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Abstract

Analysis of the electricity demand and price is presented, within the Spanish
Electricity Market, applying statistical tools from the �eld of functional data.
It begins with a descriptive analysis of the electrical data, studying its partic-
ular features. This kind of data conform a functional time series. Functional
outlier detection methods are proposed to deal speci�cally with functional
time series, taking dependence in this data structure into account. Then, a
comparative study among di�erent prediction techniques for next-day elec-
tricity demand and price is performed. It includes naïve procedures, time
series ARIMA models and robust functional principal components analysis.
The use of functional regression methods is proposed in this �eld. Specif-
ically, the functional nonparametric regression model is used together with
the semi-functional partial linear regression model, which allows incorporat-
ing external covariates as temperature and wind power production. Boot-
strap procedures are proposed to build con�dence intervals for the considered
functional regression models. Validity of these bootstrap procedures is proved
theoretically and they are applied to both a simulation study and the elec-
tricity demand and price data. Finally, bootstrap procedures are proposed
to build prediction intervals and prediction density, which are also applied
to the electrical data.





Resumen

Se presenta un análisis de la demanda y el precio de la electricidad, dentro
del Mercado Eléctrico Español, aplicando técnicas estadísticas del ámbito de
los datos funcionales. En primer lugar, se realiza un análisis descriptivo de
los datos eléctricos, en el que se estudian sus principales características. Este
tipo de datos conforman una serie de tiempo funcional. Se proponen méto-
dos de detección de atípicos diseñados especí�camente para series de tiempo
funcionales, teniendo en cuenta la dependencia presente en esta estructura
de datos. A continuación, se realiza un estudio comparativo de diferentes
técnicas para la predicción de la demanda y precio de la electricidad al día
siguiente. Este estudio incluye métodos naïve, modelos ARIMA de series de
tiempo y métodos basados en componentes principales funcionales robustas.
Se propone el uso de métodos de regresión funcional en este ámbito. En con-
creto, se utiliza el modelo de regresión funcional no paramétrico y el modelo
semi-funcional parcialmente lineal, en el que se incorporan covariables exter-
nas como la temperatura y la producción de energía eólica. Considerando
los métodos de regresión funcional indicados, se proponen procedimientos
bootstrap para el cálculo de intervalos de con�anza, cuya validez se prueba
teóricamente y se aplican en un estudio de simulación y en los datos eléctri-
cos de demanda y precio. Finalmente, se proponen procedimientos bootstrap
para construir intervalos y densidades de predicción, los cuales se aplican al
mismo conjunto de datos eléctricos.





Resumo

Preséntase unha análise da demanda e prezo da electricidade, dentro do Mer-
cado Eléctrico Español, aplicando técnicas do ámbito dos datos funcionais.
En primeiro lugar, realízase unha análise descritiva dos datos eléctricos, estu-
dando as súas principais características. Este tipo de datos conforman unha
serie de tempo funcional. Propóñense métodos de detección de atípicos de-
señados especi�camente para series de tempo funcionais, tendo en conta a
dependencia presente nesa estrutura de datos. A continuación, lévase a cabo
un estudo comparativo de diferentes técnicas para predición da demanda e
prezo da electricidade no día seguinte. Este estudo inclúe métodos naïve,
modelos ARIMA de series de tempo e métodos baseados en compoñentes
principais funcionais robustas. Proponse o uso de métodos de regresión
funcional neste ámbito. En concreto, utilízase o modelo de regresión fun-
cional non paramétrico e o modelo semi-funcional parcialmente lineal, no
que se incorporan covariables externas como a temperatura e a produción de
enerxía eólica. Considerando os métodos de regresión funcional indicados,
propóñense procedementos bootstrap para o cálculo de intervalos de con�-
anza, nos que a súa validez se proba na teoría e que son aplicados tanto
nun estudo de simulación como nos datos eléctricos de demanda e prezo. Fi-
nalmente, propóñense procedementos bootstrap para construír intervalos e
densidades de predición, que se aplican ao mesmo conxunto de datos eléctri-
cos.
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Preface

The present memory pretends to summarize all the study developed along
the Phd trajectory. Mainly, it is focused on the study of prediction for elec-
tricity demand and price data from the Spanish Electricity Market, from a
statistical point of view. Speci�cally, the use of techniques from Functional
Data Analysis is introduced in this problem.

Since electricity power is a non-storable product, it is of main impor-
tance to anticipate decisions and to prevent misleading measures in order
to optimize bene�ts and to reduce expenses for the agents involved in it.
Electricity data, both demand and price, have some particular features in
their behaviour that make them hard to analyse. This kind of data has been
studied from many points of view, most of them in engineering.

Some statistical tools and procedures are analysed and proposed along
this memory, to study this kind of data: electricity demand and price, which
is the main objective of the thesis. Brie�y, after an introduction to the Span-
ish Electricity Market, to functional data and a descriptive analysis of our
dataset, the study will start from outlier detection methods in the context
of functional time series and to forecasting within this �eld. It keeps going
proposing bootstrap procedures to build con�dence and prediction intervals
for two functional regression models: Functional Nonparametric regression
(FNP) and Semi-Functional Partial Linear regression model (SFPL). Asymp-
totic theorems to prove the validity of the bootstrap con�dence intervals in
both models are proved in the theoretical part of the memory. Con�dence in-
tervals are analysed with simulated data and applied to the electrical dataset,
while the case of prediction ones is focussed on the application to real data.

The contents of the memory are organized as follows: Chapter 1 is de-
voted to introduce the reader to the context in which the study is carried
out: electricity data. It begins with an explanation of the Spanish Electric-
ity Market operation in Section 1.2. The transactions that take place in this

xxi



xxii Preface

market share some properties with a stock market, but the timing and agents
involved in it are peculiar. Since this study is based on functional techniques,
an introduction to this topic, including some de�nitions and a small review
of the basic concepts is given in Section 1.3. Coming up next, Section 1.4
includes a detailed descriptive analysis of the electricity data used in this
study: electricity demand and price in Spain along an entire year. This sec-
tion dissects each feature of this data, analysing the di�erent performance
of demand and price, depending on the day of the week, the weekend, the
holidays, the month and season of the year, etc. It is know that external
factors a�ect the demand and the price and so, some additional data will
be included in our study. This is the case of the temperature or the wind
power production, which a�ect demand and price, respectively. This addi-
tional data will be described in Section 1.5.

Chapter 2 includes an extensive study of functional outliers in the con-
text of this project: the functional time series. Outlier detection can be seen
as a �rst step when dealing with a real dataset, prior to any kind of sta-
tistical analysis, as prediction. It begins with a detailed review, in Section
2.2, of some tools in the statistical literature devoted to outlier detection
in functional data. Up to our knowledge, there is no speci�c procedure to
detect outliers in the context of functional time series. Three new tools are
proposed, based on the procedures included in the review, that are adapted
to this context by taking dependence into account, among other variations.
They are structured in two sections: Section 2.3 presents the �rst proposal,
which works with functional depths and hypothesis tests. This procedure
is based on the method developed in Febrero et al. (2008) and, after its
statement, it is analysed and compared with other available methods in a
simulation study.

After that, two other new proposals to detect outliers in functional time
series are given in Section 2.4. Two di�erent procedures are presented in this
section, being both of them based on Functional Principal Component Anal-
ysis (FPCA). Speci�cally, the robust FPCA proposed in Hyndman and Ullah
(2007) is applied. Again, a simulation study is performed in order to show
the behaviour of our proposals and to compare it with other methods in the
literature, showing the improvement of taking dependence of the functional
time series into account. Finally, an application of these tools together to
detect outliers in electricity demand and price is given in Section 2.5.

Probably the biggest issue when dealing with electrical data is to obtain
accurate predictions. So, once outlier detection methods are applied, the
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problem of electricity demand and price forecasting is introduced. Chap-
ter 3 includes a comparative study of di�erent techniques focussed in this
problem. Not only functional data methods are considered, but also other
statistical tools that are very popular in this �eld, as naïve prediction or time
series. From the functional data point of view, the proposal is to consider
functional regression to deal with electricity data forecasting, comparing it
also with robust FPCA. Speci�cally, two models are considered: FNP re-
gression and also SFPL regression model, in which it is possible to introduce
additional covariates as temperature and wind power production. A compar-
ative study, applied to electricity demand and price prediction concludes this
chapter. This analysis extends and complements the methods and results
developed in Vilar et al. (2012).

Chapters 4 and 5 contain the theoretical part of this memory and, proba-
bly, the main contribution of the thesis to the functional data literature. Both
are devoted to propose bootstrap procedures for FNP and SFPL regression
models, respectively. These two chapters follow the same structure: they
begin with an introduction to the models and their estimators (that have
been already used for prediction in Chapter 3) and establish two bootstrap
procedures, Naïve bootstrap for homoscedastic models and Wild bootstrap
for heteroscedasticity. The central part of the chapters includes the theorems
that establish the validity of the bootstrap, together with the assumptions
needed for them and also their detailed proofs. Finally, the bootstrap proce-
dures are applied to build con�dence intervals in these functional regression
models, through both a simulation study and an application to electricity
data.

Validity of the bootstrap procedures applied to the functional nonpara-
metric regression model has been already studied in a context of independent
data in Ferraty et al. (2010). In this study, this result is extended to the case
of dependent data, taking use of the asymptotic distribution of the estima-
tor given by Delsol (2009). However, when dealing with the SFPLR model,
there is no preceding, nor in the context of functional data neither in clas-
sical regression under random design. Thus, this contribution is, up to our
knowledge, the �rst approach to the proposed bootstrap procedures in this
kind of partial linear regression considering both linear and nonparametric
components of the model. This study is focussed on the context of dependent
functional data, but it can be applied to independent functional data as a
particular case.
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Last chapter, Chapter 6, includes an application of the same bootstrap
procedures, together for FNP and SFPL regression models, to build predic-
tion intervals and also prediction density. Again, the accuracy of the pre-
diction intervals is shown with an application to electricity data, following
the same structure as in Chapters 4 and 5. In this case, this chapter is of
practical usefulness.

The remaining part of the memory includes some conclusions and open
problems for future work, some appendix with auxiliary results, an extended
summary of the memory in Spanish and the bibliographic references em-
ployed along the study.

As it can be extracted from the structure of the memory, it follows a
logical time-line through this entire statistical project. It begins with an
introduction to the context in which it is developed, analysing in detail the
dataset used along the whole memory. One of the main objectives of the
study is to provide accurate predictions for the electricity demand and price,
and to go deeper into these predictions by building bootstrap con�dence and
prediction intervals. For that purpose, the �rst step is to obtain a man-
ageable dataset and this is done by detecting the functional outliers, taking
into account that our dataset corresponds to a functional time series. Then,
predictions can be computed using the proposed functional regression mod-
els and comparing them with other di�erent tools available in the literature.
After that, bootstrap procedures are proposed for both functional regression
models, their validity is proved theoretically and they are applied to build
both con�dence and prediction intervals, concluding the aims and scopes of
the project.



Chapter 1

Spanish Electricity Market Data

1.1 Introduction

First chapter is devoted to introduce the area of application of the thesis. All
the procedures and methodologies presented in this study were applied to,
or developed to work with, electricity data: demand and price of electrical
power in the Spanish Electricity Market. Along this study, this data is used
to detect outliers, to obtain predictions and to build con�dence and predic-
tion intervals. It is then necessary to analyse in detail this data, as a �rst
step in this study, before going through the statistical methodology present
in the following chapters.

Chie�y, the main features of the Spanish Electricity Market are given in
Section 1.2 in order to provide a general overview of this market behaviour.
Section 1.3 serves to locate our work, within the statistics, in the �eld of
functional data. It contains a brief de�nition of the kind of data to be
used. Finally, the main part of this chapter is the descriptive analysis of the
electrical data used along the study, which is given in Section 1.4. Also some
additional data is described in Section 1.5.

1.2 Overview of the Spanish Electricity Market

The Spanish Electricity Market is a compound of all the markets involved
in the trade of electrical power in Spain since 1997, year of the deregulation
of the market. Until 1997, the Spanish Government managed the electrical
system paying the costs to a set of private electrical companies. The excep-
tion was the public company Endesa. Liberalization of this market was made
in order to introduce competence and increase the e�ciency of the electrical

1



2 Chapter 1. Spanish Electricity Market Data

sector. It was a European policy, pretending to avoid the abuse of the energy
monopoly, and Spain was the �rst continental country in implementing this
measure.

Since 1997, the electricity market was divided in 4 components: gener-
ation, transport, distribution and merchandising. At the same time, these
four components are grouped in two classes of activities: partially liberalized
activities (generation and merchandising) and regulated activities (transport
and distribution).

Generation and merchandising of the electrical power, which are the par-
tially liberalized activities, can be made by any agent. Meanwhile, transport
and distribution is subject to a speci�c supervision. Also part of the gen-
eration is regulated. This is the case of renewable energies, among others,
which are subsidized.

Spanish Electricity Market is then referred to as the liberalized activities,
including wholesale and retail sector. This study will focus on the wholesale
sector, which is called �Mercado Ibérico de la Elecricidad� (MIBEL) meaning
Iberian Electricity Market. MIBEL integrates two main operators involved
in the transactions of the market. On the one hand, the market operator is
devoted to the economic management. It is called �Operador del Mercado
Ibérico Español� (OMIE) meaning Spanish-Iberian Market Operator. On the
other hand, the system operator is responsible of the technical management
and is made by �Red Eléctrica de España� (REE).

There are di�erent kinds of organized markets involved in MIBEL, which
are usually called �pool� and which works somehow like a stock market, ad-
justing electricity supply and demand. The most important one is the daily
market, in which the energy for the next-day 24 hours is negotiated and which
marks the �market price�. This daily market is controlled by OMIE, whose
function is the market management and to ensure transparency, objectivity
and independence in the recruitments.

Daily market behaves as follows: buyers and sellers present their electric-
ity sale o�ers one day before, for each one of the next 24 hours. That is, there
are 24 di�erent components in the market. Each sale o�er is composed by a
pair of a quantity of power (measured in Mega Watts per hour, MWh) and
its price (measured in e/MWh). Market operator matches the sale o�ers in
a matching, crossing the aggregated curves for sell and purchase and looking
at the coincidence point. Then, the prevision for the electricity demand, to-
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gether with its price, for the 24 hours of the next day is obtained. The price
is obtained by simple adjusting of the o�ers, which is called uniform-price
auction, and that means that all the buyer agents whose o�ers are greater or
equal than the �xed price will pay this �xed price. Meanwhile, seller agents
whose o�ers are lower or equal than the �xed price will also be remunerated
based on that �xed price, independently of their initial o�er.

After the daily market, the intra-day market is introduced. Its main role
is to allow the agents to adjust the o�ers �xed in the daily market in some
intra-day markets, by selling and purchasing electrical power. Once the to-
tal demand and price o�ers are �xed, they are communicated to the System
Operator, which is responsible of its execution. As the daily market does not
take into account technical restrictions, it may be modi�ed by the System
Operator in order to ensure a good operation, taking care of the capability
limits on the network.

This memory deals with the electricity demand and price given by the
daily market. Speci�cally, it considers the �Total energy purchase for the
Spanish system� and �Marginal price for the Spanish system�, also called
�spot price� that is obtained as described above. Data source was the OMIE
web page (http://www.omie.es), in which they recorded the transactions of
the daily market along the time. Although Section 1.4 includes an extensive
descriptive analysis of the dataset involved in this study, some of the main
features of the electricity data in Spain will be also included here.

On the one hand, demand is a�ected mainly by working patterns and
meteorological conditions, while spot price has an important strategic com-
ponent, as it depends on the way the agents build their o�ers. It is then
important to take into account this kind of in�uences with the aim of better
understanding its behaviour.

Main features of electricity demand, which are going to be extensively
analysed in Subsection 1.4.1, can be summarized in the daily and weekly
seasonality, the calendar e�ect on the weekend, the presence of outliers and
the weather in�uence. Human patterns clearly a�ect the energy consump-
tion. During the weekdays, from Monday to Friday, most of the people is
working, the business and industry are at full capacity and they follow more
o less the same routine, day after day. This makes energy consumption to
repeat the same, or similar, pattern for each weekday. Electricity demand
follows also this shape: during the night the activity decreases and so does
the demand, in the mornings electricity demand rises as people start to ac-
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tivate and to consume energy. Along the day there are some hours at which
demand �uctuates, but keeping always medium-high values. This continues
until the night, when the demand decreases again. The repetition of this
pattern originates the daily seasonality.

Weekend follows a particular behaviour, di�erent than weekdays. On Sat-
urdays most of the business and industrial activities work half-heartedly and
so, demand behaves at a lower level than on weekdays. This is even more
remarkable on Sundays, as this is the traditional holiday for workers, both
business and commerce or industries. On Sundays demand reaches its lowest
values, with also a smoother pattern. Again, as this behaviour is repeated
in a similar way, week after week, it originates the weekly seasonality, due to
the calendar e�ect on the weekend.

Finally, it is important to note the presence of outliers in the demand,
most of them due to holidays, strikes or special days for other reasons. They
induce non-usual patterns in the weekly routine, a�ecting also the electric-
ity demand. Furthermore, other external factors a�ect the demand, being
probably the most remarkable ones the weather variables and, among them,
the temperature. Traditionally, when the temperature is low or high, people
take use of climatization systems that need energy, increasing the electricity
demand. On the contrary, medium temperature does not a�ect demand di-
rectly. This relation will be studied in detail in Subsection 1.5.1.

Electricity price is traditionally more complex than demand, as it is af-
fected by economic rules besides the usual �supply and demand� market rules.
Energy source is also a parameter in the price �xing. In Spain, renewable
energies as subsidised by the Government, allowing them to enter on the
daily market in a preferential position with zero price. In this situation, the
electricity demand is �rst covered by those subsidised energies (wind power,
hydroelectric or nuclear) and then, the rest of the remaining demand is com-
pleted with the other energy sources which really mark the spot price. The
main importance of this fact is that price usually decreases when the input
of renewable energies increases, resulting in unexpected prices. This is one of
the key points when dealing with electricity price predictions that will also
be analysed in detail in Subsection 1.5.2.

Usually along the year, one can �nd some time intervals in which wind
power production covers an out of the ordinary amount of demand. As a con-
sequence, the spot price reduces reaching even zero prices during this time,
that can last since some hours to some days. Wind power production is an



1.3. Functional data 5

increasing energy source in Spain. Next extract from a specialized article in
the journal The Guardian (from January 2014) gives an idea of the impor-
tance of wind power in Spain:

Wind power was Spain's top source of electricity in 2013.
(. . .) Red Eléctrica de España (REE) released a preliminary report on the
country's power system late last month, revealing that for "the �rst time
ever, [wind power] contributed most to the annual electricity demand cover-
age". (. . .) wind turbines met 21.1% of electricity demand on the Spanish
peninsular, narrowly beating the region's �eet of nuclear reactors, which pro-
vided 21% of power.
In total, wind farms are estimated to have generated 53,926 gigawatt hours
of electricity, up 12% on 2012.(. . .) �Throughout 2013, the all-time highs of
wind power production were exceeded� (. . .) in January, February, March and
November wind power generation was the technology that made the largest
contribution towards the total energy production of the system.(. . .)

1.3 Functional data

Functional data is a relative recent �eld in Statistics, which has been increas-
ing its presence over the last years. It is based on extending the dimension
of the data which statistics works with, allowing to deal directly with curves,
images, etc. The �rst monograph about this topic was published within the
last two decades. Speci�cally in 1997 by Ramsay and Silverman (book en-
titled Functional Data Analysis), with a second edition in 2005. This gives
an idea of the novelty of functional data. Other main monographs are the
book by Ferraty and Vieu (2006), in which they analyse functional data from
the nonparametric statistical point of view, Horvath and Kokoszka (2012),
focussed on inference, and, more recently, Hsing and Eubank (2015), which
is a compendium of the key mathematical concepts and results that are rel-
evant for the theoretical development of functional data analysis.

In spite of its novelty, several authors had contributed over these years
to the growth of the research in functional data and to spread it to a large
number of areas. Most statistical techniques have been generalized to the
functional context. This includes linear regression models (Cardot, Ferraty
and Sarda, 1999; Li and Hsing, 2007; García-Portugués, González-Manteiga
and Febrero-Bande, 2014), nonparametric smoothing methods (Ferraty and
Vieu, 2002; Delsol, Ferraty and Vieu, 2011; Shang, 2014), classi�cation
(Cuevas, Febrero and Fraiman, 2007; Baíllo, Cuesta-Albertos and Cuevas,
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2011; Sguera, Galeano and Lillo, 2014), dimension reduction (Boente and
Fraiman, 2000; Hall, Müller andWang, 2006) and bootstrap methods (González-
Manteiga and Martínez-Calvo, 2011; Ferraty, van Keilegom and Vieu, 2012).
In addition, FDA has been successfully applied in a wide range of �elds such
as climatology (Besse, Cardot and Stephenson, 2000), chemometrics (Ferraty
and Vieu, 2002), environmetrics (Aneiros-Pérez et al., 2004), demography
(Hyndman and Ullah, 2007), social sciences (Ocaña, Aguilera and Escabias,
2007) and the electricity market (Aneiros et al., 2013 and 2016). See Cuevas
(2014) for an overview.

In the following paragraphs, some basic concepts in FDA are introduced
in order to provide a general overview of this �eld.

1.3.1 De�nition of functional data

In general, a functional datum can be de�ned as an observation from a ran-
dom variable taking values in an in�nite dimensional space (see Ferraty and
Vieu, 2006). This de�nition can include, for example, curves, surfaces or
images.

This memory is going to focus on curves coming from Spanish Electricity
Market: daily demand and price curves.

In this setting, a functional datum (a curve) will be denoted by

χ = {χ(t) : t ∈ T}

where T is an interval, T ⊂ R.

1.3.2 Semi-metrics

Measures for proximity between mathematical objects are, as a rule, a main
issue into many statistical methodologies. Classical norms can be used to
measure how close two objects are.

Within a �nite dimensional space, one may assume equivalence between
all norms, which means that the election of the norm is a minor question.
Meanwhile, when dealing with in�nite�dimensional spaces, this is not the
case. As equivalence between norms cannot be assumed, their election be-
comes crucial and some features of the data (as the shape, if they are smooth
of rough) may help this choice.
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In the following, semi-metrics will be considered as a closeness measure
between functional data (as metrics may be too restrictive in some situa-
tions, revealing less structure in the data, and semi-metric spaces are better
adapted than metric spaces).

Some of the semi-metrics used along this memory are based on derivatives
or Principal Component Analysis. For example, when dealing with smooth
curves, one can consider the semi-metric based on the ν�th derivative of the
curve, dderivν (·, ·), where

dderivν (χi,χj) =

√∫
(χ

(ν)
i (t)− χ(ν)

j (t))2dt.

However, if one deals with rough but balanced functional data, one can
use the semi-metric based on the projection on the �rst s eigenvectors,
v1(·), . . . , vs(·), associated with the s largest eigenvalues of the empirical co-
variance operator of the functional predictor χ, which is dprojs (·, ·):

dprojs (χi,χj) =

√√√√ s∑
k=1

(∫
(χi(t)− χj(t))vk(t)dt

)2

.

Another kind of semi-metrics could be considered, as the semi-metric
based on Partial Least Squares.

1.3.3 Centrality measures: Functional depths

A �rst step into a descriptive analysis of a dataset could be to obtain the
classical measures of centrality: mean, median and mode.

The functional mean for a set of curves S = {χ1 . . . ,χn} can be easily
computed as follows:

χmean,S(t) =
1

n

n∑
i=1

χi(t), ∀t ∈ T.

However, if one wants to estimate the functional median or mode, in
which notions of distances and densities appear, the problem becomes more
di�cult and it will make use of functional depths.

The concept of depth was �rst introduced in the context of multivariate
data (as Tukey or halfspace depth, simplicial depth or location depth) and
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then, it was extended to the in�nite dimensional case of functional data.

Depths of functional data were introduced to measure how deep (central)
or outlying an observation is, with respect to a functional dataset. This al-
lows to order a set of functional data from the centre-outward, so that the
most central or interior data in the sample will have higher depth. Thus,
functional depths may indicate which observations (if any) can be consid-
ered as outliers: those with unusually low depths.

Along this memory, three di�erent functional depths are used, which are
brie�y described in the next list:

• h-modal depth (MD): proposed by Cuevas, Febrero and Fraiman (2006).
Based on the concept of mode, these authors de�ned a functional mode
as the curve most densely surrounded by the rest of the curves, which
corresponds to the maximum value of this depth. The h-modal depth
of a curve χ, regarding a set of curves χ1, . . . , χn is given by:

MDn(χ, h) =
n∑
i=1

K

(
‖χ− χi‖

h

)
,

where ‖ ‖ is a norm in the functional space, K is a kernel function and
h is a bandwidth.

• Band depth (BD): This depth is a graph based approach proposed by
López-Pintado and Romo (2009). In summary, it counts the number of
times that one curve is contained in a band, built from the rest of the
curves in the sample. This band can be constructed using two or more
curves. In the case when two curves are employed to build the band,
the following expression indicates the proportion of bands, B(χi1 , χi2),
determined by two di�erent curves, χi1 and χi2 , containing the graph
of χ, G(χ), regarding a set of curves χ1, . . . , χn:

BD(2)
n (χ) =

(
n

2

)−1 ∑
1≤i1≤i2≤n

1{G(χ)⊆B(χi1 ,χi2 )}. (1.1)

Finally, the band depth for the curve χ is given by the aggregation of
the latter expression when the number of curves employed to build the
band varies:

BDn(χ) =
J∑
j=1

BD(j)
n (χ), J ≥ 2.
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• Modi�ed band depth (MBD): This is a more �exible version of the
Band depth, also proposed in López-Pintado and Romo (2009), which
enables to change the indicator function in expression (1.1) to the �pro-
portion of time� that the curve is in the band. This allows the result
to take intermediate values between 0 and 1, giving a more �exible
approximation. That is, the set of points, in the interval T where the
curves take values, where the curve χ is contained in the band built
from two curves is:

A2(χ) =

{
t ∈ T : min

r∈{i1,i2}
χr(t) ≤ χ(t) ≤ max

r∈{i1,i2}
χr(t)

}
,

and considering the Lebesgue measure in T , λr(A2(χ)) =
λ(A2(χ))

λ(T )
,

one has the analogous expression as (1.1):

MBD(2)
n (χ) =

(
n

2

)−1 ∑
1≤i1≤i2≤n

λr(A2(χ)).

Finally, the MBD for the curve χ is given by:

MBDn(χ) =
J∑
j=1

MBD(j)
n (χ), J ≥ 2.

Once the concepts of functional depth have been introduced, one may
de�ne the functional median as the deepest curve in a dataset, with respect
to a speci�c depth. The functional mode will be considered as the deepest
curve when one considers the modal depth de�ned above.

1.3.4 Functional Principal Component Analysis

Classical Principal Component Analysis (PCA) is one of the most used tech-
niques to reduce dimension of multivariate data. This tool can be extended
to the context of functional data, resulting the Functional Principal Compo-
nents Analysis (FPCA). Along this memory, FPCA is applied to the detection
of functional outliers in Chapter 2 and also for prediction in Chapter 3. Next
paragraphs present a brief review on this topic, from the �nite-dimensional
case to the functional space L2. Without loss of generality, it is assumed that
the considered (multivariate or functional) random variable has zero mean.
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PCA is a standard approach to explore variability in multivariate data,
X ∈ Rd. This approach speci�es the d directions, {vk}dk=1 ∈ Rd, that maxi-
mize the variance along each component, subject to the orthonormality con-
dition. That is, the aim is to �nd the vectors vk such that the variance
of

αk = vTkX

is maximized subject to

vTk vk = 1 (k = 1, . . . , d) and vTk vj = 0 (k 6= j).

Vectors vk can be obtained by solving the eigenfunction

Bv = λv, (1.2)

where B denotes the covariance matrix ofX, and v ∈ Rd. The eigenvector vk
is known as the k-th principal component, assuming that the corresponding
eigenvalue λk satis�es λk ≥ λk+1 (k = 1, . . . , d − 1). Thus, the direction vk
corresponds to the k-th most important mode of variation, while

λk∑d
k=1 λk

is the proportion of total variance explained by vk. PCA is often the �rst
step in reducing the dimension of the data, while maintaining most of the
information. This is done by means of the approximation

X ≈
d′∑
k=1

αkvk, (1.3)

where d′ < d and
∑d′

k=1 λk is close to
∑d

k=1 λk (note that
∑d′

k=1 λk/
∑d

k=1 λk
is the proportion of variability of X explained by the representation (1.3)).
Of course, in practice B is unknown and must be estimated. For details, see
e.g. Johnson and Wichern (2002).

Reducing the dimension is especially important when data are in�nite
dimensional, this being the case of functional data. If we focus on curves
observed in T = [a, b] (−∞ < a < b < ∞) and square integrable, then, if
χ denotes a functional random variable, PCA can be easily generalized to
FPCA. The aim is to �nd the functions φk : [a, b]→ R such that the variance
of

βk =

∫ b

a

φk(t)χ(t)dt (1.4)
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is maximized subject to the constraints∫ b

a

φ2
k(t)dt = 1 and

∫ b

a

φk(t)φj(t)dt = 0 (k 6= j). (1.5)

As in the �nite-dimensional case, the functional principal components, φk(·),
can also be de�ned as the orthonormal functions verifying∫ b

a

C(t, s)φk(s)ds = λkφk(t) (t ∈ [a, b], k = 1, 2, . . . ), (1.6)

where C(t, s) denotes the covariance between χ(t) and χ(s). Finally, dimen-
sion reduction is performed by considering the approximation

χ(·) ≈
K∑
k=1

βkφk(·), (1.7)

where K < ∞ and
∑K

k=1 λk is close to
∑∞

k=1 λk (we have assumed that
λk ≥ λk+1, k = 1, 2, . . .). For details, see e.g. Ramsay and Silverman (2005).

Functional principal components, φk(·), depend on the unknown covari-
ance operator C(·, ·). Assuming that one has observations {χi}ni=1 identically
distributed from the functional random variable χ, estimates for φk(·) can be
obtained by using

Ĉ(t, s) =
1

n

n∑
i=1

(χi(t)− χ(t))(χi(s)− χ(s)), where χ(t) =
1

n

n∑
i=1

χi(t),

instead of C(t, s) in (1.6). See Horváth and Kokoszka (2012) for the con-

sistency of Ĉ and the corresponding eigenfunctions and eigenvalues, under
either independent curves or weakly dependent functional time series.

It is worth noting that, apart being used for dimension reduction, FPCA
can also be used as a tool for outlier detection. Nevertheless, as noted in
the previous paragraph, the estimation of functional principal components
is based on the estimated covariance operator Ĉ(·, ·), which is known to be
sensitive to outliers. Thus, if the goal is to construct an approach based on
principal components to identify functional outliers, robust FPCA should be
considered (see e.g. Hyndman and Ullah 2007; Hyndman and Shang 2010;
Sawant, Billor and Shin 2012).
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Hyndman and Ullah (2007) propose estimating the functional principal

components by means of the functions φ̂k(·) that maximize the variance of
the scores

zi,k = wi

∫ b

a

φk(t)χi(t)dt (1.8)

subject to the constraints (1.5). The weights wi are computed as

wi =

{
1 if vi < s+ λ

√
s

0 otherwise

where

vi =

∫ b

a

(χi(t)−
K∑
k=1

β̃i,kφ̃k(t))
2dt (1.9)

with φ̃k(·) being initial (highly robust) projection-pursuit estimates of φk(·)
obtained from the RAPCA algorithm (see Hubert, Rousseeuw and Verboven

2002) considering equal weights wi in (1.8), while β̃i,k =
∫ b
a
φ̃k(t)χi(t)dt. In

addition, s is the median of {v1, . . . , vn} and λ > 0 is a tuning parameter

to control the degree of robustness. Once the robust estimates φ̂k(·) are
obtained, the coe�cients corresponding to the curve χi are constructed as

β̂i,k =

∫ b

a

φ̂k(t)χi(t)dt. (1.10)

Note that, given the de�nition of {wi}, outlying curves receive low weight
(for details, see Hyndman and Ullah 2007). For this reason, the estimates

φ̂k(·) are robust.

1.3.5 Functional Regression

Regression is a powerful tool to analyse the relation between variables and
to obtain predictions. As many other classical statistical techniques, also
regression analysis can be extended to deal with functional data, resulting
Functional Regression.

