oxidative stress and frailty has been studied in several studies. 

Table II.1 shows all human population studies evaluating the possible association between 

markers of oxidative stress and frailty in old age. A total of 9 studies were found in the literature 

addressing this issue. The total antioxidant cellular ability or the levels of some specific 

antioxidants in the frail subjects regarding the pre-frail and non-frail individuals was measured in 

4 (44.4%) out of 9 reviewed studies. In 7 studies, direct effects of ROS on lipids (71%) (Collerton 

et al., 2012; Inglés et al., 2014; Liu et al., 2016; Pereira et al., 2016; Serviddio et al., 2009), 

proteins (57%) (Serviddio et al., 2009; Inglés et al., 2014; Pereira et al., 2016) and DNA (29%) 

(Namioka et al., 2016; Wu et al., 2009) were evaluated; evaluation of more than one target in the 

same study was common. Moreover, just in 2 cases (Namioka et al., 2016; Saum et al., 2015), the 

levels of derivatives of reactive oxygen metabolites (d-ROM) were determined.  

Results from these studies do not clarify if oxidative stress is consequence of frailty (or 

vice-versa), or if - as suggested by Liu et al. (2016) - there is a bidirectional relationship where 

the presence of one of them increases the risk of the other.  

  



 

 

TABLE  II.1.  Studies assessing oxidative stress biomarkers 
Study Total population  

(mean age ± SD) 
Case population 
(mean age ± SD) 

Control 
population 
(mean age ± 
SD) 

Frailty 
criteria 

Outcomes Assay method Results 

Ble et al. 
(2006) 

n=827 (73.6 ± 6.4) 
446 females, 381 
males 

Frail n=54  Pre-frail n=313; 
non-frail n=460  

Fried et al. 
(2001) 

Plasma Vit-E 
levels 

Reverse-phase HPLC Levels of vitamin E decreased 
gradually from the non-frail to 
the frail group 

Serviddio 
et al. 
(2009) 

n=62 (76.7 ± 5.1) 
23 females,39 
males 

Frail n=43  n=19 non-frail Fried et al. 
(2001) 

GSSG 
 

Alkaline hydrolysis of N-
ethylmaleimide 
 

A significant increase in the 
GSSG was observed in frail 
patients when compared to 
non-frail 

Whole blood 
total GSH level  
 

Spectrophotometry 
 

No association GSH level with 
frailty 
Frail patients exhibited an 
increase in the GSSG/GSH 
ratio as compared to non-frail 

Plasma MDA 
and HNE 
proteins adducts 
 

Spectrofluorimetry MDA and HNE adducts were 
significantly higher in frailty as 
compared to non-frail patients 

Plasma oxidized 
proteins 

Western Blot An appreciable decrease in 
oxidized proteins was detected 
in non-frail subjects when 
compared to frail patients 

Wu et al. 
(2009) 

n=90 Frail  n=21 (79.9 
± 5.8) 

Pre-frail n=56 
(76.8 ± 5.8); 
non-frail n=13 
(73.1 ± 5.3) 

Fried et al. 
(2001) 

Serum 8-OHdG ELISA Frail subjects had higher serum 
8-OHdG level than pre-frail 
and non-frail individuals 

Collerton 
et al. 
(2012) 

n=552 (85) 332 
females, 220 males 

Frail n=119 (85) 
92 females, 27 
males 

Pre-frail n=333 
(85) 193 
females, 140 
males; 
Non-frail n=100 
(85) 47 females, 
53 males 

Fried et al. 
(2001) 
 
FI (40 
deficits) 

Plasma lipid 
peroxidation: 
isoprostanes iPF2 
alpha-III and 
iPF2 alpha-VI 

LC/MS/MS No association lipid 
peroxidation with frailty 

Inglés et 
al. (2014) 

n=742 Frail n=54 (78.8 ± 
6.0) 36 females, 
18 males 

Pre-frail n= 278 
(73.8 ± 4.7) 160 

Fried et al. 
(2001) 

Plasma lipid 
peroxidation: 
MDA 

HPLC Frail people had higher MDA 
levels than non-frail subjects. 



 

 

females, 118 
males; 
n=410 non-frail 
(72.4 ± 4.2) 237 
females, 173 
males 

Plasma protein 
carbonylation 

Western blot Frail people had higher levels 
of protein carbonylation than 
non-frail subjects 

Saum et 
al. (2015) 

n=2518 Frail n=210 (73.7 
± 6.0) 136 
females, 74 males 

Pre-frail n=1463 
(70.3 ± 6.2) 820 
females, 643 
males; 
non-frail n=845 
(67.8 ± 5.8) 367 
females, 478 
males 

Fried et al. 
(2001) 

Plasma dROM Spectrophotometry Correlation between dROM 
levels and frailty was 
statistically significant, but 
attenuated after adjustment 
with multiple covariates. 

Plasma TTL An inverse statistically 
significant association with 
frailty was observed for TTL. 

Plasma BAP No association BAP with 
frailty 

Liu et al. 
(2016) 

n=1919 Frail n=142 (77 ± 
6) 77 females, 65 
males 

Pre-frail n=864 
(72 ± 7) 495 
females, 369 
males; 
non-frail n=913 
(69 ± 6) 463 
females, 450 
males 

Fried et al. 
(2001) 

Plasma LpPLA2 
activity and 
mass, serum 
ICAM-1 and 
MCP-1, and 
urine 8-epi- 
PGFα 
isoprostanes 

ELISA Frailty was individually 
associated with isoprostanes, 
LpPLA2 mass, ICAM-1, and 
MCP-1. 
Pre-frailty was individually 
associated with elevated levels 
of LpPLA2 activity, ICAM-1, 
and MCP-1 
In those individuals ≥ 70 years 
old, associations between 
isoprostanes and frailty, and 
between pre-frailty and MCP-1 
were no longer significant 

Namioka 
et al. 
(2016) 

n=140  Frail n=34 
(82.3±6.1) 23 
females, 11 males 

Pre-frail n=62 
(80.5 ± 4.9) 40 
females, 22 
males; 
Non-frail n=44 
(78.2 ± 6.0) 19, 
females, 25 
males 

Fried et al. 
(2001) 

Plasma dROM Free radical analyzer 
system 
(spectrophotometry) 

dROM levels: frail > pre-frail > 
non-frail individuals 

Plasma BAP Free radical analyzer 
system(spectrophotometry) 

BAP levels were significantly 
lower in the frail group than in 
the non-frail group 

Endogenous 
plasma anti-
oxidants: 
albumin, 

Bromocresol purple 
staining, vanadic acid 
oxidation, and uricase 
assay, respectively 

Bilirubin levels were 
significantly lower in the frail 
group than in the non-frail 
group. No association albumin 
or uric acid with frailty 



 

 

bilirubin, uric 
acid 
Urinary 8-OHdG 
and 8-epiPGF2α 

HPLC and enzyme 
immunoassay, respectively 

Urinary excretions of 8-OHdG 
and 8-epiPGF2α were 
significantly higher in the frail 
and pre-frail groups than in the 
non-frail group 

Pereira et 
al. (2016) 

n=15 (88 ± 9.78) High risk of 
frailty (HARP) 
n=7  
 

Intermediate or 
low risk of 
frailty (HARP) 
n=7  

HARP  
 
 
FI 

Lymphocyte 
membrane lipid 
peroxidation: 
conjugated 
dienes and 
trienes 

UV spectrophotometry Elderly patients with a higher 
degree of frailty had 
significantly higher level of 
dienes in both frailty scales, 
and significantly higher level of 
trienes only in FI 

Intermediate or 
severe frailty (FI) 
n=12 

Non-frail/mild 
frailty (FI) n=3 

Plasma protein 
oxidation: MDA 
protein adducts 

TBARS test Elderly patients with a higher 
degree of frailty (HARP) 
presented significantly higher 
levels of MDA than those with 
milder levels of frailty 

8-OHdG, 8-hidroxy-2’-deoxyguanosine; BAP, biological antioxidant potential; dROM, derivatives of reactive oxygen metabolites; ELISA, enzyme-linked immunosorbent assay; 
FI, frailty index; GSH, glutathione; GSSG, glutathione disulfide, oxidized glutathione; HARP, hospital admission risk profile; HNE, 4-hidroxy-2,3-nonenal; HPLC,high 
performance liquid chromatography; ICAM-1,intracellular adhesion molecule-1; LC, liquid chromatography; LpPLA-2,lipoprotein phospholipase A2; MCP-1, monocyte 
chemoattractant protein-1; MDA, malondialdehyde; MS, mass spectrometry; TBARS, thiobarbituric binding acid reactive species; TTL, total thiol levels; Vit-E, vitamin E. 
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Cells have different mechanisms to limit the levels of ROS and the damage they induce. 

The cellular defence mechanisms against oxidative stress include both enzymatic (e.g. catalase, 

superoxide dismutase) and non-enzymatic (e.g. vitamin E [vit-E], glutathione) antioxidants, 

which play a central role in maintaining the cellular redox balance essential for cell survival 

(Birben et al., 2012). Several alterations in different antioxidants in association with frailty have 

been obtained in the studies reviewed. For instance, vit-E, or α-tocopherol, is the major lipophilic 

antioxidant in humans; low levels of vit-E are considered an indirect biomarker of oxidative stress 

and, therefore, it has been hypothesized to be associated with an increased risk of frailty. 

According to this, Ble et al. (2006) found a significant decrease of vit-E levels in frail individuals, 

after adjustment for multiple confounders, in a population of 827 older individuals classified 

according to Fried’s criteria.  

Also, increases of both oxidized glutathione (GSSG) and the oxidized/reduced glutathione 

ratio (GSSG/GSH), but normal reduced glutathione (GSH) levels, were found in 43 frail 

individuals (Fried’s criteria) regarding 19 non-frail subjects (Serviddio et al., 2009).  

Investigating the association between oxidative stress and frailty, Saum et al. (2015) 

evaluated three biomarkers of oxidative stress in 2,518 individuals classified according to Fried’s 

criteria: total thiol levels (TTL), d-ROM, and biological antioxidant potential (BAP). Whilst no 

statistically significant difference was observed in the levels of BAP in frail individuals as 

compared with the pre-frail and non-frail subjects, the frail group showed higher d-ROM but 

lower TLL levels. Also, significant positive correlations between d-ROM and BAP, and BAP and 

TTL were observed, as well as a weak inverse association between d-ROM and TTL. The authors 

concluded that TTL was the biomarker most consistently associated with frailty in all the 

regression models. 

Namioka et al. (2016) studied oxidative stress in a sample of 140 older adults with mild-

to-moderate Alzheimer’s disease, classified according to their frailty status using the Fried’s 

criteria. To that end, levels of several oxidative stress biomarkers were evaluated including d-

ROM, BAP, and endogenous plasma antioxidants (namely albumin, bilirubin, and uric acid). 

Consistently with the observations by Saum et al. (2015), results showed significantly increasing 

levels of dROM in non-frail < pre-frail < frail groups. On the other hand, BAP and plasma 

bilirubin levels were significantly lower in the frail group. Plasma albumin and uric acid levels 

showed no significant differences among the three groups. 

ROS attack all biological molecules including DNA, proteins and lipids. Lipids and 

lipoproteins are particularly susceptible to ROS attack because hydrogen abstraction by a radical 

can initiate a devastating chain reaction: lipid peroxidation (Anderson and Philips, 1999). Several 

studies evaluated lipid peroxidation and oxidized protein levels in relation to frailty. Serviddio et 
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al. (2009) analysed plasma levels of malonaldehyde (MDA) and 4-hydroxy-2,3-nonenal (HNE) 

protein adducts (both of them recognized biomarkers of lipid peroxidation), and plasma oxidized 

proteins (as expression of oxidative protein damage) in a population of 62 old individuals, 

classified as frail and non-frail accordingly to the Fried’s criteria. Higher levels of MDA and HNE 

adducts and oxidized proteins were observed in frail individuals as compared with non-frail 

subjects. 

Liu et al. (2016) studied the association of frailty (Fried’s criteria) with several oxidative 

stress biomarkers related to cardiovascular disease, namely isoprostanes (accurate markers of 

lipid peroxidation) and the lipoprotein phospholipase A2 (LpPLA2) (an enzyme involved in 

hydrolization of oxidized phospholipids) in a population of 1,919 older individuals. They 

concluded that significantly increased levels of isoprostanes and LpPLA2 mass were related to 

greater odds of frailty, since they found individual association of frailty with elevated levels of 

isoprostanes and LpPLA2 mass, and of pre-frailty with elevated levels of LpPLA2 activity. 

Inglés et al. (2009) employed MDA and protein carbonylation (a circulating indicator of 

oxidative damage to proteins) to assess the relationship between frailty and oxidative stress, and 

the capacity of these two parameters as possible biomarkers of frailty. Their results showed 

significantly higher levels of MDA and carbonylated proteins in older individuals classified as 

frail, according to Fried’s criteria, than in non-frail; no relationship with age or sex was found in 

any case. 

Also, Pereira et al. (2016) found in a small population (n=15) that older individuals with a 

higher degree of frailty, measured by FI or HARP criteria, showed higher levels of lipid 

peroxidation. In this study, protein oxidation levels (MDA protein adducts) were also evaluated, 

showing higher levels in individuals with higher risk of frailty determined by HARP criteria, but 

not by FI. 

Collerton et al. (2012) carried out a study with 552 older adults classified by means of both 

Fried’s criteria and FI (40 items), evaluating the possible association between frailty status and 

biomarkers of lipid peroxidation, namely isoprostanes iPF2 alpha-III and iPF2 alpha-VI. No 

association between frailty and the oxidative stress biomarkers was found in this case. 

As previously indicated, ROS may react with different biomolecules in cells, and one of 

the main targets is DNA. This kind of damage is often referred to as oxidative DNA damage. The 

consequences include different types of DNA alterations, ranging from simple oxidation of bases 

to large deletions, through single and double strand breaks (Rao, 2009). Pathogenic roles for DNA 

oxidation include the induction of mitochondrial dysfunction, promotion of cytotoxicity and 

modulation of inflammatory responses (Evans and Cooke, 2006). According to our revision, only 
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two studies have evaluated consequences of oxidative stress on DNA in frail and non-frail older 

people. Wu et al. (2009) evaluated the relationship between oxidative stress and frailty by 

measuring the level of serum 8-hidroxy-2’-deoxyguanosine (8-OHdG) in a sample of Chinese 

older individuals (n=90). The frailty status was determined by using the Fried’s criteria. Results 

showed significantly increased serum 8-OHdG levels in frail individuals with respect to the pre-

frail and non-frail subjects. More recently, Namioka et al. (2016) observed that urinary excretions 

of 8-OHdG and 8-isoprostane were significantly higher in frail and pre-frail individuals than those 

determined in the non-frail group. 

Together with these 9 selected studies, two additional epidemiological studies, not included 

in the final reviewed works because they did not strictly fulfil the inclusion criteria, addressed the 

relationship between frailty and oxidative stress in an indirect way. Firstly, Caballero et al. (2014) 

assessed the role of oxidative stress on deficiencies of functional physical performance of the 

lower and/or upper body limbs, that could affect a future pre-frailty phenotype (Fried’s criteria). 

To this aim, they studied the concentrations of plasma proteins, carbonylated proteins, lipid 

peroxidation and plasma total antioxidant activity, as measures of oxidative damage, in a 

population of 200 individuals aged ≥ 70 years. Their results showed significantly lower levels of 

total antioxidant capacity in women ≤ 76 years old with deficiencies in the physical performance 

of both lower and upper body limbs, but not in women >76 years old or in men of any age, 

suggesting that deficient oxidative defence in the elderly could significantly affect the functional 

physical performance and future outcomes of pre-frail individuals. 

Secondly, Baptista et al. (2012) used the gait speed as a measure of physical performance 

in older adults, in a population of 280 individuals. The objective of this study was to evaluate the 

superoxide anion production, and its interaction with physical frailty measured by gait speed in 

older adults. They found no differences in the baseline levels of superoxide anion production 

between subjects with slower and faster gait speed. However, after stimulation with PMA 

(lucigenin and phorbol 12-myristate 13-acetate), the superoxide anion production was 

significantly higher in slow walkers (gait speed <0.8 m/s). Hence, they suggested that the 

production of the superoxide anion can be involved in the decline of physical performance in the 

older age and, therefore, in the frailty process. 

Methodologies used in the studies mentioned differ from one another. Four out of these 9 

studies used chromatographic assays. Inglés et al. (2009) and Namioka et al. (2016) employed 

high perfomance liquid chromatography (HPLC). This technique allows the elution of a 

component from a mixture or sample in order to identify and quantify the particular component. 

The basis of the technique consists of passing a pressurize sample, contained in a liquid solvent, 

through a stationary solid adsorbent HPLC column. The components of the sample flow through 
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the column at a different rate due to their different degrees of interaction with the column filling 

material, allowing their separation. Ble et al., (2006) employed a reverse-phase HPLC. In this 

case, the mobile phase containing the sample is a polar or aqueous solution that is pumped through 

a non-polar stationary column. Separation of the components is conducted according to their 

hydrophobic interactions with the stationary phase (Canene-Adams, 2013). 

Collerton et al., (2012) evaluated lipid peroxidation by liquid chromatography (LC) 

coupled to mass spectrometry (MS). The MS has great sensitivity and is highly specific as 

compared to other chromatographic detectors. MS operate by converting the analyte molecules 

to an ionized state. Hence the analysis of these ions, on the basis of their mass to charge ratio 

(m/z), offers a profile of the components present in a sample (Pitt, 2009).   

The enzyme-linked immunosorbent assay (ELISA) was used by Liu et al. (2016) to study 

lipid peroxidation, and by Wu et al. (2009) to assess the effect of oxidative stress on DNA. ELISA 

tests are immunoenzymatic biochemistry tests that use an enzyme in a liquid sample to detect the 

presence of an antigen attached to a surface by using specific antibodies. The reaction between 

the enzyme and the antigen of study produces a reaction (i.e. a change of colour in the enzyme 

substrate) that can be measured by different means (Lequin, 2005).  

In order to analyse oxidative damage in proteins, the Western blot assay was utilized by 

Serviddio et al. (2009) and Inglés et al. (2014). This technique is used for immunodetection and 

quantitation of specific proteins in complex cell homogenates (Taylor and Posch, 2014). 