Probably, the most commonly used regression model is the classical linear
model where the variables are scalar. If one introduces curves instead of scalar
values, one can obtain three di�erent regression models:

• Fully functional model: both response and regressors are curves.

• Scalar response model: scalar response and functional regressors.
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• Functional response model: functional response and scalar regressors.

This classi�cation given for the linear regression model can be applied to
other kind of models, as partial-linear or nonparametric regression models.

Within this memory, functional regression is one of the main topics. First,
in Chapter 3 some of them are applied to predict electricity demand and
price in the context of functional autoregression. Later, on Chapters 4 and
5, the FNP and SFPL regression models, respectively, are analysed in detail
proposing bootstrap procedures to build con�dence intervals, which are also
extended in Chapter 6 to build prediction intervals. Thus, a brief introduc-
tion to these models is given.

FNP regression model, with scalar response:

Yi = m(χi) + εi,

where the response, Y , is scalar while the covariate, χ, is valued in some
in�nite-dimensional space, H, which is endowed with a semi-metric d(·, ·).
Finally, m(·) is an unknown smooth real-valued operator and the correspond-
ing random errors {εi} are i.i.d. as ε.

The regression function m(·) = E(Y | χ = ·) can be estimated by m̂h(·);
that is,

m̂h(χ) =
n∑
i=1

wh(χi, χ)Yi.

Nadaraya-Watson type weights can be used:

wh(χi, χ) =
K(d(χi, χ)/h)∑n
i=1K(d(χi, χ)/h)

,

whereK(·) is a real function (the kernel) and h > 0 is a smoothing parameter.

SFPL regression model, also with scalar response:

Yi = XT
i β +m(χi) + εi, i = 1, . . . , n,

where the response Y is scalar, β = (β1, . . . , βp)
T is a vector of unknown

real parameters, m is an unknown smooth real-valued operator and εi are
i.i.d. mean zero random errors. The explanatory random variables X i =
(Xi1, . . . , Xip)

T and χi are valued in Rp and in some in�nite-dimensional
space, H, respectively. Let us denote

X = (X1, . . . ,Xn)T , Y = (Y1, . . . , Yn)T , Wh = (wh(χi,χj)), i, j = 1, . . . , n
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and, for any (n× q) matrix A (q ≥ 1),

Ãh = (I−Wh)A.

The following estimators β̂h and m̂h(·) of the vector parameter β and the
function m(·) will be considered:

β̂h = (X̃T
h X̃h)

−1X̃T
h Ỹh

and

m̂h(χ) =
n∑
i=1

wh(χi, χ)(Yi −XT
i β̂h),

respectively. Nadaraya-Watson type weights are also used.

Kernel local weighting

As it could be seen in the functional regression models considered above,
when dealing with nonparametrics one may consider kernel local weighting,
based on both a kernel function and a smoothing parameter. The idea of this
concept in the one dimensional case is to give a weight to each value around
a point x, taking into account the di�erence between each value and that x:

1

h
K

(
x−Xi

h

)
.

The weights satisfy that bigger di�erence/distance corresponds to smaller
weights.

Focussing on the kernel functions, classical symmetrical kernel functions
can be considered in the real case: box kernel, triangle kernel, quadratic ker-
nel or Gaussian kernel. If one extends this kernel local weighting to functional
case (also with multivariate data), one may consider asymmetric kernels as
the distance between observations will be always a positive value and so, the
support of the kernel must be also positive. Note that in this case, the ker-
nel function is applied to the distance (in functional data, the semi-metric)
between a curve χi and χ:

K

(
d(χi, χ)

h

)
.

Thus, one can extend Nadaraya Watson weights to functional data, resulting:

K(d(χi, χ)/h)∑n
j=1K(d(χj, χ)/h)

.
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This fact implies the use of the asymmetric box kernel, asymmetric triangle
kernel, asymmetric quadratic kernel or asymmetric Gaussian kernel, for in-
stance.

1.3.6 Functional Time Series

When dealing with functional data which is recorded along the time, one must
take into account the temporal ordering and temporal dependence present in
it. This is the case of the daily curves of electricity demand and price. As
each curve corresponds to one day, there is an implicit temporal dependence
within each curve. While, as each day is also connected to the previous and
following ones, there is another kind of temporal dependence between the
curves. This kind of situations are matched up in Functional Time Series
(FTS).

A Functional Time Series can be seen as the natural extension from the
univariate time series to functional data in which each observation of the
time series is, for example, a curve. Speci�cally, to de�ne the FTS, {χi}

n
i=1,

which is going to be used along this study, a real-valued continuous time
stochastic process {χ (t)}t∈R is considered. Then, it is assumed that such
process is seasonal with seasonal length τ and it is observed on the interval
[a, b) with b = a+ nτ . The de�nition of the functional time series {χi}

n
i=1 in

terms of {χ (t)}t∈R is:

χi (t) = χ (a+ (i− 1) τ + t) with t ∈ [0, τ) . (1.11)
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1.4 Exploratory analysis of the electrical data

Along all this analysis, the methods and procedures developed will be applied
and compared using the same functional database. This database consists
mainly in electricity demand and price from the Spanish Electricity Market.
Also other covariates, regarding weather information and source of power
generation will be included in the study.

Data corresponding to electricity demand and price were collected in a
database used along all this thesis. Data source was OMIE. Main features of
the electrical data will be analysed in detail for the demand and the price.
They share some characteristics that can be summarized in the daily and
weekly seasonality, the calendar e�ect on weekend and also the presence of
outliers. Both kinds of data present other particularities that may be studied
in detail for each case.

The database consists in hourly demand and price in Spain for the years
2011 and 2012. Speci�cally, it recorded the total energy traded in the daily
market (measured in MWh: Mega Watts per hour) and the marginal price
in the Spanish system (measured in Cent/kWh). All this data was registered
for each hour of the day within the years 2011 and 2012.

The rest of the section is organized as follows. Subsection 1.4.1 contains
a descriptive study of the electricity data for the demand and Subsection
1.4.2 for the price. Demand and price will be analysed separately in order to
distinguish the main features and to study their behaviour along the selected
period. Main patters of the electricity data remain stable year by year and
so, only data for 2012 will be employed. In that way, disturbances due to the
years will not change the descriptive study as the years 2011 and 2012 were
similar in terms of electricity. After this detailed analysis of the electricity
data, the additional data employed will be described in Section 1.5, again
divided in Subsection 1.5.1, for the temperature data, and Subsection 1.5.2,
for the source of the energy.

1.4.1 Electricity Demand

In this subsection, a descriptive analysis for the electricity demand during
2012 in the Spanish Electricity Market will be carried out.
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First of all, the historical demand (MWh) for the year 2012 in Spain is
represented as a time series in Figure 1.1. Vertical red lines are indicators
of the di�erent months in which the year is divided, in order to distinguish
the behaviour of the demand along the year. The presence of trend in this
data will be taken into account in di�erent parts of this memory, for example
when it will be used to detect outliers. However, in this section, the raw data
is analysed as it was really recorded in the daily market.

At the �rst sight, one can see how the demand �uctuates along the year.
First and last months of the year corresponds to high values of demand, as
in some other central parts of the year. This fact, suggest di�erent patterns
depending on the period of the year possibly due to the di�erent climate,
among other reasons.
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Figure 1.1: Functional time series of the electricity demand in Spain in 2012.
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In Figure 1.2, only data form January is represented. One can clearly
distinguish how the demand varies in each day and also each week, which
is very di�cult to see when the whole year is plotted together. In this new
graph, as it was said before, only data corresponding to January is plotted,
that is, the �rst 744 hours of 2012.

Daily and weekly seasonality is now explicit. The �rst day of the year
2012 was Sunday but, from the second day, one can see how the pattern of
the week is: the �rst 5 days of the week are very similar, followed by the
weekend that has lower values. Also this pattern can be disturbed in the
�rst complete week of the year due to the presence of a holiday in January
the sixth, which is more similar to the weekend that the weekdays. This fact
allows to intuit other of the main features of this kind of data: the presence
of outliers that change the usual behaviour. In the next three complete weeks
plotted in the graph, one can see a more stable period, distinguishing clearly
the �ve weekdays and the weekend.
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Figure 1.2: Time series of the electricity demand in Spain in January 2012.
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This kind of data, recorded as an hourly time series, can be treated as
functional data. Each 24 hourly observations for a day will be used to build
a curve, resulting 366 daily curves for the year 2012 (remember that 2012
was a leap-year, so it has 366 days instead the common 365 days). In Fig-
ure 1.3, one can see all the daily demand curves. Demand swing between
10000 and 30000 MWh depending on the day and it repeats mainly the same
shape. Minimum values are recorded in the early morning, around 5 a.m.,
and maximum ones between 12 a.m. and 10 p.m. It is expected that elec-
tricity consumption reduces during the night, corresponding to the period of
the day with less activity. Maximum values are recorded during the central
part of the day, having also a little slump in the �rst hours of the afternoon.
This behaviour is consistent with the performance of our society.
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Figure 1.3: Electricity demand daily curves. Colour scale distinguishes the
day of the week from Monday (red) to Sunday (blue).

Colour scale in Figure 1.3 is plotted according to the day of the week.
Red is for Monday, pink for Tuesday and so on, until green for Saturday and
blue for Sunday. In general, lines are intermingled but it can be seen that
specially Sundays, in blue line, are plotted together in the bottom of the
graph. This gives the idea of studying each day of the week separately, in
order to see their behaviour.

Figure 1.4 shows the daily demand curves separately for the weekdays,
from Monday to Friday, in di�erent colours, overlaying the curves for all the
year in grey. Also the functional mean for each group of days is plotted in
black dashed line. Generally, the pattern is repeated along all the weekdays,
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occupying the medium and high values of the demand. From this graph one
can establish that all the weekdays work in the same way so, they can be
treated as an only group.
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Figure 1.4: Weekdays daily demand curves.
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Figure 1.5: Daily electricity demand in the weekend, separately for Saturday
and Sunday.
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Figure 1.5 is analogous to the last one, but now the weekend is represented
separately for Saturdays and Sundays. Comparing it to the weekdays, one
can see a clear di�erence, as the weekend takes almost always low values of
the demand.

There is also a di�erence between Saturday and Sunday, because in this
last day the demand curves are generally in the minimum values along the
year, while the demand on Saturdays is not so low. This behaviour is reason-
able because in the weekend the demand decreases due to the reduction in the
industrial production and the change of the workers routine. In weekdays all
the industries and economical activities are working at their usual rhythm,
in Sundays most of them are close in the day o�. Nevertheless, Saturdays
are in the middle of this situation, as a big amount of people don't work and
schools are closed but, for some economical activities related to shopping,
leisure, restaurants, etc. is a very busy day. As a consequence, Saturdays
and Sundays will be studied separately.

Due to the analysis developed within the di�erent days of the week, three
groups of days will be considered, in which the behaviour of the electricity
demand is very similar: weekdays, Saturday and Sunday. These three groups
of days are plotted in Figure 1.6.
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Figure 1.6: From left to right: Weekday, Saturday and Sunday daily curves
of electricity demand. Dotted black lines represent the functional mean of
each group of days.
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Figure 1.7: Daily curves of electricity demand for each quarter of the year
2012. Dotted red lines correspond to weekend.

Due to the features of the electricity consumption and its relation with
the weather and the economic and industrial activities, it is expected that
demand varies also looking at the di�erent periods of the year and not only
at the day of the week. This was already pointed out in Figure 1.1. In Fig-
ure 1.7 each quarter of the year is represented separately and, within each
quarter, weekdays are plotted in black and weekend in red. Again, it is easy
to see the di�erent behaviour in the demand of a working day and in the
weekend. Moreover, during the �rst and the fourth quarter of the year, when
the weather is cold, the demand is generally higher than in the middle of the
year.



1.4. Exploratory analysis of the electrical data 23

Last quarter also seems to be more unstable and variable than the rest of
the year.

Following this reasoning, Figure 1.8 represents the daily demand curves
separately for each month. As a reference, the daily curves for all the year
keep on the background in grey colour and, within each month, the weekdays
are represented in black and the weekend in red (as was seen before how dif-
ferent is the behaviour between these groups of days).
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Figure 1.8: Daily curves of electricity demand for each month of the year
2012. Dotted red lines correspond to weekend.
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One can distinguish how the daily curves of the demand vary along the
year. First months, specially February, reach high values of demand. Second
quarter starts in April with a very unstable period, maybe due to the mix of
climate conditions, as in April the weather can be typically wintry or spring.

In the central part of the year, the demand is generally lower and also
more concentrated, it is more di�cult to see large �uctuations. This also
makes the di�erences between weekdays and weekend more remarkable, since
the curves corresponding to these groups are almost always separated. Fi-
nally, in the last part of the year the demand rises again coming up to De-
cember, in which demand is not only high but also very changeable. Taking
into account that in December there are a lot of holidays in Spain, it comes
out that these variations can be due to these special days. It is expected
than in a holiday the demand behaves as in a Sunday, in which most of the
business are close, and this is probably the reason why some of the weekdays
curves in December are mixed with the weekend ones.
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Figure 1.9: Left panel: Demand curves for holidays in red. Right panel:
Demand curves for holidays (in red) and for Sundays (in black).

The next step is to analyse the holidays along the year. In Figure 1.9 the
holidays are plotted over the daily demand curves for all the year. In the
left, one can see only these holiday curves while, in the right panel, holidays
are plotted together with Sunday demand curves. First of all, looking at the
holiday curves, one can see that all of them take medium or low values. They
will never reach the highest demand of the year and some of them present
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also a di�erent pattern along the day, maybe with a more �at shape. These
holidays are very similar to Sundays, both in terms of demand curves and
also in terms of social behaviour, as can be seen in the right panel of Figure
1.9.

One can analyse also the typical measures of centrality within a group of
trajectories when working with functional data. That is the mean, median
and mode. Functional median corresponds to the deepest curve with the
order given by a depth measure. Figure 1.10 plots together the functional
mean, the functional median (according to the L2 norm) and the functional
mode (according to the mode depth). See Section 1.3 for details about these
measures. The three curves are very similar, with slight disturbances among
them.
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Figure 1.10: Mean, median and mode for the electricity demand in Spain,
year 2012.
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1.4.2 Electricity Price

Electricity price shares some of the characteristics with the demand. How-
ever, it has some particular properties. The most notable one are the days
with price zero. Looking at the time series of the electricity price (Cents/kWh)
along 2012 in Figure 1.11, one can see some days in which price decreases,
reaching the value zero. This is the real price obtained in the bidding of
the daily energy market. The price decreases in some days due to the over-
production of wind power. In Spain, renewable energies are subsidized and
have a preferential position in the auction, entering free of charges. For that
reason, when the production of wind power increases, the price generally de-
creases, even until zero.
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Figure 1.11: Functional time series of the electricity price in Spain in 2012.
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The di�erent scale between demand and price is also remarkable. De-
mand values covers from 10000 until 30000 MWh while price goes from zero
to 80 Cents/kWh. However, even if they are in di�erent levels, one can ob-
serve similar patterns like the descent at the �rst hours of the day. There
are also some variations in the behaviour of the weekdays and the weekend,
but it is not as signi�cant as in the demand.

Zero-price days are concentrated in some parts of the year which are
maybe related to the climate conditions that are favourable to the produc-
tion of wind power. Speci�cally, zero-price was reached during some hours
of the next days in 2012: January: 2; April: 15, 16, 19 and 25; September:
24; October: 28; November: 1 and 2 and December: 16 and 24.

This fact will be analysed in detail in Subsection 1.5.2, in which the re-
lation between wind power production and electricity price will be studied.

The last graph is enlarged to show only the period correspondent to one
month of the year. One can appreciate the details of the price behaviour.
Figure 1.12 shows the time series for the price only during January 2012. It
is clearly appreciated a daily periodicity, a seasonal component of period 24.
Nevertheless, the weekly periodicity of the demand is not so clear in the case
of the price. One can see a slight decrease in some days corresponding to
weekends but their values are very close to weekdays.

In Figure 1.13, all the daily curves for the price along 2012 are represented.
Colour scale corresponds to the temporal ordering, from January (red) to
December (violet). Days are overlapping as long as the time passes. First
days of the year are barely distinguished in the surroundings of the curve
cloud.
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Figure 1.12: Time series of the electricity price in Spain in January 2012.
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Figure 1.13: �Rainbow� plot for the daily price curves. Colour scale corre-
sponds to the temporal ordering, from January to December.
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Electricity price can be analysed in the di�erent days of the week, as it
was already done for the case of electricity demand. Figure 1.14 plots sepa-
rately the price curves for weekdays, from Monday to Friday. The functional
mean for each group is represented with a dotted line. The �ve weekdays are
very similar among them. One cannot appreciate changes in their patterns,
maybe a barely decline in the �rst hours of Mondays, but not very signi�cant.
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Figure 1.14: Weekdays daily price curves.

Saturday

Hour

P
ric

e 
(C

en
t/k

W
h)

0

20

40

60

80

1 12 24

Sunday

Hour

P
ric

e 
(C

en
t/k

W
h)

0

20

40

60

80

1 12 24

Figure 1.15: Daily price curves for Saturday and Sunday.
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Figure 1.15 represents the price curves for the Saturdays and the Sun-
days. In this case, one can see more di�erences with respect to the weekdays
curves. Saturdays have a smooth pattern, taking values very stable along
the hours of the day. Sundays are a little bit di�erence from the rest of the
days, because their values are generally lower specially in the central part of
the day. This fact enforces to keep the same distribution in three groups of
days: weekdays, Saturdays and Sundays.

In Figure 1.16 the three considered groups of days are represented. This
classi�cation is coincident with the one of electricity demand, even if the
di�erences in the case of the price are not so pronounced.
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Figure 1.16: From left to right: Weekday, Saturday and Sunday daily curves.
Dotted black lines represent the functional mean of each group of days.

Following the outline of the demand analysis, the daily curves for the
electricity price will be compared now along the year. Figure 1.17 plots sep-
arately the four quarters of the year. Again, weekdays are plotted in black
and the weekend in red. The �rst thing that comes to the mind, looking at
this graph, is that price remains in the same values along the whole year.
As for the demand, the last quarter of the year corresponds to a turbulent
period in the market in which the variation is higher, reaching both low-
est and highest values of the year at di�erent days. Also some di�erences
between weekdays and the weekend can be seen, as the weekend usually oc-
cupies the central band of the graph. Generally, lowest values are reached in
the �rst hours for some weekdays. It is clear that, unlike the demand case,
in which di�erence between weekdays and weekend were related to the level,
for the price this di�erence is more accused looking at the shape of the curves.
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Figure 1.17: Daily curves of electricity price for each quarter of the year 2012.
Red lines correspond to weekend.

Figure 1.18 goes a step forward analysing the price curves at each month
of the year. There are some months, like April or December in which the
�uctuation is higher and do not present any stable pattern. However in the
centre of the year, specially June, July and August, all the curves are con-
centrated in a band that is also very �at. This is an indicator of stability in
the Electricity Market. The �rst and last months of the year take the highest
values for the price but, again, not so remarkable as in the case of the demand.
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Figure 1.18: Daily price curves for each month of the year 2012.

Figure 1.19 plots the daily price curves correspondent to the holidays.
These curves are represented alone and together with the Sundays. It is
clear that they take always medium or low prices and that they are very
similar to the Sundays.

Classical measures of centrality, as the functional mean, median and mode
are represented in Figure 1.20. Median and mode are coincident in this case,
being both slightly higher than the mean. Functional mean is lower, specially
in the �rst hours of the day due to the in�uence of the zero price.
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Figure 1.19: Left panel: Price curves for holidays in red. Right panel: Price
curves for holidays (in red) and for Sundays (in black).
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Figure 1.20: Functional mean, median and mode for the electricity price in
Spain in 2012.
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1.5 Additional data

This Section presents the additional data, used in Chapter 3 as external co-
variates for some of the prediction methods, that improves the demand and
price forecasts. There are many options in the literature about which ex-
ternal covariates in�uence this kind of predictions, most of them related to
weather conditions, Electricity Market operations and economic factors. Ob-
viously, the more accurate the data is, the better predictions one can obtain.

Available data is not always enough to cover all the needed information
to build a good prediction model. Sometimes this data is not free and it is
di�cult to record or to implement in the models. For that reason, only two
external sources of information are taken into account: temperature and wind
power production. The �rst one covers an important part of the weather in-
�uence over the demand, while wind power production explains most of the
price reductions, as the hours with zero price mentioned in Subsection 1.4.2.

Both sources of additional data are analysed in the following two subsec-
tions, temperature data in Subsection 1.5.1 and the wind power production
in Subsection 1.5.2.

1.5.1 Weather information: Temperature

Temperature has a high in�uence in the electricity demand and so, it can
contribute to improve its predictions. This relation can be attributed, among
other reasons, to the use of climate systems. When the weather is cold, elec-
tricity demand rises due to the use of heating. However, when the temper-
ature is very high the use of air conditioning also contributes to an increase
in the demand. This happens typically during winter and summer, whereas
in other periods with warm weather, the temperature does not have in�u-
ence over the electricity demand. Depending also on the place, the climate
changes and the in�uence of the low and high temperatures may not be equal.

Other weather variables could be taken into account, as the humidity, the
sun hours at each day, the amount of rain, the pressure, etc. However, the
temperature summarizes very well the changes in the climate that are related
to energy consumption. This study considers the maximum daily tempera-
ture (◦C) in Spain. AEMET (Agencia Estatal de Meterología) provides the
maximum daily temperature for each province of the country. By population-
weighted average, the corresponding maximum daily temperature for Spain
was built. Population data were collected from INE (Instituto Nacional de
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Estadística).

It is worthy to highlight the nonlinear e�ect of meteorological variables
on the electricity demand. In Figure 1.21, one can see that the e�ect of the
maximum daily temperature over the daily mean demand is U-shaped. This
nonlinear relation has to do with the use of the heating, when the temper-
ature is low, and the use of air conditioning when it is high. In both cases,
the use of these climatization systems increases the demand as it was already
explained above. There is also a �comfort zone�, estimated between 20 and
24◦C, with no e�ect. It corresponds to the days when neither heating nor
air conditioning is needed. See Pardo et al. (2002) for a detailed analysis of
the relation between these temperature variables and the Spanish electricity
demand and also Cancelo and Espasa (1996), who estimated the �comfort
zone� between the indicated values of 20 and 24◦C.
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Figure 1.21: Maximum daily temperature against daily mean demand in
Spain, year 2012.

In the application to electricity demand, only exogenous variables with
linear e�ect will be considered. Therefore, a transformation of the tempera-
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ture data is needed. Two new variables are built, HDD (Heating Degree Days)
and CDD (Cooling Degree Days), that are a measurement of the amount of
energy needed to heat/cool a building. Speci�cally, they are de�ned as

HDD(t) = max{20− T (t), 0} (1.12)

CDD(t) = max{T (t)− 24, 0}. (1.13)

where T (t) denotes the maximum daily temperature in Spain at day t.

Through this transformation, one obtains two variables that summarize
all the temperature information but with linear e�ect over the demand (see
Figure 1.22).
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Figure 1.22: HDD (left panel) and CDD (right panel) variables.

1.5.2 Wind Power Production

In the same way as to predict the electricity demand it is used information
about the temperature, to predict electricity price information about the
wind power production (MWh) will be used.

Section 1.4.2 summarized the particular feature of the zero-price days.
This reduction in the price at some moments is directly related to the in-
crease in the renewable energies production, mainly wind power, as it was
also pointed out in Section 1.2.
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Specialized press and other sources of information, as well as the dossiers
from the System Operator in the Spanish Electricity Market, Red Eléctrica
de España (REE) report about this fact. Also Geidel and Zareipour (2013)
included the wind power in the price forecasting within the Spanish Electric-
ity Market. In the following paragraph, some examples are cited about the
increase, at some particular moments, of the wind power. Those days corre-
spond to zero-price periods in our dataset, mentioned in Subsection 1.4.2:

El País (2011/11/7): The contribution of wind energy to the grid sets
new record. Wind turbines covered 59% of total demand in early Sunday to
coincide with the storm

Cinco Días Journal (2012/04/16): Wind energy sets record by producing
60% of electricity

EUROPA PRESS (2012/09/24): Wind power beats a new record by pro-
viding 64% of electricity this morning.

In this study, data about wind power production was obtained from REE.
In their web page, they monitor the demand and the generation structure at
each moment. Then, one can know the amount of demand covered by wind
power during each ten minutes period of the year and, therefore, calculate
the corresponding value for each day.

Relation between daily mean wind power production and daily mean
price is plotted in Figure 1.23. Contrary to the temperature in�uence over
the demand, now the relation between wind power production and price is
linear. As long as the wind power production increases, the electricity price
decreases.
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Figure 1.23: Daily mean wind power production against daily mean price in
Spain, year 2012.



Chapter 2

Outlier detection in Functional

Time Series

2.1 Introduction

In every statistical process that involves prediction, among other analysis, it
is important to take into account the presence of outliers. An outlier, in the
classical context of univariate data, can be de�ned as an observation that is
distant from the remaining data or that lies outside the overall pattern of a
distribution. This kind of �abnormal� observations can disturb the result of
the statistical methodologies applied to a dataset. Electricity data is not an
exception and the presence of outliers is actually one of its main features, as
it was pointed out in Section 1.4.

The most classical tool to detect univariate outliers is the boxplot intro-
duced in Tukey (1970) and Tukey (1977). This is a descriptive procedure to
�gure out which observations, within a group of numerical data, are outliers.
It employs the data quantiles.

Pointwise boxplots can be applied to the electricity demand and price
data, considering each hour of the day separately instead of a curve. In that
way, one can observe which days, for a �xed hour, are outliers. Figure 2.1
plots the 24 hourly boxplots for the electricity demand along the year 2012.
One can see a boxplot for each one of the 24 hours of the day. There are not
many outliers present in this graph. At the bottom of the �gure one cannot
see any outlier and, even in the upper part, is di�cult to �nd them. They
are collected in the �rst hours of the day, being all of them outliers because
of their unusually high values.

39
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Figure 2.1: Hourly boxplots for the electricity demand.
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Figure 2.2: Hourly boxplots for the electricity price.
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In the case of the price (Figure 2.2) the situation is almost the opposite,
one can see several outliers, being the majority at the bottom of the graph.
They are also spread along the 24 hours of the day. It is clear that many
of the outliers correspond to unusual low recorded prices, including all the
zero-price hours.

This kind of tools can give general ideas about the presence of outliers
in the electricity data. For example, one may expect outliers in the price to
have unusual low values. Meanwhile, one cannot say that one day, within
all the year, is an outlier just because any hour, between the 24 hours of the
day, is outlier individually. It is then needed a tool which allows to determine
if this day, considering it as the whole curve, as a functional datum, is an
outlier itself. That is, to detect outliers taking into account the functional
nature of the data. This is not an easy task, as functional data is not always
easy to visualize or to order. As a matter of fact, a rigorous de�nition of
functional outlier needs to be proposed.

Febrero, Galeano and González-Manteiga (2008) and Hyndman and Shang
(2010) consider that �a curve is an outlier if it has been generated by a
stochastic process with a di�erent distribution than the rest of the curves,
which are assumed to be identically distributed�, while Gervini (2012) con-
siders that �an observation can be seen as an outlier if it is far from most of
the other observations�. In any case, the presence of outliers has serious ad-
verse e�ects on most statistical approaches. Along this study, the de�nition
given by Febrero, Galeano and González-Manteiga (2008) is used and applied
to Functional Time Series, which are valid for the context of electricity data
dealt in this memory.

In the general context of functional data, we can distinguish two kinds of
outliers: the �magnitude outliers�, that arise when they lie outside the range
of the majority of the data, and the �shape outliers�, that can be in the same
range but di�er from the rest of the data in shape. Also combinations of
these two types can give another new type.

Some statistical methods to detect outliers in the �eld of functional data
can be found in the literature. Some of them are based on descriptive analy-
sis or the ordering given by the functional depths while other are based, for
instance, on FPCA. To the best of our knowledge, none of these methods
take into account the temporal dependence that exits in the functional time
series de�ned in Section 1.3. Daily curves of electricity demand and price
conform a functional time series as they are composed of several observa-
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tions that can be temporally ordered, day after day. Meanwhile, within each
curve, also data is ordered hour after hour taking into account the time. In
summary, this study works with observations from one entire year, breaking
it in intervals of time that are homogeneously distributed along the time.

Taking into account the dependence of the functional time series prevents
outlier detection methods to give misleading results and, over all, enables to
detect outliers hidden by the dependence structure of the data. This can
be seen in Figure 2.3. Looking at the set of curves in the right panel, one
can easily detect two outlying curves that arise with abnormal high values;
they are magnitude outliers. Meanwhile there is another curve plotted in
bold line that is totally within the range of the rest of the data. Apparently,
there is no reason to suspect that this curve is an outlier, neither because of
magnitude nor because of shape. However, one may look at the left panel, in
which data is represented as a functional time series plotting one curve after
the other, following the temporal ordering. It is clear that the behaviour of
the time series abruptly changes at three di�erent points. Two of these leaps
correspond to the observed magnitude outliers, meanwhile the third corre-
sponds to the bold line that is between the rest of the curves. Therefore,
this third curve is also a magnitude outlier overlapped by the rest of the
curves, due to the dependence structure of the functional time series. It can
only be found taking into account the dependence in the outlier detection
methods. Following this argument, three di�erent methods to detect outliers
in functional time series are proposed, which are, as far as we know, the �rst
methods speci�cally addressing this problem.

The rest of the chapter is organized as follows: Section 2.2 contains a brief
review of some methods present in the literature to detect outliers in func-
tional data. Proposed methods to detect outliers in the context of functional
time series are presented in two parts. First, Section 2.3 includes one proposal
based on depths. Then, Section 2.4 includes two di�erent proposals, both
based on FPCA. Each one of these two sections comprehends simulations in
order to study the proposed procedures behaviour. Finally, an application
to the electrical dataset, for both demand and price, is given in Section 2.5.
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Figure 2.3: Example of hidden functional outliers. Left: Functional Time
Series. Right: Set of curves in grey and outliers in black.

2.2 Overview of outlier detection in Functional

Data

This section includes a review of some outlier detection methods, proposed in
the context of functional data, which are present in the statistical literature.
Most of them, in the same way as the study of the functional data itself, are
very recent. They were proposed in the last ten years. This fact gives an
idea of the novelty of the problem and that there are not many options to
deal with it. Also, some of these methods will establish the base from which
the proposals presented in this chapter emerge.

Outlier detection methods usually make use of graphical and descriptive
tools, once you have an order within the analysed group of data. In the case
of functional data, this ordering will be given by functional depths.

Depths of functional data were introduced to measure how deep (central)
or outlying an observation is, with respect to a functional dataset. This al-
lows to order a set of functional data from the centre-outward, so that the
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most central or interior data in the sample will have higher depth. Thus,
functional depths may indicate which observations (if any) can be consid-
ered as outliers: those with unusually low depths. Along this chapter, three
di�erent functional depths are used: h-modal depth (MD), Band depth (BD)
and Modi�ed band depth (MBD), which were introduced in Section 1.3.

Febrero et al. (2007 and 2008) were the �rst authors dealing with this
outlier detection problem in the context of functional data. They proposed
a procedure based on the bootstrap. Also Hyndman and Ullah (2007) in-
cluded a tool to detect outliers within their method for robust estimation of
functional principal components. Hyndman and Shang (2010) constructed
functional bagplots and functional highest density region boxplots, based
also on principal component analysis. An extension of the classical boxplot
was developed by Sun and Genton (2011) using functional depths. More
recently, other proposals arise in this topic, based on principal components
(see Sawant, Billor and Shin (2012) or Yu, Zou and Wang (2012)), based on
functional depths, like in Gervini (2012) or the outliergram proposed by Ar-
ribas and Romo (2014), which is speci�cally address to the detection of shape
outliers, or based on random projections (see Fraiman and Svarc, 2013).

What all these mentioned methodologies have in common is that they
do not take into account the dependence present in functional time series,
even in the case in which they are applied to some datasets where tempo-
ral dependence is present. Sun and Genton (2012) adapted their Functional
Boxplot to deal with dependent data, mainly space dependence. However,
it does not include the kind of �hidden� outliers pointed out in Section 2.1,
which are the goal of this study.

The following paragraphs describe brie�y some of these methodologies,
in particular, the ones that play a main role in the development of the new
proposals.