Five studies used spectrophotometry assays to evaluate levels of different plasma 

biomarkers of oxidative stress (Saum et al., 2015; Namioka et al., 2016; Pereira et al., 2016), and 

whole blood levels of GSH (Serviddio et al., 2009), as well as peroxidation of lipids of the cell 

membrane (Pereira et al., 2016). The basic principle of this technique is that each compound 

absorbs or transmits light over a certain range of wavelength. Thus, a substance present in a 

sample can be quantified by measuring the intensity of light detected as a beam of light passes 

through the sample solution. Also, Pereira et al. (2016) and Serviddio et al. (2009) evaluated the 

levels of plasma MDA and HNE proteins by a spectrofluorimetric assay, whose basic principle is 

the same but using fluorescence, conferring a higher accuracy to the method.  

3.2. Genomic biomarkers 

The contribution of the individual genetic profile to the development of frail is still 

uncertain. Whether and to what extent the individual genetic features affect the individual 

susceptibility to frailty is not well established yet. In this regard, studies involving analysis of the 

contribution of genetic background to frailty and in particular evaluating the association of 

genomic instability to this condition may help to provide insights into biologically relevant 
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pathways that contribute to frailty. Among the studies reviewed here addressing genetic 

alterations, 17 in total, six of them (35.3%) evaluated genetic background of frail individuals, 

including variations in both nuclear (three studies) and mitochondrial (other three studies) DNA, 

eight (47%) investigated the relationship between genomic instability and frailty, and three 

(17,7%) addressed the possible epigenetic characteristics of frailty status (Table II.2).  

3.2.1. Individual genetic background  

Three out of the 17 studies reviewed here evaluated the individual genetic differences 

associated to frailty, employing different multiplexing bead chip arrays to genotype whole 

genomes (Kim et al., 2015) or specific single nucleotide polymorphisms (SNP) (Matteini et al., 

2010; Ho et al., 2011). 

Kim et al. (2015) studied the heritability of healthy ageing as an attempt to find the more 

beneficial genetic variants or less disadvantageous variants present in healthy, long-lived people. 

The authors performed a genome-wide linkage analysis and fine-scaled association mapping of 

linkage regions, using the FI (34 deficits) as a quantitative measure of frailty in a population of 

320 older adults. Three healthy ageing sites (HAS) were found at 12q13-14 in intergenic regions 

(HAS-1 and -2 with enhancer activity, HAS-3 with silencer activity). 

Ho et al. (2011) studied different biological pathways involved in frailty to try to find 

variations in genes related to the frailty syndrome. To this aim, they genotyped 1,354 SNP from 

134 candidate genes involved in inflammation and muscle maintenance, two of the main 

phenotypic characteristics of frailty, in a population of 348 subjects classified according to Fried’s 

criteria. Twenty SNP, indirectly related to inflammatory process, were found to be associated 

with frailty, although statistical significance was not reached. 

Matteini et al. (2010) also investigated genetic variants of six candidate genes (MTHFR, 

MTR, MTRR, CBS, TCN1, and TCN2) involved in Vitamin B12 metabolic pathway and their 

association with frailty (Fried’s criteria), in 416 older women. For this purpose, 56 SNP from 

those six candidate genes were genotyped. The results found SNP in the TCN2 gene showing 

significant association with frailty. Moreover, two SNP in MTRR gene showed 2-4 times greater 

odds of being frail compared to robust. 

  



 

 

TABLE  II.2. Studies assessing genomic biomarkers 
Study Total population  

(mean age ± SD) 
Case population 
(mean age ± SD) 

Control 
population 
(mean age ± SD) 

Frailty 
criteria 

Outcomes Assay method Results 

Ashar et al. 
(2015) 

n=4,892; 2,774 females, 
2118 males 

na na Fried et al. 
(2001) 

mtDNA copy 
number 

qPCR Lower mtDNA copy 
number was significantly 
associated with prevalent 
frailty only in white 
participants 

Bellizi et al. 
(2012) 

Cross-sectional study: 
n= 318 (S1+S2). 
S1: n=217 (median age 
75 years) 123 females, 
94 males, classified in 
non-frail, pre-frail and 
frail. 
S2: n=101(median age 
99 years) 51 females,50 
males, classified in frail 
and very frail 

na na Montesanto et 
al. (2010) 

Global DNA 
methylation 

CpGlobal assay Global DNA methylation 
levels were correlated 
with frailty in S1 but not 
in S2. 

Longitudinal study 7 
years later: n=37, 
random sample from S1 
pre-frail and non frail 
groups 

Lower global DNA 
methylation levels in pre-
frail subjects that became 
frail after 7 years 

Breitling et al. 
(2016) 

Dataset 1: n=969 
(62.1±6.5) 484 females, 
485 males 

na na FI (34 deficits) DNA methylation 
age acceleration 
(methylation age 
minus 
chronological age) 

Infinium 
HumanMethylation450 
BeadChip 

Association of DNA 
methylation age 
acceleration with FI 
increased with increasing 
age acceleration 

Dataset 2: n=851 
(63±6.7) 464 females, 
387 males 

TL qPCR Interaction between TL 
and epigenetic age 
acceleration did not 
improve the prediction of 
FI 

Collerton et al. 
(2014) 

n=321 (85) 184 females, 
137 males 

na na Fried et al. 
(2001) (CHS 
modified) 

DNA methylation 
in CpG islands 
 

Highly quantitative 
pyrosequencing  

Association CpG island 
methylation with frailty 



 

 

n=231 (85) 148 females, 
83 males 

LINE-1 
methylation levels 
(surrogate for 
genome-wide DNA 
methylation levels) 

No association genome-
wide methylation (LINE-
1) with frailty 

Collerton et al. 
(2012) 

n=552 (85) 332 females, 
220 males 

Frail n=119 (85) 92 
females, 27 males 

Pre-frail n=333 
(85) 193 females, 
140 males; 
non-frail n=100 
(85) 47 females, 
53 males 

Fried et al. 
(2001) 
 
FI (40 deficits) 

TL qPCR No association of TL or 
ionized radiation-induced 
DNA damage and repair 
with frailty 

Ionized radiation-
induced DNA 
damage and repair 

Automated fluorimetric 
alkaline DNA unwinding 

Collerton et al. 
(2013) 

n=1,173 (85.5)  Frail n=696 (FI), 
n=477 (Fried et al., 
2001) 

3 ethnically 
matched 
population 
control data sets 

Fried et al. 
(2001) 
FI (40 deficits) 

mtDNA 
haplogroups 

Sequenom Mass ARRAY No association between 
common genetic variants 
of mtDNA and frailty   

Jylhava et al. 
(2013) 

n=174 Frail n=144 
(nonagerians) 101 
females, 43 males 

n=30 young 
controls (range 
19-30 years) 21 
females, 9 males 

Fried et al. 
(2001) 

Total cf-DNA in 
plasma 

Fluorimetry (Quant-iTTM 
DNA high-sensitivity assay 
kit) 

In nonagenarians:  
Higher levels of total and 
unmethylated cf-DNA 
were associated with 
increased frailty 

Unmethylatedcf-
DNA 

ELISA (DNA Methylation 
Kit) 

Genomic 
equivalents of the 
RNase P-coding cf-
DNA 

qPCR No association with frailty 

Alu repeat cf-DNA qPCR No association with frailty 
mtDNA copy 
number 

qPCR mtDNA copy number was 
directly correlated with 
increased frailty 

Marzetti et al. 
(2014) 

n=142 (74.9±6.5) 84 
females, 58 males 

Frail n=74  Pre-frail/non-
frail: n=68 

Fried et al. 
(2001) 
FI (30 deficits) 

TL qPCR No association with frailty 
(Fried or FI) 

Moore et al. 
(2010) 

Pilot study: n=315 Frail n=154 (75±4.45) 
112 females, 42 
males. 

Non-frail: n=161 
(81.35±3.16) 111 
females, 50 males 

Fried et al. 
(2001) 

mtDNA variations 
(SNP) 

Oligonucleotide sequencing 
microarray 

Three mtDNA SNPs 
(mt146, mt204, and 
mt228) were associated 
with frailty  



 

 

Cross-sectional study: 
total n=5,275 
 

Frail white: n=262 
(77.36±6.36) 174 
females, 88 males; 
frail black: n=102 
(75.44±6.76) 76 
females, 26 males 

Non-frail white: 
n=4,223 
(72.43±5.37) 
2377 females, 
1,846 males; non-
frail black: n=688 
(72.05±5.09) 425 
females, 263 
males 

Real-time PCR TaqMan 
assays for individual SNP 
selected for follow-up 
(mt146, mt204, and mt228) 

mt204 C allele was 
associated with greater 
likelihood of frailty 
 
 

Saum et al. 
(2014) 

n=3,537 (61.9±6.6) 
1963 females, 1574 
males.  

na na FI (34 deficits) Relative TL (T/S 
ratio) 

qPCR No difference of the FI 
between the T/S ratio 
tertiles was observed. 
TL measurements by the 
T/S ratio were highly 
correlated with absolute 
TL 

Validation in a 
subpopulation n=20 

Absolute TL in 
base pairs 

Southern blot 

Woo et al. 
(2008) 

n=2,006. 1,030 females 
(72.02±5.191),  976 
males (72.75±5.026) 

na na FI (17 deficits) TL  qPCR No correlation between 
TL and frailty 

Valdiglesias et 
al. (2015) 

n=180 Frail n=93 (76.9±6.6) 
52 females, 41 males 

Non-frail n=87 
(72.9±6.1) 50 
females, 37 males 

Fried et al. 
(2001) 

MN frequency CBMN with automated 
scoring 

No association between 
MN frequency and frailty 

Yu et al. (2015) n=2,006 (72.4 ± 5.1) 
1030 females, 976 males 

Frail n=127 Pre-frail n=967; 
non-frail n=912,  

Fried et al. 
(2001) 

TL qPCR No association between 
TL and frailty at baseline, 
nor in 4 year follow-up 

Brault et al. 
(2014) 

n=53 (≥ 75 years old) na na Fried et al. 
(2001) 

TL in leukocytes 
and aortic tissue 

 No association between 
TL and frailty. 
Association between 
longer leukocyte and 
aortic T/S ratio and 
greater number of clinical 
frailty criteria. 

Kim et al. 
(2015) 

n=320. Parents at least 
90 years old and their 
offspring (50-80 years 
old) 

na na FI (34 deficits) Genome-wide 
linkage scanning 
followed by fine-
scale association 
mapping 

Genotyping: BeadChip array 
(Illumina Infinium Linkage 
24 set); 
association 
mapping:IlluminaGoldenGate 
assay 

They found three sites 
associated with healthy 
aging 



 

 

Ho et al. (2011) n=348 females (74.2) Frail n=152 Pre-frail n=165; 
non-frail n=32 

Fried et al. 
(2001) 

SNP variations 
(134 genes, 1354 
SNP) 

Bead Array (Illumina custom 
GoldenGate 1536 SNP panel) 

20 SNP (from 11 genes) 
associated with frailty 
(not significantly) 

Matteini et al. 
(2010) 

n=326 females (74.1) na na Fried et al. 
(2001) 

56 SNP from six 
candidate genes 
involved in 
Vitamin 
B12metabolic 
pathway: MTHFR, 
MTR, MTRR, 
CBS, TCN1 and 
TCN2 

Illumina BeadArray SNP in the TCN2 showed 
significant association 
with frailty. 
Two SNP in MTRR 
showed 2-4 times greater 
odds of being frail 
compared to robust 

Gao et al. (2017) Discovery set n=978 
(62.1 ±6.5) 

Frail n=100 Pre-frail n=443; 
non-frail n=435 

FI (34 deficits) DNA methylation 
profiles 

Illumina Human Methylation 
450 BeadChip 

17 smoking-related CpG 
sites were associated with 
the FI.  

Validation set n=531 
(62.0±6.6) 

Frail n=48 Pre-frail n=220; 
non-frail n=263 

9 of those sites were 
designated as frailty 
associated loci. Six of 
them [cg02657160 
(CPOX), cg05673882 
(POLK), cg07826859 
(MYO1G), cg19859270 
(GPR15), cg23667432 
(ALPP), and cg25189904 
(GNG12)] were mapped 
showing methylation 
intensity in frail < pre-
frail < non-frail 
SI, based on those 9 
smoking-related CpG 
sites, manifested a 
monotonic dose-response 
relationship with the FI 

CBMN, cytokinesis-blocked micronucleus test; cf-DNA, cell free DNA; CHS, cardiovascular health study; LINE-1, long interspersed nuclear elements 1; MN, micronucleus; mtDNA, mitochondrial 
DNA; na, not available; qPCR, quantitative PCR; SI, Smoking index; SNP, single nucleotide polymorphism; T/S ratio, mean telomere repeat copy to single gene copy number; TL, telomere length.
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Mitochondria are involved in several major cell functions, such as cell production of 

energy, metabolic and apoptotic processes, as well as being a major site of ROS generation. 

Mitochondrial function experiences alterations with age and these changes are associated with 

several age-related diseases. Thus, age-related changes and variations in the mtDNA have been 

proposed as plausible candidates to play a role in degenerative and senescent processes, and to 

contribute to increases in vulnerability in late life (Moore et al., 2010); hence they are likely to 

be associated with frailty syndrome. Three studies were found in the literature search that 

evaluated the possible association between mtDNA alterations (in copy number or in sequence) 

and frailty. Firstly, Collerton et al. (2013) evaluated the association between common genetic 

variants of mtDNA and frailty as a mean to study heritability of human longevity and healthy 

ageing, since frailty is considered an "unhealthy ageing" phenotype. They evaluated a population 

of 1,173 older adults. No association between mtDNA haplogroups and frailty, assessed by both 

Fried’s criteria and FI (40 deficits), was observed. 

On the contrary, Ashar et al. (2015) evaluated the association between mtDNA copy 

number, evaluated by quantitative polymerase chain reaction (qPCR) and prevalent frailty 

(Fried’s criteria; n= 4,892). They reported lower mtDNA copy number in frail white, but not in 

frail black, individuals. They also observed a significant inverse association of mtDNA copy 

number with age, and higher mtDNA copy number in women relative to men. Finally, Moore et 

al. (2010) studied how mtDNA variations (SNP) with age may increase the susceptibility to 

frailty. In a pilot study of 315 individuals classified according to Fried’s criteria, three mtDNA 

SNP were associated with frailty (mt146, mt204, and mt228). From these three SNP, mt204 C 

was confirmed to be the allele associated with greater likelihood of frailty in the cross-sectional 

further study including 5,275 subjects.  

After cell damage or death, DNA is released into the circulation; this is why plasma cell 

free DNA (cf-DNA) reflects systematic inflammation and cell death, what makes it a potential 

biomarker of ageing and frailty. For that reason, Jylhava et al. (2013) quantified the plasma levels 

of total cf-DNA, unmethylated cf-DNA, gene-coding cf-DNA, and Alu repeat cf-DNA, and 

mtDNA copy number to study their potential as biomarkers of frailty (Fried’s criteria; n= 174). 

Their results showed increased levels of total and unmethylated cf-DNA associated with frailty. 

Also mtDNA copy number was correlated with frailty. However, neither gene-coding cf-DNA 

nor Alu repeat cf-DNA were associated with frailty. Similarly, the same group (Jylhava et al., 

2014) studied the association of these biomarkers with mortality, finding that frailty is detrimental 

for survival when used to adjust the results obtained. 
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3.2.2. Genomic instability 

As mentioned before, eight out of 17 studies evaluated genomic instability in frailty. 

Genomic instability refers to a set of genetic events capable of causing temporary or permanent 

unscheduled alterations within the genome, including diverse types of chromosomal alterations 

(e.g. inversions, deletions, duplications and translocations of large chromosomal segments) 

(Migliore et al., 2011; Valdiglesias et al., 2015). Thus, genome instability could lead to altered 

gene dosage and gene expression as well as contribute to the risk of accelerated cell death in 

neuronal tissue (Thomas and Fenech, 2007). In accordance, genomic instability is considered a 

hallmark of a number of ageing-related diseases including cancer, and is related to the ageing 

phenotype and neurodegenerative disorders (Coppedè and Migliore, 2010; Migliore et al., 2011), 

Among the studies evaluating genomic instability, all but one (Valdiglesias et al., 2015) 

analysed telomere length (TL) in the older subjects by using qPCR. TL analysis is a common 

approach to evaluate genomic instability in blood samples. Telomeres are regions of repetitive 

nucleotide sequence at each end of the chromosomes, which contribute to maintain their integrity. 

They progressively shorten as the cell divides, limiting the number of divisions that normal 

somatic cells can undergo (Marzetti et al., 2014). The observation that telomeres shorten over the 

life course has led to the hypothesis that telomere attrition may be a mechanism driving the ageing 

process (Mikhelson and Gamaley, 2012). Nevertheless, all the studies reviewed here failed in 

finding an association between frailty and TL shortening: Collerton et al. (2012), using both 

Fried’s criteria and FI (40 deficits; n=552), Marzetti et al. (2014) (n=142) and Yu et al. (2015) 

(n= 2,006) employing the Fried’s criteria, Saum et al. (2014) (n=3,537) and Woo et al. (2008) 

(n=2,006) using the FI (34 and 17 deficits, respectively). Lack of association between TL and 

frailty (Fried’s criteria) was also obtained by Brault et al. (2014) in older subjects with 

cardiovascular disease (n=53); however, in this case, they found an unexpected association 

between longer leucocyte and aortic T/S ratio (mean telomere repeat copy to single gene copy 

number) and greater number of clinical frailty criteria. Together with these studies, Breitling et 

al. (2016) evaluated the possible association between TL and DNA methylation age acceleration 

(methylation age minus chronological age) in a population of 851 older adults. They found no 

correlation between the two parameters, supporting the previously mentioned observations and 

the idea that TL is not a good biomarker for the identification of frailty. 