2.2.1 Functional boxplot

Functional boxplot is an extension of the classical boxplot to the context of
functional data. That is, instead of working with �points� in the graph, it
works with a sample of curves but keeping the same background. First of all,
an ordering within the group of curves is needed. For that purpose, one can
use any functional depth. Sun and Genton (2011) used the Modi�ed Band
Depth. Once the curves are ordered, one can build a band for the central
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region. This is just an envelope of the 50% deepest curves of the sample and
is analogous to the box present in classical boxplot and to the Inter-Quartile
Rage (IQR). Once you have this band for the central region, one needs to �g-
ure out the �whiskers� that indicates which observations are outliers. Again,
it follows the same idea as the classical boxplot in which any observation
that arise above or below the whiskers is an outlier. To place this limits in
the graph, the IQR is obtained and multiplied by 1.5. This means that it
extends the envelope of the 50% deepest curves by 1.5 times the range of
these curves. Now, instead of having two points as upper and lower limits of
the graph, one has two lines as the �fences� of the graph.

It only rests to indicate the procedure for outlier identi�cation with the
functional boxplot. In this case, one curve will be considered as outlier if it is
outside the envelope given by the �whisker curves�. Even if the curve only ex-
its the fence at one point, all this functional datum will be considered outlier.

In Figure 2.2.1 one can compare the classical boxplot (in the left panel)
with the functional boxplot (in the right panel) and see their similarities. In
summary, this functional boxplot is a simple descriptive method to detect
outliers that conforms the natural extension of the classical boxplot to the
context of functional data.

(a) Boxplot.
Source:
https://statsmethods.wordpress.com

(b) Funcional boxplot.
Source: Sun and Genton (2011)
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2.2.2 Depth-based trimming

Febrero et al. (2008) were the �rst in presenting a speci�c method to detect
outliers in functional data. It is based on developing a hypothesis test for
each curve on a sample, in order to know if it is an outlier or not, using the
order given by a functional depth. Knowing that the outlier curves corre-
spond to low depths, they are intended to estimate a cuto� to say when a
curve has low enough depth to be considered outlier. A brief description of
the procedure is given below. It was implemented in the R library fda.usc.

The depth-based trimming procedure takes into account the fact that an
outlier should have a depth that is signi�cantly low. These authors proposed
the following general procedure, given a functional sample S = {χi}ni=1, a
functional empirical depth DS(·) and a constant cuto� C > 0:

1. Obtain the functional depths of the curves in S: {DS(χi), χi ∈ S}.

2. Identify as outliers the curves whose depths are below C.

3. Repeat Step 1 and 2 until no more outliers are detected.

This procedure performs multiple tests and depends on the functional
depth DS(·) and the cuto� C, which indicates when a depth is considered
signi�cantly low. The key point is the determination of C. They propose
two versions of their method, one based on trimming and the other based
on weighting, but here only the �rst option will be considered. This method
will be the base for the �rst proposal (Depth-based trimming for dependent
data) that consists in adapting this procedure to deal with functional time
series. It will be described in detail in Section 2.3.

2.2.3 Integrated squared error

This method to detect functional outliers, based on Integrated Squared Er-
ror (ISE), is extracted from the robust FPCA given by Hyndman and Ullah
(2007), which is explained in detail in Section 1.3. They �rst propose esti-

mating the functional principal components by means of the functions φ̂k(·)
that maximize the variance of the scores

zi,k = wi

∫ b

a

φk(t)χi(t)dt (2.1)

subject to the constraints:∫ b

a

φ2
k(t)dt = 1 and

∫ b

a

φk(t)φj(t)dt = 0 (k 6= j).
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The weights wi are computed as

wi =

{
1 if vi < S + λ

√
S

0 otherwise
(2.2)

where

vi =

∫ b

a

(χi(t)−
K∑
k=1

β̃i,kφ̃k(t))
2dt (2.3)

with φ̃k(·) being initial (highly robust) projection-pursuit estimates of φk(·)
obtained from the RAPCA algorithm (see Hubert, Rousseeuw and Verboven

2002) considering equal weights wi in (2.1), while β̃i,k =
∫ b
a
φ̃k(t)χi(t)dt. In

addition, S is the median of {v1, . . . , vn} and λ > 0 is a tuning parameter

to control the degree of robustness. Once the robust estimates φ̂k(·) are
obtained, the coe�cients corresponding to the curve χi are constructed as

β̂i,k =

∫ b

a

φ̂k(t)χi(t)dt. (2.4)

As a by-product of this robust FPCA procedure, Hyndman and Ullah
(2007) proposed an outlier detection method (the ISE method): the curve
χi is detected as outlier if wi = 0. This is equivalent, using (2.2), to the
following sentence: given the values of vi, an outlier is the observation with
ISE greater than a threshold (s+ λ

√
s), with λ = 3.29.

2.2.4 Functional highest density region boxplot

The functional highest density region boxplot (HDR) is based on the bivari-
ate HDR boxplot (Hyndman 1996) applied to the �rst two robust principal
component scores. It was proposed by Hyndman and Shang, (2010). It looks
alike the functional boxplot, in the sense of plotting a band with a fence
which indicates the outliers as all the curves outside this fence. This can be
seen in Figure 2.4 extracted from Hyndman and Shang, (2010).
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Figure 2.4: Example of Funtional HDR boxplot. Source: Hyndman and
Shang, (2010).

Using a bivariate kernel density estimation, the HDR is de�ned as the
region, with coverage probability (1 − α), where all the points within the
region have higher density estimate than any of the points outside. Bivariate
HDR boxplot displays the mode (highest density point), along with the 55%
inner and 99% outlier highest density regions. All the points excluded from
the outer HDR are outliers. Functional HDR boxplot is just a mapping of
the bivariate HDR boxplot of the �rst two principal component scores to
the functional curves. Thus, it displays the modal curve (curve with highest
density), and the inner and outer regions which corresponds to the grey bands
in Figure 2.4. The curves that arise out of these grey regions at any point are
detected as outliers (see the coloured curves in Figure 2.4 as an example).

2.3 Depth-based trimming for Functional Time

Series

This section presents the �rst proposal to detect outliers in FTS: Depth-based
trimming for FTS (DBT). This approach is based on the method by Febrero
et al. (2008), which was brie�y explained in Subsection 2.2.2, changing some
steps along the procedure and mainly adapting it to take into account the
dependence in FTS.

More in detail, DBT follows the next general procedure (summarized in
Subsection 2.2.2), given a functional sample {χi}ni=1, a functional empirical
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depth DS(·) and a constant cuto� C > 0.

General procedure:

• Step a. Set S = {χi}ni=1 and O=∅.

• Step b. Obtain the functional depths of the curves in S:
DS = {DS(χi), χi ∈ S}.

• Step c. Set S = S \ A and O = O ∪ A, where A denotes the set of
curves whose depths obtained in Step b are below C.

• Step d. Repeat Step b and Step c until A = ∅.

• Step e. Establish the curves in O as outliers.

(Note that Step d is introduced to avoid masking e�ects). This procedure
performs multiple tests, and depends on the functional depth DS(·) and the
cuto� C, which indicates when a depth is considered signi�cantly low. The
key point is the determination of C.

Febrero et al. (2008) proposed to select C in such a way that, in the
absence of outliers,

P (DS(χi) ≤ C) = α1, i = 1, . . . , n,

where S = {χi}ni=1; that is, the signi�cation level of each individual test is
α1. Given that the distribution of the functional depth is unknown, they
used bootstrap-based methods to estimate C (note that C is the quantile of
order α1 of such distribution when no outliers exist).

Then, the general procedure to detect outliers in functional time series
(DBT for dependent data) follows the steps given above, in which the cuto�
C is selected as follows.

Selection of the cuto� C

• Step 1. Detect outliers in S = {χi}ni=1 using a graphical method, and
de�ne S1 as the subset of S without these outliers.

• Step 2. Use a bootstrap method applicable to dependent data to
obtain B bootstrap samples of size n from S1. These bootstrap samples
are denoted by Sb = {χbi}ni=1 (b = 1, . . . , B).
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• Step 3. Obtain Cb as the empirical quantile of order α1 of the distri-
bution of the depths {DSb(χbi), χbi ∈ Sb}.

• Step 4. Take C as the median of {Cb}Bb=1.

Note that the bootstrap procedure is applied on the set S1 instead of S; that
is, the method is based on trimming the sample of suspicious curves. Obvi-
ously, trimming is carried out to obtain a robust estimate of C.

Based on the same procedure, one can develop di�erent methodologies
changing the functional depth, the way to obtain S1 and the bootstrap re-
sampling. Febrero et al. (2008) proposed to obtain S1 in this way:

S1= {χi ∈ S, DS(χi) > qα2} ,

where S = {χi}ni=1 and qα2 is the quantile of order α2 of the functional depths
DS . That is, they �x the quantity of �suspicious outliers� and remove them
from the sample to get robust estimates of C. In our proposal, a graphi-
cal method to detect outliers is used: the functional boxplot described in
Subsection 2.2.1. This election allows not to �x the quantity of �suspicious
outliers� in advance.

Concerning the election of the functional depth, Febrero et al. (2008)
tried three di�erent depths, giving the recommendation of the modal depth
(MD). Also the band depth (BD) and the modi�ed band depth (MBD) will
be added to the study. Those three depths have been already described in
Section 1.3. Obviously, other functional depths can be chosen instead.

The last choice is the bootstrap method used in the Step 2 of the pro-
cedure described above. Here, four di�erent ways to obtain the bootstrap
samples Sb are presented. The �rst one does not take into account the depen-
dence in the data but it is used to compare the original method by Febrero
et al. (2008) with our modi�ed version and also with the following options
for dependent data. The other three are bootstrap techniques designed to
resample real observations that are stationary and weakly dependent.

1. Standard Smoothed Bootstrap on Data (SmBoD)
It follows the same bootstrap used in Febrero et al. (2008), that is,
it is designed for independent data but it is useful to compare the
behaviour of the proposals for dependent data. In this case, B standard
bootstrap resamples of size n from S1 are obtained. The bootstrap
resamples are denoted by {χbi}ni=1 (b = 1, . . . , B) and they are smoothed
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by adding normal perturbations, zbi , with mean 0 and covariance matrix

γΣ̂χ, where γ is a smoothing parameter and Σ̂χ denotes the sample
covariance matrix of the discretized curves {(χi(t1), . . . , χi(tm))}χi∈S1 .
Let Sb=

{
ζbi
}n
i=1

be the corresponding smoothed bootstrap samples,

where ζbi = χbi + zbi (b = 1, . . . , B).

2. Moving Blocks Bootstrap (MBBo)
A block length is chosen to generate a bootstrap realization of a time
series; all possible contiguous blocks of this length are considered. The
blocks are then sampled with replacement, and pasted together to form
the bootstrap time series. Let l and n denote the length of the block
and the sample size, respectively, and write each block as

Bi,l = {χi, χi+1, . . . , χi+l−1}, i = 1, 2, . . . , n− l + 1.

In addition, let I1, I2, . . . , Ik (where k is the smallest integer that is
greater than or equal to n/l) be a sequence of i.i.d. random variables
having discrete uniform distribution on {1, . . . , n− l+ 1}, and consider
a realization i1, i2, . . . , ik. The bootstrap time series is then obtained by
pasting Bi1,l, Bi2,l, . . . , Bik,l and removing the last kl − n observations.
This procedure, proposed in Künsch (1989), generates non-stationary
time series.

3. Stationary Bootstrap (StBo)
Politis and Romano (1994) modi�ed the moving blocks bootstrap by
resampling blocks of random lengths, and thereby proved that this
procedure generates stationary time series. The blocks are constructed
as

Bi,l = {χi, χi+1, . . . , χi+l−1}, i = 1, 2, . . . , n,

where, in the case j > n, χj is de�ned as χi, where i = j(mod n) and
χ0 = χn. In addition, let I1, I2, . . . and L1, L2, . . . be sequences of i.i.d.
random variables from a discrete uniform distribution on {1, . . . , n}
and a geometric distribution with parameter p, respectively, and con-
sider their realizations i1, i2, . . . and l1, l2, . . . The bootstrap time se-
ries is constructed as above using the blocks Bi1,l1 , Bi2,l2 , . . . instead of
Bi1,l, Bi2,l, . . . , Bik,l.

4. Standard Smoothed Bootstrap on Residuals (SmBoR)
This option suggests a model-based procedure following the steps ex-
plained below, that are a bit di�erent of the main structure of the
method. Since in the three later options, the variations only a�ect the
bootstrap procedure used in Step 2, in this case all the procedure to
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select the cuto� is modi�ed. The idea is to remove (or attenuate) de-
pendence by extracting the autoregressive component in the data (see
Step 2 below) so that the impact of the outliers (if any) on this extrac-
tion is low (see Step 1 below). Then, smoothed standard bootstrap is
used as an intermediate step (see Step 3 and Step 4 below) to obtain
bootstrap samples that maintain the dependence structure (see Step
5 below) and are only slightly in�uenced by the presence of outliers.
These bootstrap samples are �nally used to estimate C (see Step 6 and
Step 7 below).

The procedure to select the cuto� C (Step 1�4) is substitute, when
dealing with SmBoR, by the next algorithm:

• Step 1. Detect outliers in S = {χi}ni=1 using a graphical method,
and de�ne S1 as the subset of S without these outliers. Let 1 ≤
i1 < i2 < · · · < iJ ≤ n the subscripts corresponding to the curves
in S1 so that {χij−d, . . . , χij−1, χij} ⊂ S1 (note that J ≤ #S1).
• Step 2. Fit the autoregressive model

χij = m(χij−d, . . . , χij−1) + aij (j = 1, . . . , J) (2.5)

and construct the set of the corresponding residuals: Sa=
{
âij
}J
j=1

,

where âij = χij−m̂(χij−d, . . . , χij−1) with m̂(·) being an estimator
of the autoregressive functional m(·).
• Step 3. Obtain B standard bootstrap resamples of size J from Sa.
These bootstrap resamples are denoted by {âbij}

J
j=1 (b = 1, . . . , B).

• Step 4. Smooth the bootstrap resamples obtained in Step 3 by
adding normal perturbations, zbj , with mean 0 and covariance ma-

trix γΣ̂a, where γ is a smoothing parameter and Σ̂a denotes the
sample covariance matrix of the discretized curves {(âij(t1), . . . , âij(tm))}Jj=1.

Let
{
ebij

}J
j=1

(b = 1, . . . , B) denote the corresponding smoothed

bootstrap resamples, where ebij = âbij + zbj .

• Step 5. Construct B bootstrap resamples Sb=
{
ζbij

}J
j=1

(b =

1, . . . , B), where

ζbij = m̂(χij−d, . . . , χij−1) + ebij .

• Step 6. Obtain Cb as the empirical quantile of order α1 of the
distribution of the depths {DSb(ζbi ), ζbi ∈ Sb}.
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• Step 7. Take C as the median of {Cb}Bb=1.

Note that an estimator for the autoregressive functional m(·) in (2.5)
must be constructed. For instance, in the case of nonparametric au-
toregression of order 1 (d = 1), the kernel regression estimator

m̂(χ) =

∑J
j=1K(h−1d(χ, χij−1))χij∑J
j=1K(h−1d(χ, χij−1))

, (2.6)

proposed in Ferraty et al. (2011) within a setting of independent data,
could be used (in (2.6), h > 0 and d(·, ·) denote a bandwidth parameter
and a semi-metric, respectively). See Horváth and Kokoszka (2012) for
the estimation of parametric autoregressive models.

All the functional depths and bootstrap options presented in this sec-
tion can be combined, resulting in di�erent methods denoted by �depth�-
�bootstrap� for each of the considered combinations. For instance, MD-
MBBo refers to the election of the modal depth and the Moving Block Boot-
strap.

2.3.1 Simulation study

A simulation study was carried out in order to compare the behaviour of
the several proposals emerged from DBT method, depending on the di�erent
choices for depths and bootstrap. Approaches designed for independent data
were also included in the comparison to illustrate the interest of taking into
account dependence in the sample.

Simulated Functional Time Series

Functional time series were generated as follows. First, a functional time
series (FTS) was obtained from the uncontaminated model

ζi(t) =

{
cos(πt) if i = −n+ 1,
cos(πt)(1− ρ) + ρζi−1(t) + ai(t) + bi if −n+ 1 < i ≤ n,

where t ∈ [−0.5, 1.5], ai(t) = Xi sin(πt) with Xi being i.i.d. Gaussian vari-
ables with mean 0 and standard deviation 0.3, and {bi} is a scalar Gaus-
sian AR(1) process with correlation coe�cient ρ and standard deviation
(1 − ρ2)−1/2. Three outliers were then introduced at random in {ζi}ni=1 to
construct the contaminated time series. The analysed FTS were:
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• Model with magnitude outliers:

χi(t) = ζi(t) + k1{i∈{I1,I2,I3}}, 1 ≤ i ≤ n, (2.7)

where k is a contamination size constant, and Ij (j = 1, 2, 3) are i.i.d.
random variables from the discrete uniform distribution on {1, . . . , n}.

• Model with shape outliers:

χi(t) = ζi(t) + k cos(3πt)1{i∈{I1,I2,I3}}, 1 ≤ i ≤ n. (2.8)

• Model partially contaminated:

χi(t) = ζi(t) + k1{{i∈{I1,I2,I3}}∩{t≥Ti}}, 1 ≤ i ≤ n, (2.9)

where Ti is a random variable with uniform distribution on [−0.5, 1.5].

The curves were discretized on a grid of 30 equispaced points in [−0.5, 1.5],
the sample size was n = 200 and the correlation coe�cient of the AR(1)
process {bi} was ρ = 0.8. Values for the contamination size were k =
10, 15, 20, 25 for models (2.7) and (2.9), and k = 4, 5, 6, 7 for model (2.8).
Figure 2.5 shows a simulated time series from each model (2.7), (2.8) and
(2.9) considering the minimum value for k.

The implemented procedures and their tuning parameters

Along this simulation study, our proposed procedure (DBT) will be compared
with the Functional Boxplot (Fbox) and the origin of our proposal, which
is the method by Febrero el al. (2008), which is DBT for independent data
(DBT-indep). Within DBT procedure, three functional depths were consid-
ered: the h-modal depth (MD), the band depth (BD) and the modi�ed band
depth (MBD) and also the four bootstrap procedures: Standard Smoothed
Bootstrap on Data (SmBoD), Moving Blocks Bootstrap (MBBo), Stationary
Bootstrap (StBo) and Standard Smoothed Bootstrap on Residuals (SmBoR).

The functional depths depend on several tuning parameters that were se-
lected as follows: for the modal depth (MD), following the recommendation of

Febrero et al. (2008), it is considered the L2 norm ‖χi‖ =
(∫ b

a
χ2
i (t)dt

)1/2
and

the truncated Gaussian kernel K(t) = 2√
2π

exp(−t2/2)1{t≥0}, while the band-

width h was the 15th percentile of the empirical distribution of {‖χi − χj‖ ;
i, j = 1, . . . , n}.
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Figure 2.5: Left panels: from top to bottom, functional time series (i de-
notes the temporal index) generated from models (2.7), (2.8) and (2.9), re-
spectively; the vertical dashed lines indicate the positions where the outliers
emerged. Right panels: the corresponding curves χi(t) (the black curves are
the outliers).
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Actually, h plays a main role in the nonparametric estimation of the den-
sity. Nevertheless, as noted in Febrero et al. (2008), here the interest lies in
the values around the center of the distribution, which are not very sensitive
to the choice of the bandwidth. In fact, the only requirement to obtain good
estimates is that the bandwidth should not be very small (see Cuevas and
Fraiman, 1997; Cuevas et al., 2001). The smoothness of the curves justi�es
the choice of the L2 norm (see Ferraty and Vieu, 2006). Finally, the kernel
is known to have a low impact on density estimation (see Wand and Jones,
1995).

For the band and modi�ed band depth J = 2 is used, as in most of the
published applications (see Sun and Genton, 2011; Sun and Genton, 2012;
Arribas-Gil and Romo, 2014). The order of the curves induced by these
depths is known to be very stable in J ≥ 2 (see López-Pintado and Romo,
2009). Thus, minimal value is usually considered in order to avoid computa-
tional issues.

The considered bootstrap methods also depend on tuning parameters.
These parameters were selected as follows: for MBBo, the considered length
of the blocks was l = 4. The value used for the parameter of the geometric
distribution in StBo was p = 0.1. When dealing with SmBoR, a nonpara-
metric autoregression of order d = 1 was �tted using the kernel regression
estimator (2.6). The bandwidth h was selected using the cross-validation
criterion and the Epanechnikov kernel

K(t) = 3/4(1− t2)1{0≤t≤1}
was considered. Finally, the parameter γ used for smoothing the bootstrap
samples was γ = 0.05 (recommended and used by Febrero et al., 2008).

Because of the �curse of dimensionality", orders d > 1 were not consid-
ered. Regarding the bandwidth, h, here the setting is di�erent to the one
noted in the case of the MD. Now the bandwidth needs to provide a very
good �t to the regression function, so that the corresponding residuals mimic
the random errors. Thus, h should be chosen by a data-driven selector that
gives an asymptotically optimal value (see Rachdi and Vieu, 2007, for the
case of the cross-validation selector). Note that the kernel has a low impact
on the estimates and the Epanechnikov kernel is the most commonly used
kernel for the estimation of nonparametric regression functions.

Note that the implemented SmBoD method di�ers from the proposal in
Febrero et al. (2008) only in the �rst �ltrate (that is, in the way S1 is con-
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structed in Step 1): in Febrero et al. (2008), the α2n least deepest curves
are deleted, while in SmBoD the curves removed are the ones detected as
outliers by the functional boxplot.

All in all, the simulation study compares the behaviour of the three ver-
sions of the procedure proposed in this thesis (MBBo, StBo and SmBoR)
which take dependence in the data into account, with other three approaches
(FBox, DBT-indep and SmBoD) that do not.

The results

The methods for detecting outliers listed in the previous section were ap-
plied on M = 100 samples drawn from each model (2.7), (2.8) and (2.9).
The signi�cation level was α1 = 0.01 and the number of bootstrap samples
was B = 200.

The percentage of correctly detected outliers, pc, and the percentage of
falsely detected outliers, pf , were estimated for each one of the procedures
using the mean of the corresponding empirical values, p̂c and p̂f , respectively.
See Tables 2.1, 2.2 and 2.3 for models (2.7), (2.8) and (2.9), respectively.

Several conclusions can be drawn from Tables 2.1�2.3. First, one may
take a look at the empirical power, p̂c; that is, the percentage of correctly
detected outliers. In general, the power of the tests proposed in this paper
(MBBo, StBo and SmBoR) is greater than the power of the tests correspond-
ing to FBox, DBT-indep and SmBoD; so, the dependence in the data must
be taken into account. In fact, the increase in the power is particularly dras-
tic when the band depth (BD) is used. Furthermore, the power depends on
both the depth and the kind of outliers considered: power achieves maxi-
mum values when band depth is considered in the case of magnitude outliers
(Table 2.1), while h-modal depth (MD) is the most appropriate in detecting
shape outliers (Table 2.2). Note that this agrees with the �ndings in the
setting of functional outlier detection for independent data, where the usual
recommendation is to use density-based approaches to detect shape outliers;
see, for instance, Sun and Genton (2011).
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Table 2.1: Percentages p̂c and p̂f for model (2.7).
k = 10 k = 15 k = 20 k = 25

Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
Depth MD
FBox 20.67 1.88 50.33 1.87 72.00 1.86 88.00 1.85
DBT-indep 33.33 0.79 59.67 0.53 83.33 0.17 93.33 0.09
SmBoD 34.00 1.38 63.00 1.35 87.00 1.21 97.33 1.22
MBBo 38.00 2.31 65.00 2.40 90.33 2.52 98.00 2.64
StBo 36.00 2.10 65.67 2.29 90.00 2.38 97.67 2.51
SmBoR 33.33 1.11 60.00 1.11 83.67 1.55 95.00 2.24
Depth BD
FBox 14.67 0.48 43.67 0.47 68.33 0.46 87.67 0.46
DBT-indep 38.33 10.87 62.00 13.82 79.00 16.26 86.67 17.72
SmBoD 36.67 10.43 45.00 10.30 50.33 10.38 49.67 10.09
MBBo 66.33 19.19 88.33 19.16 95.33 18.57 95.67 18.18
StBo 66.00 19.00 88.33 19.09 95.33 18.49 96.67 18.13
SmBoR 51.00 10.94 80.00 13.61 91.67 11.60 96.33 7.92
Depth MBD
FBox 22.00 1.26 52.33 1.24 75.00 1.24 92.33 1.24
DBT-indep 35.00 2.34 58.67 1.94 81.33 1.98 87.67 1.76
SmBoD 35.33 2.46 60.33 2.19 83.33 2.28 90.33 2.23
MBBo 42.67 5.03 68.33 4.70 91.33 5.01 99.00 5.39
StBo 43.67 5.08 69.00 5.01 91.67 5.08 98.67 5.48
SmBoR 35.33 2.60 60.33 2.33 87.00 2.88 95.33 3.29

In the case of partial outliers in Table 2.3, the best depth is, again, the
h-modal (actually, partial outliers can be seen as a combination of magnitude
and shape outliers; so, in our particular setting, the selection of the h-modal
depth suggests major importance of the shape component). As expected,
when the modi�ed band depth (MBD) is used, observed power is less than
the corresponding power associated to the band depth (note that, by con-
struction, depths obtained from the MBD are generally larger than those ob-
tained from the BD). Interestingly, the performance of the empirical power
seems alike for both of the block-bootstrap-based procedures (MBBo and
StBo). However, the performance of the autoregression-based method (Sm-
BoR) di�ers on the type of outliers included in the uncontaminated model;
this could con�rm that, contrary to SmBoR, neither MBBo nor StBo are
model-based procedures. Moreover, a misspeci�cation in the autoregression
adds bias to the residuals; the e�ect of this bias seems to depend on the type



2.3. Depth-based trimming for FTS 59

of outliers in the �nal data.

Second, let us focus on the empirical nominal level, p̂f ; that is, the per-
centage of falsely detected outliers. The study shows that the depth greatly
in�uences the performance of each method. Good results are observed when
the h-modal depth is used (values of p̂f close to the nominal level 1%). Nev-
ertheless, the nominal level of the proposed tests deteriorates when one of the
other two depths are considered. As in the case of the power, the empirical
nominal levels of the block-bootstrap and the autoregression-based methods
di�er. Third, the study allows to suggest the use of the h-modal depth to
achieve a trade-o� between type I and II errors (that is, values of p̂f close
to 1% together with high p̂c values). This recommendation runs in line with
the suggestion in Febrero et al. (2008), established within the context of
independent data.

Table 2.2: Percentages p̂c and p̂f for model (2.8).
k = 4 k = 5 k = 6 k = 7

Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
Depth MD
FBox 12.33 1.85 15.00 1.85 17.00 1.85 24.67 1.85
DBT-indep 34.33 0.93 74.67 0.66 92.67 0.24 98.33 0.12
SmBoD 34.00 1.36 71.00 0.74 89.33 0.32 97.67 0.20
MBBo 40.33 1.95 70.00 0.83 91.67 0.45 99.33 0.44
StBo 37.67 1.87 68.33 0.77 90.67 0.40 99.00 0.41
SmBoR 51.67 2.36 82.67 1.60 93.33 0.97 97.33 0.51
Depth BD
FBox 3.67 0.49 5.67 0.50 7.67 0.51 11.67 0.50
DBT-indep 4.33 1.90 4.33 1.43 1.67 0.62 1.00 0.36
SmBoD 4.33 1.94 3.67 0.88 2.33 0.66 0.00 0.00
MBBo 49.00 15.28 56.67 14.11 61.67 12.49 59.67 10.07
StBo 47.33 14.54 51.67 13.00 55.67 11.28 52.67 8.87
SmBoR 19.33 2.14 25.00 2.15 30.67 2.13 38.67 2.13
Depth MBD
FBox 6.33 1.27 10.00 1.29 14.00 1.25 17.67 1.24
DBT-indep 0.33 2.98 0.33 3.04 0.33 3.14 0.33 3.18
SmBoD 0.33 2.81 0.33 2.68 0.33 2.59 0.00 2.50
MBBo 0.33 5.54 0.33 5.22 0.33 4.91 0.00 4.61
StBo 0.33 5.48 0.33 5.31 0.33 5.17 0.00 4.96
SmBoR 0.33 4.10 0.33 4.01 0.33 4.14 0.00 4.22
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Besides, some remarks on the contamination size k and the behaviour of
the tests in comparable situations are added. Of course, the power of the
tests depends on k; so, low, medium and high values for k are considered
to evaluate their e�ect. Power generally increases with k, and the proposed
methods work well for medium and high k values when an appropriate depth
is used. Even when k is low, although the power is also low, it is clearly
greater when dependence is taken into account. It is worth noting that the
methods work better for model (2.9) (partial magnitude outliers) than they
do for model (2.7) (complete magnitude outliers); see the results correspond-
ing to the h-modal depth, which achieves a trade-o� between type I and II
errors. This shows that our methods are sensible to partial modi�cations in
the outliers.

Table 2.3: Percentages p̂c and p̂f for model (2.9).
k = 10 k = 15 k = 20 k = 25

Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
Depth MD
FBox 20.33 1.84 48.67 1.85 71.33 1.85 87.33 1.85
DBT-indep 79.00 0.32 94.33 0.05 96.00 0.04 97.00 0.03
SmBoD 76.00 0.46 94.00 0.72 96.00 1.09 98.33 1.56
MBBo 77.67 0.82 95.00 1.38 96.33 1.99 99.00 2.53
StBo 76.33 0.71 94.33 1.24 96.33 1.85 99.00 2.41
SmBoR 81.00 0.88 94.00 1.31 96.33 1.89 99.00 2.43
Depth BD
FBox 14.00 0.49 42.33 0.49 68.67 0.49 88.33 0.49
DBT-indep 1.67 0.51 0.00 0.00 0.00 0.00 0.00 0.00
SmBoD 1.33 0.62 1.00 0.20 1.00 0.20 0.00 0.00
MBBo 62.67 14.10 83.00 12.58 88.00 11.39 90.33 14.12
StBo 61.67 13.58 77.67 11.89 84.33 10.90 91.67 14.17
SmBoR 35.33 2.12 59.67 2.52 79.67 2.93 92.67 3.39
Depth MBD
FBox 20.33 1.27 48.68 1.26 67.67 1.26 83.33 1.26
DBT-indep 3.33 3.48 4.67 4.16 5.33 5.00 8.67 5.68
SmBoD 2.33 2.58 2.33 2.77 3.33 2.70 4.00 2.16
MBBo 4.67 4.80 3.67 4.09 4.33 3.90 6.00 3.35
StBo 4.67 4.90 3.33 4.30 4.00 3.97 6.00 3.52
SmBoR 3.00 3.91 3.00 3.60 4.00 3.12 6.67 2.62
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Regarding the comparison between DBT-indep and DBT using SmBoD
Bootstrap, some di�erences among them are observed. Remember that nei-
ther of these models take dependence into account and that they di�er on
the �rst �ltrate to obtain robust estimation of the cuto�. The biggest im-
provement of the DBT-SmBoD with respect to DBT-indep is obtained with
model (2.7), with magnitude outliers, with MD or MBD depth. With shape
outliers (model (2.8)), p̂c is slightly worse and it varies with partial magni-
tude outliers (model (2.9)). Note that BD and MBD work very poor with
this partial magnitude outliers. That is, even if SmBoD does not improve
DBT-indep in every situation, it is a good choice in most of them. Obviously,
as was mentioned before, any other of the approaches taking dependence into
account must be selected instead when dealing with functional time series.

Finally, the recommendation when dealing with unknown kinds of out-
liers, is to select DBT method with h-modal depth and MBB Bootstrap.
This combination has shown the best global performance regarding the kind
of outlier and its size, considering both p̂c and p̂f percentages.

Results obtained in this section are published in Raña, Aneiros and Vilar
(2015).

2.4 Outlier detection in Functional Time Series

using Functional Principal Components

Analysis

Based on the use of functional principal components, two methods to detect
outliers in functional time series were developed. Both make use of the robust
FPCA proposed in Hyndman and Ullah (2007), which has been described in
Section 1.3 as it is also the starting point for the ISE method to detect func-
tional outliers.

The two proposals are described separately in Subsection 2.4.1 and 2.4.2.
Thereafter, a new simulation study is presented in Subsection 2.4.3. These
new simulations are intended not only to deeply analyse the behaviour of the
two new proposals based on FPCA, but also to compare them to the DBT
methods developed in the previous section. Thus, it pretends to extend and
enlarge the simulations carried out in Subsection 2.3.1, to give a more general
vision of the involved methods.
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2.4.1 Projections-based method

This section presents the projections-based method (PB), which is a pro-
cedure to detect outliers in functional time series, based on robust FPCA
proposed in Hyndman and Ullah (2007). This proposal detects outliers on
the �rst K robust principal component scores, by applying techniques to
identify outliers in scalar time series, and then map the detected outliers
into the functional space.

Speci�cally, this method based on projections proposes to detect outliers
in functional time series with the following algorithm:

• Step 1. Perform the robust FPCA proposed in Hyndman and Ul-
lah (2007) and construct the series of coe�cients {β̂1,k, . . . , β̂n,k}, k =
1, . . . , K (see (2.4)).

• Step 2. Use univariate robust ARIMA models (for details, see Sec-
tion 11.2 in Cryer and Chan 2008) to detect outliers in each series

{β̂1,k, . . . , β̂n,k}, k = 1, . . . , K.

• Step 3. Establish the set of outliers as O = {χi : i ∈ I}, where
I = {i : {β̂i,1, . . . , β̂i,K} contains some of the outliers detected in Step
2}.

Note that the key points in this method are the use of robust FPCA
together with procedures to detect outliers in univariate time series. Given
that the estimated functional principal components φ̂k are not a�ected by
the outliers, the corresponding projections β̂i,k re�ect the main features of
the datum χi. Thus, if a curve is an outlier, its projection on at least some
of the directions of maximum variance (the �rst principal components) will

also be an outlier. Note that, because principal component scores, β̂i,k and

β̂i,l, are uncorrelated for k 6= l, Hyndman and Ullah (2007) suggest that

each univariate time series {β̂1,k, . . . , β̂n,k}, k = 1, . . . , K, can be studied
independently.

2.4.2 Errors-based method

This section presents a new method based also in robust FPCA, as the PB
method presented above. Unlike the previous method (PB), our second pro-
cedure based on FPCA takes the whole of each curve into account. Using
techniques for robust forecasting in functional time series, it constructs a
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non-contaminated version for each curve, which is compared with the corre-
sponding original curve. A curve is considered an outlier if it is substantially
di�erent from its uncontaminated version.

Speci�cally, this method proposes to detect outliers in functional time
series with the following algorithm:

• Step 1. Perform robust FPCA proposed in Hyndman and Ullah (2007)

and construct the series of coe�cients {β̂1,k, . . . , β̂n,k}, k = 1, . . . , K
(see (2.4)).

• Step 2. Fit univariate robust ARIMA models (for details, see Sec-

tion 11.2 in Cryer and Chan 2008) for each series {β̂1,k, . . . , β̂n,k},
k = 1, . . . , K.

• Step 3. Obtain the �tted values {˜̂β1,k, . . . ,
˜̂
βn,k}, k = 1, . . . , K, from

the models constructed in Step 2.

• Step 4. Construct the �tted curves χ̂i =
∑K

k=1

˜̂
βi,kφ̂k and compute the

L2-norm of the corresponding prediction errors:

ui =

√∫ b

a

(χi(t)− χ̂i(t))2dt, i = 1, . . . , n.

• Step 5. Establish the set of outliers as O = {χi : i ∈ J }, where
J = {i : ui > q0.75 +1.32(q0.75−q0.25)} (qp denotes the quantile of order
p of {u1, . . . , un}).

As in the method based on projections, robust FPCA and robust ARIMA
models play the main roles. Note that, because the forecasts obtained from
the procedure explained in Cryer and Chan (2008) are not contaminated by
the outliers, χ̂i can be seen as the �expected value� of the functional time
series at time i when no contamination is present. Thus, a �high value� for
ui suggests that χi is an outlier. To decide if ui is high enough to correspond
to an outlier, the rule given by the classical boxplot is used; that is, under
normality, the probability of detecting no outliers is 0.993, when no outliers
are actually present (note that the usual constant factor 1.5 was changed
to 1.32 because low values are not considered outliers). Finally, let point
out the main di�erence between our proposal and the proposal suggested in
Hyndman and Ullah (2007) (χi is detected as outlier if vi > s + λ

√
s; see

(2.3)): our procedure takes the dependence among the sample into account
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(see Step 3) to construct the coe�cients associated to each functional data

χi (
˜̂
βi,k in Step 4 above), while the method in Hyndman and Ullah (2007)

does not do so (see β̃i,k in (2.3)).

2.4.3 Simulation study

Simulated FTS

Three main models were constructed to generate functional time series. This
is an extension of the simulations carried out in Subsection 2.3.1. Since the
proposed methods here are easier to implement (because they do not have
so many options as DBT regarding depth and bootstrap elections), we can
analyse them in a deeper way on di�erent dependence scenarios. The simula-
tion models are the superposition of a deterministic signal and random noise.
Noise in main Models 1, 2, and 3 was the superposition of a scalar AR(1)
process and functional AR(1)-, MA(1)- and ARMA(1,1)-type processes, re-
spectively. On the other hand, another main model (Main Model 0) was
constructed in the same way, but considering independent noise instead of
dependent one. Note that main Models 1, 2 and 3 are favourable to meth-
ods that take dependence in the sample into account, while Main Model 0
is favourable to methods designed for independent data. From each main
model, two contaminated models were constructed by randomly adding ei-
ther three magnitude outliers or three shape outliers.

More speci�cally, the following main models were considered:

• Main Model 0:

ζi(t) = cos(πt)(1− c) + ai(t) if −n+ 1 ≤ i ≤ n.

• Main Model 1:

ζi(t) =

{
cos(πt) if i = −n+ 1
cos(πt)(1− c) + ρζi−1(t) + ai(t) + bi if −n+ 1 < i ≤ n.

• Main Model 2:

ζi(t) = cos(πt)(1− c) + θai−1(t) + ai(t) + bi if −n+ 1 ≤ i ≤ n.

• Main Model 3:

ζi(t) =

{
cos(πt) if i = −n+ 1
cos(πt)(1− c) + ρζi−1(t) + θai−1(t) + ai(t) + bi if −n+ 1 < i ≤ n.
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In the processes above it is denoted ai(t) = Xi sin(πt) with Xi being i.i.d.
Gaussian variables with mean 0 and standard deviation 0.3, while {bi} is a
scalar Gaussian AR(1) process with correlation coe�cient d = 0.8 and stan-
dard deviation (1− d2)−1/2. c = 0.8 and t ∈ [−0.5, 1.5] were considered.

Values ρ and θ manage the dependence strength in the functional time
series. Two options were considered, one with low dependence (LD, ρ = 0.5
and θ = −0.5) and other with high dependence (HD, ρ = 0.8 and θ = 0.8).

Then, given the series of each main model, ζi, several methods were ap-
plied to detect outliers on the following contaminated models:

• Contaminated model with magnitude outliers:

χi(t) = ζi(t) + k1{i∈{Ij}}, 1 ≤ i ≤ n.

• Contaminated model with shape outliers:

χi(t) = ζi(t) + k cos(3πt)1{i∈{Ij}}, 1 ≤ i ≤ n.

Note that k is a contamination size while 1{·} and Ij denote the indicator
function and i.i.d. random variables with discrete uniform distribution on
{1, . . . , n}, respectively. The curves χi were discretized on a grid {tj} of 30
equispaced points in [−0.5, 1.5]. Comparing these simulations with the ones
carried out in Subsection 2.3.1, only the two principal kinds of outliers are
considered: magnitude and shape outliers. Partial-magnitude outliers were
removed from the simulations for the sake of the brevity, as they behave as
a mix between magnitude and shape outliers.

In the simulation process, the generated curves correspond to the dou-
ble of the sample size n. That is, the curves {ζi(t)} ,−n + 1 ≤ i ≤ n were
simulated, but only the last half of the curves were used, {ζi(t) : 1 ≤ i ≤ n},
for the contaminated models. The �rst n realizations are not used in order
to avoid the impact of the initial values. The number of outliers introduced
in the models was j = 0.02n (that is, 2% of the curves). The value of k
was 0.75 for contaminated Model 0, in which dependence does not a�ect,
and 5 for contaminated Models 1, 2 and 3. It is worth noting here that the
contamination size, k, considered in this study is low compared with other
existing simulation studies (see, e.g. Sun and Genton 2011) and also with
the simulations in Subsection 2.3.1.
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Figure 2.6 shows curves simulated from these four contaminated models.
The �rst row corresponds to Model 0 (no dependence), and the other three
rows to Models 1, 2 and 3 (functional time series), respectively. The last
three models are shown for the HD case. One can see in the �gure the di�er-
ence between the data simulated from Model 0 and from Models 1, 2 and 3:
in the case of functional time series, outliers are almost always hidden within
the rest of the curves.

The following four procedures were applied on each generated sample,
which have been already described in Section 2.2, in addition to the proposed
projections-based (PB) and errors-based (EB) methods.

• Functional highest density region boxplot (HDR). The routine fboxplot,
available in the R package rainbow was used with α0 = 0.01.

• Integrated squared error (ISE). The routine foutliers, available in the
R package rainbow was used, where λ and K were chosen following the
suggestion given in Hyndman and Ullah (2007): λ = 3.29 and K being
the value minimizing the ISFE.

• Depth-based trimming for independent data (DBT-indep), implemented
in the routine Outliers.fdata, available in the R package fda.usc, with
α1 = α2 = 0.01, γ = 0.05 and B = 200, while the functional depth was
the h-modal depth

• DBT for dependent data, with functional h-modal depth and Moving
Blocks Bootstrap (MD-MBB).

Note that the methods HDR, ISE and DBT-indep are designed to detect
outliers in samples of independent curves, even if they were also applied to
functional time series. However, DBT MD-MBB, PB and EB are speci�cally
designed to deal with the problem of outlier detection in the context of func-
tional time series. Along this simulation study, the performance of the cited
methods was compared in situations of both independent and dependent
data.
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Figure 2.6: Left panels: from top to bottom, curves (χi(t)) generated from
contaminated Models 0, 1, 2 and 3, respectively (the black curves are mag-
nitude outliers). Right panels: from top to bottom, curves (χi(t)) generated
from contaminated Models 0, 1, 2 and 3, respectively (the black curves are
shape outliers).
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Tuning parameter

As is common to all FDA procedures using FPCA, the proposed methods de-
pend on the quantity of principal components considered, K. In practice, the
value of K must be speci�ed. Hyndman and Ullah (2007) suggest choosing
K to minimize the mean integrated squared forecast error, while Hyndman
and Booth (2008) �nd that the forecasts are insensitive to the choice of K,
provided K is large enough. Sensitivity studies were made for the values of
K in our methods, using the dependent simulated data considered in Models
1 and 2.

On the one hand, the �ndings agree with the general suggestion given in
Hyndman and Booth (2008): to consider a larger than necessary value K (for
instance, a value explaining at least 98% of the variability). On the other
hand, to detect �shape outliers� (that arise when they are within the range of
the rest of the data but di�er from them in shape; see Hyndman and Shang
2010) by means of the method based on projections, the recommendation is
to select a value K even higher (for instance, explaining at least the 99.9% of
variability). To justify this very high value it is argued that (i) the method
based on projections only uses scores (and not the whole curve), (ii) the �rst
scores inform on the possible presence of �magnitude outliers� and (iii) the
higher order scores inform on the possible presence of �shape outliers�. The
number of principal components for the ISE method is selected in the same
way, allowing also to take a higher number of principal components when
detecting �shape outliers� in dependence models.

Speci�cally, K = 1 was chosen for magnitude outliers (for both methods
PB and EB). In the case of shape outliers, it was chosen K = 3 for the PB
method and K = 1 for the EB. This election explains more than 98% of the
variability (in some cases, even with only the �rst component, it explains
around 99.5%), increasing until 99.9% when we use PB method to detect
shape outliers. This choice agrees with the guidelines about the requirement
of more components when dealing with shape outlier detection and the PB
method. In the case of Model 0, due to the simplest performance of the data,
it is enough to take K = 1 for the EB and K = 2 for the PB method and
both kind of outliers. The signi�cance level used to detect scalar outliers
in the PB method (Step 2) was α3 = 0.01. In the case of the norm to be
used in Step 4 of the EB procedure, both the L1-norm and the L2-norm
were considered. Because similar results were obtained, it is only shown the
corresponding ones to the L2-norm.
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The results

M = 500 simulations were run for each model. The percentage of correctly
identi�ed outliers pc (100 times the number of correctly identi�ed outliers
over the number of outliers in the sample, or sensitivity) and the percentage
of false positives pf (100 times the number of wrongly identi�ed outliers over
the number of non-outlying curves in the sample, or false detection percent-
age) were computed for each simulation and for each method considered.

The �rst simulation study employs n = 200 and the results are reported in
Tables 2.4, 2.5 and 2.6. These tables show the mean and standard deviation
of the values of both pc and pf obtained from the two proposed procedures
(PB and EB) and the other four considered methods (HDR, ISE, DBT-indep
and DBT MD-MBB) when they are applied to the di�erent contaminated
models. In Table 2.4 Model 0 is considered (independent data), which is con-
taminated with magnitude or shape outliers. In Tables 2.5 and 2.6, Models
1, 2 and 3 (dependent data) and the two cases of dependence (low and high
dependence) are considered (see Table 2.5 for contamination with magnitude
outliers and Table 2.6 for the case of shape outliers).

Table 2.4: Mean and standard deviation (in parentheses) of the percent-
age of correctly and falsely identi�ed outliers in Model 0 contaminated with
magnitude or shape outliers.
Model 0

Magnitude outliers Shape outliers
Method p̂c p̂f p̂c p̂f
HDR 40.60 (14.21) 0.19 (0.29) 40.50 (14.24) 0.19 (0.29)
ISE 100.00 (0.00) 0.00 (0.02) 100.00 (0.00) 0.00 (0.00)
DBT-indep 87.00 (26.12) 0.64 (0.48) 84.15 (27.46) 0.61 (0.47)
DBT MD-MBB 99.80 (4.47) 2.83 (1.44) 99.80 (4.47) 2.83 (1.44)
PB 95.40 (10.44) 0.02 (0.10) 95.15 (10.98) 0.02 (0.10)
EB 100.00 (0.00) 2.14 (1.23) 95.75 (15.61) 2.10 (1.22)
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Table 2.5: Mean and standard deviation (in parentheses) of the percentage
of correctly and falsely identi�ed outliers in Models 1-2-3 (with low or high
dependence) contaminated with magnitude outliers.
Model 1

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 16.50 (15.91) 0.68 (0.32) 9.85 (14.04) 0.82 (0.29)
ISE 22.00 (22.01) 15.33 (2.69) 25.25 (22.74) 21.07 (3.65)
DBT-indep 26.30 (23.28) 1.19 (0.87) 10.55 (15.67) 1.14 (1.17)
DBT MD-MBB 30.45 (24.04) 2.07 (1.78) 13.10 (16.93) 2.38 (2.24)
PB 70.65 (35.95) 0.31 (0.45) 62.05 (38.65) 0.56 (0.59)
EB 88.55 (17.12) 3.71 (1.24) 84.10 (20.81) 4.07 (1.26)
Model 2

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 28.25 (16.92) 0.44 (0.35) 30.25 (17.08) 0.40 (0.35)
ISE 24.30 (23.73) 14.60 (2.51) 27.00 (23.39) 16.64 (2.79)
DBT-indep 66.75 (25.49) 0.81 (0.69) 67.60 (24.83) 0.76 (0.69)
DBT MD-MBB 73.15 (24.58) 1.60 (1.17) 73.40 (24.00) 1.55 (1.24)
PB 67.60 (37.26) 0.07 (0.20) 68.40 (37.24) 0.07 (0.18)
EB 91.60 (14.83) 3.17 (1.29) 91.60 (15.08) 3.23 (1.28)
Model 3

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 14.70 (15.31) 0.72 (0.31) 10.75 (14.27) 0.80 (0.29)
ISE 19.60 (21.78) 13.31 (2.72) 30.65 (24.04) 28.96 (3.40)
DBT-indep 26.30 (23.55) 1.20 (0.86) 10.65 (15.44) 1.13 (1.15)
DBT MD-MBB 30.30 (24.35) 2.08 (1.67) 12.85 (16.78) 2.35 (2.03)
PB 69.30 (36.30) 0.33 (0.47) 60.95 (38.36) 0.61 (0.64)
EB 88.45 (16.76) 3.63 (1.24) 84.20 (20.28) 3.81 (1.17)
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Table 2.6: Mean and standard deviation (in parentheses) of the percentage
of correctly and falsely identi�ed outliers in Models 1-2-3 (with low or high
dependence) contaminated with shape outliers.
Model 1

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 16.15 (19.20) 0.69 (0.39) 13.90 (18.77) 0.74 (0.38)
ISE 100.00 (0.00) 14.58 (2.74) 100.00 (0.00) 20.15 (3.59)
DBT-indep 95.75 (16.47) 0.21 (0.41) 64.25 (38.55) 0.61 (0.91)
DBT MD-MBB 99.40 (6.69) 0.70 (1.16) 56.05 (37.45) 0.58 (1.06)
PB 95.20 (10.71) 0.04 (0.17) 95.00 (11.19) 0.04 (0.24)
EB 100.00 (0.00) 2.58 (1.26) 100.00 (0.00) 2.59 (1.29)
Model 2

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 10.75 (15.20) 0.80 (0.31) 9.10 (14.23) 0.83 (0.23)
ISE 100.00 (0.00) 13.85 (2.51) 100.00 (0.00) 15.95 (2.67)
DBT-indep 96.40 (15.57) 0.38 (0.45) 98.30 (11.06) 0.33 (0.42)
DBT MD-MBB 100.00 (0.00) 1.81 (1.36) 100.00 (0.00) 1.67 (1.35)
PB 95.20 (10.71) 0.03 (0.16) 95.15 (10.63) 0.04 (0.16)
EB 100.00 (0.00) 2.61 (1.38) 100.00 (0.00) 2.64 (1.34)
Model 3

Low dependence High dependence
Method p̂c p̂f p̂c p̂f
HDR 17.35 (19.26) 0.67 (0.39) 4.65 (11.40) 0.93 (0.23)
ISE 100.00 (0.00) 12.52 (2.62) 100.00 (0.00) 27.86 (3.23)
DBT-indep 94.40 (19.15) 0.22 (0.42) 49.60 (38.54) 0.79 (1.04)
DBT MD-MBB 99.40 (6.69) 0.47 (1.23) 41.80 (34.50) 0.94 (1.32)
PB 95.05 (10.82) 0.05 (0.20) 94.95 (11.45) 0.14 (0.31)
EB 100.00 (0.00) 2.51 (1.26) 100.00 (0.00) 2.06 (1.19)
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Several conclusions can be drawn from these results. First of all, one
may look at Contaminated Model 0 in Table 2.4, which considers indepen-
dent data. Under that situation, ISE method gets the best result for both
kinds of outliers. On the contrary, HDR presents poor results with the low-
est sensitivity, but also its false detection rate is low. Looking at the pair of
DBT-indep and DBT MD-MBB method, one can see an improvement with
the second option, even if dependence is not a�ecting this data. pc is much
better for the DBT MD-MBB method, compared to the DBT-indep, but also
pf is higher.

Note that DBT MD-MBB not only adapts DBT-indep to work with func-
tional time series (by taking dependence into account), but also improves the
method itself by changing some other aspects. This is why one can see dif-
ferent results even when they are applied to independent data. Our both
proposals, PB and EB, are very competitive in this situation, even compared
to methods designed to work with independent data. They maintain high
and low values for pc and pf , respectively. Their sensitivity is greater than
95% and there is no big di�erence between magnitude and shape outliers.
One can see that PB detects less outliers than EB but also its false detection
rate is lower.

Now, we focus on the simulated models that include dependence struc-
ture; that is, contaminated Models 1, 2 and 3. The role of this analysis is
two-fold: to illustrate the performance of the two proposed procedures and
to show the need to take into account the dependence in the functional time
series. Restrict �rst to the magnitude outliers under both situations of low
dependence (LD) and high dependence (HD), which results are given in Ta-
ble 2.5. In general not major di�erences are observed in the behaviour of the
proposed methods (PB and EB) when the dependence scenario changes (LD
or HD), and one can see that the best results are achieved by the methods
that take into account dependence (DBT MD-MBB, PB and EB). Results
are analysed below in a deeper way.

HDR and ISE methods lose their e�ectiveness in detecting outliers when
dealing with dependent data. It is highlighted the large pf (around 20%) of
the ISE method, indicating a high volatility in its behaviour. Looking now
at the pair DBT-indep and DBT MD-MBB methods (remember that DBT
MD-MBB adapts DBT-indep to work with functional time series), it is true
that DBT MD-MBB gets always higher pc, which clearly indicates that tak-
ing dependence in the data into account is outstanding. Both methods are
also better than HDR and ISE in most of the cases. Despite of getting worse
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pc than ISE when dealing with Models 1 and 3 under high dependence, they
get signi�cantly lower pf . Both methods (DBT-indep and DBT MD-MBB)
also show a sharp di�erence between dependence scenarios for Models 1 and
3, in which the outlier detection rate decreases as the dependence structure
becomes more relevant.

All the methods analysed above are overcome by our two proposals PB
and EB. Both options achieve high sensitivity, greater than DBT MD-MBB
(except for Model 2 in which DBT MD-MBB overcomes PB) and far away
from the other methods considered that not take into account dependence.
PB method holds lower sensitivity than EB, but also lower false detection
rate. To obtain a trade-o� between high sensitivity and low false detection
rate, in general, the proposed EB seems to be a good choice for magnitude
outlier detection under the considered dependence scenarios.

Table 2.6 shows the results when the models are contaminated with shape
outliers. HDR still performs very similar to the magnitude outliers case, how-
ever ISE method shows an improvement by detecting all the shape outliers
(at the expense of a large false detection rate). DBT-indep and DBT MD-
MBB behave also similarly to the magnitude outliers case, with a remarkable
di�erence in the levels of pc. They achieve now very high sensitivity with low
dependence (around 95−100%) but under high dependence they provide low
values, around 40− 60% for Models 1 and 3.

The proposed methods PB and EB show high sensitivity (95% and 100%,
respectively) and low false detection rate (0.05% and 2.5%), being very stable
for the three simulated models. As in Table 2 for magnitude outliers, also
with shape outliers there are no major di�erences between both dependence
scenarios (LD and HD). In summary, even if both methods obtain very good
results for shape outlier detection under dependence, EB seems to be a better
choice due its great success detecting all the outliers.

A second simulation study is developed in order to study the in�uence of
the sample size (n) over the analysed methods for outlier detection. In this
case we restrict ourselves to Models 1, 2 and 3 (simulated functional time
series) contaminated with magnitude outliers.
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Table 2.7: Mean of the percentage of correctly and falsely identi�ed outliers in
Models 1-2-3, with high dependence, contaminated with magnitude outliers
and for n = 100, 200, 300 and 400.
Model 1

n=100 n=200 n=300 n=400
Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
HDR 12.30 0.77 9.85 0.82 7.43 0.87 7.28 0.87
ISE 26.10 22.44 25.25 21.07 22.57 21.10 23.13 20.94
DBT-indep 12.10 0.34 10.55 1.14 9.23 1.60 9.63 1.86
DBT MD-MBB 12.80 1.13 13.10 2.38 11.80 2.99 12.03 2.98
PB 29.20 0.56 62.05 0.56 80.23 0.42 87.90 0.28
EB 58.80 4.52 84.10 4.07 90.83 3.99 93.60 4.00
Model 2

n=100 n=200 n=300 n=400
Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
HDR 34.20 0.33 30.25 0.40 28.57 0.44 26.50 0.48
ISE 32.60 17.10 27.00 16.64 22.50 16.51 21.50 16.45
DBT-indep 63.70 0.47 67.60 0.76 68.63 0.90 68.87 1.01
DBT MD-MBB 73.60 1.66 73.40 1.55 72.30 1.52 72.08 1.54
PB 34.50 0.10 68.40 0.07 84.93 0.04 89.43 0.04
EB 73.70 3.60 91.60 3.23 95.70 3.35 96.25 3.27
Model 3

n=100 n=200 n=300 n=400
Method p̂c p̂f p̂c p̂f p̂c p̂f p̂c p̂f
HDR 15.80 0.70 10.75 0.80 8.70 0.84 8.40 0.85
ISE 31.90 29.08 30.65 28.96 30.10 28.74 29.80 28.84
DBT-indep 12.00 0.32 10.65 1.13 9.37 1.61 9.58 1.85
DBT MD-MBB 12.70 1.18 12.85 2.35 11.17 2.78 11.40 2.77
PB 29.80 0.60 60.95 0.61 81.10 0.40 87.00 0.29
EB 54.90 3.68 84.20 3.81 90.67 3.78 93.18 3.81
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Table 2.7 shows the mean of the percentage of correctly and falsely iden-
ti�ed outliers (pc and pf , respectively) when the sample size varies within
the values n = 100, 200, 300 and 400. These results are obtained under the
scenario of high dependence (HD) and the number of outliers introduced in
each sample follows the same rule as the previous results (including j = 0.02n
outliers; that is, 2% of the curves).

Results given by the two proposed methods (PB and EB) in Table 2.7
clearly overcome the rest of the methods included in the comparison (HDR,
ISE, DBT-indep and DBT MD-MBB) in almost all the situations (except
when one considers n = 100 in Model 2). That is, for the three contaminated
models and the di�erent values of the sample size n (except the combination
Model 2, n = 100), PB and EB get the best performance. On the one hand,
HDR, ISE, DBT-indep and DBT MD-MBB show poor results with very low
pc and also, in the case of ISE method, very high false detection rate. DBT
MD-MBB gets always better results than DBT-indep, showing again the
importance of taking dependence in the data into account. Actually, both
DBT-indep and DBT MD-MBB are very competitive for the Model 2, spe-
cially with the lowest sample size n = 100, but they are overcome by PB and
EB as n increases.

On the other hand, also HDR, ISE, DBT-indep and DBT MD-MBB re-
main stable when the sample size varies. Indeed, one can see a slight decrease
in the pc and increase in pf as long as the sample size n increases. On the
opposite, for the three contaminated models, the proposed methods PB and
EB clearly improve the sensitivity (pc) while the false detection rate (pf )
decreases slightly as n increases. The reason for this is that PB and EB
methods are based on �tting univariate time series (of the coe�cients given
by FPCA) as a previous step to outlier detection. Therefore, by increasing
the sample size, n, the �t of the univariate time series is improved and, ac-
cordingly, also the outlier detection with PB and EB methods improves.

Results obtained in this section have been published in Vilar, Raña and
Aneiros (2016).
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2.5 Applications in the electricity market

It is well known that the presence of outliers in a dataset a�ects the accu-
racy of forecasts obtained from regression models, and electrical data is not
an exception. Thus, outlier detection represents a �rst step prior to any type
of modeling.

In the next two sections, the proposed methods for detecting outliers in
functional time series are applied on the daily curves of electricity demand
and price, from the dataset described in Section 1.4. It is important to re-
member that in the Spanish Electricity Market, renewable energy sources
(as wind power among others) enter in the pool without cost. This causes
that, in speci�c days with high production of wind power, all the demand is
covered by this energy source and the price decreases even until zero.

Note that, to not overextend the results, not all the methods/options men-
tioned in the previous sections are shown. The comparison is then reduced
to the DBT using the combinations MD-MBBo and MD-SmBoR, together
with the two proposals based on FPCA: PB and EB. In order to compare
their results with the methods for independent data, also DBT-indep and
HDR are considered. It allows to see the di�erence of taking into account
the dependence in the particular case of our electrical dataset.

2.5.1 Case study: electricity demand

The application focus �rst in outlier detection in time series of electricity
demand curves. Data collect hourly electricity demand in the Spanish main-
land Electricity Market on Mondays, . . . , Fridays in the year 2012. These
hourly data present a trend. Thus, by subtracting the trend (estimated by
means of kernel regression) the corresponding detrended hourly series is ob-
tained. The functional dataset under analysis is composed of the n = 261
daily demand curves obtained from this detrended hourly series, measured
in Megawatt-hour (MWh). The number of functional principal components
considered was K = 9. These K principal components explained, at least,
98% of the variance.

The functional time series and the corresponding daily curves are shown
in Figure 2.7. Higher demands are observed in the interval 10:00h�22:00h
while lower ones correspond to the interval 3:00h�5:00h.
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Figure 2.7: Left panel: time series of electricity demand. Right panel: daily
electricity demand curves.

The outliers identi�ed from the proposed procedures are listed in Table
2.8. Possible causes for most of these abnormal curves can be found. For ex-
ample, April 16 and 19, November 1 and 2 and also December 24 correspond
to days with zero price hours. During some hours in these days, the overpro-
duction of wind power decreased the electricity price �xed by daily market.
This have to do with the di�erent taxations of this �green energies� because,
as the wind power production increases, the electricity price decreases. As a
result, if the wind power production covers and abnormally high percentage
of the electricity demand, the price can drop even until zero during a period
of time (this being the case of the cited days). We �nd also as outliers some
previous or posterior days to these �zero price days�, such as April 24 and 26,
which are also a�ected by the disturbance in the price.

Some of the outliers correspond to nonworking days in which people usu-
ally behave in a di�erent way than the rest of the regular days (simply because
most of the economical and industrial activities stop during these days), af-
fecting the electrical consumption and, as a consequence, also the demand.
This is the case of May 1 (Labour Day), August 15 (Assumption Day), Octo-
ber 12 (National holiday in Spain), November 1 (All Saints Day), December
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6 (Constitution Day in Spain) and 25 (Christmas). December 24 (Christmas
Eve) is also a special day, even if it is not o�cially nonworking day. Friday,
November 2, besides being a zero-price day, is situated also in the middle of
a long weekend caused by All Saints Day, in which a lot of people took some
holidays. Finally, November 14 was a Strike Day in Spain, which clearly
a�ects electrical consumption, as it can be considered in some sense as a
nonworking day.

Table 2.8: Outliers in electricity demand.
DBT

Method indep MD-MBBo MD-SmBoR HDR PB EB
January 6 X X X X
February 13 X
� 14 X
March 5 X
April 16 X X
� 19 X X X
� 24 X X
� 26 X
May 1 X X X X X X
� 4 X
August 15 X X X X X X
October 12 X X X X
November 1 X X
� 2 X X X
� 7 X X X
� 8 X
� 14 X X X
December 3 X X
� 6 X X X
� 10 X X
� 21 X X
� 24 X
� 25 X X X
� 27 X
� 28 X
Num. outliers 5 4 10 14 11 15
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It is easy to see the big di�erence in the outliers detected by the con-
sidered methods. For example, DBT-indep and MD-MBBo work in a very
similar way in this case, contrary to the MD-SmBoR that detects more out-
liers. EB detects more outliers than any other method, being some of them
coincident with PB and also HDR.

Finally, it is worth pointing out that electricity demand curves observed
at days April 16 (price zero), November 1 (holiday and price zero), November
14 (strike) and December 6 (holiday) are detected as outliers by, at least, two
of our proposed methods, but none of these curves is identi�ed as an outlier
by neither the HDR nor DBT-indep procedures (remember that neither HDR
nor DBT-indep take dependence in the data into account). Actually, as can
be seen in Figure 2.8, these four curves have features that can, to say the
least, be considered suspicious: demand curves observed at April 16 and
November 1 take high values throughout the �rst hours (possibly because
the electricity price at some hours was zero); demand curve corresponding
to November 14 (strike day) maintains low values from 7:00h, this being
the typical behaviour of demand curves corresponding to nonworking days;
December 6 is a nonworking day.

t:Time (one unit= one hour)

D
et

re
nd

ed
 d

em
an

d 
(M

W
h)

−10000

−5000

0

5000

1 6 12 18 24

04.16.2012 11.01.2012 11.14.2012 12.06.2012

Figure 2.8: Outliers detected in the demand curves with some of the proposed
procedures, but not detected by methods designed for independent data.
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2.5.2 Case study: electricity price

A similar study is conducted in this section, applied to electricity price. Prices
were available for the same period as demand: weekdays in 2012. Unlike the
previous case, there was no trend in the data. The quantity of functional
principal components considered was K = 8, which explained, at least, 98%
of the variance.

Figure 2.9 displays the functional time series of electricity prices and the
associated daily curves. Note that periods of low and high prices roughly
correspond with periods of low and high demand, respectively.
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Figure 2.9: Left panel: time series of electricity price. Right panel: daily
electricity price curves.