The frequency of micronucleus (MN) in peripheral blood lymphocytes is also a biomarker 

of genomic stability widely employed in molecular epidemiology. Similarly to TL, MN frequency 

has been previously associated with age-related diseases and the process of ageing (Bonassi et 

al., 2001; Migliore et al., 2011). Valdiglesias et al. (2015) evaluated the frequency of MN to study 

the association of genomic instability and frailty in a population of 180 older adults classified 
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according to Fried’s criteria. Again, no association between MN frequency and frailty was 

observed in this case. 

Thus, despite the well-reasoned working hypothesis (genomic instability is involved in 

the pathogenesis of frailty syndrome), all these studies resulted surprisingly fruitless, with no 

positive association between genomic instability and frailty severity. Two possible explanations 

were suggested for this lack of association (Valdiglesias et al., 2015). Firstly, the negative 

findings reported in all these studies may be caused by the high rate of basal genomic damage 

present in healthy older individuals and reported in previous studies (Mladinic et al., 2010). And 

secondly, this lack of association may be due to the physiological accumulation of genome 

damage in the elderly, which could limit the rate of genomic damage production. This condition 

could, for instance, limit the rate of MN formation. 

3.2.3. Epigenetics 

It has been previously reported that the genetic material of cells experiences epigenetic 

variations during the ageing process (reviewed in Sen et al., 2016). A total of 3 studies out of 17 

evaluating genomic biomarkers, addressed the study of epigenetics in frail older adults. The three 

of them showed positive correlation between frailty status and DNA methylation. Bellizi et al. 

(2012) reported the first study investigating the possible correlation between age-related 

functional decline, including frailty status, and epigenetic modifications. They measured global 

DNA methylation levels by means of the CpGlobal assay, developed by Anisowicz et al. (2008), 

that utilizes methyl-sensitive restriction enzymes to detect the biotinylated nucleotides 

incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. A total 

of 318 older people, divided in middle/advanced-aged subjects (median age 75 years) and 

ultranonagenarians (median age 99 years) were evaluated in a cross-sectional study, and in a 7 

year follow-up of a subsample of pre-frail and non-frail middle aged subjects. Frailty status was 

determined using the Montesanto et al. (2010) scale, a hierarchical cluster analysis. Higher values 

of global DNA methylation were observed in frail middle aged subjects respect to pre-frail and 

non-frail, but no difference between very frail and frail was observed in the ultranonagenarians. 

In the follow-up study, those individuals that became frail after 7 years showed a significant 

increase of DNA methylation levels.  

More recently, Breitling et al. (2016) evaluated the association between DNA 

methylation age acceleration, assessed by a methylation profiling high throughput platform, and 

frailty in a population of 969 older adults, classified according their frailty status by using the FI 

(34 deficits). Their findings showed significantly increasing accumulation of frailty deficits with 

increasing methylation age acceleration, supporting an association between epigenetic age 

acceleration and frailty status. Also on this regard, Gao et al. (2017) examined the associations of 



II-Systematic review on oxidative stress, genomic features and DNA repair in frail elderly  

49 
 

smoking-related DNA methylation biomarkers and frailty in a population of older adults classified 

according to FI, and observed that methylation intensity of each locus in the validation panel was 

significantly lower in the frail, when compared to non-frail, population, whereas intermediate 

levels of methylation intensity were observed in the pre-frail subjects. On the basis of their results, 

authors suggested that CpG sites identified could have the potential to be prognostic biomarkers 

of frailty or frailty-related health outcomes. 

Following the same assumption that DNA methylation changes with age, especially in 

gene promoter regions, Collerton et al. (2014) studied the importance of altered DNA methylation 

in frailty in 552 subjects (Fried’s criteria). To this end, methylation at specific cytosine residues 

within CpG islands associated with gene transcriptional start sites was quantified using highly 

quantitative pyrosequencing. This technique is based on the sequencing-by-synthesis principle, 

similar to the one used in the Sanger method, as they both require the direct action of DNA 

polymerase. Furthermore, to estimate the genome-wide DNA methylation levels, they quantified 

methylation at LINE-1 repetitive elements as a surrogate, showing no association with frailty. 

However, a clear association between CpG island methylation and frailty was observed, 

suggesting a potential role for age-related ranges in CpG island methylation in the development 

of frailty.  

3.3. DNA repair ability 

The DNA repair system has been recognized as one of the most important cellular defence 

mechanisms responsible for the integrity of DNA. Decreased DNA repair ability is exhibited in 

various clinical conditions and associated with increased frequency of carcinogenesis, since 

inefficient repair leads to an accumulation of aberrations in the genome that culminate in the 

genetic instability typical of many malignancies and other pathologies (Valdiglesias et al., 2011a).  

Daily exposure to environmental agents (such as oxidizing chemicals, methylating agents, 

UV light, and ionizing radiation), and even normal physiological processes (such as replication 

and recombination), all may damage cellular components, including DNA. While modified 

proteins and lipids can be degraded and resynthesized, DNA must be repaired before replication 

and cell division take place (Klungland and Bjelland, 2007). Toxic and mutagenic consequences 

are minimized by distinct pathways of cellular repair that include different enzymes and protein 

complexes encoded by a number of human DNA repair genes. Genomic instability, previously 

described, is highly related to failures in cellular repair since aberrant DNA polymerases and other 

components of the transcriptional and translational machinery are accumulated with age (Rattan, 

2012). Thus, during ageing, accumulation of mistakes takes place in the genetic material due to 

the loss of efficiency of these DNA repair systems, and contributes to the development of genomic 

instability. Indeed, most age-related diseases and ageing signs are associated with genomic 
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instability and with unrepaired or erroneously repaired genome damage (Bürkle, 2001). Besides, 

it is known that the accumulation of DNA damage is involved in premature ageing and 

neurodegenerative processes, suggesting that alterations in the DNA repair mechanisms may be 

relevant to these disorders (Coppedè and Migliore, 2010). Indeed, the impact of cellular 

senescence on ageing of organisms was previously evaluated in different studies revealing an 

accumulation of DNA damage in both senescent cells and ageing organisms (Sedelnikova et al., 

2008). In particular, several works described accumulated γH2AX foci, which reveal persistent 

DNA double-stranded breaks, in senescing human cell cultures and in ageing mice (Sedelnikova 

et al., 2004), in early thymocyte subsets of aged as compared to young mice (Hesse et al., 2009), 

in different organs from ageing C57Bl6 mice (Wang et al., 2009) and in fibroblasts taken from 

patients with Werner syndrome (Sedelnikova et al., 2008). 

To our knowledge, the only study that evaluates DNA damage and repair capacity in association 

with frailty in human population-based studies is the one reported by Collerton et al. (2012), 

where no association was observed using both Fried’s criteria and FI (40 deficits) to identify 

frailty status.  

4. Conclusions 

Frailty is gaining attention in the last decades in geriatrics and research areas, with more 

and more professionals claiming frailty measurement to be incorporated into clinical practice as 

part of routine care for older patients. However, the currently used criteria identify frailty only 

after clinical manifestations are obvious. Increasing evidence suggest that the clinical concept of 

frailty –based mainly on phenotypical signs and symptoms and barely considering its biological 

basis – is obsolete since no single altered system alone defines frailty, but multiple systems are 

involved in this syndrome.  

In order to achieve a more thorough and objective assessment for early identification of 

frailty, it is necessary to develop new tools that allow to recognize those individuals more 

vulnerable and more prone to develop the frailty syndrome. Within this framework, cellular and 

molecular biomarkers could be used to reach a more accurate identification of frailty, as well as 

those individuals in early and potentially reversible frailty stages (pre-frail individuals). The 

development of these new tools and their inclusion in the criteria to identify frailty would facilitate 

the implementation of personalized care and treatments, as well as improve outcomes by means 

of prevention and intervention programmes. Additional research is needed to further explore the 

pathophysiological bases of frailty.  

In this review, population studies evaluating alterations associated with frailty status at 

cellular and molecular level – by means of oxidative stress, genomic and DNA repair biomarkers 
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– were revised and compared in order to gather all this information and to identify potential 

biomarkers that could be useful in frailty identification, as well as to point out gaps of knowledge 

and new research areas needed in this field. Results of this revision showed that several oxidative 

stress biomarkers –including alterations in antioxidant systems, increased levels of lipid 

peroxidation and DNA oxidative damage, as well as DNA methylation and some specific genetic 

polymorphisms –are associated with frailty status in older people. On the contrary genomic 

instability, or at least the two biomarkers tested so far (telomere length and MN rate) seems not 

to be linked to frailty. The only study which addressed the possible relationship between DNA 

repair modulations and frailty status also failed in finding associations.  

Despite the number of cellular alterations initially associated with frailty, studies on this 

regard are still very scarce and limited to some of the possible cellular targets. Additional research 

is needed to further explore these alterations prior to include any of them in the frailty assessment 

criteria. However, given the solid link between DNA repair ability, genomic instability, and age 

and age-related disorders, deeper investigations in this line must be carried out before reaching 

solid conclusions.  
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1. Introduction 

H2AX phosphorylation is an early event in the DNA damage response (DDR) in the 

vicinity of double strand break (DSB) sites. H2AX is rapidly phosphorylated, at its highly 

conserved amino acid Ser 139 present in the C-terminal serine/glutamine motif by PI3 kinases, to 

become γH2AX (Nakamura et al., 2010) (Figure III.1).  

 

FIGURE III.1.  Scheme of H2AX phosphorylation as response to double strand 
breaks and its involvement in recruitment of the proteins MDC1 (mediator of DNA 
damage check point), 53BP1 (p53 binding protein 1) and MRN (MRE11-RAD50-
NBS1) complex in the early DNA damage response. ATM, Ataxia telangiectasia 
mutated. 

The ataxia telangiectasia mutated (ATM) protein kinase is the main kinase involved in 

the phosphorylation of H2AX under physiological conditions. This phosphorylation is believed 

to lead to a change in the chromatin conformation in the damaged area to allow a better access of 

repair enzymes (Nikolova et al., 2014; Siddiqui et al., 2015). γH2AX role is to recruit DDR 

proteins and retain those mediators nearby DSB sites. γH2AX binds to mediator of DNA damage 

check point 1 (MDC1), which recruits p53 binding protein 1 (53BP1). These two mediators then 
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interact with the MRE11/RAD50/NBS1 (MRN) complex as part of the signalling pathway that 

leads to the DDR through either homologous recombination (HR) or non-homologous end joining 

(NHEJ) (Bouquet et al., 2006; Nakamura et al., 2010; Siddiqui et al., 2015). H2AX 

phosphorylation occurs within minutes and γH2AX foci disappear after 24 hours. However, 

residual γH2AX foci can persist permanently in the genome as consequence of defects in the 

efficiency of repair mechanisms; hence, they can be used as biomarker of fixed DNA damage 

(Sedelnikova et al., 2004). 

Since DSB originate in many processes that disturb cellular stability, γH2AX foci 

detection has several practical uses in both basic research and epidemiological studies. It was used 

as biodosimeter for drug development (Li et al., 2014), radiation exposure (Beels et al., 2009), 

and in cancer chemo- and radiotherapy clinical trials (reviewed in Pouliliou and Koukourakis, 

2014; Sak et al., 2007). Furthermore, it was used as a detector of toxic environmental agents 

(reviewed in Geric et al., 2014) and chronic inflammation (Blanco et al., 2007), and as biomarker 

for ageing and cancer (Garm et al., 2013; reviewed in Redon et al., 2011). Very recently, Nikolova 

et al. (2014) confirmed γH2AX assay as a reliable biomarker for genotoxic exposures after testing 

14 well-known genotoxic compounds and comparing them with 10 non-genotoxic chemicals. All 

chemicals in the first group showed increased levels of γH2AX foci, versus none in the second 

group, confirming the specificity of this assay for DNA damaging agents.   

The analysis of H2AX phosphorylation has a number of advantages that make this assay 

very suitable to be employed as biomarker of DNA damage in population studies; among others, 

the specificity in recognizing DSBs and the sensitivity in detecting low frequencies of DSB, the 

short time frame of the protocol, the small quantity of biological sample required, and the 

possibility to perform automated scoring. Besides, a recent study compared the reliability of 

several DNA damage biomarkers by testing a variety of well-known genotoxic agents with 

different assays, namely Ames test, γH2AX assay, mouse lymphoma assay and chromosome 

aberration assay (Smart et al., 2011).  Among all of them, γH2AX analysis, performed by flow 

cytometry, showed the highest average sensitivity (91%) and specificity (89%). Nevertheless, 

despite all applications mentioned and its promising potential as genotoxicity and genomic 

instability biomarker, there is an important lack of standardization in the methodological 

procedure that makes it difficult to establish this approach as a routine biomarker in population 

studies and also hinders the comparison between studies. For instance, the measurement of 

γH2AX foci formation has been already performed in several previous human population studies 

using different cell types (isolated leucocytes, exfoliated buccal cells, fibroblasts), different cell 

culture proliferative state (usually peripheral blood leucocytes [PBL] unstimulated or stimulated 

with phytohaemagglutinin [PHA]), different cell storage conditions (fresh or cryopreserved 

samples), different approaches to evaluate the γH2AX foci levels (microscopy, flow cytometry, 
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Western blot), etc. (reviewed in Valdiglesias et al., 2013). All these dissimilarities between 

laboratory protocols are to a great extent responsible for the high variability of results regarding 

this biomarker.  

The objective of this study was to address the most critical issues limiting the use of the 

γH2AX assay as DNA damage biomarker in human population studies. To this aim, differences 

in γH2AX levels between employing fresh or cryopreserved PBL, as well as the influence of PHA 

stimulation prior to the γH2AX analysis, were assessed by flow cytometry. Thereby, cells were 

treated with four known genotoxic agents with well characterized γH2AX foci formation potential 

(bleomycin [BLM], camptothecin [Campt], actinomycin-D [Act-D] and methyl methanesulfonate 

[MMS]). All these four agents induce DSB by means of different mechanisms, direct or indirect; 

thus they were chosen to provide evidence that γH2AX analysis detects DNA damage regardless 

of the DSB origin or experimental condition tested. 

2. Material and Methods 

2.1. Chemicals 

Bleomycin (BLM) (CAS number 11056-06-7), camptothecin (Campt) (CAS number 

7689-03-4), actinomycin-D (Act-D) (CAS number 50-76-0), methyl methanesulfonate (MMS) 

(CAS number 66-27-3), RNase A, and propidium iodide (PI) were purchased from Sigma-Aldrich 

Co. BLM and MMS were dissolved in sterile distilled water (dH2O), and Campt and Act-D were 

dissolved in dimethyl sulfoxide (DMSO) (CAS number 67-68-5) from Sigma-Aldrich Co.  

2.2. Leucocyte isolation and processing 

Peripheral blood was collected from three healthy non-smoker female donors (27-40 

years old), by venipuncture using BD Vacutainer® CPT™ tubes with sodium heparin (Becton 

Dickinson) (Fig. III.2). The study followed ethical criteria established by the Helsinki declaration. 

Written consent was obtained from each donor prior to joining the study. 
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FIGURE III.2.  BD Vacutainer® CPT™ tubes: empty (left), after collecting peripheral 
whole blood (middle), and after centrifugation (right), showing the location of plasma, 
peripheral blood mononuclear cell (PBMC) buffy coat, gel plug and red blood cells 
(RBCs) and granulocytes layers. 

Mononuclear leucocytes (lymphocytes and monocytes) were isolated following 

manufacturer’s instructions, immediately after blood extraction. In brief, CPT™ tubes were 

centrifuged at 9,000 rpm for 30 min at 4ºC. Subsequently, the buffy coat containing the leucocytes 

was transferred to another tube, washed with phosphate-buffered solution (PBS) and centrifuged 

(10 min 1,500 rpm 4ºC).  

After a second washing with PBS, isolated mononuclear cells from each donor were 

divided in two fractions: cells to be cultured and treated in fresh and those to be frozen. For fresh 

treatments, cells (5×105/ml) were suspended in 900 µl of RPMI 1640 medium containing final 

concentrations of 15% (v/v) heat-inactivated foetal bovine serum (FBS), 1% (v/v) L-glutamine 

(200 mM), and 1% (v/v) penicillin (5,000 U/ml)/streptomycin (5,000 μg/ml) (all from Life 

Technologies), in the presence or absence of 1% (v/v) phytohaemagglutinin (PHA) depending on 

whether they would be stimulated or not, respectively. The cells to be frozen were suspended in 

appropriate freezing medium (50% of FBS, 40% RPMI 1640, 10% DMSO) at a concentration of 

107 cells/ml, and stored at −80ºC in a Nalgene® Cryo 1ºC Freezing Container (Nalgene Nunc 

International), until use. 

2.3. Treatments 

To carry out the treatments with the different genotoxic chemicals, both frozen and fresh 

cells were divided in two subgroups: unstimulated cells and cells stimulated with PHA. 

Unstimulated cells were treated with the different genotoxic agents right after isolation or after 

being quickly thawed at 37ºC. Stimulated cells were incubated prior to treatments for 24 h at 37ºC 

in the presence of PHA. 
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Cells were then exposed for 4 h at 37ºC with the specific genotoxic agent at four different 

concentrations (1% of final volume): BLM (1, 5, 10 and 20 µg/ml), Campt (0.17, 0.7, 1.74 and 

3.48 µg/ml), MMS (6.5, 13, 32.5 and 65 µg/ml) and Act-D (0.25, 0.5, 1 and 2 µg/ml). The negative 

control used for BLM and MMS experiments was dH2O, whereas DMSO was employed for 

Campt and Act-D experiments. The chemicals used, their respective concentrations, as well as 

the treatment time, were selected on the basis of previous studies (Mischo et al., 2005; Watters et 

al., 2009); trypan blue exclusion technique confirmed that cytotoxicity was below 20% in all 

cases.   