The outliers identi�ed by the proposed procedures are listed in Table 2.9.
Note that a total of 29 observations are detected as abnormal curves, 20
of them were detected by the proposals based on FPCA (13 from the PB
method and 15 from the EB method). In addition, 10 of the 29 days corre-
sponding to such outliers were days when demand curves were also identi�ed
as outliers (compare Tables 2.8 and 2.9).
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Table 2.9: Outliers in electricity price.
DBT

Method indep MD-MBBo MD-SmBoR HDR PB EB
February 3 X
� 13 X X
� 20 X X X
� 21 X
April 6 X X
� 10 X X X X
� 11 X X
� 18 X X X
� 19 X X X X X
� 25 X X X X X X
May 1 X X X X X
� 4 X
� 8 X
June 11 X
August 15 X X X X
� 16 X
September 24 X X X
October 1 X
� 24 X
November 1 X X X X X
� 2 X X X X X
� 6 X
December 12 X
� 14 X
� 21 X X
� 24 X X X X X X
� 25 X X X X X
� 26 X X X
� 31 X X X X
Num. outliers 8 13 17 14 13 15

Following the classical rules of any kind of market, it is usual that demand
and price are highly interconnected, this being also the case of electricity mar-
kets and the reason why some of the outlying curves in demand are repeated
as outliers for electricity price. As in the previous application, one can argue
causes for most of the abnormal curves of electricity price, being some of
them already cited in the study of outliers in electricity demand. Some of
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the outliers correspond to zero-price days, as April 19 and 25, September
24, November 1 and 2 or December 24 or days with a period close to zero
price (February 13). Nonworking days have also some kind of in�uence over
electricity prices, as April 6 (Good Friday) or May 1, August 15, November
1 and December 25. Finally, also some special days can be found related
to other holidays or linked to nonworking, this being the case of February
21 (Carnival, nonworking day in part of Spain), August 16 (posterior to a
nonworking day), November 2 (in the middle of a long weekend) or December
24 (Christmas Eve).

Finally, again as in the case of the demand, four price curves are detected
as outliers by, at least, two of our proposed methods, but none of these curves
is identi�ed as an outlier by neither the HDR nor DBT-indep procedure; this
is referring to the curves corresponding to February 13, April 10 and 11, and
August 15, see Figure 2.10. It seems that makes sense considering them as
outliers: the price was zero in some hours on February 13, very low in the
second half of the day on April 10 and the �rst half of the following day,
April 11; August 15 is a nonworking day, and the pattern of the correspond-
ing price curve of this day is di�erent from the working days pattern.
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Figure 2.10: Outliers in the price curves detected using procedures for de-
pendent data, but not detected when applying a method designed for inde-
pendent data.
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2.6 Conclusions

This chapter proposes three methods to detect outliers in functional time
series. The �rst one is an extension of the method proposed in Febrero et
al. (2008), in which one can make di�erent choices for the election of the
functional depth and the bootstrap method, resulting in di�erent combina-
tions. This proposal can be found in Raña, Aneiros and Vilar (2015). It is
a contribution derived from this thesis in which the proposed method is pre-
sented, together with an analogous simulation study and also an application
to a real dataset. In this case, the dataset employed contains temperature
and NO3 emissions data, instead the electrical dataset used here.

The projections-based (PB) and the errors-based (EB) methods use ro-
bust functional principal component analysis (FPCA), following the proposal
of Hyndman and Ullah (2007). Also these two proposals can be found in Vi-
lar, Raña and Aneiros (2016).

As far as we know, these three proposals are the �rst methods dealing
with the problem of outlier detection, speci�cally addressed for functional
time series. The importance of taking into account the dependence present
in this kind of structure has been pointed out along all the chapter.

Simulations were carried out to show the performance of the proposed
procedures, comparing them with the correspondent methods for indepen-
dent data. Results show an improvement in the models with dependent data,
specially in the case of magnitude outliers in which the masking e�ect of the
functional time series is more outstanding.

The PB method has very low false detection rate (pf ) while the sensitiv-
ity (pc) of the EB approach is very high. Although in our simulation study
small contamination sizes have been considered, both methods show accept-
able trade-o�s between pc and pf . Results for the DBT methods are more
di�cult to �gure out because of the di�erent combinations between depth
and bootstrap. In summary, it seems that the best election is the use of
the modal depth, specially for the shape outliers, and the MBBo or SmBoR.
MBBo and StBo have a very similar behaviour with better correctly detec-
tion rate, but also higher false detection rate.

The practical usefulness of this methodology has been illustrated on the
daily curves of electricity demand and price in Spain.
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It should be emphasized that no universally optimal method for detect-
ing outliers currently exists (not even in the simplest univariate observation
setting). It is thus recommendable to apply di�erent approaches and sub-
sequently carry out an accurate analysis of the outliers detected by each (if
any) of these approaches.



Chapter 3

Electricity demand and price

prediction

3.1 Introduction

Nowadays, in many countries all over the world, the production and sale
of electricity is traded under competitive rules in free markets. The agents
involved in this market (namely, system operators, regulatory agencies, pro-
ducers and consumers) are greatly interested in the study of electricity load
and price. Since electricity cannot be stored, the demand must be satis�ed
instantaneously and producers need to anticipate future demands to avoid
overproduction. Thus, disposing of good forecasting of electricity demand is
important for the agents in the market. On the other hand, if reliable pre-
dictions of electricity price are available to producers and consumers, they
can develop their bidding strategies and establish a pool-bidding technique
to achieve a maximum bene�t. Consequently, the prediction of electricity
demand and price pose signi�cant concerns to this sector, as pointed out in
Section 1.2.

The problem of electricity demand and price forecasting has been widely
studied in the literature, most of them from an engineering point of view.
Statistics has also a big presence in this �eld but the use of functional data
has not spread far for the moment.

Electricity demand and price predictions can be classi�ed in di�erent
classes. First, regarding the prediction horizon, it can be divided in short-
term forecasts (this is 1 day ahead hourly forecasts), mid-term forecasts (sev-
eral days ahead predictions for daily data) and long-term forecasts (one or

85
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more years ahead). There is no consensus about the exact limits of time
between these temporal classes, but our study can be included in short-term
forecasting, as it is focused on next-day prediction horizon.

A wide range of methodologies and models for forecasting are given in the
literature and so, regarding the methodologies employed for this problem, a
new classi�cation can be given:

• Statistical approaches: including time series, exponential smoothing,
regression analysis, naïve methods, etc.

• Arti�cial intelligence techniques: neural networks, support vector ma-
chines, etc.

Over the last years, arti�cial intelligence techniques have become a pop-
ular tool in any prediction issue. Computational improvements clearly con-
tributed to this fame. The main advantage of these tools is their �exibility:
they can deal with complex problems including non-linearity. Among these
algorithms, arti�cial neural networks have received the most attention, as
it does not require previous modelling experience to obtain accurate results
with no human supervision. This property is also a lack, as it cannot incor-
porate speci�c relations into the models.

Some examples of prediction in this �eld can be found in the literature,
for instance methods based on statistical models (regression in Kim et al.,
2002; time series in Weron and Misiorek, 2008, etc.) while other ones are
based on computational intelligence models (neuronal networks in Singhal
and Awarup, 2011; fuzzy neural networks in Chang et al., 2011; support vec-
tor machines in Zhao et al., 2008, etc.). See the book by Weron (2006) for a
nice monograph on electricity demand and price forecasting. See also Sugan-
thi and Samuel (2012) and Weron (2014) for reviews on electricity demand
and electricity price forecasting, respectively.

Focussing on the Spanish Electricity Market, one can �nd in Cancelo and
Espasa (1996) the model used for prediction of electricity demand in Red
Eléctrica de España, the system operator. In their model they include out-
liers treatment and the in�uence of temperature. Also Cancelo et al. (2008)
deal with the problem of demand forecasting. Regarding the electricity price,
one can �nd several studies, most of them based on time series analysis as
Nogales et al. (2002), Contreras et al. (2003), Conejo et al. (2005) or García-
Martos et al. (2007). For instance, Cruz et al. (2011) analysed the e�ect of
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wind generation and weekdays on the price forecasting.

Most of the works in the literature related to model and forecast elec-
tricity demand and price take information from scalar variables; that is the
case of researches referred in the previous paragraph. This chapter focuses
on some statistical approaches, proposing to use functional data techniques
in this �eld. In recent years, one can �nd some studies in which this problem
has been addressed from a functional perspective. On the one hand, focus-
ing on forecasting daily curves of electricity demand, the reader will �nd in
Anthoch et al. (2010) a parametric model to predict electricity consump-
tion curves in Sardinia; Paparoditis and Sapatinas (2013) introduced a novel
functional time series methodology that is applied to historical daily curves
of load in Cyprus; Cho et al. (2013) proposed a hybrid approach which was
applied to French demand curves. See also Aneiros et al. (2013) for the case
of residual demand curves in Spain. On the other hand, when the interest is
to forecast scalar values (not curves) from functional data, the reader can see
Liebl (2013), where the case of hourly electricity price forecasting is dealt, or
Vilar et al. (2012) where, in addition, hourly electricity demand forecasting
is considered. See also Goia et al. (2010) for peak load forecasting.

The aim of this study is next-day forecasting of daily curves of electric-
ity demand and price. Three approaches, taking information from a single
endogenous functional covariate, are considered, as well as models includ-
ing, in addition, exogenous scalar covariates. Combined forecasts are also
implemented. Forecasts for the corresponding daily curves in the market of
mainland Spain, year 2012, are obtained. It can be seen as an extension in
two ways of the proposal given in Vilar et al. (2012). The �rst extension is re-
lated to the response in the models: Vilar et al. (2012) considered both FNP
and SFPL models with scalar response (hourly electricity demand or price)
and functional covariates, while this study deals, among others, with those
same models but considering functional response (daily electricity demand
or price curve). The second extension concerns the information managed by
the partial linear model: while Vilar et al. (2012) did not consider exoge-
nous covariates, this study will take into account information from weather
variables and wind power production.

The rest of the chapter is organized as follows: Section 3.2 presents the
methods used to predict electricity demand and price. It starts with non-
functional approaches, as the naïve method (which is a reference in this �eld)
and the use of ARIMA models, handling the problem from a univariate time
series point of view. Also, a prediction method based on FPCA is included.
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Finally, two functional regression models are given: FNP regression model
and SFPL regression model. After that, Section 3.3 contains a comparative
study of all the presented methods in practice, applying them to forecast
electricity demand in Subsection 3.3.1 and also electricity price in Subsection
3.3.2. The chapter �nishes with Section 3.4, giving the main conclusions of
this prediction study.

3.2 Some approaches to forecast electrical data

Both electricity demand and price are assumed to be continuous time stochas-
tic processes, and the same notation is used to refer any of them: {χ (t)}t∈R
(units for t are hours). Because {χ (t)}t∈R is a seasonal process with sea-
sonal length τ = 24, and considering that such process is observed on the
interval (a, b] with b = a + Nτ , the observed daily curves (of electricity de-
mand or price) and the curve to predict can be written as {χi}

N
i=1 and χN+1,

respectively, where

χi (t) = χ (a+ (i− 1) τ + t) , with t ∈ (0, τ ] = (0, 24] ,

as the de�nition given in (1.11) for a Functional Time Series. Then, to fore-
cast the curve χN+1, information from the previous 365 curves will be used
and this will be done for each day in 2012.

In the next subsections, the approaches to predict functional time series
are presented. Although such approaches could be useful to predict general
functional time series, they are written for the particular case where the curve
to predict is the daily electricity demand or price curve χN+1.

In this setting, the dynamic of the curves depends on the type of day
where they are observed: Sundays, weekdays or Saturdays (see Section 1.4).
Thus, the considered approaches should take this fact into account.

First, the following notation is introduced, which will be useful to distin-
guish the various scenarios:

I0 = {N − 364, N − 363, . . . , N − 1, N} ,
ISat =

{
j ∈ I0 such that χj is a Saturday

}
,

ISun =
{
j ∈ I0 such that χj is a Sunday

}
and

Iw =
{
j ∈ I0 such that χj is a weekday

}
.
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In addition, de�ning
I ′w = {1, 2, . . . ,#(Iw)},

one denotes, for j ∈ I ′w,
χ′j = χ(j),

where (j) = #{i ∈ Iw : i ≤ j}.

3.2.1 The naïve method

The naïve method, or similar-day method, consists in forecasting the electric-
ity demand or price curve of a given day by means of the electricity demand
or price curve in the previous day with the same characteristics. As noted
above, in this study three classes of days are considered: Sundays, weekdays
and Saturdays. Thus, a Tuesday is similar to the previous Monday, and the
same rule applies for Wednesdays, Thursdays and Fridays. A Monday is sim-
ilar to the Friday of the previous week, a Saturday is similar to the Saturday
of the previous week and the same rule applies for Sundays.

As Weron points out (see Weron (2006), Section 3.4.1, pg. 79), this
method is very simple but in some cases can be surprisingly powerful and
can be used as a benchmark for more sophisticated models.

3.2.2 ARIMA models

The problem of prediction for electricity demand and price has been tradi-
tionally addressed using time series. Several authors contributed to this topic
applying techniques for time series, mainly ARIMA models, as in Contreras
et al. (2003) or Conejo et al. (2005) in the Spanish Electricity Market. For a
review about prediction with ARIMA models see, for instance, Brockwell and
Davis (1996), Shumway and Sto�er (2006) or Hyndman and Athanasopoulos
(2013).

ARIMA models will be considered, even if they are not designed to pre-
dict functional time series, in order to compare the accuracy of the presented
methods with this popular procedure. In fact, they will be applied separately
for 24 univariate time series, one for each hour of the day.

The procedure is computed as follows: from the historical time series of
electricity demand, 24 separate univariate time series are built, one for each
hour of the day. An ARIMA model of this type (p, 0, q)× (P, 1, Q)7, is �tted
for each time series. This means that, within each of the 24 hourly time
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series, the seven days of the week are computed jointly, �tting for them a
seasonal ARIMA model of order 7. Through this ARIMA model, considering
the previous 365 days, one can compute the prediction for the �xed hour of
the next day. In order to rebuild the prediction for the entire day, it only rests
to repeat the procedure 24 times, obtaining the whole prediction. At each
new day, the coe�cients of the ARIMA model, p, q, P and Q are uploaded
again.

3.2.3 Robust functional principal component analysis

Hyndman and Ullah (2007) and Hyndman and Shang (2009) proposed an ap-
proach to forecast functional time series based on both robust FPCA, which
is explained in detail in Section 1.3, and univariate time series prediction
(see Aue et al. (2015) for a modi�ed version). First, such approach is pre-
sented in the particular case where the curve to predict χN+1 corresponds
to a Saturday. Because the procedure is designed for stationary functional
time series forecasting, only information from curves observed in previous
Saturdays must be used.

Let us assume that the discretized observed curves can be written as

χi(j) = fi(j) + σi(j)εi,j, i ∈ ISat, j = 1, . . . , 24, (3.1)

where {εi,j} are i.i.d. standard normal random variables, σ2
i (·) is the con-

ditional variance and fi(·) is a smooth function. The forecasting method
proceeds as follows:

• Obtain a nonparametric estimate f̂i(·) of fi(·) from the sample
{(j,χi(j))}

24
j=1 (i ∈ ISat).

• Decompose the �tted curves using Roburst FPCA:

f̂i(x) = µ(x) +
K∑
k=1

βi,kφk(x) + ei(x), i ∈ ISat, (3.2)

where µ(x) is a localization measure of fi(x), (φk(x))Kk=1 is a set of
functional principal components and ei(x) is noise with distribution
N (0, v (x)).

• For each k = 1, . . . , K, �t an ARIMA model to the series of coe�cients
{βi,k}i∈ISat , and use such model to predict βN+1,k by β̂N+1,k.
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• Predict the curve χN+1 by means of

χ̂N+1 = µ+
K∑
k=1

β̂N+1,kφk.

Of course, if one wishes to predict the behaviour of the electricity demand or
price curve corresponding to a Sunday or a weekday instead of a Saturday,
all that must be done is to replace ISat in the previous algorithm by ISun or
Iw, respectively.

This method depends on the number of principal components K in (3.2).
As recommended in Hyndman and Shang (2009), it is considered K = 6 (a
value �larger than any of the components really require�).

3.2.4 Functional nonparametric model

An approach based on nonparametric regression with functional both re-
sponse and covariate, was proposed in Ferraty et al. (2011) in a setting of
independent curves. Recently, Aneiros et al. (2013) modi�ed such proposal
to be applied on functional time series; in fact, Aneiros et al. (2013) used
such model to predict residual demand curves. Also Vilar et al. (2012)
employed that model, but considering scalar response. Here, both models
will be considered to predict χN+1 considering scalar or functional response.
That is, when considering functional response, it predicts directly the daily
curve, while with scalar response it will predict each hour of the day sepa-
rately. The procedure will be explained �rst considering functional response
and then, indications to adapt it to scalar response are given.

The idea is to construct three regression models, one for each type of day
to predict. On the one hand, to forecast a curve corresponding to either
Sunday or Saturday information from the previous curve (i.e. from the curve
observed on previous Saturday or Friday, respectively) will be used. On the
other hand, if one wishes to forecast a curve corresponding to a weekday,
information will be taken from the curve observed on the previous weekday
(note that the previous weekday to a Monday is a Friday). Speci�cally, the
FNP model in Aneiros et al. (2013), particularized to next-day forecasting
of the daily curve of electricity demand or price χN+1 corresponding to a
Saturday, can be written as

χi+1 = m (χi) + εi+1, i+ 1 ∈ ISat, (3.3)
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where m(·) is an unknown smooth functional and εi+1 is the random func-
tional error with zero mean. Then, a prediction χ̂N+1 for the curve χN+1 can
be obtained by estimating m (χN) in (3.3). For that, the Nadaraya-Watson
type estimator

m̂FNP
h (χN) =

∑
i /i+1∈ISat

wh(χN ,χi)χi+1 (3.4)

could be used. In (3.4), the weights wh(·, ·) are constructed as

wh(χN ,χi) =
K (d(χN ,χi)/h)∑

j /j+1∈ISat K
(
d(χN ,χj)/h

) , (3.5)

where K : [0,∞) → [0,∞) is a kernel function, h > 0 is a smoothing pa-
rameter and d(·, ·) denotes a semi-metric. The interested reader can �nd
in Ferraty et al. (2011) asymptotic properties of the estimator (3.4) under
independence conditions.

Finally, if one wishes to predict the curve χN+1 corresponding to a Sun-
day or a weekday, then ISat in expressions (3.3)-(3.5) should be replaced by
ISun or I∗w, respectively. In addition, for the case of the weekday, χ∗ should
be used in (3.3)-(3.5) instead of χ.

As mentioned above, the last procedure is devoted to predict the entire
daily curve using functional response within the regression model. However,
it will be applied also considering scalar response, predicting each hour of
the day separately. Speci�cally, the functional response χi+1 is substituted
by the scalar one χi+1(j), j = 1, . . . , 24. It will be referred as �FNP sc�.

This method depends on the bandwidth, h, the semi-metric, d(·, ·), and
the kernel function, K(·). To choose h, d(·, ·) and K(·), the suggestions given
in Aneiros et al. (2013) were followed: cross-validation ideas for selecting h
and d(·, ·) (for details, see Aneiros et al. 2013) and the Epanechnikov kernel
K(t) = 3/4(1− t2)1{0≤t≤1}.

3.2.5 Semi-functional partial linear model

As noted in Section 1.5, there exist exogenous variables that could improve
the predictions of the daily curves of electricity demand and price obtained
from models that only consider endogenous variables. In this way, extensions
of the procedures given in the previous Sections 3.2.3 and 3.2.4 can be seen
in Aue et al. (2015) and Aneiros et al. (2013), respectively. This section
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focus on the extension given in Aneiros et al. (2013), applying it also with
both functional and scalar response.

The SFPL model proposed in Aneiros et al. (2013) generalizes the pre-
vious FNP model (3.3) by incorporating in the regression function a linear
component with p exogenous scalar variables. Focusing, again, on the case
where the daily curve of electricity demand or price to predict, χN+1, corre-
sponds to a Saturday, the SFPL model is constructed as

χi+1 = XT
i+1β +m (χi) + εi+1, i+ 1 ∈ ISat, (3.6)

whereXT
i+1 = (xi+1 1, . . . , xi+1 p) denotes a vector of p scalar covariates, m(·)

is a unknown smooth functional, β = (β1, . . . , βp)
T is a vector of unknown

functional parameters and εi+1 is the random functional error with zero mean.
Computing estimations β̂ and m̂ (χN) of β andm (χN), respectively, in (3.6),
the following forecast of χN+1 is obtained:

χ̂N+1 = XT
N+1β̂ + m̂ (χN) .

The estimators for β and m(·) proposed in Aneiros et al. (2013) will
be considered. Such estimators are based on both least squares and kernel
smoothing, and their expressions are

β̂h = (X̃T
h X̃h)

−1X̃T
h χ̃h (3.7)

and
m̂SFPL
h (χ) =

∑
i+1∈ISat

wh(χ,χi)
(
χi+1 −XT

i+1β̂h

)
, (3.8)

respectively. Note that it is denoted X̃h = (I −Wh)X and χ̃h = (I −
Wh)χ, where Wh = (wh(χi,χj))i+1,j+1∈ISat , X = (xi+1j)i+1∈ISat

1≤j≤p
and χ =

(χi+1)i+1∈ISat .

Similar changes as those referred at the end of the previous Section 3.2.4
should be done if, instead of predicting a curve corresponding to a Saturday,
the goal is to forecast a curve related to a Sunday or a weekday.

Again, this procedure will be applied also considering scalar response,
predicting each hour of the day separately. Speci�cally, the functional re-
sponse ,χi+1, will be changed by the scalar one, χi+1(j), j = 1, . . . , 24. It
will be referred as �SFPL sc�.
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This method depends, as the FNP model, on the bandwidth h, the semi-
metric d(·, ·) and the kernel function K(·) that are selected following the
same guidelines as in the FNP model.

The scalar covariates in the SFPL model

Several authors (see, for instance, Hyde and Hodnett (2015), Taylor and
Buizza (2003) and Taylor et al. (2006) discussed the impact of meteorolog-
ical factors (temperature, day light duration, humidity and cloud cover,. . . )
on the electricity demand. Generally, it is observed a large demand of elec-
trical heating in cold weather. As noted in Section 1.5.1, the e�ect on the
temperature on the demand is not linear and so, to include the temperature
as a covariate in the SFPL model, some transformation should be applied. In
this chapter, the HDD and CDD variables are considered (see (1.12)-(1.13)),
which exert a linear e�ect on the demand (see Figure 1.22). In summary, the
vector of scalar covariates included in the SFPL model to forecast the daily
curves of electricity demand is X = (x1, x2)

T = (HDD,CDD)T .
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Figure 3.1: Cumulative daily predicted demand against daily mean price in
Spain, year 2012.

On the other hand, when the aim is to forecast the daily curves of elec-
tricity price, both the predicted daily demand (obtained from the predicted
daily curve of demand by using the previous SFPL model) and the wind
power production (say X = (X1, X2)

T = (D,WPP )T ) will be introduced as
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scalar covariates. Note that Figure 1.23 suggests a linear e�ect of the wind
power production on the electricity price. Same happens with demand-price
as can be seen in Figure 3.1.

At this moment, it is important to highlight the fact that the covariates
included in the SFPL models are non-observed (temperature and wind power
production corresponding to the day to forecast). Thus, to put in practice
our SFPL procedure, one needs to have at hand good next-day forecasts for
the values of such covariates. On the other hand, it is known that there exist
sophisticated meteorological models giving very good forecasts for temper-
ature and wind power. Nevertheless, neither such models nor forecasts are
public. To not mask the predictive power of the SFPL model, which largely
deteriorates when not very good forecasts of these covariates are included
in it, the decision was to incorporate the ideal forecasts given by the values
themselves.

The case of a single SFPL model

The regression function in the SFPL model (3.2.5) includes a linear part.
Thus, it can be adapted to model the behaviour of the electricity demand
or price curves by means of a single model (instead of a model for each type
of day, as in the previous sections). For that, it su�ces to change ISat and
X = (X1, X2)

T in (3.6) by I0 and X = (X1, X2, X3, X4, X5)
T , respectively,

where it is denoted X3 = 1Saturday, X4 = 1Sunday and X5 = 1Monday (i.e.,
the indicators of a Saturday, a Sunday and a Monday, respectively). This
modi�cation will be applied considering only functional response due to the
computational time cost.

3.3 Forecasting in action

This section reports results related to next-day forecasting of daily curves of
electricity demand and price using the approaches described in the previous
Section 3.2. In addition, new predictors obtained from combinations of such
approaches will be considered.

Remember that electricity demand and price daily curves must be pre-
dicted for each day in year 2012, using information from the 365 previous
days.
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Treatment of outliers

The outlier detection methods presented in Chapter 2 were developed with
the aim of identify those days that may disturb the predictions based on elec-
tricity demand and price. For that purpose, the outliers detected in Section
2.5 will be considered in this prediction problem.

In order to attenuate the in�uence of the outliers in the prediction meth-
ods, they will be replaced, using weighted moving average, by the surround-
ings observations. Thus, if χ denotes an outlier, it will be substituted by the
weighted mean of the two previous and two following observations with the
corresponding weights indicated in the expression:

χ
(0.2)
−2 ←− χ

(0.3)
−1 ←− χ −→ χ

(0.3)
+1 −→ χ

(0.2)
+2

That is, the two closest observations will be averaged with weight 0.3 for
each one, and the other two using weight 0.2.

This transformation will be applied within each group of days: weekdays,
Saturday and Sunday. Therefore, if χ corresponds to a Saturday or a Sunday,
the observations included in the average will be the two previous and two
following Saturdays or Sundays, respectively. In the case of the weekdays,
only the observations belonging to the same week will be considered. Thus, if
χ corresponds to a Wednesday, the observations included in the average will
be the previous Mondays and Tuesdays and the following Thursday and Fri-
day. In other case, the number of days included will be reduced to those from
the same week as the outlier and the weight will be recalculated in proportion.

Finally, as the behaviour of the outliers may di�er from the rest of the
days, even if its e�ect is attenuated, they will be also removed from the
prediction error computation. Thus, the outliers are not included in the
prediction errors shown below.

3.3.1 Forecasting electricity demand

This section focuses on the demand case. To compare the accuracy of each
considered model and obtained forecast, χ̂N+1, from the predictors presented
in Section 3.2, the integrated absolute percentage error (IAPE) will be used:

IAPEN+1 =
1

24

∫ 24

0

APEN+1(t)dt ≈
1

24

24∑
j=1

APEN+1(j),
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where

APEN+1(t) = 100×
∣∣∣∣χ̂N+1(t)− χN+1(t)

χN+1(t)

∣∣∣∣ .
Note that the IAPE is a generalization of the APE to the continuous setting,
the APE being a measure widely used when one forecasts scalar values of
electricity demand (for instance, hourly values). Note also that the fact that
the electricity demand takes values signi�cantly higher than zero plays a
main role in the popularity of this measure.

Comparing approaches to forecast demand

Table 3.1 shows the mean IAPE of each one of the methods presented in
Section 3.2. In the case of the SFPL predictor, SFPL1 and SFPL2 refer to
the cases where three models (one for each type of day to predict) and a
single model are considered, respectively.

Table 3.1: Mean of the IAPE for the electricity demand curves by type of
day, week, quarter and year.

Weekday Saturday
Method Q1 Q2 Q3 Q4 Year Q1 Q2 Q3 Q4 Year
Naïve 4.43 5.91 4.46 6.36 5.24 7.29 8.06 5.21 13.62 8.41
ARIMA 4.66 6.14 4.45 7.02 5.52 4.97 6.23 4.42 10.00 6.30
RFPCA 4.45 5.20 4.16 6.21 4.96 6.50 7.67 4.67 13.33 7.89
FNPsc 5.08 6.09 4.78 6.59 5.60 6.11 6.74 4.28 11.08 6.94
FNP 5.26 6.06 4.69 6.40 5.58 5.82 6.06 4.29 10.85 6.64
SFPL1sc 4.58 5.91 4.34 6.40 5.27 6.02 6.15 4.31 10.30 6.59
SFPL1 4.61 5.68 4.28 6.52 5.23 5.47 5.49 4.10 9.98 6.15
SFPL2 5.26 6.17 4.41 7.36 5.76 4.43 5.18 4.21 10.14 5.86

Sunday Week
Naïve 9.08 5.62 8.94 16.50 10.10 5.50 6.18 5.21 8.84 6.39
ARIMA 6.13 6.37 6.78 10.16 7.37 4.91 6.18 4.78 7.90 5.90
RFPCA 9.81 5.20 7.78 14.02 9.25 5.51 5.55 4.75 8.35 6.00
FNPsc 9.66 6.24 6.30 11.55 8.44 5.88 6.21 4.92 7.94 6.20
FNP 8.86 6.39 5.74 10.27 7.80 5.85 6.10 4.79 7.59 6.05
SFPL1sc 10.87 6.47 6.41 11.61 8.84 5.69 6.02 4.63 7.70 5.97
SFPL1 9.60 5.77 5.94 11.36 8.17 5.45 5.67 4.49 7.70 5.78
SFPL2 8.28 6.31 6.78 8.89 7.57 5.57 6.05 4.72 7.98 6.03
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Several conclusions can be drawn from Table 3.1. On the one hand, in
Saturdays and, specially, in Sundays the errors are bigger than in the week-
days. The e�ect of the quarter of the year is also remarkable and it agrees
with the descriptive analysis in Section 1.4. Note that the worst predictions
are obtained in the last quarter, in which a bigger variance makes prediction
even more di�cult.

On the other hand, focusing on the prediction methods, one can see that,
for the case of the weekdays, the simplest naïve approach is not far away from
the others, that are much more complicated. RFPCA and FNP procedures
are competitive but, in general, they are overcome by methods SFPL1 and
SFPL2, that incorporate exogenous covariates.

Some advantages of implementing curve forecasting against scalar (i.e.
hourly) forecasting can be shown. Among the scalar predictors, the ARIMA
model gives, in general, the best hourly predictions. Furthermore, the fore-
casts obtained from models with functional response (FNP and SFPL1) im-
prove, in general, the results of those obtained from the corresponding models
with scalar one (FNP sc and SFPL1 sc). Except in the particular case of
Sundays, predictions from SFPL1 are also better than the ones obtained from
the ARIMA model.

Finally, it is worth to be noted that the computational cost to obtain the
24 forecasts for each day by means of models with functional response is much
lower than the consumed time when one uses the corresponding models with
scalar response. For instance, the time consumed by the SFPL1 sc method
is �vefold the time corresponding to the SFPL1.

Combining forecasts

Various (�ve) methods to forecast curves have been proposed in Section 3.2
and implemented above. In this situation, many authors have invited to use
a method for combining forecasts, this proposal being based on the idea that
the forecast combinations could provide better results than the individual
methods (see Timmermann (2006) and Wallis (2011)). See, in addition, Tay-
lor and Majithia (2000), Weron (2006), Taylor (2010) and Weron (2014) for
studies on combined forecasts in the context of electricity markets.

In this section, two simple methods of combined forecasts are considered.
They are as follows:
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• CF1: this is the simplest combination. It consists just in averaging the
results of all the proposed methods, allowing to o�set the excess and
default predictions for each day.

• CF2: for each group of days (weekdays, Saturday and Sunday), it aver-
ages the results from the two predictors that give the minimum yearly
mean IAPE.

Note that, due to the prediction errors obtained and the computational
cost, only functional-response methods are considered within the combina-
tions. Table 3.2 reports the combinations considered in the CF2 method,
while Table 3.3 shows the mean IAPE of the two combined procedures CF1
and CF2.

Table 3.2: Composition for combined method CF2 (electricity demand
curves).

Weekday Saturday Sunday
RFPCA + SFPL1 SFPL1 + SFPL2 FNP + SFPL2

Table 3.3: Combining forecasts. Mean of the IAPE for the electricity demand
curves by type of day, week, quarter and year.

Weekday Saturday
Method Q1 Q2 Q3 Q4 Year Q1 Q2 Q3 Q4 Year
CF1 4.29 5.36 3.99 6.00 4.87 4.96 5.43 3.94 10.90 6.17
CF2 4.35 5.25 4.10 6.18 4.93 4.75 4.81 4.04 10.00 5.77

Sunday Week
CF1 7.74 5.19 6.34 11.35 7.68 4.88 5.34 4.32 7.46 5.46
CF2 8.47 5.90 5.90 9.12 7.35 4.99 5.28 4.35 7.15 5.40

Table 3.3 suggests that, from the point of view of the weekly mean, it
is convenient to combine forecasts (note that both CF1 and CF2 methods
improve the accuracy of each of the individual procedures considered, in each
quarter as well as in the whole year). Such improvement is frequent in the
weekdays, while Sunday is the type of day in which is least advisable to make
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combinations.