2.4. γH2AX analysis 

γH2AX analysis was performed following the protocol described by Tanaka et al. (2009) 

and Watters et al. (2009), with some modifications (Valdiglesias et al., 2011b). After the 

treatments, the cell suspensions were centrifuged at 2,000 rpm for 5 min and supernatant was 

removed. Remaining cell pellets were washed with 1ml of PBS and centrifuged at 2,000 rpm for 

5 min. Subsequently, supernatants were removed and cell pellets were fixed in 1% p-

formaldehyde. After a new centrifugation (2,500 rpm for 5 min), cells were post-fixed with cold 

70% ethanol (–20ºC) and stored at 4ºC overnight. Cell suspensions were then centrifuged at 2,500 

rpm for 5 min, washed in PBS, and incubated for 15 min in the dark with 100 μl anti-human 

γH2AX-Alexa Fluor 488-conjugated antibody (Becton Dickinson) (1:20 dilution in 1% bovine 

serum albumin [BSA] in PBS). Subsequently, cells were centrifuged again (2,500 rpm for 5 min), 

and suspended in PBS containing 0.1 mg/ml RNase A and 40 μg/ml PI  and incubated for 30 min 

in the dark. The flow cytometry analysis was performed in a FACSCalibur flow cytometer 

(Becton Dickinson). The lymphocyte population was gated according to size (forward scattering) 

and complexity (side scattering). A minimum of 10,000 events in the lymphocyte region were 

acquired, obtaining data from FL1 (γH2AX-Alexa Fluor 488) and FL2 (PI) detectors (Figure 

III.3). Data were analysed using Cell Quest Pro software (Becton Dickinson); the percentage of 

gated cells (referred as PBL from now on) positive for both γH2AX and PI were calculated with 

respect to the total PBL gated and indicated as %γH2AX. 

2.5. Statistical Analysis 

Three independent experiments were performed for each experimental condition tested, 

and each experiment was performed in duplicate. Experimental data were expressed as mean ± 

standard error. Distribution of the response variables departed significantly from normality 

(Kolmogorov–Smirnov goodness-of-fit test) and therefore nonparametric tests were considered 

adequate for the statistical analysis. Differences between groups were tested with the Kruskal–

Wallis test and Mann–Whitney U-test. Associations between two variables were analyzed by 

Spearman’s correlation. A p value of <0.05 was considered significant. Statistical analysis was 

performed using the IBM SPSS software package V. 20. 
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FIGURE III.3.  γH2AX-Alexa Fluor 488/PI dot plot showing the regions of negative cells 
(a) and positive cells (b) for phosphorylated H2AX, in a control cell population (left) 
and cells treated with BLM (right). 

3. Results 

Flow cytometry analysis with anti-γH2AX antibodies was performed with the aim of 

comparing the early DDR against a panel of known genotoxic chemicals, through the detection 

of γH2AX foci formation in fresh vs. cryopreserved lymphocytes, and unstimulated vs. stimulated 

cells. To that ending, human PBL were treated for 4 h with BLM, Campt, Act-D or MMS, at 4 

different concentrations, and results obtained are shown in Figures III.4 to III.11, respectively. 

As it is shown in Figure III.4 and Figure III.5 respectively, fresh and cryopreserved 

lymphocytes presented higher %γH2AX in samples treated with BLM when compared with 

control at all concentrations tested, in both unstimulated and stimulated cells. Also significant 

dose-dependent increases in the DDR were evidenced in all conditions (fresh unstimulated 

r=0.847, P<0.01; fresh stimulated r=0.708, P<0.01; cryopreserved unstimulated r=0.526, P<0.01; 

cryopreserved stimulated r=0.825, P<0.01). 
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FIGURE III.4. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated 
with BLM. Negative control: dH2O. **P<0.01, significant difference with regard to the 
control (Mann–Whitney U-test). 

 
FIGURE III.5. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved 
PBL treated with BLM. Negative control: dH2O. *P<0.05; **P<0.01, significant 
difference with regard to the control (Mann–Whitney U-test). 

A similar response was obtained in fresh lymphocytes treated with Campt (Fig. III.6. ) 

(unstimulated r=0.569, P<0.01; stimulated r=0.893, P<0.01) and in those exposed to Act-D (Fig. 

III.8.) (unstimulated r=0.795, P<0.01; stimulated r=0.460, P<0.05). Nevertheless, only 

cryopreserved stimulated lymphocytes treated with the highest Campt concentrations, or with all 

Act-D doses, showed statistically significant increases in the early DDR, and significant dose-

dependent relationships (r=0.752, P<0.01 for Campt; r=0.515, P<0.01 for Act-D) (Fig. III.7 and 

III.9, respectively). 
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FIGURE  III.6. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL treated 
with Campt. Negative control: DMSO. *P<0.05; **P<0.01, significant difference with 
regard to the control (Mann–Whitney U-test).  

 
FIGURE  III.7. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved 
PBL treated with Campt. Negative control: DMSO. *P<0.05; **P<0.01, significant 
difference with regard to the control (Mann–Whitney U-test).  
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FIGURE  III.8. Results of γH2AX assay in unstimulated vs. stimulated fresh  PBL treated 
with Act-D. Negative control: DMSO. **P<0.01, significant difference with regard to 
the control (Mann–Whitney U-test).  

 
FIGURE  III.9. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved  
PBL treated with Act-D. Negative control: DMSO. **P<0.01, significant difference 
with regard to the control (Mann–Whitney U-test).  

Finally, only stimulated cryopreserved lymphocytes treated with MMS at the highest 

concentration tested showed a statistically significant increase in H2AX phosphorylation (Fig. 

III.11), not evidenced in fresh cells (Fig. III.10) or in unstimulated cryopreserved lymphocytes 

(Fig. III.11). 
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FIGURE  III.10. Results of γH2AX assay in unstimulated vs. stimulated fresh PBL 
treated with MMS. Negative control: dH2O.  

 

 
FIGURE  III.11. Results of γH2AX assay in unstimulated vs. stimulated cryopreserved PBL 
treated with MMS. Negative control: dH2O. *P<0.05, significant difference with regard to 
the control (Mann–Whitney U-test).  

Figure III.12. summarizes the comparison of γH2AX levels in negative controls (water 

and DMSO, see section 2.3. Treatments) in unstimulated vs. stimulated cells and fresh vs. 

cryopreserved cells. No differences were observed between unstimulated and stimulated PBL 

employing fresh samples; however, γH2AX levels were significantly higher in unstimulated cells 

when cryopreserved samples were used. Furthermore, %γH2AX were always higher in 

cryopreserved lymphocytes when compared to those obtained from fresh samples.  
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FIGURE  III.12. Comparison between the basal γH2AX levels in both negative controls 
used (dH2O and DMSO) for all the experimental conditions tested in this study. 
** P<0.01, significant difference with regard to the corresponding fresh sample; 
##P<0.01, #P<0.05, significant difference with regard to the cryopreserved unstimulated 
sample (Mann–Whitney U-test). 

4. Discussion 

In recent years, an increasing number of epidemiologic studies using γH2AX assay as a 

biomarker of genotoxicity were reported, especially because this assay provides a valuable and 

highly sensitive method to monitor DSB presence in the genome. DSB are the most toxic form of 

DNA damage since a single unrepaired DSB could result in cell death, and inaccurate DSB repair 

can lead to chromosomal rearrangements (Yamamoto et al., 2011). Besides, since 

phosphorylation of H2AX is an early event in the DDR that disappears soon, persisting γH2AX 

even after DNA repair may be considered as indicative of genomic instability (Podhorecka et al., 

2010), or cellular senescence (Mah et al., 2010). The residual γH2AX could also be a sign of 

lethal DNA damage, so that it may be possible to identify drug-resistant tumour cells simply by 

measuring the fraction of cells that lack residual γH2AX foci (Banáth et al., 2010). 

The sensitivity of this assay, its practical accessibility, and its demonstrated utility in 

detecting early stages of cancer (Sedelnikova and Bonner, 2006) and other chronic and 

degenerative age-related diseases (Porcedda et al., 2006; Sedelnikova et al., 2008), emphasize the 

potential of this technique for an extensive use in diagnosis, prevention and management of 

pathological conditions, in environmental surveillance and, in general, for DNA damage 

biomonitoring (reviewed in Valdiglesias et al., 2013). Nevertheless, the lack of experimental 

standardization of γH2AX assay leads to a wide heterogeneity in the results obtained and their 

interpretation, which affects the reliability of the assay and makes its establishment as routine 

biomarker in population studies difficult.  
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On this basis, the aim of the present study was to address the most urgent issues dealing 

with the validity of this approach to be employed as DNA damage biomarker in human population 

studies, namely the use of fresh or cryopreserved PBL, and the stimulation of lymphocyte cell 

cycle progression with PHA. To achieve this, flow cytometry was employed to analyse γH2AX 

levels in PBL treated with different genotoxic compounds under diverse experimental conditions. 

PBL are routinely used in human biomonitoring to asses DNA damage and repair due to their 

availability (Allione et al. 2013). They are also the most frequently employed cell type in 

population studies for the specific case of γH2AX analysis (Valdiglesias et al., 2013). 

Antibody-specific immunofluorescence is normally used to visualize the phosphorylated 

H2AX levels either by microscopy or by flow cytometry. Microscopy is more specific since it 

allows to locate the breaks within the nucleus, together with providing the measure of the exact 

number of DSB. However, the assessment of γH2AX using flow cytometry has a number of 

advantages particularly interesting for population studies. It provides an automated high-

throughput platform that is fast, practical, reproducible, and may take into consideration 

variations due to cell-cycle effects (Watters et al., 2009). Besides, it increases considerably the 

number of cells evaluated, diminishing the variability and enhancing the statistical power of the 

results (Brzozowska et al., 2012). In short, the simplicity of flow cytometry, the small quantity of 

biological sample required, and the short time needed for the analysis offer a great benefit for 

handling a huge amount of samples. According to these reasons, and also considering that results 

obtained from these two methods were demonstrated to be correlated (Nikolova et al., 2014; 

Watters et al., 2009), flow cytometry seems to be the most suitable methodology to be employed 

in human population studies. 

The phosphorylation of H2AX histone occurs after a DSB in the genome, which may be 

originated from different types of DNA damage –adducts, single strand breaks (SSB), replication 

or transcription blocking lesions (Sedelnikova et al., 2010) – or even as a consequence of other 

processes different from DNA damage such as cellular stress, heat or apoptosis (Dickey et al., 

2009; Laszlo and Fleischer, 2009). The four genotoxic compounds chosen for this study – BLM, 

Campt, Act-D and MMS –, were all reported to induce concentration-dependent increases in 

γH2AX levels in previous works (Takahashi and Ohnishi, 2005; Watters et al., 2009), although 

through different pathways. BLM behaves as a radiomimetic direct-acting agent, capable of 

inducing a wide spectrum of mutagenic lesions in mammalian cells, including DNA base damage, 

abasic sites, and alkali-labile sites (Milic and Kopjar, 2004; Wozniak et al., 2004), which 

eventually result in DNA SSB and DSB. BLM induces clastogenicity acting in an S-independent 

manner (Povirk and Austin, 1991). Results obtained in our study for BLM treatments support 

these observations since it induced dose-dependent increases of γH2AX levels in all 

circumstances tested, regardless of cell-cycle stimulation or sample storage condition. Still, BLM-
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induced H2AX phosphorylation increase was higher in stimulated cells. Although it may seem 

that this is not true for cryopreserved cells, BLM treatment in stimulated cryopreserved PBL 

increased γH2AX level by 3-fold in the highest dose tested, while in unstimulated cells this 

increase was only 2-fold, mainly due to the prominent basal damage in control cells. Indeed, the 

correlation coefficient for the dose-response relationship in stimulated cells was higher than the 

one obtained for unstimulated PBL (r=0.825 and r=0.526, respectively, both significant at the 

0.01 level). Our results agree with other previous studies that found concentration-dependent 

increases of H2AX phosphorylation in different cell types after BLM exposure (Banáth and Olive, 

2003; Liu et al., 2014).  

Campt is a known topoisomerase I S-phase specific inhibitor, frequently used in basic 

research as apoptosis inducer (Staker et al., 2002). It is an indirect-acting genotoxic agent since 

it does not cause DSB directly but it binds to topoisomerase I forming a covalent ternary complex 

that blocks DNA re-ligation (Staker et al., 2005) leading to single strand breaks that are converted 

to double strand breaks upon replication and, consequently, is associated with extensive H2AX 

phosphorylation (Banáth et al., 2010). In this study, significant increases of γH2AX levels were 

found after Campt treatments in all fresh cells and in stimulated cryopreserved cells. These results 

agree with other previous studies which also reported increases in DSB induction evaluated by 

the same assay after Campt exposure in HL60, Jurkat and MCF7 cells (Rogakou et al., 2000), and 

in Chinese hamster V79 and CHO cells (Banáth et al., 2010). Besides, progression of apoptosis 

was previously found to be paralleled by a decrease in γH2AX immunofluorescence (Huang et 

al., 2003) which would explain why, in our study, γH2AX levels were higher in unstimulated 

cells (in the G0-phase of the cell cycle) compared with stimulated PBL (going through S-phase 

and so more sensitive to Campt apoptosis induction). Nevertheless, since this compound is also a 

well-known apoptosis inducer, the increase in γH2AX levels most likely reflects the onset of 

DNA fragmentation catalysed by nucleases in response to pro-apoptotic stimuli, and therefore 

may be an artefact of cytotoxicity rather than direct Campt-mediated genotoxicity (Smart et al., 

2011). 

Act-D is a chemotherapeutic agent commonly used for treatment of childhood cancers 

such as Wilms' tumour and Ewing's sarcoma (Estlin and Veal, 2003). This is an intercalating 

agent; it intercalates into DNA strands leading to DNA damage (SSB produced via nucleotide 

excision repair, and a fraction of them can be converted to DSB) and inhibition of mRNA 

synthesis by interfering with RNA polymerase (Trask and Muller, 1988; Bensaude et al., 1999). 

Also, even low concentrations of Act-D are able to prevent the religation step of topoisomerase I 

inducing both SSB and DSB (Mischo et al., 2005). After treatment with Act-D our fresh PBL, 

independently on PHA stimulation, and also the stimulated frozen cells showed significant dose-

dependent increase of γH2AX levels. Analogous genotoxic effects of this compound were 
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reported in several previous studies employing the same approach (Mischo et al., 2005; Porcedda 

et al., 2006), or evaluating micronucleus induction (Kirpnick et al., 2005; Hashimoto et al., 2010). 

Cell division is required for the conversion of SSB into DSB, since it occurs during the S-phase 

of the cell cycle: when a replication fork collides with a covalently bound topoisomerase I 

cleavage complex, the extension of the leading strand is terminated at the 5' -end of the template 

strand, which generates a DSB (Strumberg et al., 2000). As a result, DNA damage (specifically 

DSB), and the cellular response to this damage (H2AX phosphorylation), evaluated in stimulated 

cells treated with Act-D is expected to be higher than that found in unstimulated cells, as actually 

happened in our study.  

MMS is an alkylating compound which methylates DNA bases, mainly guanine 

producing O6-methylguanine adducts, in a random manner (Ma et al., 2011). It causes SSB that 

lead to DSB through either the replication or repair processes (Zhou et al., 2006). Particularly, 

MMS-induced SSB are considered a source of DSB as a result of collapsed replication forks at 

the lesions or processed intermediates (Ma et al., 2011). Accordingly, MMS was shown to induce 

concentration-dependent H2AX phosphorylation in a number of previous studies (Nikolova et al., 

2014; Watters et al., 2009). Nevertheless, no increase in γH2AX levels was observed in the 

current study employing fresh cells, and just stimulated cryopreserved PBL exposed to the highest 

MMS dose showed a slight effect in this regard. MMS concentrations used in this study were 

chosen on the basis of Watters et al. (2009), who employed these MMS doses and found a positive 

dose-response relationship for H2AX phosphorylation. However, they used cultured cell lines 

(namely mouse embryonic fibroblasts and mouse lymphoma L5178Y cells) instead of PBL, 

which are known to be highly resistant to genotoxic effects (Valdiglesias et al., 2011c).  

Furthermore, MMS-induced DNA adducts need two cell cycles to be converted into DSB (Quiros 

et al., 2010). Since cell cycle of cultured cell lines used by Watters et al. (2009) is shorter than 

the leucocytes cell cycle, this fact may also help to explain the differences between studies. As a 

result, higher concentrations of MMS would likely be necessary to enhance the effects of this 

compound on PBL.  

Phosphorylation of H2AX in response to DNA damage has been observed in both 

quiescent and cycling cells, and during all phases of the cell cycle, including mitosis (Giunta and 

Jackson, 2011). However, it usually decreases in quiescent cells (Hamasaki et al., 2007; Tian et 

al., 2011). Accordingly, taking all our results together, the levels of phosphorylated H2AX 

induced in stimulated cells in all cases, except for fresh PBL treated with Campt, were higher than 

those in unstimulated lymphocytes. This observation agrees with other previous studies in which 

resting cells resulted less sensitive to the induction of DNA damage than proliferating cells 

(Huyen et al., 2004; Mohrin et al., 2010; Tian et al., 2011). There are two possible explanations 

for these findings. On one hand, the response to external stimuli of resting unstimulated cells may 
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be indeed different from proliferating cells response, as it was reported before (Tian et al., 2011). 

On the other hand, when unstimulated cells are employed, just DSB coming mainly from directly 

induced DNA damage are revealed, while after PHA stimulation, cell cycle progression favours 

DSB production from other types of DNA lesions, which are also detected by γH2AX assay. 

When designing a population study which includes γH2AX assay, the decision about the 

advisability of stimulating PBL depends on the type of study to be carried out. In environmental 

or occupational exposure biomonitoring cohort studies the main aim is to assess the genotoxic 

effects associated with the exposure. Hence, it is advisable to PHA stimulate lymphocytes in order 

to detect DSB coming not only from direct DNA damage but also from other types of damage, 

which become DSB during progression of cell cycle. Consequently, a general view of 

genotoxicity events will be obtained. Regarding case-control studies, as the main purpose of using 

H2AX assay in this case is to evaluate the persistent levels of phosphorylated histone as indicative 

of DNA damage already fixed (Sedelnikova et al., 2004), no previous stimulation is necessary to 

carry out the assay since the remaining γH2AX will be already present in the DNA without 

requiring cell division. In such studies, this approach is applied as a biomarker of genomic 

instability, likely as a result of deficiencies in DNA repair processes, more than as a biomarker of 

genotoxic effects. 

To the best of our knowledge, no studies testing the differences between H2AX 

phosphorylation in fresh and cryopreserved PBL were published so far. Merely, Porcceda et al. 