Figure 3.2 shows a visual comparison of the daily errors (IAPE) of the
methods naïve, SFPL1 and CF2, while Figure 3.3 displays the curves fore-
casted from these methods for the ninth week in each quarter (from Monday
to Sunday).

Figure 3.2 suggests comparable results for the SFPL1 and CF2 methods,
the accuracy of the CF2 being slightly better. In addition, one can see that,
in general, the naïve fails in forecasting the whole year. Figure 3.3 clearly
shows the poor behaviour of the naïve method to forecast curves in weekends,
this being the reason of its poor global accuracy.
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Figure 3.2: Daily errors (IAPE) for electricity demand curves corresponding
to Naïve, SFPL1 and CF2.
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Figure 3.3: Actual demand (black lines) and predicted curves using the
naïve method (red lines), SFPL1 (green lines) and CF2 (blue lines) for the
weeks: (Up-left panel) February 27�March 4, (Up-right panel) May 28�June
3, (Bottom-left panel) August 27�September 2, and (Bottom-right panel)
November 26�December 2.
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3.3.2 Forecasting electricity price

A similar study to the previous one, but now focused on price instead of
demand, is carried out in this section. In this case, because price takes
values close (or even equal) to zero, an absolute measure of accuracy must
be considered, the integrated absolute error (IAE):

IAEN+1 =
1

24

∫ 24

0

AEN+1(t)dt ≈
1

24

24∑
j=1

AEN+1(j),

where

AEN+1(t) =
∣∣χ̂N+1(t)− χN+1(t)

∣∣ .
Comparing approaches to forecast price

Table 3.4 shows the mean IAE of each one of the methods presented in Sec-
tion 3.2. As in the previous section, SFPL1 and SFPL2 refer to the cases
where three SFPL models (one for each type of day to predict) and a single
SFPL model are considered, respectively.

Similar conclusions as those obtained in Section 3.3.1 for the demand
case are drawn from Table 3.4 for this price case: (i) the best forecasts are
obtained for the weekdays, (ii) the more di�cult quarter to predict is the
last one, (iii) the naïve approach is a simple predictor giving good results
for weekdays, and (iv) the RFPCA and FNP predictors are competitive, but
they are overcome by the procedures SFPL1 and SFPL2, which take advan-
tage from exogenous covariates.

Again, one can compare functional-response methods and predictors for
hourly price (not curve). The same notation as in Section 3.3.1 is used.
As noted from Table 3.4, contrary to what happened in the demand case,
the ARIMA approach is not better among the scalar predictors. In this case,
the method SFPL1 sc, which incorporates exogenous covariates, clearly over-
comes the other two approaches. Finally, comparing methods FNP sc and
SFPL1 sc with methods FNP and SFPL1, respectively, one observes a slight
improvement favourable to the procedures that consider functional response
(i.e. FNP and SFPL1). Remember that, in addition, these procedures re-
quire minor computational time to predict the 24 hourly prices in a day than
the scalar ones.
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Table 3.4: Mean of the IAE for the electricity price curves by type of day,
week, quarter and year.

Weekday Saturday
Method Q1 Q2 Q3 Q4 Year Q1 Q2 Q3 Q4 Year
Naïve 4.96 7.58 4.42 7.07 5.95 5.63 7.52 7.73 12.22 8.13
ARIMA 5.65 6.66 4.61 6.97 5.94 5.16 5.43 5.73 8.69 6.16
RFPCA 4.69 6.16 3.95 6.37 5.26 4.88 7.23 6.68 8.93 6.85
FNP sc 5.31 7.57 4.42 6.68 5.96 4.72 6.18 4.75 9.54 6.20
FNP 5.08 7.36 4.41 6.58 5.82 4.61 6.38 5.17 9.94 6.42
SFPL1 sc 4.80 5.63 3.72 5.00 4.77 4.38 5.43 4.94 7.81 5.56
SFPL1 4.65 5.50 3.83 5.08 4.75 3.86 5.63 4.51 7.55 5.32
SFPL2 4.45 5.57 3.74 4.47 4.61 4.13 5.51 4.67 7.01 5.27

Sunday Week
Naïve 8.29 6.92 10.35 13.79 9.90 5.53 7.48 5.74 8.76 6.83
ARIMA 6.92 5.95 7.66 11.27 7.98 5.76 6.39 5.21 7.83 6.27
RFPCA 8.11 6.95 7.34 11.44 8.47 5.21 6.43 4.83 7.46 5.94
FNP sc 7.73 7.07 7.73 12.90 8.87 5.57 7.30 4.94 7.97 6.41
FNP 7.32 6.63 7.65 14.18 8.97 5.33 7.12 4.98 8.14 6.36
SFPL1 sc 6.01 6.93 6.20 9.33 7.10 4.91 5.78 4.25 6.02 5.22
SFPL1 5.71 7.02 5.86 9.33 6.96 4.69 5.74 4.21 6.04 5.15
SFPL2 6.07 6.52 5.52 8.47 6.63 4.64 5.69 4.13 5.60 5.00

Combining forecasts

In order to improve the accuracy of the several predictors considered in the
previous section, the combined forecasts CF1 and CF2 were implemented,
constructed in a similar way as in Section 3.3.1. For any type of day, the two
predictors included in CF2 were the SFPL1 and SFPL2. Table 3.5 reports
the mean IAE of the CF1 and CF2 approaches.

As in the demand case, Table 3.5 suggests the convenience of combin-
ing predictors in order to improve the individual accuracy of each predictor.
Note, for instance, that combination CF2 gives better yearly accuracy (on
each type of day) than any individual predictor considered.

Figure 3.4 shows a visual comparison of the daily errors (IAE) of the
methods naïve, SFPL1 and CF2, while Figure 3.5 displays the curves fore-
casted from these methods for the ninth week in each quarter (from Monday
to Sunday).



104 Chapter 3. Electricity demand and price prediction

Table 3.5: Combining forecasts. Mean of the IAE for the electricity price
curves by type of day, week, quarter and year.

Weekday Saturday
Method Q1 Q2 Q3 Q4 Year Q1 Q2 Q3 Q4 Year
CF1 4.06 5.77 3.52 5.25 4.62 3.97 5.59 5.09 8.11 5.60
CF2 4.44 5.46 3.65 4.79 4.57 3.88 5.40 4.30 7.19 5.13

Sunday Week
CF1 6.07 5.72 6.62 9.73 7.05 4.34 5.74 4.18 6.30 5.11
CF2 5.84 6.59 5.51 8.53 6.60 4.56 5.61 4.01 5.66 4.94

As expected from the previous study, Figure 3.4 suggests comparable re-
sults for the SFPL1 and CF2 methods, the accuracy of the CF2 being slightly
better (again). The fail of the naïve method in forecasting the whole year is
even more clear than in the demand case. In fact, Figure 3.5 shows as the
naïve method fails even is some weekdays.
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Figure 3.4: Daily errors (IAE) for electricity price curves corresponding to
naïve, SFPL1 and CF2.
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Figure 3.5: Actual price (black lines) and predicted curves using the naïve
method (red lines), SFPL1 (green lines) and CF2 (blue lines) for the
weeks: (Up-left panel) February 27�March 4, (Up-right panel) May 28�June
3, (Bottom-left panel) August 27�September 2, and (Bottom-right panel)
November 26�December 2.
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3.4 Conclusions

New methods to address next-day forecasting of daily curves of electricity
demand and price have been successfully used for Spanish data. Aneiros,
Vilar and Raña (2016) summarize the study developed here. Four main con-
clusions were obtained: (i) to take information from exogenous covariates
improves the forecasts, (ii) combining forecasts is a simple technique giv-
ing nice improvements in the individual accuracy of di�erent methods, (iii)
hourly predictions obtained from the discretization of the predicted curves
are better than the corresponding predictions given by functional models with
scalar response, and, interestingly, (iv) the computational time to obtain such
hourly predictions from discretization is much lower than the needed time to
implement the scalar procedures.

It may be highlighted that prediction in this �eld is not an easy task and,
it is even more di�cult in the selected period of 2012. If one compares the
results given in Vilar et al. (2012), for the naïve method in the year 2008
(which is exactly the same presented here), one can see lower errors. There
are many possible reasons to justify this di�erence, looking at the economic
conditions or market and industry instability. In Figure 3.6, one can see how
the demand in 2012 becomes more unstable and, as a consequence, more
di�cult to be predicted.
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Figure 3.6: Comparison between electricity demand in Mondays for the last
quarter of 2008 (black line) and 2012 (red).

Future research includes the extension of the SFPL model to autoregres-
sions with higher order than one and/or to incorporate functional covariates
exerting linear e�ect. In addition, it could be interesting to seek for new in-
formative covariates that can enter in the SFPL model either in parametric
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or nonparametric form and also consider other regression models as, for in-
stance, generalized additive models for functional data. On the other hand,
this chapter is focused on point forecasts but it would be nice to construct
prediction bands from our functional data approaches. It that sense, the
following chapters will be focus on bootstrap procedures to build con�dence
and prediction intervals for the FNP and SFPL regression models.

Finally, it is worth being noted that the simple methods of combining
forecasts used in this paper have provided encouraging results. Thus, other
interesting future research line is the optimal selection of the weights corre-
sponding to each forecast included in the combination of forecasts.





Chapter 4

Con�dence Intervals in Functional

Nonparametric Regression

4.1 Introduction

This chapter is devoted to study the FNP regression model, when a func-
tional explanatory variable and scalar response are considered. Naïve and
wild bootstrap procedures are proposed to construct pointwise con�dence
intervals for the nonparametric regression function when the data are depen-
dent. Assuming α-mixing conditions on the sample, the asymptotic validity
of the both procedures is obtained. A simulation study shows promising
results when �nite sample sizes are used, while an application to electricity
demand data illustrates its usefulness in practice.

The asymptotic results present in this chapter represent the extension,
to the case of dependent data, of the study from Ferraty, Van Keilegom and
Vieu (2010). In that paper, they dealt with independent data and proposed
also the two bootstrap procedures to construct pointwise con�dence intervals
for the same regression model.

The chapter is organized as follows: the FNP regression model, together
with the two bootstrap procedures are presented in Section 4.2. Section 4.3
involves all the asymptotic results, including the assumptions (Subsection
4.3.1) needed to establish the main result of this chapter: the theorem giving
the validity of the two bootstrap procedures, that is stated in Subsection
4.3.2. Within this section, some preliminary results are included in Subsec-
tion 4.3.3 and the proofs of the theorems are detailed in Subsection 4.3.3. A
simulation study is carried out in Section 4.4, while Section 4.5 includes the

109
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application of the proposed procedures to electrical data from the Spanish
Electricity Market. Finally, some conclusions of this chapter are given in
Section 4.6.

4.2 The model and the bootstrap procedures

A FNP regression model is developed along this chapter. Since our main
interest falls upon functional time series, one considers the model:

G(χi+1) = m(χi) + εi (i = 1, . . . , n), (4.1)

where G(·) is a known operator and m(·) is an unknown operator to be
estimated, while χi are functional random variables and εi are zero-mean
regression errors.

The interest lies on time series prediction from the FNP model (4.1) with
scalar response (i.e. assuming that the operator G(·) is real valued), and
in which the dependence is controlled by means of some strong dependence
condition: namely the covariates χi are identically distributed functional
random variables verifying some α-mixing condition. Other less important
restrictions on this model are that the εi are i.i.d. zero-mean random errors,
and that χi are valued in some in�nite-dimensional space H, which is en-
dowed with a semi-metric d(·, ·).

Although the interest is time series prediction from Model (4.1) with
scalar response, asymptotic theory for the more general model

Yi = m(χi) + εi (4.2)

is obtained, where the process {(χi, Yi)} is α-mixing and identically dis-
tributed as (χ, Y ). In this way, the results will be valid even when the
response is exogenous. As indicated at the beginning of this chapter, the
response, Y , is scalar while the covariate, χ, is valued in some in�nite-
dimensional space, H, which is endowed with a semi-metric d(·, ·). Finally,
m(·) is an unknown smooth real-valued operator and the corresponding ran-
dom errors {εi} are i.i.d. as ε, and it is assumed that E(ε|χ) = 0 and
E(ε2|χ) = σ2

ε(χ) <∞. Let

S = {(χ1, Y1), . . . , (χn, Yn)}

denote the sample one has at hand.



4.2. The model and the bootstrap procedures 111

Given a �xed element χ in the space H, the remainder of this chap-
ter focuses on inference on m(χ) for Model (4.2). Speci�cally, the aim is
to construct con�dence intervals for m(χ). On the one hand, in the set-
ting of independent data, {(χi, Yi)}, this topic was dealt in Ferraty et al.
(2007), which obtained the asymptotic normality of a properly standardized
estimator, m̂h(χ); then, by estimating the constants involved in the stan-
dardized estimator one can construct the corresponding con�dence intervals.
The main drawback of this procedure is that such constants could be di�-
cult to estimate (for some simple examples, see Proposition 1 in Ferraty et
al., 2007). This drawback was overcome in Ferraty, Van Keilegom and Vieu
(2010) by means of bootstrapping techniques, by approximating directly the
distribution of the estimation error without having to estimate the constants
involved in the standardized estimator. On the other hand, some studies
exist in the case of dependent data, {(χi, Yi)}. For instance, Masry (2005)
and Delsol (2009) obtained the asymptotic normality of a properly standard-
ized estimator, m̂h(χ), under α-mixing conditions. The main advantage of
the results in Delsol (2009) against the ones in Masry (2005) is the fact that
Delsol obtained explicit constants, which is not the case of Masry (2005). As
in the setting of independent data, recently referred, there exist situations
where the constants given in Delsol (2009) are di�cult to estimate, and this
drawback could be overcome, again, through implementation of bootstrap
techniques. In the following, two bootstrap procedures designed for that are
presented.

The same estimator m̂h(·) of the regression function m(·) = E(Y | χ = ·)
as in Masry (2005), Ferraty et al. (2007), Delsol (2009) and Ferraty, Van
Keilegom and Vieu (2010) is considered; that is,

m̂h(χ) =

∑n
i=1K(d(χi, χ)/h)Yi∑n
i=1K(d(χi, χ)/h)

, (4.3)

where K(·) is a kernel function and h > 0 is a smoothing parameter. In
addition, we will focus on both naïve and wild bootstrap procedures, which
have been successfully used in the literature related to regression models (for
models with scalar variables, see for instance Freedman, 1981, and Mammen,
1993 for linear models, and Cao, 1991, Härdle and Marron, 1991, and Hall,
1992, for nonparametric models; the case of models with functional variables
was studied, for instance, in González-Manteiga and Martínez-Calvo, 2011,
for linear models while Ferraty, Van Keilegom and Vieu, 2010 and 2012, fo-
cused on nonparametric models).
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The algorithms for resampling proceed as follows:

Naïve bootstrap.

This procedure is designed for the case where the model is homoscedastic;
that is, σ2

ε(χ) = σ2
ε .

Step 1: Fix some pilot bandwidth b and construct the residuals ε̂i,b =
Yi − m̂b(χi), i = 1, . . . , n.

Step 2: Draw n i.i.d random variables ε∗1, . . . , ε
∗
n from the empirical dis-

tribution function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where ε̂b = n−1
∑n

i=1 ε̂i,b.

Step 3: Obtain Y ∗i = m̂b(χi) + ε∗i , i = 1, . . . , n.

Step 4: De�ne m̂∗hb(χ) =

∑n
i=1K(d(χi, χ)/h)Y ∗i∑n
i=1K(d(χi, χ)/h)

.

Wild bootstrap.

This procedure allows the possibility of heteroscedasticity, but is also
applicable in the case of homoscedasticity. All one must do is to change Step
2 in the naïve bootstrap: de�ne ε∗i = ε̂i,bVi, i = 1, . . . , n, where V1, . . . , Vn are
i.i.d. random variables that are independent of the data S and that satisfy
E(V1) = 0 and E(V 2

1 ) = 1. The other three steps are maintained.

Remark 1 As usual, when one deals with asymptotic related to bootstrap
procedures in nonparametric regression, two bandwidths are involved in both
algorithms. The �rst bandwidth, b, is used to construct the residuals to re-
sample. Then, a second bandwidth, h, is considered to smooth the bootstrap
resample. Our assumptions imposed to obtain the asymptotic validity of the
proposed bootstrap procedures require that b must be taken to be larger than
h (in the same way as in the independent case considered by Ferraty, Van
Keilegom and Vieu, 2010 and 2012; see also Cao, 1991, and Härdle and
Marron, 1991, for the scalar case).

4.3 Asymptotic theory

This section presents the main result: the asymptotic validity of the two
proposed bootstrap procedures. First, the considered assumptions are stated
and some comments on them are given. Then, the asymptotic result is stated.
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4.3.1 Assumptions

Let us start with some notation. For a given �xed element χ of the space H,
let denote:

B(χ, l) = {χ1 ∈ H such that d(χ1, χ) ≤ l},
Fχ(l) = P (χ ∈ B(χ, l)) for l > 0,

ϕχ(s) = E(m(χ)−m(χ)|d(χ, χ) = s)

τhχ(s) = Fχ(hs)/Fχ(h) for s ∈ (0, 1]

and
τ0χ(s) = lim

h↓0
τhχ(s).

In addition, let

M0χ = K(1)−
∫ 1

0

(sK(s))′τ0χ(s)ds,

M1χ = K(1)−
∫ 1

0

K ′(s)τ0χ(s)ds,

M2χ = K2(1)−
∫ 1

0

(K2(s))′τ0χ(s)ds

and
Θ(s) = max{max

i 6=j
P (d(χi, χ) ≤ s, d(χj, χ) ≤ s), F 2

χ(s)}.

As noted at the beginning of Section 4.3, the asymptotic validity of the
two proposed bootstrap procedures will be proved theoretically. For that, it
will be obtained that both the standard estimator, m̂h(χ), and the bootstrap
version, m̂∗hb(χ), (properly standardized) converge to the same distribution,
existing, in addition, a third negligible term (for details, see Section 4.3.3).
The following set of assumptions guarantees the convergence of m̂h(χ):

m(·) and σ2
ε(·) are continuous on a neighbourhood of χ; σ2

ε(χ) > 0 (4.4)

Fχ(0) = 0 and ϕχ(0) = 0 and ϕ′χ(0) exists (4.5)

∀s ∈ [0, 1], lim
n→∞

τhχ(s) = τ0χ(s) with τ0χ(s) 6= 1[0,1](s) (4.6)
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∃p > 2, ∃M > 0 such that E(|ε|p|χ) ≤M a.s. (4.7)

and

max{E(|YiYj|p|χi,χj),E(|Yi|p|χi,χj)} ≤M a.s. ∀i, j ∈ Z (4.8)

h(nFχ(h))1/2 = O(1) and lim
n→∞

nFχ(h) =∞ (4.9)

K(·) is supported on [0, 1], has a continuous derivative on [0, 1),
K ′(s) ≤ 0 for s ∈ [0, 1) and K(1) > 0

(4.10)

{(χi, Yi)}ni=1 comes from a α-mixing process with
α-mixing coe�cients α(n) ≤ Cn−a,

(4.11)

the exponent a being related with both the small ball probabilities Fχ(h) and
the number of moments p in the following way:

∃v > 0 such that Θ(h) = O(Fχ(h)1+v) with a > (1+v)p−2
v(p−2)

(with p and a introduced in (4.7) and (4.11), respectively)
(4.12)

and

∃γ > 0 such that nFχ(h)1+γ →∞ and a > max
{

4
γ
, p
p−2 + 2(p−1)

γ(p−2)

}
(with p and a introduced in (4.7) and (4.11), respectively).

(4.13)

Remark 2 Most of the assumptions (4.4)-(4.13) are standard ones in the
setting of nonparametric regression with functional data. In fact, all of them
were used in Delsol (2009) to obtain the asymptotic distribution of m̂h(χ)
under α-mixing conditions (see Theorem 28 in Appendix A). As can be seen
in Delsol (2009), assumptions (4.11)-(4.13), related to arithmetic α-mixing
coe�cients, could be changed by other more general assumptions (but less
clear). The interested reader will �nd in Delsol (2009) justi�cations of as-
sumptions (4.4)-(4.13). Finally, it is worth being noted that other sets of
assumptions to obtain the asymptotic distribution of m̂h(χ) under α-mixing
conditions could be considered. For instance, one could use the assumptions
presented in Masry (2005). Note that although the drawback of the assump-
tions given in Masry (2005) (the constants involved in the standardization
of m̂h(χ) are not explicit), actually this is not a problem when, as in this
chapter, bootstrap procedures are used.
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Now, a second set of assumptions, which should be added to the �rst one
in order to obtain the convergence of m̂∗hb(χ) and the negligible nature of the
third term to which we have referred previously, is stated:

The function E(|Y ||χ = ·) is continuous on a neighbourhood of χ,
and supd(χ1,χ)<δ E(|Y |q|χ = χ1) <∞ for some δ > 0;∀q ≥ 1

(4.14)

∀(χ1, s) in a neighbourhood of (χ, 0), ϕχ1(0) = 0, ϕ′χ1
(s) exists,

ϕ′χ1
(0) 6= 0 and ϕ′χ1

(s) is uniformly Lipschitz continuous of order
0 < α ≤ 1 in (χ1, s)

(4.15)

∀χ1 ∈ H, Fχ1(0) = 0 and Fχ1(t)/Fχ(t) is Lipschitz continuous of order
α in χ1, uniformly in t in a neighbourhood of 0

(with α introduced in (4.15))
(4.16)

∀χ1 ∈ H and ∀s ∈ [0, 1], τ0χ1(s) exists,
supχ1∈H,s∈[0,1] |τhχ1(s)− τ0χ1(s)| = o(1),

M0χ > 0, M2χ > 0, infd(χ1,χ)<εM1χ > 0 for some ε > 0,
and Mkχ1 is Lipschitz continuous of order α for k = 0, 1, 2

(with α introduced in (4.15))

(4.17)

∀n ∃rn ≥ 1, ln > 0 and curves χ1n, . . . , χrnn such that
B(χ, h) ⊂ ∪rnk=1B(χkn, ln), with rn = O(nb/h) and ln = o(b(nFχ(h))−1/2),

infd(χ1,χ)<εM1χ > 0 for some ε > 0, andMkχ1 is Lipschitz continuous
of order α for k = 0, 1, 2 (with α introduced in (4.15))

(4.18)

max{b, h/b, b1+α(nFχ(h))1/2, (Fχ(h)/Fχ(b)) log n, n1/pFχ(h)1/2 log n} = o(1),
max{bhα−1, Fχ(b)−1h/b} = O(1) and limn→∞ Fχ(b+ h)/Fχ(b) = 1

(with p and α introduced in (4.15) and (4.7), respectively)
(4.19)

a > 4.5 (with a introduced in (4.11)). (4.20)
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Remark 3 With the exception of Assumption (4.20), n1/pFχ(h)1/2 log n =
o(1) and Fχ(b)−1h/b = O(1) in Assumption (4.19), all the other assump-
tions were used in Ferraty, Van Keilegom and Vieu (2010) to obtain the
validity of the bootstrap in the independent case. Note that Assumption
(4.20) is introduced here to manage the dependence (remember that the case
dealt with in Ferraty, Van Keilegom and Vieu, 2010, was that of independent
data). Note also that such assumption together with n1/pFχ(h)1/2 log n = o(1)
and Fχ(b)−1h/b = O(1) allow to apply the Lemma 21 in Appendix A, from
Aneiros-Pérez and Vieu (2008) (see the last part in the proof of our Theo-
rem). Finally, a special attention has to be given to the part of Assumption
(4.18) related to the balls, which is only necessary to make use of the results
of uniform consistency of nonparametric regression smoothers. Therefore, it
can be weakened by changing it into any other kind of assumptions insuring
such uniform consistency (see, for instance, Ferraty, Laksaci, Tadj and Vieu
(2010) for alternative assumptions in the case of independent data; although
we do not know examples for dependent data, our feeling is that such kind of
alternative assumptions should also work in the case of dependent data).

4.3.2 Asymptotic result

Let P S denote probability, conditionally on the sample S, and let us suppose
that χ is a �xed element of the space H.

Theorem 4 Under assumptions (4.4)-(4.20), if the model is homoscedastic
(i.e. σ2

ε(·) = σ2
ε) for the naïve bootstrap procedure, one has that

sup
y∈R

∣∣∣∣P S (√nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣→ 0 a.s.

Theorem 5 Under assumptions (4.4)-(4.20), for the wild bootstrap proce-
dure, one has that

sup
y∈R

∣∣∣∣P S (√nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣→ 0 a.s.
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Remark 6 Theorems 4 and 5 extend Theorem 1 in Ferraty, Van Keilegom
and Vieu (2010) from the independent case to the dependent one. Its main
practical usefulness is related to the building of con�dence intervals for m(χ)
in a context of dependent data. As noted above, due to the (most of the times)
di�culty in estimating the constants involved in the standardization of m̂h(χ),
the asymptotic distribution of the true error m(χ)−m̂h(χ) could be useless to
construct the desired con�dence interval. Nevertheless, from these theorems
one has that the α-quantile, qα(χ), of m(χ) − m̂h(χ) can be approximated
by the α-quantile, q∗α(χ), obtained from the distribution of the bootstrapped
errors m̂b(χ) − m̂∗hb(χ). Then, because one can generate more and more
replicates (say B replicates) of such bootstrapped error, the percentile method
(for instance) allows to obtain a very good approximation, say q∗,Bα (χ), of
q∗α(χ). Finally, one can build con�dence intervals for m(χ) approximating the
(1− α)-con�dence interval Iχ,1−α = (m̂h(χ) + qα/2(χ), m̂h(χ) + q1−α/2(χ)) by

I∗,Bχ,1−α = (m̂h(χ)+q∗,Bα/2(χ), m̂h(χ)+q∗,B1−α/2(χ)). See Section 4.4 and Section 4.5
for details on the algorithms developed to construct the con�dence intervals
with simulated data of real electricity data, respectively.

4.3.3 Proofs

Preliminary proofs

Before proving our main results (Theorems 4 and 5), some preliminary lem-
mas are stated to be used in that proof. First, let us denote

Jχ =

∫ 1

0
tK(t)dP d(χ,χ)/h(t)∫ 1

0
K(t)dP d(χ,χ)/h(t)

and m̂h(χ) =
ĝh(χ)

f̂h(χ)
,

where

ĝh(χ) =

∑n
i=1K(d(χi, χ)/h)Yi

nFχ(h)
and f̂h(χ) =

∑n
i=1K(d(χi, χ)/h)

nFχ(h)
.

Furthermore, it is used the notation

A1 = −E
(
ĝh(χ)(f̂h(χ)− E(f̂h(χ)))

)
and

A2 = E
(

(f̂h(χ)− E(f̂h(χ))2m̂h(χ)
)
.

The auxiliary lemmas in Appendix A will be used, coming from di�er-
ent studies available in the literature that establish the background of our
proposal, but also the following lemmas.
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Lemma 7 Under assumptions (4.4)�(4.10) and (4.12)one has that

A1 = O((nFχ(h))−1), and A2 = O((nFχ(h))−1).

Proof. The proof of this lemma is consequence of Lemma 27 in Appendix A.

On the one hand, one has that A1 = −Cov
(
ĝh(χ), f̂h(χ)

)
; so, from Lemma

27 one obtains that A1 = O((nFχ(h))−1). On the other hand,

|A2| =
∣∣∣E((f̂h(χ)− E(f̂h(χ))2m̂h(χ)

)∣∣∣
=

∣∣∣E(E((f̂h(χ)− E(f̂h(χ))2m̂h(χ)|χ1, . . . ,χn

))∣∣∣
=

∣∣∣E((f̂h(χ)− E(f̂h(χ))2E (m̂h(χ)|χ1, . . . ,χn)
)∣∣∣

=

∣∣∣∣E((f̂h(χ)− E(f̂h(χ))2
∑n

i=1K(d(χi, χ)/h)m(χi)∑n
i=1K(d(χi, χ)/h)

)∣∣∣∣
≤ CV ar

(
f̂h(χ)

)
,

where the inequality is a consequence of assumptions (4.4) and (4.10). The
proof concludes by using, again, Lemma 27. �

Lemma 8 Under assumptions (4.4)�(4.10) and (4.12) one has that

E (m̂h(χ))−m(χ) = ϕ′χ(0)
M0χ

M1χ

h+O

(
1

nFχ(h)

)
+ o(h). (4.21)

If in addition Assumption (4.13) holds, then

V ar (m̂h(χ)) =
1

nFχ(h)

M2χ

M2
1χ

σ2
ε + o

(
1

nFχ(h)

)
. (4.22)

Proof of (4.21). This proof is based on the decomposition

E (m̂h(χ)) =
E (ĝh(χ))

E
(
f̂h(χ)

) +
A1(

E
(
f̂h(χ)

))2 +
A2(

E
(
f̂h(χ)

))2 . (4.23)

In fact, using Lemmas 17, 18 and 7 in Appendix A, the proof of (4.21) is
easily obtained following the same steps as those in the proof of (2) in Ferraty
et al. (2007). �

Proof of (4.22). In the case of independent data, this term corresponds to
(3) in Theorem 1 from Ferraty et al. (2007). The extension to our case, when
dealing with dependent data, has been studied in Theorem 7.3.1 in Delsol
(2008) giving the same expression for the variance in (4.22). �
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Lemma 9 Under assumptions (4.4)�(4.5) and (4.14)�(4.19), one has that:

V arS (m̂∗hb(χ))

V ar (m̂h(χ))
−→ 1 a.s. (4.24)

Proof This is true due to Lemmas 19 and 27 in Appendix A and Lemma
8 above. As can be seen in Ferraty, Van Keilegom and Vieu (2010), when
data in S are independent, the proof of (4.24) corresponds to its Lemma 3
and it is based on both the type of bootstrap procedure used and Lemmas
4 and 5 and Theorem 1 in Ferraty et al. (2007). On the one hand, because
the random errors εi in our model (4.1) are independent, the same bootstrap
procedures as in Ferraty et al. (2007) are considered. On the other hand,
Lemmas 19, 27 and 8 give the same results as Lemmas 4 and 5 and Theorem
1 in Ferraty et al. (2007), respectively, but under dependence conditions on
S. These facts allow to follow step by step the proof of Lemma 3 in Ferraty,
Van Keilegom and Vieu (2010) for the independent case and to conclude that
(4.24) holds under our dependence conditions on S.

Proof of Theorem 4

The proof of Theorem 4 follows the same steps as those of Theorem 1 in
Ferraty, Van Keilegom and Vieu (2010), where the case of an independent
sample S was dealt. Thus, for the sake of brevity, it will be focused on the
issues where the dependence a�ects.

First, let ES and V arS denote expectation and variance, respectively,
conditionally on the sample S, while Φ is the standard normal distribution
function. Let us write

P S
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
=

T1(y) + T2(y) + T3(y), (4.25)

where

T1(y) = P S
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

Φ

(
y −

√
nFχ(h)

(
ES (m̂∗hb(χ))− m̂b(χ)

)√
nFχ(h)V arS (m̂∗hb(χ))

)
,
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T2(y) = Φ

(
y −

√
nFχ(h)

(
ES (m̂∗hb(χ))− m̂b(χ)

)√
nFχ(h)V arS (m̂∗hb(χ))

)
−

Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)

and

T3(y) = Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
.

Each one of these terms is going to be studied separately.

First, term T3(y) is analysed. This term deals with the real regression
function (m) and its kernel estimation (m̂h), without any intervention of the
bootstrap procedure. Thus, one can apply here some results available in the
literature about the FNP regression model under dependence.

Theorem 28 in Appendix A establishes the asymptotic normality of the
same estimator, under assumptions (4.4)-(4.13):

M1χ√
M2χσ

2
ε

√
nF̂χ(h)(m̂h(χ)−m(χ)−Bn)→ N(0, 1), (4.26)

where Bn = ϕ′χ(0)M0χ

M1χ
h and F̂χ(h) = 1/n

∑n
i=1 1[d(χ,χi),∞)(t).

Lemma 8, which indicates the bias and variance of the estimator m̂h,
allows to develop the following expression:

m̂h(χ)− E (m̂h(χ))√
V ar (m̂h(χ))

=
m̂h(χ)−m(χ)−Bn +O

(
1

nFχ(h)

)
+ o(h)√

1
nFχ(h)

M2χ

M2
1χ
σ2
ε + o

(
1

nFχ(h)

) =

√
nFχ(h)

m̂h(χ)−m(χ)−Bn +O
(

1
nFχ(h)

)
+ o(h)√

M2χ

M2
1χ
σ2
ε + o (1)

=

√
nFχ(h)√
nF̂χ(h)

√
nF̂χ(h)

m̂h(χ)−m(χ)−Bn√
M2χ

M2
1χ
σ2
ε + o (1)

+
√
nFχ(h)

O
(

1
nFχ(h)

)
+ o(h)√

M2χ

M2
1χ
σ2
ε + o (1)
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where, by Lemma 2.6 in Delsol (2009) (which gives

√
nFχ(h)√
nF̂χ(h)

d−→ 1) and (4.26),

the convergence√
nFχ(h)√
nF̂χ(h)

√
nF̂χ(h)

m̂h(χ)−m(χ)−Bn√
M2χ

M2
1χ
σ2
ε + o (1)

d−→ N(0, 1)

holds. In addition from assumption (4.9) one obtains:

√
nFχ(h)

O
(

1
nFχ(h)

)
+ o(h)√

M2χ

M2
1χ
σ2
ε + o (1)

−→ 0,

which allows to conclude:

m̂h(χ)− E (m̂h(χ))√
V ar (m̂h(χ))

d−→ N(0, 1). (4.27)

Therefore,

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
=

P

(
m̂h(χ)− E (m̂h(χ))√

V ar (m̂h(χ))
≤
y −

√
nFχ(h)(E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
and thus,

T3(y) = Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
=

Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
−

P

(
m̂h(χ)− E (m̂h(χ))√

V ar (m̂h(χ))
≤
y −

√
nFχ(h)(E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
=

Φ (Xy)− P

(
m̂h(χ)− E (m̂h(χ))√

V ar (m̂h(χ))
≤ Xy

)
−→0,

where Xy =
y−
√
nFχ(h)(E(m̂h(χ))−m(χ))√
nFχ(h)V ar(m̂h(χ))

and the convergence to zero is attained

applying the asymptotic normality in (4.27). In short, it is obtained that:

T3(y) −→ 0 for any �xed value of y. (4.28)
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Then, the term T1(y) is studied. This is the equivalent to T3(y), but in
this case one deals with kernel estimator m̂b and the bootstrap estimator
m̂∗hb and works conditionally on the sample S. As in the previous case, it is
su�cient to prove that

m̂∗hb(χ)− ES (m̂∗hb(χ))√
V arS (m̂∗hb(χ))

d−→ N(0, 1), a.s., conditionally on S. (4.29)

First, using the decomposition

m̂∗hb(χ) = ĝ∗hb(χ)/f̂h(χ),

where

ĝ∗hb(χ) =

∑n
i=1K(d(χi, χ)/h)Y ∗i

nFχ(h)
,

one obtains the following equivalence:

m̂∗hb(χ)− ES (m̂∗hb(χ))√
V arS (m̂∗hb(χ))

=
ĝ∗hb(χ)/f̂h(χ)− ES

(
ĝ∗hb(χ)/f̂h(χ)

)
√
V arS

(
ĝ∗hb(χ)/f̂h(χ)

) =

(1/f̂h(χ))ĝ∗hb(χ)− 1/f̂h(χ)ES (ĝ∗hb(χ))√
1/f̂h(χ)2V arS (ĝ∗hb(χ))

=
ĝ∗hb(χ)− ES (ĝ∗hb(χ))√

V arS (ĝ∗hb(χ))
.(4.30)

That is, it is enough to study the asymptotic normality of ĝ∗hb(χ), properly
standardized. As this term, conditionally on S can be seen as a sum of
independent terms, one can prove its asymptotic normality by means of the
Liapunov's condition. That is, if one proves that:

lim
n→∞

∑n
i=1 ES |(nFχ(h))−1(Y ∗i − ES(Y ∗i ))K(d(χi, χ)/h)|3

(
√
V arS(ĝ∗hb(χ)))3

= 0 a.s. (4.31)

then, one gets:

ĝ∗hb(χ)− ES (ĝ∗hb(χ))√
V arS (ĝ∗hb(χ))

d−→ N(0, 1) a.s.

and, as a consequence of (4.30), also (4.29) will be ful�lled.
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First, the numerator of the condition (4.31) is studied using the de�nition
of ĝ∗hb(χ):

n∑
i=1

ES |(nFχ(h))−1(Y ∗i − ES(Y ∗i ))K(d(χi, χ)/h)|3 =

(nFχ(h))−3
n∑
i=1

K3(d(χi, χ)/h)ES |(Y ∗i − ES(Y ∗i ))|3 =

(nFχ(h))−3ES |(Y ∗1 − ES(Y ∗1 ))|3
n∑
i=1

K3(d(χi, χ)/h) = O((nFχ(h))−2) a.s.

Note that it has been used the fact that, conditioned to S, Y ∗i (i = 1, . . . , n)
are identically distributed, as well as ES |Y ∗1 − ES(Y ∗1 )|3 = O(1) a.s. and∑n

i=1K
3(d(χi, χ)/h)) = O(nFχ(h)) a.s.

Let's prove that ES |(Y ∗1 − ES(Y ∗1 ))|3 is bounded a.s. On the one hand,
one has that

ES |(Y ∗1 − ES(Y ∗1 ))|3 = ES |ε∗1|3 = n−1
n∑
i=1

∣∣∣ε̂i,b − ε̂b∣∣∣3 . (4.32)

On the other hand, it veri�es that

ε̂i,b = εi +m(χi)− m̂b(χi) = εi + o(1) a.s. uniformly in i. (4.33)

(Note that from the results in Ferraty and Vieu (2004) one has the uniform
convergence of m̂b).
In addition, the Strong Law of Large numbers gives

n−1
n∑
i=1

εi → 0 a.s. and n−1
n∑
i=1

|εi|3 → E(|εi|3)a.s.

Finally, (4.32), (4.33) and (4.3.3) give that ES |(Y ∗1 − ES(Y ∗1 ))|3 is bounded
a.s.

Now we prove that

n∑
i=1

K3(d(χi, χ)/h)) = O(nFχ(h)) a.s. (4.34)

For that, the following result plays a main role:

#{i = 1, . . . , n;χ ∈ B(χi, h)} = O(nFχ(h)) a.s. (4.35)
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(For details on (4.35), consider (31) in Ferraty and Vieu (2004) with uniform
kernel in [0, 1]). Finally, (4.35) together with the fact that K is bounded
with support [0, 1], give (4.34).

In order to study the denominator of the Condition (4.31), it is enough
to consider Lemma 9 and (4.22) in Lemma 8 to get that

V arS(m̂∗hb(χ)) = O((nFχ(h))−1) a.s.

and, as a consequence:

(V arS(ĝ∗hb(χ)))3/2 = O((nFχ(h))−3/2) a.s.

Using together the results for numerator and denominator one obtains
that the expression in (4.31) is O((nFχ(h))−1/2) = o(1) a.s. by assumption
(4.9).

As a consequence, it is obtained that

T1(y) −→ 0 a.s. for any �xed value of y. (4.36)

Now, from (4.28), (4.36), noting that the uniform convergence for any
y ∈ R follows from Polya's theorem (see Theorem 26 in Appendix A) together
with the continuity of the function Φ, one has that:

sup
y∈R
|T1(y)|+ sup

y∈R
|T3(y)| → 0 a.s. (4.37)

Finally, it remains to study the term T2(y). Using the fact that, for any
a ∈ R and c > 0,

sup
y∈R
|Φ(a+ cy)− Φ(y)| ≤ |a|+ max{c, c−1} − 1,

and considering

a =

√
nFχ(h)

(
E (m̂h(χ))−m(χ)− ES (m̂∗hb(χ)) + m̂b(χ)

)√
nFχ(h)V arS (m̂∗hb(χ))

and

c =

√
V ar (m̂h(χ))

V arS (m̂∗hb(χ))
,
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one has that

sup
y∈R
|T2(y)| ≤

∣∣∣∣∣
√
nFχ(h)

(
E (m̂h(χ))−m(χ)− ES (m̂∗hb(χ)) + m̂b(χ)

)√
nFχ(h)V arS (m̂∗hb(χ))

∣∣∣∣∣
+ max

{√
V ar (m̂h(χ))

V arS (m̂∗hb(χ))
,

√
V arS (m̂∗hb(χ))

V ar (m̂h(χ))

}
− 1. (4.38)

From (4.38) one has that, in order to obtain

sup
y∈R
|T2(y)| → 0 a.s., (4.39)

it is su�cient to prove the next expression related to the numerator of a, as
all the other terms are negligible by Lemma 9 (for the term c) together with
the statement (4.22) in Lemma 8 (for the denominator in a),∣∣∣∣√nFχ(h)

(
E (m̂h(χ))−m(χ)− ES (m̂∗hb(χ)) + m̂b(χ)

)∣∣∣∣→ 0 a.s. (4.40)

For that, let us consider the following decomposition:

ES (m̂∗hb(χ))− m̂b(χ) = ES
(
ĝ∗hb(χ)/f̂h(χ)− m̂b(χ)

)
=

(nFχ(h))−1

f̂h(χ)

n∑
i=1

(m̂b(χi)− m̂b(χ))K(d(χi, χ)/h) =

(nFχ(h))−1

f̂h(χ)

n∑
i=1

(m̂b(χi)− m̂b(χ)± E(m̂b(χi)) ±

E(m̂b(χ))±m(χi)±m(χ))K(d(χi, χ)/h) =

= U1 + U2 + U3, (4.41)

where

U1 =
(nFχ(h))−1

f̂h(χ)

n∑
i=1

(m̂b(χi)− m̂b(χ)− E (m̂b(χi)) + E (m̂b(χ)))K(d(χi, χ)/h),

U2 =
(nFχ(h))−1

f̂h(χ)

n∑
i=1

(E (m̂b(χi))− E (m̂b(χ))−m(χi) +m(χ))K(d(χi, χ)/h)

and
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U3 =
(nFχ(h))−1

f̂h(χ)

n∑
i=1

(m(χi)−m(χ))K(d(χi, χ)/h).

By means of similar techniques as those used in Ferraty and Vieu (2004)
to obtain the rate of convergence of m̂h(χ), it is easy to show that

U3 = E(m̂h(χ))−m(χ) + o ((nFχ(h)))−1/2 a.s. (4.42)

Next step will be to prove that

U2 = o ((nFχ(h)))−1/2 a.s. (4.43)

Taking into account that χi are identically distributed, together with the

convergence of f̂h(χ) (Lemma 2.6 in Delsol, 2009) and (4.35), one has that
(4.43) is true if one checks:

sup
d(χ1,χ)≤h

|E(m̂b(χ1))− E(m̂b(χ))−m(χ1) +m(χ)| = o ((nFχ(h)))−1/2 a.s.

(4.44)
From a slight modi�cation in the proof of Lemma 8 one obtains the next

expression for (4.44):

|E(m̂b(χ1))− E(m̂b(χ))−m(χ1) +m(χ)| =

|ϕ′χ1
(0)

M0χ1

M1χ1

− ϕ′χ(0)
M0χ

M1χ

|b+O

(
1

nFχ1(b)

)
+O

(
1

nFχ(b)

)
+

O(b1+α). (4.45)

Note that last term O(b1+α) is used instead of o(b) in Lemma 8. This is
possible due to the next development considering the decomposition (4.23)
and following the proof of Lemma 17 in Appendix A

E (ĝb(χ))

E
(
f̂b(χ)

) −m(χ) = (. . .) =
E (ϕχ(d(χi, χ))K(d(χi, χ)/b))

E (K(d(χi, χ)/b))
, (4.46)

but, focusing now on the numerator of the last expression:∫
ϕχ(t)K(t/b)dP d(χi,χ)(t) =

∫
ϕχ(bt)K(t)dP d(χi,χ)/b(t),

where one can apply Taylor expansion of order zero in a neighbourhood of
zero:

∃x′ ∈ (0, bt);ϕχ(bt) = ϕχ(0) +
ϕ′χ(x′)

1
(bt− 0) = ϕ′χ(x′)bt =

ϕ′χ(x′)bt± ϕ′χ(0)bt = ϕ′χ(0)bt+ (ϕ′χ(x′)− ϕ′χ(0))bt.
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Applying Assumption (4.15) one has that

|ϕ′χ(x′)− ϕ′χ(0)|bt ≤ c|x′ − 0|αbt ≤ c|bt|αbt = c(bt)α+1

and thus:∫
ϕχ(bt)K(t)dP d(χi,χ)/b(t) =∫
ϕ′χ(0)btK(t)dP d(χi,χ)/b(t) +

∫
(ϕ′χ(x′)− ϕ′χ(0))btK(t)dP d(χi,χ)/b(t) =∫

ϕ′χ(0)btK(t)dP d(χi,χ)/b(t) +O(bα+1), (4.47)

using in last inequality that
∫
tα+1K(t)dP d(χi,χ)/b(t) is bounded.

Applying (4.47) into the numerator of (4.46), together with Lemma 8,
one obtains the expression involved into (4.45).

Now, in order to get (4.44) it only remains to verify that the order of the
remaining terms maintains uniformly ∀χ1/d(χ1, χ) ≤ h and this can be done
following the proof of Lemma 5 in Ferraty, Van Keilegom and Vieu (2010)
as dependence does not a�ect these terms.

Finally, it is necessary to study the term U1. Again, one will obtain
U1 = o ((nFχ(h)))−1/2 a.s. via the following result:

sup
d(χ1,χ)≤h

|m̂b(χ1)− m̂b(χ)− E(m̂b(χ1)) + E(m̂b(χ))| = o ((nFχ(h)))−1/2 a.s.

(4.48)
The expression involved in (4.48) can be also decompose in several terms,

focusing on the most complicated one, which is

ĝb(χ1)− ĝb(χ)− E(ĝb(χ1)) + E(ĝb(χ)).

Applying assumption (4.18), it is known that the ball B(χ, h) can be covered
by rn balls B(χkn , ln) and so:

sup
d(χ1,χ)≤h

|ĝb(χ1)− ĝb(χ)− E(ĝb(χ1)) + E(ĝb(χ))| ≤

max
1≤k≤rn

|ĝb(χkn)− ĝb(χ)− E(ĝb(χkn)) + E(ĝb(χ))|+

+ max
1≤k≤rn

sup
χ1∈B(χkn ,ln)

|ĝb(χkn)− ĝb(χ1)− E(ĝb(χkn)) + E(ĝb(χ1))| =

V1 + V2. (4.49)
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Note that Fχkn (b) can be replaced by Fχ(b). Let us de�ne, for i = 1, . . . , n
and k = 1, . . . , rn:

Zik = (Fχ(b))−1Yi{K(d(χi, χ)/b)−K(d(χi, χkn)/b)}. (4.50)

Using assumptions (4.16), (4.17) and knowing that

E(K(d(χi, χ)/b)) =

∫
K(t)dP d(χi,χ)/b(t) =

K(1)Fχ(b)−
∫ 1

0

K ′(s)Fχ(bs)ds = Fχ(b)

(
K(1)−

∫ 1

0

K ′(s)
Fχ(s)

Fχ(b)
ds

)
=

Fχ(b)

(
K(1)−

∫ 1

0

K ′(s)τb(s)ds

)
−→

Fχ(b)

(
K(1)−

∫ 1

0

K ′(s)τ0(s)ds

)
= Fχ(b)M1χ

and

E(K2(d(χi, χ)/b)) =∫
K2(t)dP d(χi,χ)/b(t)K2(1)Fχ(b)−

∫ 1

0

(K2)′(s)Fχ(bs)ds =

Fχ(b)

(
K2(1)−

∫ 1

0

(K2)′(s)
Fχ(s)

Fχ(b)
ds

)
=

Fχ(b)

(
K2(1)−

∫ 1

0

(K2)′(s)τb(s)ds

)
−→

Fχ(b)

(
K2(1)−

∫ 1

0

(K2)′(s)τ0(s)ds

)
= Fχ(b)M2χ,

one gets that
E(|Zik|r) = O([Fχ(b)−1h/b]r−1)∀r ≥ 2.

Then, assuming that Fχ(b)−1h/b < C, one can apply Lemma 21 resulting:

V1 = max
1≤k≤rn

∣∣∣∣∣
n∑
i=1

n−1(Zik − E(Zik))

∣∣∣∣∣ = Oa.s.

(
n−1/2+1/p log n

)
=

o
(

(nFχ(h))−1/2
)

a.s.

where the last equality comes from n1/pFχ(h)1/2 log n = o(1).
Also

V2 = o
(

(nFχ(h))−1/2
)

a.s.
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(as the steps of the proof of Lemma 6 in Ferraty, Van Keilegom and Vieu
(2010) can be followed here) and so,

U1 = o ((nFχ(h)))−1/2 a.s.

Gathering all the results involving expression (4.41) one can conclude
that:

ES (m̂∗hb(χ))− m̂b(χ) = E(m̂h(χ))−m(χ) + o ((nFχ(h)))−1/2

which implies that (4.40) is true and so it is (4.39), which concludes the proof
of the Theorem. �

Proof of Theorem 5

The proof for Theorem 5 follows the same steps as the one for Theorem 4
for the naïve bootstrap. As can be seen in Ferraty, Van Keilegom and Vieu
(2010), there exists a di�erence between the proof of Theorem 4 and Theorem
5 under each bootstrap procedure. That di�erence a�ects the proof of Lemma
9. However, as it can be seen in the proof of the mentioned Lemma 9, it holds
under dependence conditions for both bootstrap procedures, reasoning as in
Ferraty, Van Keilegom and Vieu (2010) making use of our Lemmas 19, 27
and 8 and following, step by step, the proof of (9) given in Ferraty et al.
(2007) (for the independent case). Thus, once Lemma 9 holds under both
bootstrap procedures, one can apply the same proof of Theorem 4 to our
Theorem 5. �
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4.4 Simulation study

This section is devoted to illustrate, when �nite sample sizes are used, the
accuracy of the con�dence interval for m(χ) constructed from the proposed
bootstrap methodology. For that, such interval will be compared with the
true (and, in practice, unknown) con�dence interval. In addition, to show
the behaviour of our bootstrap interval against that of the interval obtained
from the asymptotic distribution of m̂h(χ), some results for the asymptotic
interval will be given. Because of its generality, it will be focused on the wild
bootstrap procedure.

In a �rst example smooth curves are considered, while in a second one
the case of rough curves is dealt.

4.4.1 Building the con�dence intervals

Given a curve χ and a model

Yi = m(χi) + εi (i = 1, . . . , n), (4.51)

where the process {(χi, Yi)} is α-mixing and identically distributed as (χ, Y ),
and χ is observed from χ, the true, bootstrap and asymptotic (1 − α)-
con�dence intervals for m(χ) were constructed as

I trueχ,1−α = (m̂h(χ) + qtrueα/2 (χ), m̂h(χ) + qtrue1−α/2(χ)),

I∗χ,1−α = (m̂h(χ) + q∗α/2(χ), m̂h(χ) + q∗1−α/2(χ))

and
Iasympχ,1−α = (m̂h(χ) + qasympα/2 (χ), m̂h(χ) + qasymp1−α/2(χ)),

respectively, where the quantiles qtruep (χ), q∗p(χ) and qasympp (χ) were computed
in the following way:

• Theoretical quantiles (qtruep (χ)).

1. Generate nMC samples {(χsi , Y s
i ), i = 1, . . . , n}nMC

s=1 from
Model (4.51).

2. Carry out nMC estimates {m̂s
h(χ)}nMC

s=1 , where m̂
s
h(·) is the func-

tional kernel estimator (4.3) derived from the sth sample
{(χsi , Y s

i )}ni=1.

3. Compute the set of approximation errors
ERRORS.MC = {m(χ)− m̂s

h(χ)}nMC

s=1 .
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4. Compute the theoretical quantile, qtruep (χ), from the quantile of
order p of ERRORS.MC.

• Bootstrap quantiles (q∗p(χ)).

1. Generate the sample S = {(χ1, Y1), . . . , (χn, Yn)} from Model
(4.51).

2. Compute m̂b(χ) over the dataset S.
3. Repeat B times the bootstrap algorithm over S by using i.i.d.

random variables, Vi, drawn from mixture of the two Dirac distri-
butions 0.1(5 +

√
5)δ(1−

√
5)/2 + 0.1(5−

√
5)δ(1+

√
5)/2, giving the B

bootstrap estimates
{m̂∗,rhb (χ)}Br=1.

4. Compute the set of bootstrap errors
ERRORS.BOOT = {m̂b(χ)− m̂∗,rhb (χ)}Br=1.

5. Compute the bootstrap quantile, q∗p(χ), from the quantile of order
p of ERRORS.BOOT .

• Asymptotic quantiles (qasympp (χ)).

1. Generate the sample S = {(χ1, Y1), . . . , (χn, Yn)} from Model
(4.51).

2. Use the sample S to estimate the constants Fχ(h), M1χ, M2χ and
σε as suggested in Delsol (2009), pages 18 and 20.

3. Compute the asymptotic quantile, qasympp (χ), from the quantile of
order p of the corresponding normal distribution.

Finally, the estimate m̂h(χ) needed for each of the three intervals was ob-
tained from S.

The quadratic kernel, K(u) = 1.5(1 − u2)1[0,1](u), was considered in the
estimates m̂h and m̂∗hb, while the bandwidth b = bCV was selected by means
of the cross-validation methodology. Then, h = bCV was set.

4.4.2 Model 1: smooth curves

The �rst simulated model, Model 1, is based on the one used in Delsol (2009),
where smooth curves χ were considered. Some modi�cations were included
to adapt his model to our context. Speci�cally, the discretized functional
covariate in Model 1 was
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χi(tj) = cos(ai + π(2tj − 1)), (4.52)

where {ai} comes from AR(1) gaussian process with correlation coe�cient
ρa = 0.7 and variance σ2

a = 0.05. Values 0 = t1 < t2 < · · · < t99 < t100 = 1
equally spaced were considered. The regression operator was

m(χ) =
1

2π

∫ 3/4

1/2

(χ′(t))2dt

while the errors {εi} were independent centered gaussians of variance equal
to 0.1 times the empirical variance of {m(χ1), . . . ,m(χn)}.
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Figure 4.1: Left panel: �rst 50 curves in a training sample S (n = 250 was
considered) generated from Model 1. Right panel: �rst derivative of the
curves in S, together with the �rst derivative of the curves χ41 and χ94 (in
red) in the test sample C.

Note that Model 1 deals with smooth curves (see left panel in Figure 4.1),
this fact suggesting the use of a semi-metric based on some derivative of the
curve (for details, see Section 13.6 in Ferraty and Vieu, 2006). Speci�cally,
as recommended in Delsol (2009), the semi-metric (dderiv1 (·, ·)) considered in
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Model 1 was based on the �rst derivative of the curve:

dderiv1 (χi,χj) =

√∫ 1

0

(χ′i(t)− χ′j(t))2dt.

True, bootstrap and asymptotic (1−α)-con�dence intervals form(χ) with
χ ∈ C were computed and compared. The test sample C = {χ1, . . . , χnC},
consisting in nC independent curves, was generated in the following way: �rst,
nC independent functional time series were obtained from the process {χi}
de�ned in (4.52); then, a curve χ was selected at random in each of such nC
functional time series. Note that from the procedure explained in the previ-
ous Section 4.4.1 one obtains one (1−α)-con�dence interval of each type for
m(χ): true (I trueχ,1−α), bootstrap (I∗χ,1−α) and asymptotic (Iasympχ,1−α ) con�dence
intervals. To compare the accuracy of each type of interval, the empirical
coverages are obtained by repeating the procedure M times and computing
the proportion of times that each interval contains the value m(χ).

Values nMC = 2000, B = 500, nC = 100, M = 500, 1 − α = 0.95, 0.90
and n = 100, 250 were considered.

Table 4.1 reports the average over C of the empirical coverage of the three
computed con�dence intervals. As expected, the accuracy of the coverages
improves as the sample size, n, increases. In addition, coverages of the boot-
strap intervals are closer to the theoretical coverages than the corresponding
to the asymptotic intervals.

Table 4.1: Average over C of the empirical coverage of the true, bootstrap
and asymptotic con�dence intervals for Model 1. Standard deviation appears
in brackets.
1− α 0.95 0.90
n 100 250 100 250
Coverage (I true) 0.946 (0.01) 0.951 (0.01) 0.896 (0.02) 0.903 (0.02)
Coverage (I∗) 0.890 (0.12) 0.921 (0.08) 0.849 (0.12) 0.877 (0.08)
Coverage (Iasymp) 0.852 (0.14) 0.898 (0.11) 0.794 (0.14) 0.842 (0.12)

Figure 4.2 shows a comparison of the empirical coverages of I trueχ,1−α, I
∗
χ,1−α

and Iasympχ,1−α for each χ ∈ C. On the one hand, this �gure clearly re�ects the
underestimation of the coverage by the asymptotic intervals, this fact be-
ing attenuated by the bootstrap ones. Therefore, at least in this example,
bootstrap methodology is a nice alternative to the asymptotic one. On the
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other hand, focusing on the empirical coverages by the bootstrap intervals,
it is remarkable the presence of two con�dence intervals with poor empiri-
cal coverages. Speci�cally, they correspond to m(χ41) and m(χ94) (χi ∈ C,
i = 41, 94).
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Figure 4.2: Empirical coverage of the true, bootstrap and asymptotic con�-
dence intervals for Model 1 for each χ ∈ C (values 1− α = 0.95 and n = 250
are considered). Solid line is located at a height 1− α.

In an attempt to �nd the reasons of those poor behaviours, Figure 4.1
(right panel) shows the �rst derivative of the curves in a training sample S,
together with the �rst derivative of the curves χ41 and χ94 in the test sample
C. It seems that χ41 and χ94 are atypical curves respect to S. As attested
from Figure 4.3 (left panel), this fact causes poor predictions for m(χ41) and
m(χ94) and, therefore, poor con�dence intervals.

Figure 4.3 (right panel) reports, for each χ ∈ C, the con�dence intervals
obtained by means of the bootstrap methodology (using the training sam-
ple S referred in the previous paragraph). True con�dence intervals are also
shown. Except for the cases of the atypical curves χ41 and χ94, bootstrap
intervals are close to the true ones.

In addition to the coverage, also the estimated density for the approx-
imation errors is compared. For that, we denote by f̂true,χ(·), f̂∗,χ(·) and

f̂asymp,χ(·) the corresponding theoretical, bootstrap and asymptotic densities.
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Figure 4.3: Left panel: predicted values (m̂h(χ)) (from a training sample S
from Model 1) for each χ ∈ C vs true values (m(χ)). Full circles (in red)
correspond to the atypical curves χ41 and χ94 ∈ C (n = 250 was considered).
Right panel: for each curve χ in C, the vertical line represents the bootstrap
con�dence interval for m(χ) obtained from S, while the dots delimit the true
con�dence interval (1 − α = 0.95 was considered). In addition, the hollow
circle locates the regression value m(χ). Outputs for the atypical curves are
coloured in red.

Figure 4.4 displays the estimated densities for the three di�erent approx-
imation errors over four curves in C. The �rst thing one can see in this �gure
is that both bootstrap and asymptotic curves well approach the true density.
In the �rst plot, the asymptotic density is almost the same as the true one,
and also in other two plots the asymptotic density seems to approximate bet-
ter the true density than the bootstrapped density. It is now important to
remember that, even if the whole density seems to be a good approximation,
the real importance when dealing with con�dence intervals is to obtain good
approximations for the quantiles. Then, the key point is to better approxi-
mate the tails and not only the central part of the density.

Taking into account jointly the density estimation and the empirical cov-
erage, we can see that the bootstrap procedure performs reasonable, due to
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the trade-o� between quantile and density estimation. The analysis will fo-
cus now in the true and the bootstrap errors densities in Figure 4.5, in which
the comparison is given for eight curves in C. It includes also the variational
distances between f̂true,χ(·) and f̂∗,χ(·) for those selected χ ∈ C. Note that
such distance is de�ned as

distχ = 0.5

∫ ∣∣∣f̂true,χ(t)− f̂∗,χ(t)
∣∣∣ dt. (4.53)

Finally, Figure 4.6 displays a boxplot of the variational distances for all
χ ∈ C, indicating that the true errors can be well approximated by the
bootstrapped errors.
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Figure 4.4: Estimated densities of the true error (black line), the boot-
strapped error (red line) and the asymptotic error (green line), for four curves
in C.
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Figure 4.5: Estimated densities of the true error (black line) and the boot-
strapped error (red line), for eight curves in C.
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4.4.3 Model 2: rough curves

To provide further evidence of the interest of our methodology, a second
example, dealing with rough curves, is given. Speci�cally, in Model 2 the
discretized functional covariate was

χi(tj) = b1i cos(b2itj) +

j∑
k=1

Bik/b,

where b = 5, {b1i} and {b2i} came from AR(1) and MA(1) gaussian processes
with parameters ρb1 = 0.9 and θb2 = −0.5, respectively, and variances σ2

b1
=

σ2
b2

= 0.1. Bik were i.i.d. realizations of N(0, σ) with σ = 0.1 and 0 =
t1 < t2 < · · · < t99 < t100 = π were 100 equally spaced measurements. The
regression operator was

m(χ) =

∫ π

0

(χ(t))2dt

and the errors were generated as in Model 1.
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Figure 4.7: Left panel: �rst 50 curves in a training sample S (n = 250 was
considered) generated from Model 2. Right panel: curves in S together with
the curves χ20, χ28, χ39 and χ75 in the test sample C.
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Figure 4.7 (left panel) shows some sequential curves corresponding to a
functional time series generated from Model 2.

Note that Model 2 adapts the model considered in Ferraty, Van Keilegom
and Vieu (2012) to a setting of both scalar response and dependent curves.
As recommended in that paper, the semi-metric (dproj4 (·, ·)) was based on
the projection on the four eigenvectors, v1(·), . . . , v4(·), associated with the
four largest eigenvalues of the empirical covariance operator of the functional
predictor χ:

dproj4 (χi,χj) =

√√√√ 4∑
k=1

(∫ π

0

(χi(t)− χj(t))vk(t)dt
)2

. (4.54)

Table 4.2 reports the average over C of the empirical coverage of the three
computed con�dence intervals. The accuracy of the coverages improves as the
sample size, n, increases. Coverages of both the bootstrap and the asymptotic
intervals are worse than the ones obtained in the previous example of smooth
curves, this fact showing the di�culties of the inference when dealing with
curves with higher variability. In any case, bootstrap intervals continue to
be better than the asymptotic ones (at least in this example).

Table 4.2: Average over C of the empirical coverage of the true, bootstrap
and asymptotic con�dence intervals for Model 2. Standard deviation appears
in brackets.
1− α 0.95 0.90
n 100 250 100 250
Coverage (I true) 0.950 (0.01) 0.949 (0.01) 0.903 (0.02) 0.897 (0.02)
Coverage (I∗) 0.804 (0.18) 0.889 (0.07) 0.774 (0.18) 0.861 (0.07)
Coverage (Iasymp) 0.755 (0.17) 0.818 (0.06) 0.693 (0.16) 0.750 (0.06)

Figure 4.8 compares the empirical coverages of I trueχ,1−α, I
∗
χ,1−α and Iasympχ,1−α

for each χ ∈ C. The underestimation of the coverage by the asymptotic inter-
vals is clearly shown in this �gure, this fact being attenuated by the bootstrap
ones (as in the case of Model 1). Therefore, at least in this example, boot-
strap methodology is a nice alternative to asymptotic one. Focusing on the
empirical coverages by the bootstrap intervals, it is noted, again, the pres-
ence of some (four) con�dence intervals with poor empirical coverages. They
correspond tom(χ20), m(χ28), m(χ39) andm(χ75) (χi ∈ C, i = 20, 28, 39, 75).
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Figure 4.8: Empirical coverage of the true, bootstrap and asymptotic con-
�dence intervals for Model 2 when values 1 − α = 0.95 and n = 250 are
considered. Solid line is located at a height 1− α.
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Figure 4.9: Left of the vertical line: scores of the �rst (left panel) and second
(right panel) principal component of the curves in a training sample S (sam-
ple size n = 250). Right of the vertical line: scores of the curves in the test
sample S. Full circles correspond to the curves χ20, χ28, χ39 and χ75 ∈ C.