(2008) reported that peripheral blood mononuclear cells frozen samples, stored in liquid nitrogen 

for up to 4 years, showed comparable basal γH2AX levels to fresh samples, although data on the 

comparison were not provided. Allione et al. (2013) compared the influence of different blood 

storage conditions on DNA damage, and they found a non-significant slight increase of H2AX 

phosphorylation in isolated PBL after 24 h of blood storage (both at room temperature and at 4ºC) 

with regard to fresh samples. Similarly, several previous studies reported no significant 

differences in DNA strand breakage evaluated by means of comet assay between fresh and frozen 

PBL (Visvardis et al., 1997; Duthie et al. 2002). In contrast to these studies, results obtained in 

the current work for basal γH2AX levels (negative controls) from cryopreserved PBL were always 

significantly higher than those obtained from fresh cells under the same experimental conditions. 

Still, basal histone phosphorylation was significantly lower when cryopreserved cells were 

previously stimulated with PHA than when they were used unstimulated. This behaviour is likely 

due to the fact that PHA stimulation implies incubation of PBL for 24 with complete culture 

medium after thawing. Therefore, it is probable that during this time the cells repair their basal 

DNA damage, caused in part by the storage, freezing and thawing processes. 
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On the whole, interpretation of the results obtained in γH2AX assay depends on the assay 

design. When γH2AX measurement is carried out at one single time point, it provides information 

on early DDR more than on actual repair processes; whereas, when the outcome kinetics is 

assessed (at two or more different time points). γH2AX loss correlates with DSB repair activity, 

as indeed was observed in a number of previous studies (Porcedda et al., 2006; Bourton et al., 

2011; Brzozowska et al., 2012); thus it allows to evaluate alterations in the DNA repair systems. 

5. Conclusions 

In conclusion, these findings support that flow cytometry analysis of phosphorylated 

H2AX histone (γH2AX) levels in human PBL may be used as a rapid screening tool for 

genotoxicity or genomic instability in human population studies, even though consensus in the 

methodological procedure should be reached in order to diminish the heterogeneity in the results. 

According to our results, both unstimulated and stimulated fresh PBL could be employed as 

cellular material to carry out the γH2AX assay. Yet, when unstimulated quiescent cells are used, 

it must be considered that DSB evaluated (more precisely the early repair response to DSB) are 

the consequence of direct damage on DNA, whereas when cells are stimulated to divide with 

PHA, DSB may also come from other different kinds of damage which become “visible” (i.e. 

measurable by this technique) during the cell division. Therefore, the decision about stimulating 

cells prior γH2AX analysis should be taken during the study design according to the kind of 

damage to be evaluated or that is expected in the individuals.  

Furthermore, in human population studies, collecting samples and processing them 

immediately is not always possible. In such cases, cryopreserving cells seems to be the best 

option. On the basis of the current results, PHA stimulation is necessary for γH2AX analysis when 

cells are stored frozen, since basal damage is too high in cryopreserved unstimulated cells, likely 

as a result of freezing and thawing processes. Further studies are required in order to completely 

standardize the protocol of γH2AX assay to be employed as biomarker of genotoxicity or genomic 

instability in human biomonitoring studies.
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1. Introduction 

Despite being phenotypically well-characterized, the biological basis of frailty still 

remains fairly unknown. This is due to the fact that this syndrome is not characterised by 

impairment of a single system, but by several events and anomalies in multiple physiological 

systems in an intricate process that leads to frailty (Zaslavsky et al., 2013).  

As it has been mentioned before, to date identification of frail subjects is performed using 

clinical features, being the most commonly employed diagnostic criteria, due to their simplicity 

of implementation, those proposed by Fried et al. in 2001, based on five phenotypical 

characteristics (muscle weakness, low gait speed, unintentional weight loss, exhaustion, and low 

physical activity). The major limitation of this assessment is the late identification of frailty, 

which is possible only after the onset of clinical manifestations. Therefore, to improve the clinical 

impact of frailty screening, it is necessary to develop new tools that allow a timely identification 

of those individuals more prone to develop this syndrome. The availability of these new tools 

would facilitate the implementation of personalized therapies, as well as the improvement of 

health outcomes by means of prevention and intervention programs. A deeper knowledge on the 

biological basis of frailty is required for the development of biomarkers for this syndrome what 

would allow an earlier and more objective identification of frail individuals.  

The involvement of genomic instability in different age-related phenotypes has been 

previously reported as a consequence of the loss of balance between DNA damage and the correct 

function of cellular DNA repair mechanisms (Garm et al., 2013; Li et al., 2016a). However, recent 

studies reviewed by Gorbunova and Seluanov (2016) suggest the possibility that this imbalance 

can be the cause of the ageing process and age-related phenotypes, rather than its consequence. 

These authors suggested that not only mutations accumulate with age but also the rate of mutation 

accumulation increases with age, which could be due to the DNA repair pathways becoming less 

efficient (Garm et al., 2013).  

The evaluation of chromatin alterations could be important for a better understanding of 

mutations in age-related changes (Gorbunova and Seluanov, 2016). The micronucleus (MN) test 

is one of the most commonly used methods for assessing chromosome damage. MN assay 

provides a reliable measure for both chromosome loss and chromosome breakage since MN are 

formed from chromosome fragments or whole chromosomes that lag behind during anaphase in 

cell division (Fenech, 2000). MN frequency can be evaluated in different cells and surrogate 

tissues. For a number of reasons, including ease of sample collection and reproducibility, 

peripheral blood lymphocytes and exfoliated buccal cells are the most suitable, and consequently, 

the most frequently employed tissues for MN studies in human populations (Fenech et al., 2011). 

The cytokinesis-block MN (CBMN) cytome assay performed in peripheral lymphocytes 

is a comprehensive system for measuring DNA damage (Fenech, 2007); it has been regularly 
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applied in human biomonitoring of genotoxic exposures and is increasingly used in preventive 

medicine and nutrition (Lee et al., 2003; Fenech et al., 2005; El-Zein et al., 2006). MN frequency 

is strongly associated with the ageing process, and increases of this biomarker have been reported 

in several age-related diseases including cancer, diabetes, neurodegenerative diseases such as 

Alzheimer’s or Parkinson’s, and arthrosis (Bonassi et al., 2011b; Migliore et al., 2011).  

The buccal MN cytome (BMNCyt) assay is an attractive candidate for the study of human 

populations due to its non-invasive nature. This technique, firstly proposed by Stich and Rosin in 

1983, has been employed in multiple studies as a sensitive biomarker of genetic damage and cell 

death caused by lifestyle-related factors such as alcohol and tobacco consumption, or nutritional 

deficiencies, and environmental exposures to pollutants, medical procedures, as well as inherited 

genetic defects in DNA repair (Fenech, 2007; Thomas et al., 2009). Together with MN formation, 

this assay allows as well to identify other abnormalities indicative of different kind of cellular 

alterations. These abnormalities are shown as alterations in the nuclear morphology, such as 

binucleated cells, nuclear buds, pyknosis, karyorrhexis, abnormally condensed chromatin and 

karyolysis (Torres-Bugarín et al., 2014). 

Frailty is commonly accepted to have a strong biological component resulting from 

cumulative cellular damage over the life-course (Dent et al., 2016). Increased levels of damage 

can lead to different cellular alterations, including genomic instability, mutations, altered gene 

expression, loss of cell division potential, cell death or impaired intercellular communication, 

among others (reviewed in Chapter II). These alterations at the cellular and molecular levels could 

be a good basis to establish frailty biomarkers. Nevertheless, their relationship with frailty has not 

been established yet. It is not clear whether or in which way genetic outcomes may influence the 

susceptibility to frailty, and even the few preliminary studies in this regard are not completely 

clear in finding any association, as it was shown in Chapter II. However, due to the well-founded 

belief that genome instability and other genetic outcomes are involved in the frailty syndrome, 

given their strong association with ageing and age-related diseases, further investigations should 

be carried out in this line. 

Hence, in order to improve the understanding of the biological features associated with 

frailty status, and consequently identify potential biomarkers of frailty, in the present study several 

genomic instability and genetic parameters, selected according his previous reported association 

with the ageing process, were evaluated in a population of Spanish older adults (aged 65 and over) 

classified into frail, pre-frail and non-frail according to Fried et al. (2001) criteria. Genomic 

instability was assessed by MN frequency in both peripheral blood lymphocytes and exfoliated 

buccal cells, together with other cellular alterations in buccal mucosa. Genetic outcomes analysed 

included mutation rate (by means of the T-cell receptor [TCR] mutation assay), different types of 

genetic damage (by employing the comet assay and the γH2AX assay), and cellular repair 



IV- Exploring genetic outcomes as frailty biomarkers  

75 

 

capacity (by the DNA repair competence assay). To provide a more comprehensive evaluation of 

clinical features associated with frailty, the possible association between nutritional status and 

cognitive impairment with the level of genomic instability and the different genetic outcomes was 

also evaluated. 

2. Material and Methods 

2.1. Subjects and sample collection 

A total of 257 volunteer donors (84 males and 173 females), aged 65 years or more 

(79.4±8.8, range 65-102), were recruited from 14 associations of retired older people and nursing 

homes located in Galicia (NW of Spain) (Table IV.1.). A post hoc assessment of the statistical 

power of the study, based on the MN frequency in PBL, showed that – given the actual size of 

the three groups – the study had adequate statistical power (80%) to detect with a I type error of 

0.05 a minimum increase of 21.6% in frail vs controls and of 20.1% in pre-frail vs controls (Post-

hoc Power Calculator by www.ClinCalc.com). All donors, or their relatives in case of inability, 

signed an informed consent form and completed a questionnaire to collect demographic, lifestyle, 

and medical information. The study protocol followed the principles embodied in the Declaration 

of Helsinki and was approved by the University of A Coruña Ethics Committee (reference number 

CE 18/2014). Qualified staff with extensive experience in the gerontology field (i.e. 

psychologists, occupational therapists, nurses) was in charge of the clinical evaluation. To unify 

the criteria in completing the clinical evaluation, all staff members were equally trained prior to 

the start of the study. Participants were excluded if they were taking medications included in the 

Anatomical Therapeutic Chemical (ATC) category L (antineoplastic or immunomodulating 

agents (WHO collaborating centre for drug statistics methodology, 2013)) or they had cancer or 

any chronic infection (e.g., HIV, HCV, HBV), or if they denied signing the informed consent. 
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TABLE  IV.1. Associations of retired older people and nursing homes 

Centre Subjects Percentage 

ATEGAL (Aulas de tercera edad de Galicia) Santiago 7 2,7 

NCG (Novacaixa Galicia) A Coruña 5 1,9 

NCG (Novacaixa Galicia) Betanzos 5 1,9 

NCG (Novacaixa Galicia) Ferrol 30 11,6 

NCG (Novacaixa Galicia)  Pontedeume 5 1,9 

NCG (Novacaixa Galicia) Santiago de Compostela 6 2,3 

UDP (Unión democrática de pensionistas y jubilados de 

España) A Coruña 
27 10,4 

UDP (Unión democrática de pensionistas y jubilados de 

España) Sofán-Carballo 
15 5,8 

UGT Ferrol 9 3,5 

UDP (Unión democrática de pensionistas y jubilados de 

España) Los Rosales, A Coruña 
22 8,5 

CSC (Centro Socio Comunitario) Vilalba 28 10,8 

Complejo Gerontológico La Milagrosa, A Coruña 86 33,2 

Servicio residencial Fundación AdcoR, A Coruña 6 2,3 

Sanitas Residencial, A Coruña 8 3,1 

Total 259 100,0 

 

Table IV.2 shows the general characteristics of the study population. Due to the small 

number of current smokers and ex-smokers (N=5 and N=48, respectively) a new category, “ever 

smokers”, was created combining both conditions. Similarly, a single category was considered 

including together malnourished individuals (N=14) and individuals at risk of malnutrition 

(N=80). 
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TABLE  IV.2. Description of the study population 
 Total Non-frail Pre-frail Frail P-value 

Total N (%) 257 (100) 39 (15.4) 131 (50.6) 87 (34.0)  
Gender N (%)      

Males 84 (32.7) 26 (66.7) 36 (27.5) 22 (25.3) <0.001b 
Females 173 (67.3) 13 (33.3) 95 (72.5) 65 (74.7)  

Age (years-old)a 79.4±8.8 
(65-102) 

73.3±5.6 
(65-85) 

77.1±7.7 
(65-100) 

85.6±7.8 
(65-102) 

<0.001c 

65-69 43 (16.8) 12 (30.8) 29 (22.1)   2 (2.3) <0.001b 
70-74 41 (16.0) 11 (28.2) 26 (19.8) 4 (4.7)  
75-79 47 (18.4) 10 (25.6) 24 (18.3) 13 (15.1)  
80-84 46 (18.0) 5 (12.8) 27 (20.7) 14 (16.3)  

≥85 79 (30.9) 1 (2.6) 25 (19.1) 53 (61.6)  

Smoking habits N (%)      
Non-smokers 199 (79.0) 22 (56.4) 102 (78.5) 75 (90.4) <0.001b 
Ever smokers 53 (21.0) 17 (43.6) 28 (21.5) 8 (9.6)  
No. cigarettes/daya 18.4±13.8 

(2-60) 
16.1±8.8 
(3-40) 

15.7±13.9 
(2-60) 

31.4±15.7 
(20-60) 

0.020c 

Years smokinga 26.7±16.6 
(4-66) 

19.4±9.1 
(10-34) 

30.4±18.7 
(4-66) 

29.3±18.2 
(6-52) 

0.154c 

BMI (kg/m2) a 28.5±5.6 
(16.5-53.2) 

28.1±3.2 
(21.1-35.1) 

29.1±5.0 
(18.9-47.4) 

27.7±7.0 
(16.5-53.2) 

0.191c 

Nutritional statusN (%)      
Normal nutrition status 158 (62.7) 35 (89.7) 106 (80.9) 17 (20.7) <0.001b 
At risk or malnourished 94 (36.3) 4 (10.3) 25 (19.1) 65 (79.3)  

MNA-SF scorea 11.8±2.5 
(4-14) 

13.3±1.4 
(8-14) 

12.8±1.7 
(4-14) 

9.7±2.4 
(4-14) 

<0.001c 

Cognitive status N (%)      
No cognitive impairment 174 (69.6) 39 (100) 118 (90.1) 17 (21.2) <0.001b 
Cognitive impairment 76 (30.4) --- 13 (9.9) 63 (78.8)  

Living conditions N (%)      
Family home 157 (61.1) 39 (100) 113 (86.3) 5 (5.7) <0.001b 
Family home+daycare 
center 

27 (10.5) --- 4 (3.1) 23 (26.4)  

Nursing home 73 (28.4) --- 14 (10.6) 59 (67.9)  
Education years N (%)      

≤8 115 (45.3) 19 (48.7) 73 (55.7) 23 (27.4) <0.001b 
9-17 96 (37.8) 12 (30.8) 32 (24.4) 52 (61.9)  
>17 43 (16.9) 8 (20.5) 26 (19.9) 9 (10.7)  
aMean±standard deviation (range). bChi-square test (two-tails). cANOVA test (two-tails). 
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2.2. Frailty criteria 

All subjects included in the study were classified as frail (N=87), pre-frail (N=131) or 

non-frail (N=39) according to the Fried’s criteria (Fried et al., 2001), which included 5 items: (i) 

shrinking or unintentional weight loss, at least 4.5 kg in the previous year; (ii) muscular weakness: 

grip strength in the lowest 20% at baseline, adjusted for gender and body mass index (BMI); (iii) 

self-reported exhaustion, identified by two questions from the modified 10-item Center for 

Epidemiological Studies-Depression (CES-D) scale (Radloff, 1977), employing the Spanish 

version (Ruiz-Grosso et al., 2012); (iv) slow walk: the slowest 20% at baseline, based on time to 

walk 4.6 m, adjusting for gender and standing height; and (v) low physical activity level, the 

lowest 20% at baseline, based on a weighted score of kilocalories expended per week, measured 

by the Minnesota Leisure Time Activity (MLTA) in its validated Spanish version (Ruiz Comellas 

et al., 2012), according to each participant’s report, and adjusting for gender. Individuals positive 

for three or more of these items were classified as frail; those positive for one or two criteria were 

classified as pre-frail, meanwhile those with no positive items were classified as non-frail.  

Table IV. 3 shows the number of individuals positive for each one of the Fried criteria, 

being grip strength the most common criteria in the population of study (83%), followed by slow 

walk (44%) and low physical activity (34%). 

TABLE  IV.3. Fried frailty criteria in the population of study [N (%)] 

Criteria Negative Positive 

Unintentional weight loss 237 (92.2) 20 (7.8) 
Muscular weakness 44 (17.1) 213 (82.9) 

Self-reported exhaustion 209 (81.6) 47 (18.4) 
Slow walk 144 (56.0) 113 (44.0) 

Low physical activity 169 (65.8) 88 (34.2) 

Number of positive criteria 

0 39 (15.2) 
1 89 (34.8) 
2 42 (16.4) 
3 45 (17.6) 
4 35 (13.7) 
5 6 (2.3) 

 

2.3. Clinical assessment 

The nutritional status of the participants in the study was screened using the Spanish 

version (Nestlé Nutrition Institute) of the Mini-Nutritional Assessment-Short Form (MNA-SF) 

(Kaiser et al., 2009). This tool includes 6 questions extracted from the full MNA questionnaire 

(Guigoz et al., 1994): declined food intake over the past three months due to appetite loss, 

digestive problems, chewing or swallowing difficulties; involuntary weight loss during the last 

three months; mobility; psychological stress or acute disease in the past three months; 
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neuropsychological problems (severe dementia or depression); and BMI. The sum of the MNA-

SF score distinguishes between elderly patients with: i) normal nutritional status (MNA-SF 

between 12 and 14 points); ii) at risk of malnutrition (MNA-SF 8-11 points); and iii) malnourished 

(MNA-SF 0-7 points).  

The Spanish version (Blesa et al., 2001) of the Mini-Mental State Examination (MMSE) 

scale (Folstein et al., 1975) was employed to evaluate the global cognitive status. MMSE scores, 

ranging from 0 to 30, were adjusted for age and level of education, and participants were 

considered as cognitively impaired if they scored ≤ 24.  

2.4. Biological sample collection and leucocyte isolation 

Peripheral blood and buccal mucosa samples were collected by nurses and trained 

technicians. Whole blood was collected by venipuncture into Vacutainer tubes containing heparin 

as an anticoagulant for MN assay in peripheral blood lymphocytes, and into BD Vacutainer 

CPT with sodium heparin (Becton Dickinson), for the isolation of peripheral blood 

mononuclear leukocytes (PBL, lymphocytes + monocytes) following manufacturer’s instructions. 

Fresh PBL were employed in the TCR mutation assay. For the comet, γH2AX and DNA repair 

competence assays, isolated PBL were frozen at -80ºC in a solution composed of 50% foetal calf 

serum, 40% RPMI 1640, and 10% DMSO, at 107 cells/ml, and stored until analysis.  

Exfoliated buccal cells were obtained by gently swabbing oral mucosa on the inner side 

of both cheeks with a cytobrush, and kept in a buffer solution (see below). Samples were 

transported to the laboratory immediately, where they were processed within 4 h of collection. 

All samples were coded at the moment of collection and analyzed under blind conditions. 

2.5. Lymphocyte micronucleus assay 

The CBMN assay was performed in duplicate following the protocol described by Fenech 

(2007), with minor modifications. In brief, 0.5 ml of whole peripheral blood was suspended in 

4.5 ml of RPMI 1640 medium containing final concentrations of 15% (v/v) heat-inactivated foetal 

bovine serum (FBS), 1% (v/v) L-glutamine (200 mM), 1% (v/v) phytohaemagglutinin (PHA) and 

1% (v/v) penicillin (5,000 U/ml)/streptomycin (5,000 μg/ml) (all from Life Technologies). Cell 

suspensions were incubated at 37 ºC with lids loose in a humidified atmosphere containing 5% 

CO2 for 44 h. After this time, 10 µl of cytochalasin-B (final concentration 6 µg/ml) was added to 

prevent cytokinesis and the cultures were returned to the incubator for another 2 hours, to a total 

of 68 hours of incubation. Cell suspensions were subsequently centrifuged at 800 rpm for 10 min 

at 4 ºC. After removal of the culture medium supernatant, cells in mild agitation were 

hypotonically treated with 4 ml of cold KCl (0.56% at 4ºC) to lyse the red blood cells and 

centrifuged immediately (800 rpm10 min at 4 ºC). Supernatant was removed and 4 ml of 



María Sánchez Flores 

80 
 

methanol:acetic acid (3:1) was added with mild agitation for cell fixation. To help the fixation 3 

drops of p-formaldehyde were quickly added with a Pasteur pipette. Cells were centrifuged (800 

rpm 10 min at 4 ºC) and washed with two further changes of fixative. The remaining pellets were 

gently resuspended and dropped onto clean glass slides to be air dried. Slides were storaged at -

20 ºC until the moment of scoring. Before scoring, slides were stained with 4',6-diamino-2-

fenilindol (DAPI) (5 µg/ml). 

MN automated scoring was performed using a Metafer4 System fluorescence, connected 

to an Axio Imager Z2 microscope (Carl Zeiss Microscopy GmbH, Jena, Germany), equipped with 

an Automated Slide Feeder x80, controlling the microscope components for automated focusing, 

light source adjustment (for bright field imaging) and fluorescence filter changes. Slide scanning, 

focusing, sample capture and image analysis were performed as previously described (Varga et 

al., 2004). A minimum of 2,000 binucleated (BN) cells per individual, 1,000 from each duplicate 

culture, were automatically scored to determine the number of MN in lymphocytes (MN-L). After 

the automated scan, the image gallery was visually reviewed by an experienced scorer, following 

the criteria described by Fenech (2007) for MN and BN cells, in order to reject unsuitable cells 

and to correct feature values if necessary. 

2.6. Buccal micronucleus assay  

The BMNCyt assay was performed as described by Thomas et al. (2009), with minor 

modifications. Cytobrushes (Cell sampler peel-pack, Deltalab S.L.U.) were used to collect buccal 

cells by rotating the brush 20 times in a circular motion against the inner side of each check 

starting from a central position, gradually increasing the circumference. Separate brushes were 

employed for each cheek, and suspended in 5ml of a buffer solution (EDTA 0.1M, TrisHCl 

0.01M, NaCl, 0.02M) in different tubes. After centrifugation, supernatant was removed and 

replaced with fresh buffer solution and washed twice more. Cells were placed into slides and air-

dried overnight. Slides were fixed with a cold solution absolute ethanol:acetic acid glacial (3:1 

v/v;). Air-dried slides were storaged at -20ºC until the moment of staining and scoring. 

Fixed slides were treated in 5 M HCl for 30 min and washed in water. Slides were stained 

with Schiff’s reagent (Merck) at room temperature in the dark (1-3 h). After been washed in 

distillated water, slides were counterstained in 1% Fast Green solution (Merck) for 5 sec, washed 

in 70% ethanol (3 times, 2 min each) and air-dried. 

Slides were scored blindly by a single scorer in a Nikon E-800 fluorescence microscope 

with ethidium bromide filter. The scoring criteria for the distinct cell types and nuclear anomalies 

were based on those described by Tolbert et al. (1992) and Thomas et al. (2009). A minimum of 

1,000 cells was scored to determine the frequency of each cell type in the sample, including basal 
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and differentiated cells, binucleated cells (BN-B), condensed chromatin cells (Cond-chrom-B), 

karyorrhectic cells (Karyorrhectic-B), pyknotic cells (Pyknotic-B), and karyolytic cells 

(Karyolytic-B). A minimum of 2,000 differentiated cells was scored to analyse the number MN 

(MN-B) and the number of cells with nuclear buds (NBUD-B). 

2.7. T-cell receptor mutation assay 

TCR mutation assay was conducted in duplicate following the protocol proposed by 

Akiyama et al. (1995). In brief, isolated PBL were incubated for 15 min with 7-amino-

actinomycin D as a viability marker, and with fluorescein isothiocyanate (FITC)-labelled antiCD3 

and phycoerythrin (PE)-labelled antiCD4 antibodies (Becton Dickinson). Cell suspensions were 

then centrifuged for 5 min at 2,000 rpm, supernatants were removed and cell pellets were 

resuspended in PBS. This step was repeated twice. 

Cell suspensions were analysed using a FACScalibur flow cytometer (Becton Dickinson) 

with Cell Quest Pro software (Becton Dickinson). The lymphocyte population was gated 

according to size and complexity. A minimum of 2.5×105 lymphocyte gated events were acquired, 

and TCR mutation frequencies (TCR-Mf) were calculated as the number of events in the mutant 

cell window (CD3−CD4+ cells) divided by the total number of events corresponding to CD4+ cells 

(Figure IV.1). 

 

FIGURE  IV.1. CD3-FITC / CD4-PE dot plot showing the mutant window (R4) in the 
determination of TCR mutation frequency. 

2.8. Alkaline comet assay 

To conduct the alkaline comet assay, following the protocol previously described in 

Laffon et al. (2002), PBL were rapidly thawed at 37ºC and subsequently centrifuged. The 

supernatant was removed and the remaining pellet was suspended in PBS. Cell viability was 

assessed by trypan blue exclusion technique being, in all cases, higher than 85%. Cells were then 
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embedded in 80 µl of 0.7% low melting point agarose in PBS. Cells were then dropped as two 

drops onto a slide that was previously coated with a layer of 1% normal melting point agarose 

and covered with coverslips. Slides were placed on ice for 10 min and, after the second layer of 

agarose was solidified, coverslips were removed. Slides were then immersed in freshly prepared 

lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM Tris-HCl, 250 mM NaOH, pH 10, and 

1% Triton X-100 added just before use) for an hour at 4 ºC in the dark. 

After lysis, slides were placed in a horizontal electrophoresis tank (420x300x90 mm) in 

an ice bath. Slides were completely covered with the unwinding buffer solution (1 mM Na2EDTA, 

300 mM NaOH, pH 13) and left in the dark for 40 min. Subsequently, electrophoresis was carried 

out for 30 min at 300 mA and 25 V (0.83V/cm). After electrophoresis, slides were washed three 

times (5 min each) with neutralizing solution (400 mM Tris-HCL, pH 7.5) and air dried for 10 

min in the dark. DAPI was employed to stain the slides. The preparations were kept in a 

humidified sealed box to prevent drying of the agarose gel and were analysed within 48 h. 

An internal standard (PBL isolated from whole blood extracted once from a single donor, 

and stored aliquoted at -80ºC) was introduced in every electrophoresis run as described by 

Cebuslka-Wasilewska (2003). Comet IV software (Perceptive Instruments) was used for image 

capture and analysis. For all donors and standards, 50 cells were scored from each replicate slide 

(i.e. 100 cells in total) by a single scorer. The percentage of DNA in the comet tail (%TDNA) was 

evaluated as DNA damage parameter. 

2.9. γH2AX assay  

γH2AX analysis was performed in duplicate following the protocol previously described 

in Chapter III, section 2.4. Briefly, after being thawed cell suspensions were centrifuged and 

supernatants were removed. Remaining pellets were suspended in culture medium containing 1% 

PHA and incubated for 24 h at 37ºC. After fixation, cell suspensions were incubated with anti-

human γH2AX-Alexa Fluor 488-conjugated antibody (Becton Dickinson) and stained with 

propidium iodide (PI). Flow cytometry analysis was performed in a FACSCalibur flow cytometer 

(Becton Dickinson) with Cell Quest Pro software (Becton Dickinson). A minimum of 10,000 

events in the lymphocyte region (gated according to size and complexity) were acquired, 

obtaining data from FL1 (γH2AX-Alexa Fluor 488) and FL2 (PI) detectors. The percentage of 

gated events positive for both γH2AX and PI was calculated with respect to the total lymphocytes 

gated and indicated as %γH2AX. 

2.10. DNA repair competence assay 

DNA repair competence assay was performed as previously described by Laffon et al. 

(2010). In brief, after being rapidly thawed, PBL were centrifuged and the remaining pellet was 

incubated for 24 h at 37ºC in culture medium containing 1% PHA. Cells were then treated with 
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the challenging agent bleomycin (BLM) for 30 min at 37ºC to induce DNA damage. Two 

duplicate slides were prepared for each donor. The first ones from cells that continued the comet 

assay protocol as described above directly after BLM treatment (labelled as before repair); the 

second ones from cells that, after BLM treatment, were incubated in fresh culture medium for 15 

min at 37ºC to allow DNA repair (labelled as after repair), before being processed following the 

comet assay protocol. An internal standard was introduced as well in each experiment as described 

by Cebulska-Wasilewska (2003). Final data are shown as percentage of repair capacity (%RC), 

calculated as follows: (%TDNABR - %TDNAAR) x 100 / %TDNABR, where “BR” is before repair 

and “AR” is after repair. 

PBL samples from several individuals (mostly frail and a few pre-frail) were lost due to 

unexpected problems in storage. Hence, the number of data available in comet assay and DNA 

repair capacity evaluation are lower than in the rest of assays. 

2.11. Statistical analysis 

The three groups of older adults (non-frail, pre-frail and frail) were compared by socio-

demographic factors (i.e., gender, age, living conditions, and years of education), lifestyle factors 

(i.e., smoking habit, alcohol consumption, and nutritional status), and clinical characteristics (i.e., 

BMI, and cognitive status). The Chi-square test was applied for categorical variables and the 

analysis of variance (ANOVA) for continuous variables.  

Statistical analyses were carried out following the recommendations given by Thomas et 

al. (2009) for the buccal MN cytome assay. The effect of frailty status on biological parameters 

studied was preliminarily tested through ANOVA with the Tuckey’s post-hoc test. Kolmogorov-

Smirnov goodness-of-fit test was applied to assess normal distribution of the data; only MN-L 

and %γH2AX followed a normal distribution. A log-transformation of the data was applied to 

BN-B and TCR-Mf, and a square root transformation was applied to Karyorrhectic-B, to achieve 

a better approximation to the normal distribution. No improvement was achieved with 

transformation in all other parameters, so the Kruskal-Wallis test with Bonferroni’s correction 

was applied for univariate statistics. 

For the analysis of MN tests parameters, best fitting multiple regression models were used 

to estimate the effect of frailty status, nutritional status and cognitive status. All models included 

gender, age, BMI, and smoking habit (never/ever smokers). Poisson regression was carried out 

with NBUD-B, Cond-chrom-B, and Pyknotic-B, and negative binomial regression was fitted for 

MN-L, MN-B, BN-B, Karyorrhectic-B, and Karyolytic-B. Mean ratio (MR) was used as the point 

estimate of effect accompanied by its 95% confidence interval (95% CI). For those MN tests 

parameters significantly influenced by frailty and cognitive status, new models were run including 

both parameters mutually adjusted, and adjusting also by gender, age, BMI, and smoking habit. 
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Negative binomial regression models were also used to estimate the effect of frailty status 

and other clinical parameters on TCR-Mf since this parameter is a count. The same effects on 

%γH2AX, %TDNA, and %RC were assessed by applying linear regression models on the log-

transformed data. All models included gender, age, and smoking habit (never/ever smokers). 

Similar models were run adjusting also by BMI, but results obtained were very similar in all cases. 

The results are presented as mean ratios (MR) and 95% confidence intervals (95% CI). 

Partial correlation coefficients adjusted by gender, age, BMI, and smoking were used to 

estimate associations between biological parameters. The threshold of significance was 

established at 0.05. The statistical software used for the analyses were the IBM SPSS software 

package V. 20 (SPSS, Inc), and the STATA/SE software package V. 12.0 (StataCorp LP). 

3. Results 

A total of 257 older adults (age range 65-102, including 31% aged 85 and over) were 

included in this study. After clinical classification based on Fried’s criteria 39 subjects (15.4%) 

were classified as non-frail, 131 (50.6 %) as pre-frail, and 87 (34.0%) as frail (Table IV.2). Sixty-

eight per cent (N=89) of pre-frail subjects showed only one frailty criterion, while 32% (N=42) 

showed two frailty criteria. The most commonly reported positive item among them (96%, 

N=126) was muscle weakness (low grip strength). Smoking was more frequent in the non-frail 

group. Although the number of cigarettes smoked per day was higher in the frail smokers, no 

significant difference in the duration of smoking was observed among the three groups. The 

proportion of individuals malnourished or at risk for this condition was much higher among the 

group of frail (79.2%), than in pre-frail (19.1%) or non-frail (10.3%) and, accordingly, the MNA-

SF score was significantly lower in the frail group. Presence of cognitive impairment was 

observed in 9.9% of pre-frail subjects and in the 78.8% of frail subjects. No case of cognitive 

impairment was reported in the non-frail individuals. All non-frail subjects and the large majority 

of pre-frail lived at family home. Most frail subjects lived in nursing homes, although a quarter 

of them lived at family home but attending daycare centers. The duration of education was similar 

in the non-frail and pre-frail groups, while frail subjects presented a significantly lower number 

of years of education. 

Since MN evaluation was carried out in different tissues and by means of two different 

methodologies, analysis of results obtained will be presented, compared and discussed separately 

from the other genetic outcomes’ results. 

3.1. Micronucleus evaluation in lymphocytes and buccal cells 

Table IV.4 shows the results of both MN assays (in PBL and in buccal cells) in the non-

frail, pre-frail and frail groups. Buccal basal cells were not observed in any of the individuals 
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analyzed, and all micronucleated buccal cells contained only one MN. Univariate analysis of data 

showed that the frequencies of MN-L and BN-B increased progressively with frailty status, 

showing significant differences when frail and non-frail subjects are compared. On the contrary, 

decreases in the frail group were observed in the frequencies of Pyknotic-B, as compared with the 

other two groups, and Karyolytic-B, as compared to the group of non-frail individuals. No 

differences were obtained for the frequencies of MN-B, NBUD-B, Cond-chrom-B, or 

Karyorrhectic-B. 

When correlations between MN-L and all parameters obtained in the BMNCyt assay were 

assessed, a significant association was only found for BN-B (r=0.367, P<0.001). In order to 

determine the single contribution of each frailty criterion to MN-L frequency, this parameter was 

compared in the groups of subjects negative and positive for each individual criterion (Figure IV. 

2). Highly significant increases in MN-L rate were observed in subjects positive for the criteria 

low physical activity, slow walking time and low grip strength when compared to those 

individuals negative for the corresponding criterion. No difference was observed in unintentional 

weight loss, and there was a borderline significant difference in exhaustion. 

 

FIGURE  IV.2. Micronuclei in lymphocytes (MN-L) frequency in the older adult 
population, according to each frailty criterion (Fried et al., 2001). The number of 
individuals included in each group is indicated inside each rod. *P<0.05, **P<0.001, 
significant difference with regard to negative (Student's t-test). Bars represent mean 
standard error. UWL: unintentional weight loss; E: exhaustion; LPA: low physical 
activity; SWT: slow walking time; LGS: low grip strength.



 

 

TABLE  IV.4. Results of micronuclei evaluation in lymphocytes and buccal cells in the study group, classified 
according to frailty status (univariate analysis) 

 Non-frail  Pre-frail  Frail P-
value#  N Mean  SE  N Mean  SE  N Mean  SE 

‰MN-L 37 13.07 ± 0.78  122 14.87 ± 0.45  83 19.16 ± 0.66†,‡ <0.001 

‰MN-B 30 0.70 ± 0.36  102 0.46 ± 0.10  81 0.75 ± 0.17 0.582 

‰NBUD-B 30 0.10 ± 0.06  102 0.03 ± 0.02  81 0.02 ± 0.02 0.151 

‰BN-B 30 36.17 ± 2.85  102 43.13 ± 2.18  81 82.65 ± 3.42†,‡ <0.001 

‰Cond-chrom-B 30 0.53 ± 0.40  102 0.04 ± 0.02  81 0.02 ± 0.02 0.554 

‰Karyorrhectic-B 30 22.50 ± 3.12  102 18.96 ± 1.34  81 22.14 ± 2.06 0.537 

‰Pyknotic-B 30 0.57 ± 0.14  102 0.33 ± 0.07  81 0.11 ± 0.04†,‡ 0.001 

‰Karyolytic-B 30 3.37 ± 0.90   102 2.21 ± 0.26   81 2.63 ± 0.65† 0.018 
MN-L, micronuclei in lymphocytes; MN-B, micronucleus in buccal cells; NBUD-B, nuclear buds in buccal cells; BN-B, binucleated buccal 
cells; Cond-chrom-B, buccal cells with condensed chromatin; Karyorrhectic-B, karyorrhectic buccal cells; Pyknotic-B, pyknotic buccal cells; 
Karyolytic-B, karyolitic buccal cells. 
#Multiple group comparison (ANOVA or Kruskal-Wallis test). †Statistically different from non-frail. ‡Statistically different from pre-frail 
(Tukey’s test or Bonferroni’s correction). 
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Results obtained in the multivariate statistical analyses, adjusting for gender, age, BMI, 

and smoking habit, confirmed previous univariate analysis results (Table IV.5), i.e., frail 

individuals showed a 44% significant increase in the frequency of MN in lymphocytes, a 

significant doubling of binucleated buccal cells, and significant decreases in the frequencies of 

pyknotic buccal cells, and of condensed chromatin buccal cells. Only in this last outcome, pre-

frail subjects presented a significant result, while all the other parameters did not significantly 

differ from non-frail. 

A borderline significant influence of age on the study outcomes was found for the 

frequency of MN-L and Pyknotic-B (MR=0.99, 95% CI=0.99-1.00, P=0.022, and MR=0.96, 95% 

CI=0.92-1.00, P=0.029, respectively). Females presented significantly higher rates of MN-L than 

males (MR=1.18, 95% CI=1.09-1.29, P<0.001), but significantly lower values of Cond-chrom-B 

(MR=0.16, 95% CI=0.05-0.55, P=0.003). BMI influenced significantly and inversely the 

frequency of Karyolytic-B (MR= 0.96, 95% CI=0.92-0.99, P=0.014). 

The possible influence of nutritional status and cognitive status on the various study 

parameters was assessed (Table IV.6). Individuals malnourished or at risk of malnutrition 

presented significantly higher values of MN-L and BN-B, and significantly lower frequency of 

Pyknotic-B than individuals with normal nutrition. Equivalent results were observed for subjects 

with cognitive impairment, as compared to subjects with normal cognitive status.



 

 

TABLE  IV.5. Effect of frailty status on MN tests parameters in lymphocytes and buccal cells; models 
adjusted by age, sex, BMI, and smoking habit 

  ‰MN-L  ‰MN-B  ‰NBUD-B  ‰BN-B 

  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI 

Frailty status              

Non-frail  1.00   1.00   1.00   1.00  

Pre-frail  1.07 (0.94-1.22)  0.77 (0.24-2.47)  0.39 (0.06-2.42)  1.14 (0.94-1.39) 

Frail  1.44**  (1.24-1.67)  1.23 (0.32-4.70)  0.41 (0.04-4.63)  2.06**  (1.65-2.57) 

             
  ‰Cond-chrom-B  ‰Karyorrhectic-B  ‰Pyknotic-B  ‰Karyolytic-B 

  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI 

Frailty status              

Non-frail  1.00   1.00   1.00   1.00  

Pre-frail  0.15* (0.04-0.50)  0.84 (0.60-1.16)  0.72 (0.37-1.41)  0.68 (0.35-1.35) 

Frail  0.13**  (0.02-0.84)  1.02 (0.70-1.49)  0.29* (0.10-0.81)  0.85 (0.39-1.86) 
CI, confidence interval; MN-L, micronuclei in lymphocytes; MN-B, micronucleus in buccal cells; NBUD-B, nuclear buds in 
buccal cells; BN-B, binucleated buccal cells; Cond-chrom-B, buccal cells with condensed chromatin; Karyorrhectic-B, 
karyorrhectic buccal cells; Pyknotic-B, pyknotic buccal cells; Karyolytic-B, karyolitic buccal cells. 
*P<0.05; ** P<0.01. 

 

  



 

 

TABLE  IV.6. Effect of nutritional status and cognitive status on MN tests parameters in 
lymphocytes and buccal cells; models adjusted by age, sex, BMI, and smoking habit 

  ‰MN-L  ‰MN-B  ‰NBUD-B  ‰BN-B 

  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI 

Nutritional status              

Normal nutrition   1.00   1.00   1.00   1.00  

At risk or malnourished  1.23**  (1.12-1.35)  1.38 (0.55-3.46)  0.73 (0.11-4.74)  1.50**  (1.29-1.75) 

Cognitive status             

No cognitive impairment  1.00   1.00   1.00   1.00  

Cognitive impairment  1.40**  (1.27-1.55)   2.11 (0.91-4.88)   0.81 (0.13-5.18)   1.87**  (1.61-2.17) 

             
  ‰Cond-chrom-B  ‰Karyorrhectic-B  ‰Pyknotic-B  ‰Karyolytic-B 

  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI 

Nutritional status             

Normal nutrition   1.00   1.00   1.00   1.00  

At risk or malnourished  1.57 (0.17-14.71)  1.27 (1.01-1.61)  0.39* (0.18-0.88)  1.28 (0.77-2.11) 

Cognitive status             

No cognitive impairment  1.00   1.00   1.00   1.00  

Cognitive impairment  0.35 (0.07-1.72)   1.08 (0.84-1.38)   0.28**  (0.11-0.73)   1.15 (0.68-1.94) 
CI, confidence interval; MN-L, micronuclei in lymphocytes; MN-B, micronucleus in buccal cells; NBUD-B, 
nuclear buds in buccal cells; BN-B, binucleated buccal cells; Cond-chrom-B, buccal cells with condensed 
chromatin; Karyorrhectic-B, karyorrhectic buccal cells; Pyknotic-B, pyknotic buccal cells; Karyolytic-B, 
karyolitic buccal cells. 
*P<0.05; ** P<0.01. 
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When frailty status and cognitive status were mutually adjusted, the presence of frailty 

and cognitive impairment were independently related to an increase in the frequency of MN-L 

(MR=1.22, 95% CI=1.02-1.46, P<0.05 for frailty, and MR=1.25, 95% CI=1.10-1.43, P<0.01 for 

cognitive impairment) and BN-B (MR=1.59, 95% CI=1.23-2.05, P<0.001 for frailty, and 

MR=1.45, 95% CI=1.21-1.75, P<0.001 for cognitive impairment), both of them remaining 

significant. A decrease of Pyknotic-B frequency remained, not any longer significant (MR=0.54, 

95% CI=0.13-2.31, P=0.404 for frailty, and MR=0.38, 95% CI=0.10-1.40, P=0.146 for cognitive 

impairment). On the contrary, the inclusion of frailty in models fitting nutritional status reduced 

the strength of the association between this parameter and all endpoints of the cytome assay, 

which resulted not any longer significant. 

3.2. Other genetic outcomes 

Table IV.7 shows the results of the different genetic parameters tested in the study 

population. According to the univariate analyses, no significant influence of frailty status on TCR-

Mf, %TDNA or %RC was obtained, although a certain decrease in DNA damage in frail subjects 

and a clear tendency to decline in repair capacity with increasing frailty status was observed. 

Moreover, a significant (P<0.01) and progressive increase of %γH2AX with frailty severity was 

also detected. 

Associations between parameters tested were not obtained according to Spearman’s 

correlation. Nevertheless, when associations with MN rate in peripheral lymphocytes were tested, 

a significant correlation was obtained for the association with %γH2AX (r=0.252, P<0.001). 

Results obtained in the multivariate statistical analyses, adjusting by gender, age, and 

tobacco consumption (and alternatively adjusting by BMI), confirmed previous results from 

univariate analyses on the influence of frailty (Table IV.8), i.e., increasing frailty severity was 

accompanied by a progressive decrease in repair capacity and increase in H2AX phosphorylation; 

significance was observed for this last parameter in frail individuals with regard to non-frail 

(P<0.05). TCR-Mf and comet assay results did not show any significant effect. No significant 

influences were obtained for gender, age or smoking on any parameter tested, and including BMI 

in the models scarcely changed the results. 

Given the positive influence of frailty on γH2AX assay results, and in order to determine 

the single contribution of each frailty criterion to γH2AX levels, this parameter was compared in 

the groups of subjects negative and positive for each individual criterion (Figure IV.3). No 

differences were observed between individuals negative and positive for unintentional weight loss 

or exhaustion. However, significantly higher values of %γH2AX were observed in individuals 

positive for the criteria low physical activity (P<0.001), slow waking time (P<0.01) and low grip 

strength (P<0.01) when compared to those individuals negative for each corresponding criterion.



 

 

TABLE  IV.7. Results of biomarkers analyzed in the study group, classified according to frailty status (univariate analysis) 

  Non-frail  Pre-frail  Frail 
P-value# 

  N Mean  SE  N Mean  SE  N Mean  SE 

TCR-Mf  37 4.99 ± 0.86  119 4.34 ± 0.23  87 4.43 ± 0.39 0.566 

%TDNA  37 11.35 ± 2.10  114 11.00 ± 1.23  33 6.78 ± 1.85 0.127 

%γH2AX  32 10.20 ± 0.59a  100 12.01 ± 0.48b  86 13.55 ± 0.51c 0.001 

%RC  35 41.08 ± 3.81  102 35.30 ± 2.62  33 30.60 ± 4.95 0.295 

TCR-MF, T-cell receptor mutation frequency; TDNA: DNA in the comet tail; γH2AX, phosphorylated H2AX histone; RC, repair capacity. 

#Multiple group comparison (ANOVA or Kruskal-Wallis test). Different letter indicates statistically different groups (Tukey’s test).  

 

FIGURE  IV.3. Percentage of H2AX phosphorylation in the older adult population, according to each frailty criterion (Fried et al., 2001). The number 
of individuals included in each group is indicated inside each rod. Bars represent mean standard error. ** P<0.01, ***P<0.001, significant difference 
with regard to negative (Student's t-test). UWL: unintentional weight loss; E: exhaustion; LPA: low physical activity; SWT: slow walking time; 
LGS: low grip strength. 



 

 

TABLE  IV.8. Effect of frailty status on the biomarkers analyzed; models adjusted by 
age, sex, and smoking habits. 

  TCR-Mf  %TDNA  %γH2AX  %RC 

  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI  
Mean 
Ratio 

95% CI 

Frailty status              

Non-frail  1.00   1.00   1.00   1.00  

Pre-frail  0.99 (0.93-1.06)  0.90 (0.64-1.27)  1.13 (0.95-1.34)  0.58 (0.30-1.15) 

Frail  1.08 (0.06-1.00)  0.66 (0.41-1.08)  1.25* (1.03-1.53)  0.46 (0.18-1.23) 

Gender             

Male  1.00   1.00   1.00   1.00  

Female  0.99 (0.81-1.22)  1.27 (0.93-1.72)  1.00 (0.87-1.15)  1.17 (0.63-2.18) 

Age  1.00 (0.99-1.01)  1.00 (0.99-1.01)  1.01 (0.99-1.01)  0.98 (0.95-1.02) 

Smoking habits             

Non-smokers  1.00   1.00   1.00   1.00  

Smokers  1.16 (0.92-1.47)  0.98 (0.70-1.38)  1.09 (0.93-1.28)  1.03 (0.55-1.95) 

CI: confidence interval; TCR-MF, T-cell receptor mutation frequency; TDNA: DNA in the comet tail; 
γH2AX, phosphorylated H2AX histone; RC, repair capacity. 

*P<0.05. 
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Multivariate analyses were also applied to estimate the influence of other clinical 

parameters on the biomarkers tested. Nutritional status did not show significant effects on any 

biomarker. Notably, both TCR-Mf and %γH2AX increased significantly with the 10-years 

mortality risk estimation (P<0.001 and P=0.026, respectively), and significant associations were 

found between these parameters (r=0.140, P=0.029 for TCR-Mf, and r=0.231, P=0.001 for 

%γH2AX). Moreover, subjects presenting cognitive impairment showed a significant 16% 

increase (95%CI 1.02-1.31, P=0.026) in the level of H2AX phosphorylation than subjects with 

normal cognitive status. 

4. Discussion 

Frailty is a condition of vulnerability involving an increased risk of poor health outcomes 

in older adults. The use of biomarkers to identify frail subjects not only would be a more precise 

and objective method for frailty identification, but also would make epidemiological studies more 

comparable, allowing to draw suitable conclusions from them. Besides, they might have the 

potential of anticipating the recognition of frail individuals thus helping to prevent or attenuate 

the negative outcomes of frailty. However, and despite the last evidence supporting the 

relationship between a number of cellular alterations and frailty (reviewed in Chapter II), up to 

now no biological feature has been validated to be employed as a biomarker to identify frailty 

status. 

4.1. Micronucleus evaluation in lymphocytes and buccal cells 

 The association of genomic instability and the ageing process has been widely described 

(Thomas et al., 2008; Garm et al., 2013; Gorbunova and Seluanov, 2016). Frailty is considered a 

consequence of the deregulation of several physiological systems (immune, endocrine, muscular) 

occurred during the ageing process. For this reason, a direct association between frailty and 

genomic instability seems to be also plausible, and, accordingly, it has been previously assessed 

by evaluating different genomic biomarkers, including telomere length (Saum et al., 2014), DNA 

methylation (Collerton et al., 2014), or DNA damage and repair impairment (Collerton et al., 

2012). Nevertheless, all these studies failed in finding a relationship between frailty and any of 

these genomic parameters. 

Since MN frequency is a well-established biomarker of genomic instability, and in order 

to address its suitability as a potential biomarker of frailty, in the present study MN formation in 

peripheral blood lymphocytes and exfoliated buccal cells was determined in a population of elder 

individuals classified as non-frail, pre-frail or frail, according to the five phenotypic criteria 

proposed by Fried et al. (2001). Results obtained showed a significant progressive increase in the 

frequency of MN-L with frailty severity, while no difference among groups was found in the 

frequency of MN-B. Although similar results would be initially expected from both approaches, 
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this discrepancy between results obtained from lymphocytes and buccal cells was previously 

reported, [e.g., in subjects with Down’s syndrome regarding healthy controls (Ferreira et al., 

2009), and in Alzheimer’s disease patients and controls (Migliore et al., 2011)]. As suggested by 

Ferreira et al. (2009), this may be due to differences in metabolism and/or apoptosis levels 

between exfoliated buccal cells and lymphocytes. In addition, buccal epithelial cells are 

considered short-lived cells due to their continuous renewal; therefore, the presence of MN in 

buccal mucosa has been mainly linked to recent exposure to genotoxic agents more than to fixed 

genetic damage (Ceretti et al., 2014), a condition which would contribute to explain the 

differences found in our study between the two tissues. 

As previously indicated, MN production was associated with ageing and age-related 

diseases in both peripheral lymphocytes and buccal cells in a number of previous studies (Thomas 

et al., 2008; Bonassi et al., 2011b; Fenech et al., 2011). Moreover, this biomarker has also been 

associated with features of the ageing phenotype, including loss of function, mental retardation, 

disability, and death (Fenech and Bonassi, 2011). However, to the best of our knowledge, this is 

the first study evaluating MN formation in buccal mucosa cells from frail older subjects and the 

second one in applying this approach to lymphocytes of older adults classified according to frailty 

status. Opposing to our results, this single previous study (Valdiglesias et al., 2015) failed in 

finding a relationship between frailty and MN-L frequency in an Italian elder population. 

However, in that work, no distinction was considered between pre-frail and non-frail groups, so 

they were analysed together. This decision could have possibly masked the difference between 

frail subjects and non-frail controls, due to the lower MN-L frequency in the pre-frail group. 

Moreover, their sample population size was smaller (N=180), and the regression models applied 

did not include BMI and smoking habit, which could have consistently contributed to explain the 

lack of association reported.  

Even though in our study the significant increase in MN-L frequency regarding the non-

frail subjects was only found in the frail group, pre-frail individuals showed also a slight increase 

in this parameter, supporting a possible linear association between genomic instability and frailty. 

Another original result from this study refers to the different contribution of the five 

different frailty criteria (Fried et al., 2001) to the increase of the MN-L (Figure IV. 1); low 

physical activity, slow walking time, and low grip strength contribute the most, while 

unintentional weight loss does not contribute at all. The lack of contribution of this last criterion 

was in some way unexpected, especially considering the observed effect of nutritional status on 

the final results (Table IV. 6) and the previous studies linking diet deficiencies and chromosomal 

damage (Fenech, 2002). However, it must be taken into account that unintentional weight loss in 

elderly, or ageing-related sarcopenia, has multi-factorial causes including disuse, changing 
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endocrine function, chronic diseases, etc., being nutritional deficiencies just one of them (Fielding 

et al., 2011). 

Although less employed than the CBMN test, the BMNCyt assay in exfoliated cells is a 

useful and minimally invasive method for monitoring genetic damage in humans. It has been 

previously employed as a tool to evaluate age-associated genomic instability both in healthy 

individuals (Thomas et al., 2008) and Down’s syndrome individuals, that experience premature 

ageing (Thomas et al., 2008; Ferreira et al., 2009). In these cases, a positive association between 

MN production and ageing was found. Besides, an increase in MN-B frequency was previously 

reported in several age-related diseases such as diabetes (Grindel et al., 2017), cancer (Yildirim 

et al., 2006), or rheumatoid arthritis (Ramos-Remus et al., 2002).  

Tissue regenerative capacity depends on the number and division rate of the proliferating 

cells, along with genomic stability and propensity to cell death. This process is basic for healthy 

ageing. Buccal mucosa offers the possibility to study the regenerative capacity of the epithelial 

tissue, in an easily accessible and non-invasive sampling procedure (Thomas et al., 2009). Thus, 

together with MN evaluation, BMNCyt assay allows studying several endpoints for other nuclear 

abnormalities that occur during the normal cell division. These abnormalities have been 

previously employed as a biomarker of DNA damage (NBUD-B), defects in cytokinesis (BN-B) 

and proliferative potential (basal cell frequency), and/or cell death (Cond-chrom-B, 

Karyorrhectic-B, Pyknotic-B and Karyolytic-B) (Torres-Bugarín et al., 2014). 

Even though the rate of BN-B decreased significantly with age, it was found significantly 

higher in the frail group and showed a progressive increase with frailty severity. Thus, these 

results indicate alterations in the cytokinesis process, which could lead to alterations in cell 

proliferation, in frail subjects. Besides, decreases were obtained in buccal cell death parameters 

(Pyknotic-B, Karyolytic-B, and Cond-chrom-B, the two former significant) in the frail group with 

regard to the other two. Since significant increases in apoptosis indicative parameters (Cond-

chrom-B, Karyorrhectic-B) were previously observed in healthy older subjects (aged 65-70) as 

compared with younger individuals (aged 18-25) (Thomas et al., 2007), our results may reflect 

important changes in the profile of the buccal mucosa related to frailty and not associated with 

age. 

The proportion of basal cells and cells undergoing cell death in buccal mucosa is an 

indication of the regenerative capacity of this tissue (Thomas et al., 2009). In our study, no basal 

cells were found in the scored samples, possibly due to the subjects’ advanced age and the 

expected wear of their mucous tissue. Besides, the rate of cells undergoing cell death (Cond-

chrom-B, Pyknotic-B, and Karyolytic-B) resulted significantly decreased in frail and pre-frail 

groups, suggesting a minor regenerative capacity of the buccal mucosa in these individuals. 
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Together with data on frailty, the possible influence of the nutritional status and the 

cognitive impairment of the study subjects on the obtained results were analyzed. 

Malnourishment is a common status in the elderly. In our study population, 14.6% frail 

individuals were malnourished, while 79.2 % frail and 19.1% pre-frail were at risk of being 

malnourished. When the influence of nutritional status on MN tests parameters was assessed, 

higher levels of MN-L and BN-B, and lower levels of Pyknotic-B were observed in individuals 

malnourished or at risk of malnutrition regarding those with normal nutrition. These results 

coincide with those for frailty status, which is not unexpected since it has been previously 

described that those individuals with an impaired nutritional status are more likely to be frail 

(Dorner et al., 2014). Furthermore, the frailty criterion unintentional weight loss is related to 

nutritional status, indeed ‘involuntary weight loss during the last three months’ is one of the items 

included in the MNA-SF questionnaire. 

Micronutrient status plays an important role in the protection against genome damage by 

providing co-factors required for an efficient DNA repair, detoxification or maintenance of 

genome methylation (Thomas et al., 2011). Consequently, and in agreement with our results, 

vitamin and mineral deficiencies in diet could be associated with increased genomic damage and 

cancer risk (Ames and Wakimoto, 2002). On this regard, Fenech et al. (1997) also reported an 

increase in MN-L frequency in older men (aged 50-70) with non-optimal values of serum folate 

and homocysteine regarding subjects with higher levels of these micronutrients. A complete 

review on the effects of dietary intervention on MN levels concluded that micronutrient 

supplementation (e.g., with vitamins, antioxidants or wine) could lead to a significant reduction 

of MN frequency, in both peripheral lymphocytes and buccal mucosa cells, in supplemented 

subjects (Thomas et al., 2011). This observation, together with the influence of nutritional status 

found in the present study, would support the idea that MN-L frequency associated with frailty or 

pre-frailty status could be reduced, at least in part, with a proper diet intervention in the elderly. 

A similar relationship was found when the influence of cognitive status was assessed. In 

particular, increases in MN-L and BN-B cells, and a decrease in Pyknotic-B were observed in 

subjects with cognitive impairment. Supporting this last result, decreases in the buccal cell death 

parameters (Karyorrhectic-B, Cond-chrom-B) were previously observed in Alzheimer’s patients 

with regard to healthy controls (Thomas et al., 2007). However, since the significant effect on 

MN-L and BN-B cells remained when both statuses were mutually adjusted, it seems that 

cognitive status has a strong influence on the obtained results. Accordingly, a relationship 

between frailty status and cognitive impairment has been previously described (Han et al., 2014), 

as well as the association between MN frequency, as a biomarker of genomic instability, and 

cognitive impairment (Thomas et al., 2007). This demonstrated association between both statuses, 

frailty and cognitive, strongly complicates the distinction between genomic or cellular alterations 
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related to frailty condition and those due to cognitive impairment. The Fried’s criteria, frequently 

used in clinical settings and employed in the present study to identify frail people, do not consider 

cognitive features of the individuals and consequently, the initial distinction between subjects 

with differential cognitive status cannot be conducted. However, more and more authors are 

increasingly claiming for differentiating physical frailty from cognitive frailty (Kelaiditi et al., 

2013). Our results would support the need for this distinction in order to enhance reliability when 

testing the suitability of a potential biomarker for frailty identification.  

4.2. Other genetic outcomes 

In order to fully understand the association between DNA cumulative damage and frailty 

status, the present study also addressed the possible relationship between frailty status in older 

adults and different genomic outcomes, chosen on the basis of their demonstrated link to ageing 

or age-related diseases (Shao et al., 2014; Siddiqui et al., 2015). 

TCR is a complex of integral membrane proteins that participate in the activation of T-

cells in response to an antigen. Induced or spontaneous mutations in TCR genes could result in 

the phenotypic expression of TCR-defective T-cells and thus contribute to impairment of T-cell 

response. It has been suggested that TCR variant frequency might be a particularly relevant 

endpoint in population monitoring for genetic damage (Cole and Skopek, 1994). Accordingly, 

this endpoint has been previously employed as a mutagenicity biomarker in biomonitoring studies 

of occupationally or medically exposed subjects (Vershenya et al., 2004; García-Lestón et al., 

2012), as well as a predictor of cancer risk (Taooka et al, 2006). In the present study, the first 

addressing the possible relationship between frailty and mutagenicity, TCR-Mf was not found to 

be influenced by frailty status or age. Contradictory results have been previously obtained 

regarding age effect on TCR-Mf in occupationally-exposed populations entirely below 65 years 

old, with both absence (Lanza et al., 1999) and presence (García-Lestón et al., 2012) of such 

influence. Besides, significantly positive and linear association between TCR-Mf and age was 

observed by Akiyama et al. (1995), in a wide age range group of subjects (0-96 years). It is likely 

that the age range covered by our study population (65-102) was not wide enough to detect 

variations in TCR-Mf with age, since our results indicate that over the age of 65 mutation rate 

remains stable as well as independent of frailty status. 

DNA repair is one of the most important mechanisms to maintain genome integrity. 

Consequently, deficiencies in this process are often considered one of the key processes in the 

development of diseases such as cancer and other age-related pathologies (Valdiglesias et al., 

2011a). Indeed, it was previously suggested that one of the possible causes or events involved in 

frailty syndrome is the alteration of the cellular repair mechanisms that would result in the 

accumulation of genetic damage (Dent et al., 2016). In the present study, this possible association 
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has been evaluated by means of the DNA repair competence assay. However, and despite repair 

capacity showed a tendency to decrease with frailty severity, no significant differences were 

reached. To the best of our knowledge, only the study of Collerton et al. (2012) has previously 

evaluated the possible association between repair capacity and frailty status in the elderly 

(subjects aged over 85), and negative results were also obtained. In both cases, repair capacity 

was assessed using DNA damaging agents with similar action mechanism, namely ionizing 

radiation in Collerton’s study and the radiomimetic agent BLM in the current study. These agents 

induce a wide spectrum of mutagenic lesions, including DNA base damage, abasic sites, and 

alkali-labile sites, which eventually result in DNA single strand breaks and DSB. Considering the 

demonstrated link between repair capacity and ageing or age-related diseases (Maynard et al., 

2015;), further investigations in this line, maybe using other assays to assess different repair 

pathways, are required prior fully rejecting DNA repair influence on frailty status.  

Primary DNA damage was determined by means of alkaline comet assay, but no 

association with frailty status was found in the present study. Similarly, Collerton et al. (2012) 

reported a lack of association between genetic damage (γ ray-induced DNA strand breakage, 

evaluated by fluorimetric detection of alkaline DNA unwinding) and frailty condition in an older 

adult population over 85 years old. No other studies evaluating genetic damage in frail subjects 

are available in the literature; however, there are a number of works addressing the association 

between this kind of genetic damage and age showing inconsistent results. For instance, 

Humphreys et al. (2007) found a decrease in DNA damage in the oldest group (aged 75-82 years) 

with respect to the young controls (aged 20-35 years) and to the younger older people (aged 63-

70 years); Hyland et al. (2002) reported similar levels of DNA damage in older individuals (86-

96 years old) that in middle-aged individuals (40-60), and Mladinic et al. (2010) (age groups 

ranges:35-47 and 65-76 years old), Piperakis et al. (2009) (age groups ranges: children: 5-10; 

adults: 40-50; old people: 70-80 years old) and Mutlu-Türkoglu et al. (2003) (age groups ranges: 

21-40; 61-85 years old) observed an increase of DNA damage with age. Several authors have 

previously pointed out that results obtained in the comet assay are highly variable and often 

difficult to interpret since several types of damage are detected – including single and double 

strand breaks, alkali-labile sites, and breaks generated during repair processes – and can be 

influenced by a number of variables (season, diet, sample collection time…) (Azqueta and 

Collins, 2013). 

Opposite to comet assay, γH2AX assay determines not a wide spectrum of DNA lesions 

but a specific kind of damage, namely double strand breaks (DSB). The phosphorylation of the 

C-terminal of the variant core histone protein H2AX (γH2AX) at the highly conserved amino acid 

Ser139 is a quickly occurring event in the early DNA damage response to DSB (Siddiqui et al., 

2015). The half-life of γH2AX after DNA damage induction has been estimated to be 2-7h; after 
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this time H2AX is again dephosphorylated (Bouquet et al., 2006). Still, it has been reported that 

γH2AX persistent in time represent DNA lesions with unrepairable DSB (Sedelnikova et al., 

2008). In the present study, a progressive increase in the γH2AX rate with frailty severity not 

influenced by age was observed, statistically significant in both pre-frail and frail groups when 

compared with the non-frail. Besides, participants with cognitive impairment showed an increase 

in %γH2AX with respect to those with normal cognitive status. Silva et al. (2014) also reported 

an increase in γH2AX nuclear expression levels in individuals with Alzheimer’s disease with 

regard to healthy individuals, and the present study also found that the presence of cognitive 

impairment and frailty were independently related to an increase in the frequency of MN in 

lymphocytes. These results would suggest a connection between cognitive impairment and frailty 

status, and give support to the quite recently coined term ‘cognitive frailty’, introduced in an 

attempt to encapsulate the cognitive decline that is often observed in non-demented elderly 

individuals who are physically frail, with an underlying pathophysiology different from that 

driving the cognitive trajectory in neurodegenerative disorders (Kelaiditi et al., 2013). 

Although the present study is the first one in evaluating the relationship of H2AX 

phosphorylation with frailty status, the relationship between cellular senescence and persistent 

γH2AX, as indicative of unrepaired DSB, has been already suggested by several authors 

(Sedelnikova et al. 2008; Siddiqui et al., 2015). Still, Schurman et al. (2012) reported that γH2AX 

endogenous levels increase with age, peaking at ∼57 years, which is in agreement with the absence 

of influence of age in the current study, where all subjects were 65 and older. 

Both comet assay and H2AX assay detect DSB, but their results do not always coincide. 

While γH2AX was found to be associated with frailty in the current study, several reasons could 

explain the lack of association for comet assay. On one hand, whereas comet assay usually reveals 

recently induced and easily repairable DNA damage (Collins et al., 2014), γH2AX levels reflect 

fixed genetic damage or DNA damage that could not be properly repaired (Valdiglesias et al., 

2013). On the other hand, it is not absolutely clear whether γH2AX foci do in fact always reflect 

the presence of DNA breakage (Rothkamm et al., 2015). For example, ageing haematopoietic 

stem cells have been reported to harbour replication stress-induced nucleolar γH2AX foci which 

persist due to ineffective H2AX dephosphorylation rather than ongoing genetic damage (Flach et 

al., 2014). Nevertheless, the significant association found in the current older adult population 

between γH2AX levels and MN frequency in peripheral lymphocytes, indicative of persistent 

DNA damage, points to unrepaired DSB as the outcome influenced by frailty status and by 

cognitive impairment, according to the results obtained in the multivariate analyses. 

Besides, parallel results between γH2AX assay and MN test were also obtained when 

analysing each five frailty phenotypic criteria independently. Thus, major contribution of physical 
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activity, walking time, and grip strength to variation of %γH2AX and MN frequency was 

observed, whereas unintentional weight loss and exhaustion did not contribute, or contributed 

only minimally, to both parameter modifications. These similar results in γH2AX and MN assays 

provide further support to the relationship between fixed genetic damage and frailty, and also 

suggest that combinations of some phenotypic criteria and biomarkers might improve frailty 

identification.  

5. Conclusions 

Different studies support the reversibility of frailty status or its improvement by changes 

in diet, physical exercise and medications (Espinoza et al., 2012; Roland et al., 2014). Identifying 

frail people as early as possible seems, therefore, crucial for geriatricians and healthcare 

professionals since it would allow to implement interdisciplinary and personalized cares, as well 

as to improve outcomes by means of prevention and intervention programs. All this would lead 

to decrease the need for admission to nursing homes and hospitals, lowering the risk of 

dependence and death, and eventually improve the welfare and personal satisfaction, reducing the 

health, social and economic costs associated with frailty. 

The use of biomarkers could result highly helpful in identifying frailty of pre-frailty 

status. Given its sensitivity, specificity, objectivity and predictive capacity, several authors have 

pointed out that cellular and molecular biomarkers may potentially be used for frailty 

identification (reviewed in Chapter II). However, to date, no specific biological parameter has 

been identified as a definitive biomarker for frailty. 

In the present study, we addressed the possible relationship between different genetic 

outcomes – namely genomic instability, mutagenicity, genetic damage and cellular repair capacity 

– and frailty status by evaluating a population of older adults classified as frail, pre-frail and non-

frail according to the commonly used phenotypic criteria. 

According to our findings, MN frequency evaluated in lymphocytes (as a marker of fixed 

or accumulated genetic damage), but not in buccal cells (reflection of recent damage) could be 

considered as a biomarker of frailty. Thus, these results demonstrate for the first time a direct 

relationship between frailty in older adults and genome instability. Even though this association 

resulted statistically significant only in the frail group, also individuals with a pre-frail status 

showed an increase in the MN-L frequency, supporting this relationship and opening the door to 

further investigations in this line. Moreover, associations between frailty and cell death 

parameters were obtained from the BMNCyt assay, which supports the use of this minimally 

invasive method as a complement in frailty identification, at least in its advanced state, where 

these differences resulted statistically significant. 
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Besides, no association of TCR-Mf and primary DNA damage with frailty was observed 

in this study. DNA repair capacity showed a non-significant tendency to decrease with frailty, 

and the persistent levels of γH2AX increased progressively and significantly with frailty severity. 

Taking together the results from MN frequency in peripheral lymphocytes and γH2AX 

assay, the hypothesis that there is indeed a link between genomic instability, understood as fixed 

genetic damage, and frailty status seems to be plausible and supported by our data. Since both 

biomarkers, γH2AX and MN rates, resulted significantly and progressively increased with frailty, 

they could be proposed as tools for frailty identification or prediction (Figure IV.4); still, further 

validation is required to confirm our results. Furthermore, as γH2AX level resulted altered in both 

pre-frail and frail groups, whereas MN frequency was significantly increased only in frail 

individuals, a combination of both parameters could provide useful information regarding frailty 

severity, allowing clinicians to distinguish between pre-frail and frail status and helping them to 

provide personalized care. Consequently, results reported in the present study may contribute to 

improve healthcare/therapeutic strategies in older patients. Nevertheless, further investigation is 

necessary to prove whether the current findings are consistent and reproducible in different 

populations and larger sample sizes, to eventually standardize these biomarkers before they can 

be used in clinics, and to fully understand the influence of cognitive impairment on the results 

obtained.  
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FIGURE  IV.4. Relationship between frailty and genetic outcomes analysed in the study 
population. Biomarkers of mutagenicity, primary DNA damage and cellular repair 
capacity do not show differences according to frailty status. MN frequency 
discriminates between non-frail and frail subjects, meanwhile H2AX levels are different 
in non-frail, pre-frail and frail groups. A combination of both MN and γH2AX rates 
shows potential to be employed in frailty identification.
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From the results obtained in this study, we may draw the following conclusions: 

Systematic review 

1. Systematic review of the literature has shown that several oxidative stress biomarkers –

including alterations in antioxidant systems, increased levels of lipid peroxidation and DNA 

oxidative damage, as well as DNA methylation and some specific genetic polymorphisms –

are associated with frailty status in older people. 

2. Genomic instability, or at least the two biomarkers tested so far (telomere length and MN rate), 

seems not to be linked to frailty. The only study which addressed the possible relationship 

between DNA repair modulations and frailty status also failed in finding associations. 

γH2AX assay experimental optimization 

3. Both unstimulated and stimulated fresh peripheral blood lymphocytes could be employed as 

cellular material to carry out the γH2AX assay. 

4. The decision about stimulating cells with phytohaemagglutinin prior γH2AX analysis should 

be taken during the study design, according to the kind of damage to be evaluated or that is 

expected in the individuals. 

5. Phytohaemagglutinin stimulation is necessary for γH2AX analysis when cells are stored 

frozen, since basal damage is too high in cryopreserved unstimulated cells, likely as a result 

of freezing and thawing processes. 

Epidemiological study 

6. MN frequency evaluated in lymphocytes (as a marker of fixed or accumulated genetic 

damage), but not in buccal cells (reflection of recent damage) showed significantly higher 

values in frail individuals as compared to non-frail subjects. 

7. Associations between frailty and cell death parameters were obtained in exfoliated buccal 

cells, supporting the use of this minimally invasive method as a complement in frailty 

identification, at least in its advanced state, where these differences resulted statistically 

significant. 

8. Persistent levels of γH2AX increased progressively and significantly with frailty severity. 

9. TCR-Mf and primary DNA damage were not associated with frailty status. DNA repair 

capacity showed a non-significant tendency to decrease with frailty. 

10. Both MN in lymphocytes and γH2AX could be proposed as tools for frailty identification or 

prediction. Besides, since γH2AX level resulted altered in both pre-frail and frail groups, 

whereas MN frequency was significantly increased only in frail individuals, a combination of 

both parameters could provide useful information regarding frailty severity
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