4.4. Simulation study 141

Figure 4.9 shows the scores of the �rst (left panel) and second (right
panel) principal components of the curves in a training sample S. The scores
corresponding to the curves in the test sample C are also included. This
�gure shows that the scores of the �rst principal component of χ20 and χ39

are atypical with respect to the scores of the curves in the training sample.
The same occurs for the scores of the second principal component of χ28 and
χ75. Note that the atypical behaviour of these four curves is supported by
Figure 4.7 (right panel), which shows the curves in S together with χ20, χ28,
χ39 and χ75.
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Figure 4.10: Left panel: predicted values (m̂h(χ)) (from a training sample
S from Model 2) for each χ ∈ C vs observed values (m(χ)). Full circles
correspond to the atypical curves χ20, χ28, χ39 and χ75 ∈ C (n = 250 was
considered). Right panel: for each curve χ in C, the vertical line represents
the bootstrap con�dence interval obtained from S, while the dots delimit
the true con�dence interval (1− α = 0.95 was considered). In addition, the
hollow circle locates the regression value m(χ). Outputs in colour other than
black correspond to the atypical curves.
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Figure 4.10 (left panel) displays the points (m(χ), m̂h(χ)) for χ ∈ C. The
expected poor estimation of m(χ) in (three of the four) atypical curves χi,
i = 20, 28, 39, 75 is attested from such �gure, this fact causing the poor be-
haviour of the con�dence intervals associated to those curves.

Figure 4.10 (right panel) reports, for each χ ∈ C, the con�dence intervals
obtained by means of the bootstrap methodology (using the training sam-
ple S referred in a previous paragraph). True con�dence intervals are also
shown. Excepting the cases of the atypical curves, bootstrap intervals are
close to the true ones.
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Figure 4.11: Estimated densities of the true error (black line), the boot-
strapped error (red line) and the asymptotic error (green line), for four curves
in C.
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This analysis �nishes comparing again the estimated densities for the ap-
proximation errors. Figure 4.11 displays the estimated densities for the three
di�erent approximation errors over four curves in C. Comparing with Figure
4.4 for the smooth curves, the density approximation seems to be worse when
dealing with the rough curves due to the higher variability. However, we can
see again that both bootstrap and asymptotic errors are a good approach for
the true density, except the second plot in which both behaves badly.

The comparison focuses among the true and the bootstrap errors in Fig-
ure 4.12, in which the comparison is given for eight curves in C. It includes
also the variational distances de�ned in (4.53) between f̂true,χ(·) and f̂∗,χ(·)
for those selected χ ∈ C. As expected, the individual distances are now higher
than the ones obtained with smooth curves, but the bootstrap density still
behaving correctly.

Finally, Figure 4.13 displays the boxplot of the variational distances for
all χ ∈ C, indicating that the true errors can be well approximated by the
bootstrapped errors, even if this distance is now higher than in Figure 4.6.
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Figure 4.12: Estimated densities of the true error (black line) and the boot-
strapped error (red line), for eight curves in C.
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Figure 4.13: Boxplot of the variational distances between f̂true,χ(·) and f̂∗,χ(·).

4.5 Application to electricity data

This section applies the methodology proposed in this chapter to the con-
struction of con�dence intervals for the mean hourly electricity demand/price
in Spain given the daily curve of electricity demand/price in the previous day.
As in the simulation study presented in Section 4.4, the wild bootstrap proce-
dure will be considered. 1000 bootstrap replicates were drawn, the quadratic
kernel was used and equal smoothing parameters h = b = bCV were consid-
ered, where bCV was selected from a cross-validation method. In addition,
the class of projection-based semi-metrics {dprojv (·, ·)}v (see (4.54) for the case
of v = 4) was considered, the quantity of eigenvectors v being also chosen
from cross-validation. The con�dence level considered was 1− α = 0.95.

4.5.1 Case study: electricity demand

It is known that electricity demand shows vastly di�erent patterns on work-
days, public holidays and weekend (for details see Section 1.4). Thus, in
order to accommodate this fact to model (4.2), only workdays are consid-
ered; in addition, to avoid (or attenuate) the e�ect that abrupt changes in
temperature exert on electricity demand, our database was reduced to the
second quarter of the year 2012. In summary, our database, B, consists in
the workdays of the second quarter of the year 2012. Each daily functional
datum, χi, comes from the 24 hourly observations of electricity demand in
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Spain for each day in our database.

In the following, two applications are presented. In the �rst one, the mean
hourly electricity demand is estimated for each hour in a �xed day, while in
the second application it is estimated for a �xed hour in di�erent days.

In the �rst application, bootstrap con�dence intervals were built for each
mean hourly electricity demand corresponding to the last day in the database
(Friday, June 29, 2012) given the daily curve of electricity demand in the
previous day. Therefore, 24 con�dence intervals need to be computed. The
interval corresponding to the hour t = 1, . . . , 24 was based on the regression
model

χi+1(t) = m
(1)
t (χi) + ε

(1)
i,t (i = 1, . . . , n); (4.55)

that is, to do inference on the mean hourly electricity demand at hour t, the
functional G(·) in model (4.1) is de�ned as Gt(χi+1) = χi+1(t). Historical
curves consisted in the days in our database, B, previous to Friday, June
29, 2012 (�xed historical curves, not dependent on the prediction horizon t;
equivalently, not dependent on the model). Figure 4.14 (left panel) displays
the corresponding bootstrap con�dence intervals. Note that the small sizes of
such intervals respect to the big magnitude of the observed demand suggest
a good accuracy of the bootstrap con�dence intervals.

In order to maintain the prediction horizon (note that in the previous
application 24 prediction horizons were considered), a second application
was implemented. Speci�cally, a con�dence interval was constructed for each
mean electricity demand at �xed hour 20:00 corresponding to each of the d =
1, . . . , 21 workdays in June 2012, given the daily curve of electricity demand
in the previous day in our database. Therefore, 21 con�dence intervals need
to be computed. In this second application, historical data consisted in
the workdays included in the 61 previous days (two previous months) to
the day to predict, while the modelling to obtain the con�dence interval
corresponding to the day d was done by means of the regression model

χi+1,d(20) = m
(2)
d (χi,d) + ε

(2)
i,d (i = 1, . . . , nd); (4.56)

that is, G(·) in model (4.1) was de�ned as G(χi+1) = χi+1(20), and the
historical curves were changing as d (equivalently, the model) does (in oppo-
site at what occurred in the previous application). Figure 4.14 (right panel)
shows the corresponding bootstrap con�dence intervals. In this case, it can
be observed that the ratio `length of the interval/magnitude of the observed
demand' is slightly greater than in the �rst application. This fact could be a
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consequence of decreased sample size in (roughly) a 33 percent. In any case,
it seems that the accuracy of the bootstrap con�dence intervals continue to
be su�ciently good.
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Figure 4.14: Left panel: Bootstrap con�dence intervals computed for the
electricity demand, for the 24 hours of Friday, June 29, 2012. Right panel:
Bootstrap con�dence intervals computed for the electricity demand, for the
workdays in June, 2012 (�xed hour: 20:00).

4.5.2 Case study: electricity price

Electricity price shows also vastly di�erent patterns on workdays, public hol-
idays and weekend as the case of electricity demand, but maybe at a lower
level (for details see Section 1.4). Thus, in order to accommodate this fact
to our model (4.2), the study is focused again on workdays from the second
quarter of the year 2012. In summary, analogous to the demand case study,
our database B, consists in the workdays of the second quarter of the year
2012. Each daily functional datum, χi, comes from the 24 hourly observa-
tions of electricity price in Spain for each day in the database.

Same structure as in the previous case study can be followed, presenting
two applications: one for the estimation of the mean hourly electricity price
for each hour in a �xed day and other for a �xed hour in di�erent days.

First application follows the same procedure as in the demand case, fo-
cus on bootstrap con�dence intervals for each mean hourly electricity price
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corresponding to the last day in our database (Friday, June 29, 2012) given
the daily curve of electricity price in the previous day in our database, using
model (4.55). Historical curves consisted in the days in our database, B,
previous to Friday, June 29, 2012. Figure 4.15 (left panel) displays the corre-
sponding bootstrap con�dence intervals. In this situation the magnitude of
the observed price is smaller than in demand but the sizes of such intervals
are also small in proportion, which suggest a good accuracy of the bootstrap
con�dence intervals.
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Figure 4.15: Left panel: Bootstrap con�dence intervals computed for the
electricity price, for the 24 hours of Friday, June 29, 2012. Right panel: Boot-
strap con�dence intervals computed for the electricity price, for the workdays
in June, 2012 (�xed hour: 20:00).

A second application was implemented for each mean electricity price at
�xed hour 20:00 corresponding, again, to each of the d = 1, . . . , 21 workdays
in June 2012, given the daily curve of electricity price in the previous day
in our database. Therefore, 21 con�dence intervals need to be computed,
following model 4.56. Figure 4.15 (right panel) shows the corresponding
bootstrap con�dence intervals. In this case, it can be observed that the ratio
`length of the interval/magnitude of the observed price' is similar to the
�rst application and thus, the accuracy of the bootstrap con�dence intervals
continue to be su�ciently good for this example.
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4.6 Conclusions

This chapter has revisited the work by Ferraty, Van Keilegom and Vieu (2010)
to extend its asymptotic results, established for independent samples, to the
case of dependent ones. Based on both naïve and wild bootstrap procedures,
pointwise con�dence intervals for the regression function in a nonparametric
model with functional predictor have been built, and their asymptotic valid-
ity has been established. Examples on �nite sample sizes (via simulations
and applications to real data) have shown that such results are useful in
practice.

Both theoretical developments and applications presented in this chapter
can be found in Raña, P., Aneiros, G., Vilar, J. and Vieu, P. (2016) in Elec-
tronic Journal of Statistics.

Interesting challenges remain as open problems to be dealt in a future.
They include the topic of bandwidths selection: based on the simulation
study presented in Ferraty, Van Keilegom and Vieu (2010), equal bandwidths
chosen by cross-validation were considered in our applications; despite it is
out of the scope of this paper, theoretical results on bandwidth selection for
the proposed methodology would contribute greatly to the statistical litera-
ture (although we are aware of the di�culty of obtaining them). In addition,
researches based on bootstraping pairs (instead of on bootstrapping residuals,
as was done here) would give rise to new tools in the setting of nonparamet-
ric functional data analysis. To expand the range of possible applications, it
would be very interesting to obtain results under dependence conditions in
the random errors of the regression model.

Extension to functional response is certainly another interesting prob-
lem to be dealt. In fact, Ferraty, Van Keilegom and Vieu (2010) already
extended it when dealing with independent data, giving some kind of func-
tional pseudo-con�dence area.

Note that, along the application given in this chapter, one deals with
con�dence intervals for the conditional expectation of the demand/price in
a �xed hour, given the daily curve of the demand/price in the previous day.
Thus, as in the practice this value is unknown, one can use the observed
demand/price instead but, it must be pointed out that the con�dence inter-
vals are not design to capture this value. In order to extend this application,
Chapter 6 will consider prediction intervals within this context.



Chapter 5

Con�dence Intervals in

Semi-Functional Partial Linear

Regression

5.1 Introduction

This chapter is devoted to study the SFPL regression model and to propose
naïve and wild bootstrap procedures to construct pointwise con�dence inter-
vals for each part of the cited model. Speci�cally, it deals with a predictor of
functional nature and scalar covariates with nonparametric and linear e�ect,
respectively. Assuming α-mixing conditions on the sample, the asymptotic
validity of both procedures is obtained. A simulation study shows the per-
formance of the procedures when �nite sample sizes are used. In addition, an
application to electrical data from the Spanish Electricity Market illustrates
the helpful of the proposed methodology.

This chapter replicates the study developed in Chapter 4 for FNP regres-
sion, but considering now the SFPL model. Unlike the previous chapter, as
far as we know, there is no preceding study in the literature regarding valid-
ity of the bootstrap in this model (even for the independent case). Moreover,
it is even di�cult to �nd applications of this kind of bootstrap procedures
applied to scalar partial linear regression. One can �nd in Liang et al. (2000)
and You and Chen (2006) proposals for bootstrap approximation in partial
linear regression but in the case of �xed design, independent data and regard-
ing the linear component of the model. For these reasons, this chapter shows
the �rst approach to the validity of the bootstrap procedures developed in
the context of SFPL model with dependent data (and, as a particular case,

149
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to independent data), considering both linear and nonparametric parts of the
model.

The rest of the chapter is organized as follows: Section 5.2 presents the
SFPL model, its estimators and the bootstrap procedures. All the asymptotic
theory is joined in Section 5.3, including in Subsection 5.3.1 the necessary
assumptions for the good performance of the asymptotic results. The main
contributions of this chapter are the four theorems stated in Subsection 5.3.2,
which give the validity of the two bootstrap procedures for the two parts of
the SFPL model (linear and nonparametric part). Section 5.4 and 5.5 include
the application of the proposed bootstrap procedures to the construction of
con�dence intervals for both simulated and real data, respectively. Finally,
Section 5.6 concludes the chapter.

5.2 The model and the bootstrap procedures

Throughout this memory, prediction on functional time series is of main
importance and so, when dealing with SFPL, the interest lies in the model

G(χi+1) = XT
i β +m(χi) + εi, i = 1, . . . , n,

where G is a known real-valued operator, β = (β1, . . . , βp)
T is a vector of un-

known real parameters, m is an unknown smooth real-valued operator and
εi are i.i.d. mean zero random errors. The explanatory random variables
X i = (Xi1, . . . , Xip)

T and χi are valued in Rp and some in�nite-dimensional
space H, respectively. The functional space H is endowed with a semi-metric
d(·, ·).

Asymptotic theory will be obtained for the more general SFPL model:

Yi = XT
i β +m(χi) + εi, i = 1, . . . , n, (5.1)

where the sequence {(X i,χi, Yi)} is α-mixing. It is assumed that, for all
i = 1, . . . , n, (X i,χi, Yi) is identically distributed as (X,χ, Y ), while the
corresponding random errors {εi} are i.i.d. as ε, verifying E(ε|X,χ) = 0
and E(ε2|X,χ) = σ2

ε(X,χ) <∞.

5.2.1 Estimators

Let us denote

X = (X1, . . . ,Xn)T , Y = (Y1, . . . , Yn)T , Wh = (wh(χi,χj))



5.2. The model and the bootstrap procedures 151

and, for any (n× q) matrix A (q ≥ 1),

Ãh = (I−Wh)A.

In addition, it is denoted

S = {(X1,χ1, Y1), . . . , (Xn,χn, Yn)}.

The following estimators β̂h and m̂h(·) of the vector parameter β and the
function m(·) in (5.1) will be considered:

β̂h = (X̃T
h X̃h)

−1X̃T
h Ỹh

and

m̂h(χ) =
n∑
i=1

wh(χi, χ)(Yi −XT
i β̂h),

respectively.

Estimator β̂h can be motivated in the following way: if the true vector of
parameters β was known, one could estimate m(χ) by means of m̂

h,β(χ) =∑n
i=1wh(χi, χ)(Yi −XT

i β). Meanwhile, as β is unknown, it is estimated by

β̂h

β̂h = arg min
β=(β1,...,βp)

n∑
i=1

(
Yi −

p∑
j=1

Xijβj − m̂h,β(χi)

)2

.

It is then natural to estimate m(χ) by means of the kernel estimator m̂h(χ).

In this chapter, the Nadaraya-Watson type weights are used:

wh(χi, χ) =
K(d(χi, χ)/h)∑n
i=1K(d(χi, χ)/h)

,

whereK(·) is a real function (the kernel) and h > 0 is a smoothing parameter.

5.2.2 Bootstrap in SFPL models

Two bootstrap procedures are developed, which generalized to the SFPL
model the procedures already studied in Chapter 4 for the FNP model. The
�rst one, called �Naïve bootstrap�, is designed for homoscedastic models (that
is, when σ2

ε(X,χ) = E(ε2|(X,χ)) = σ2
ε) and the second one, called �Wild

bootstrap�, when it is heteroscedastic.
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The bootstrap procedures follow the next algorithms:

Naïve bootstrap.

Step 1: Construct the residuals ε̂i,b = Yi −XT
i β̂b − m̂b(χi), i = 1, . . . , n.

Step 2: Draw n i.i.d. random variables ε∗1, . . . , ε
∗
n from the empirical

distribution function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where ε̂b = n−1
∑n

i=1 ε̂i,b.

Step 3: Obtain Y ∗i = XT
i β̂b + m̂b(χi) + ε∗i , i = 1, . . . , n.

Step 4: De�ne

β̂
∗
b = (X̃T

b X̃b)
−1X̃T

b Ỹ
∗
b

and

m̂∗hb(χ) =
n∑
i=1

wh(χi, χ)(Y ∗i −XT
i β̂
∗
b),

Wild bootstrap.

Change Step 2 in the naïve bootstrap: de�ne ε∗i = ε̂i,bVi, i = 1, . . . , n,
where V1, . . . , Vn are i.i.d. random variables that are independent of the data
S and that satisfy E(V1) = 0, E(V 2

1 ) = 1 and E(V r
1 ) ≤C<∞ for some r > 6.

Maintain the other three steps.

5.3 Asymptotic theory

5.3.1 Assumptions

In the following, χ denotes a �xed element of the space H.

Next set of assumptions was already established in Theorem 1 in Aneiros
and Vieu (2008), to prove the asymptotic normality of β̂ and also the iterated
logarithm law for the same SFPL model under dependence. Those results
will play a main role in the proofs of our asymptotic results.

Semi-metric space

χ is valued in some given comptact subset C of H such that

C ⊂
τn⋃
k=1

B(zk, ln),
(5.2)

where τnl
γ
n =C (γ and C denote real positive constants), τn →∞ and ln → 0

as n→∞.
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Kernel

K has support [0, 1] and is Lipschitz continuous on [0,∞).
In addition, ∃k/∀u ∈ [0, 1],−K ′(u) > k > 0.

(5.3)

Smoothness Denote gj(χ) = E(Xij|χi = χ), 1 ≤ i ≤ n, 1 ≤ j ≤ p.
It is assumed that all the operators to be estimated are smooth, ie, for some
c <∞ and α > 0,

∀(u, v) ∈ C × C,∀f ∈ {m, g1, . . . , gp}, we have: |f(u)− f(v)| ≤ cd(u, v)α.
(5.4)

Distributions For the probability distribution of the in�nite-dimensional
process χ, it is assumed that exists F (·), a positive valued function on (0,∞)
and positive constants α0, α1, α2 such that∫ 1

0

F (hs)ds > α0F (h) and

α1F (h) ≤ P (χ ∈ B(t, h)) ≤ α2F (h) ∀t ∈ C, h > 0. (5.5)

The joint probability distribution of (χi,χj) is assumed that exists a function
ψ(h) = cF (h)1+ε (c > 0, 0 ≤ ε ≤ 1) and positive constants α3, α4 such that

0 < α3ψ(h) ≤ sup
i 6=j

P [(χj,χj) ∈ B(t, h)× B(t, h)] ≤ α4ψ(h), ∀t ∈ C, h > 0.

(5.6)

Dependence structure {(X i,χi, Yi)}ni=1 come from some stationary strong
mixing process, with mixing coe�cients {α(n)} that verify

α(n) ≤ cn−a, a > 4.5, (5.7)

while
ηi is independent of εi (i = 1, . . . , n), (5.8)

where ηi = (ηi1, . . . , ηip)
T , ηij = Xij −E(Xij|χi) = Xij − gj(χi), j = 1, . . . , p.

Moments Denote V ε = E(εεT ), εT = (ε1, . . . , εn),ηT = (η1, . . . ,ηn).
It is supposed that:

E|Y1|r + E|X11|r + . . .+ E|X1p|r <∞ for some r > 6. (5.9)

supi,jE(|YiYj||(χi,χj)) <∞ (5.10)
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max
1≤j≤p

sup
i1,i2

E(|Xi1,jXi2,j||(χi1,jχi2,j)) <∞ (5.11)

B = E(η1η
T
1 ), C = lim

n→∞
n−1E(ηTV εη).

B and C are positive de�nite matrix. (5.12)

s
r(a+1)
2(a+r)
n = o(nθ) for some θ > 2, (5.13)

where sn = supχ∈C(sn,1(χ) + sn,2(χ) + sn,3(χ)), with

sn,1(χ) =
n∑
i=1

n∑
j=1

|Cov(∆i(χ),∆j(χ)| with ∆i(χ) = K(
d(χi, χ)

h
)

sn,2(χ) =
n∑
i=1

n∑
j=1

|Cov(Γi(χ),Γj(χ)| with Γi(χ) = YiK(
d(χi, χ)

h
)

sn,3(χ) = max
1≤k≤p

n∑
i=1

n∑
j=1

|Cov(Γik(χ),Γjk(χ)| with Γik(χ) = XikK(
d(χi, χ)

h
)

Small ball probabilities In order to manage the convergence rates found
in the development of Theorems 10 and 11, it is necessary to consider the
following assumptions:

nh4α → 0, F (h)−1n−1/4+1/rlogn→ 0, nF (h)
εa(r−2)

r
−1=O(1) and

F (h)−2
(
n1− θ(a+r)

r(a+1)
)−2

logn= O(1) as n→∞
where α > 0, 0 ≤ ε ≤ 1, a > 4.5, r > 6 and θ > 2

were de�ned in the assumptions above.

(5.14)

Finally, assumptions formulated in Chapter 4, Section 4.3.1 for the FNP
model will be also considered. To work with SFPL model, the same assump-
tions (4.4-4.20) are adopted but considering that now they will be applied
over the model Y = m(χ) + ε (where Y = Y −Xβ and m and ε were de�ned
in (5.1)).
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5.3.2 Asymptotic results

Let P S denote probability, conditionally on the sample S, and a a constant
vector in Rp.

Validity of the bootstrap procedures for the linear part

Theorem 10 (Naïve) Under Assumptions (5.2)-(5.14), if the model is ho-
moscedastic, for the naïve bootstrap one has:

sup
y∈R

∣∣∣P S (√naT (β̂
∗
b − β̂b) ≤ y

)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0.

Theorem 11 (Wild) Under Assumptions (5.2)-(5.14) if, in addition |ε| ≤
c < ∞, F (h)−1n−1/4+1/rlogn(loglogn)1/4 → 0, for the wild bootstrap proce-
dure one has that

sup
y∈R

∣∣∣P S (√naT (β̂
∗
b − β̂b) ≤ y

)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0.

Remark 12 Main assumption related to the use of wild bootstrap in Theorem
11, which is not necessary when the bootstrap procedure is naïve, is that
random errors εi are bounded. This assumption is necessary in (5.67) in
order to manage the convergence of the bootstrapped errors term. Also, one
needs to assume F (h)−1n−1/4+1/r log n(log log n)1/4 → 0, which is a small
variation of the assumptions given in (5.14).

Remark 13 Both theorems 10 and 11 establish the validity of the bootstrap
procedures (naïve and wild bootstrap, respectively) for the linear part of the
SFPL model. They represent a �rst extension of the theorems 4 and 5 from
the FNP to the SFPL model, which will be completed with the results given
in the next paragraph taking into account also the nonparametric part. The-
orems 10 and 11 allows to approximate, through its bootstrapped estimator,
the asymptotic distribution of the estimator of aTβ within the SFPL model,
which has been studied in Aneiros and Vieu (2008). Its main practical use-
fulness is related to the building of con�dence intervals for aTβ in a context
of dependent data. Following a similar procedure as in Chapter 4, the quan-
tiles of the distribution of aT (β − β̂b) can be approximated by means of the

quantiles from the distribution of the bootstrapped error aT (β̂b− β̂
∗
b). As one

can generate as many replicates of the bootstrapped error as you want, the
results of the Theorems 10 and 11, allow to obtain good approximations of
the theoretical quantiles to build the con�dence intervals for aTβ.
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As mentioned in the introduction of this chapter, there is no preceding in
the literature regarding the validity of these bootstrap procedures within our
context. In fact, one can �nd in Liang et al. (2000) a proposal for bootstrap
approximation in partial linear regression, in the case of �xed design. They
propose a naïve bootstrap that has been generalized by You and Chen (2006) to
the wild bootstrap, allowing to consider heteroscedastic models. Both results
take care of the linear component of the model with independent data. Thus,
Theorems 10 and 11 show a �rst approach to this bootstrap procedures in
the context of SFPL model under dependent data (and, as a particular case,
under independent data too).

Validity of the bootstrap procedures for the nonparametric part

In order to manage the term X in the proofs of the following theorems, the
next assumption is added:

||X||∞ ≤ c <∞. (5.15)

Also, as Theorems 4 and 5 will be applied within the proofs of Theo-
rems 14 and 15, respectively, it will be necessary to impose the following
assumptions:

max{E(|(m(χi) + εi)(m(χj) + εj)|p|χi,χj) ≤M a.s.,

E(|m(χi) + εi|p|χi,χj)} ≤M a.s. ∀i, j ∈ Z. (5.16)

Function E(|m(χ) + ε||χ = ·) is continuous on a neighbourhood of χ,
and supd(χ1,χ)<δ E(|m(χ) + ε|q|χ = χ1) <∞ for some δ > 0;∀q ≥ 1.

(5.17)

Theorem 14 (Naïve) Under Assumptions (4.4)-(4.20) and (5.15)-(5.17),
considering also assumptions for Theorem 10, if the model is homoscedastic,
for the naïve bootstrap procedure, one has that

sup
y∈R

∣∣∣∣P S (√nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣→P 0.
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Theorem 15 (Wild) Under Assumptions (4.4)-(4.20) and (5.15)-(5.17),
considering also assumptions for Theorem 11, for the wild bootstrap proce-
dure, one has that

sup
y∈R

∣∣∣∣P S (√nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣→P 0.

Remark 16 Theorems 14 and 15 can be seen as an extension of Theorems
4 and 5 in Section 4.3.2, but considering now the nonparametric part of the
SFPL model. They complement Theorems 10 and 11 for the linear part,
allowing to consider all the estimators within this model. Its main practical
usefulness is, again, related to the building of con�dence intervals for m(χ) in
a context of dependent data (and, as a particular case, also for independent
data). Following an analogous procedure as in the case of Theorems 4 and 5
from the FNP model (see Chapter 4), the α-quantile, qα(χ), of m(χ)−m̂h(χ)
can be approximated by the α-quantile, q∗α(χ), obtained from the distribution
of the bootstrapped errors m̂b(χ) − m̂∗hb(χ). This fact, allows to use this
bootstrapped errors for the nonparametric part, within the SFPL model, to
approximate the desired con�dence intervals for m(χ).

5.3.3 Proofs

Proof Theorem 10

First, let ES and V arS denote expectation and variance, respectively, condi-
tionally on the sample S, while Φ is the standard normal distribution func-
tion.

Let us write

P S
(√

naT (β̂
∗
b − β̂b) ≤ y

)
−P

(√
naT (β̂b − β) ≤ y

)
= T1(y)+T2(y), (5.18)

where,

T1(y) = P S
(√

naT (β̂
∗
b − β̂b) ≤ y

)
− Φ

(
y√

aTAa

)
(5.19)

and

T2(y) = Φ

(
y√

aTAa

)
− P

(√
naT (β̂b − β) ≤ y

)
. (5.20)

We have denotedA = B−1CB−1, where B and C were de�ned in assumption
(5.12).
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Note that, if one proves that

T1(y) −→P 0 for any �xed value of y (5.21)

and
T2(y) −→ 0 for any �xed value of y, (5.22)

then, from Polya's theorem (see Theorem 26 in Appendix A) together with
the continuity of the function Φ, one will have that

sup
y∈R
|T1(y)|+ sup

y∈R
|T2(y)| →P 0 , (5.23)

which concludes the proof.

On the one hand, from Theorem 25 in Appendix A:

√
n(β̂h − β)

d−→ N(0,A);

this implies that: √
naT (β̂h − β)

d−→ N(0, aTAa)

and, thus, (5.22) holds.

On the other hand, in order to obtain (5.21) it is su�cient to prove that

√
n(β̂

∗
b − β̂b)

d−→ N(0,A), in probability conditionally on S. (5.24)

First, for a given function g(·) = m(·) or g(·) = m̂b(·), denote

g̃b(χ) = g(χ)−
n∑
i=1

wb(χi, χ)g(χi).

Then, one can write

√
n(β̂

∗
b − β̂b) = (n−1X̃T

b X̃b)
−1n−1/2

(
n∑
i=1

X̃ i
˜̂mb(χi)−

n∑
i=1

X̃ i

n∑
k=1

wb(χi,χk)ε
∗
k +

n∑
i=1

X̃ iε
∗
i

)
=

(n−1X̃T
b X̃b)

−1n−1/2(S∗n1 − S∗n2 + S∗n3). (5.25)

Using this decomposition, if one proves:

S∗n1 − S∗n2 + S∗n3 =
n∑
i=1

ηiε
∗
i + oPS (n1/2), (5.26)
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and

n−1/2
n∑
i=1

ηiε
∗
i

d−→ N(0,C), in probability conditionally on the sample S,

(5.27)
on gets, together with Lemma 24 in Appendix A, the asymptotic normality
of (5.24).

To obtain (5.26), the order of maxi | ˜̂mb(χi)| and

max
i

(
n∑
k=1

wb(χi,χk)ε
∗
k

)
(5.28)

play a main role. So, the �rst thing to do is to obtain such values. On the
one hand, regarding maxi | ˜̂mb(χi)|, one has the following decomposition:

m̃b(χ)− ˜̂mb(χ) =

m(χ)−
n∑
i=1

wb(χi, χ)m(χi)− m̂b(χ) +
n∑
i=1

wb(χi, χ)m̂b(χi) ≤

≤ sup
χ
|m(χ)− m̂b(χ)|+ sup

χ

n∑
i=1

wb(χi, χ)|m(χi)− m̂b(χi)|.

Theorem 2 in Aneiros and Vieu (2008) gives that

sup
χ
|m(χ)− m̂b(χ)| = O

(
bα +

√
log n

nF (b)

)
a.s. (5.29)

while Lemma 23 in the Appendix A gives

max
i,j
|wb(χi,χj)| = O

(
1

nF (b)

)
a.s. (5.30)

In addition, using Assumption (5.5), it is easy to show, in a similar way as
for obtaining (4.35), that

max
j

#{i = 1, . . . , n;χj ∈ B(χi, b)} = O(nF (b)) a.s. (5.31)

Now, from (5.29), (5.30) and (5.31) one gets

max
i
|m̃b(χi)− ˜̂mb(χi)| = O

(
bα +

√
log n

nF (b)

)
a.s. (5.32)
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Now, (5.32) together with (34) in Aneiros-Pérez and Vieu (2008), that is:

max
i
|m̃b(χi)| = O

(
bα + F (b)−1n−1/2+1/r log n

)
, (5.33)

gives that maxi | ˜̂mb(χi)| and maxi |m̃b(χi)| have the same order a.s.:

max
i
| ˜̂mb(χi)| = O

(
bα + F (b)−1n−1/2+1/r log n

)
a.s. (5.34)

On the other hand, regarding the order of (5.28), one can obtain it using
remark 22 in Appendix A (which is related to Lemma 21), with Vk = ε∗k.
Remember that the hypothesis of this remark related the term Vk are given
in Lemma 21: Let Vk be a zero-mean, stationary, α-mixing and real process,
such that for some r > 4,

max
1≤k≤n

E|Vk|r ≤ C <∞.

While working with bootstrap estimators, one deals with expectation
conditionally on the sample S and so, it is necessary to verify that, for some
r > 4,

max
1≤k≤n

ES |ε∗k|r ≤ C <∞. (5.35)

In order to study (5.35), the following decomposition will be taken into
account:

ε̂k,b = X̃
T

k (β − β̂b) + m̃b(χk)−
n∑
j=1

wb(χj,χk)εj + εk. (5.36)

Denote:

Db = max
k
|X̃

T

k (β − β̂b)|+ max
k
|m̃b(χk)|+ max

k
|

n∑
j=1

wb(χj,χk)εj|. (5.37)

On the one hand, (A.1) in Theorem 25 in Appendix A gives

|β − β̂b| = OP (n−1/2). (5.38)

On the other hand, as

X̃T X̃

n
=

n∑
i=1

X̃T
i X̃i

n
→ B a.s.



5.3. Asymptotic theory 161

(see Lemma 24 in Appendix A) one has, ∀j ∈ {1, . . . , p}

n∑
i=1

X̃2
i,j

n
→ bjj a.s.⇒ max

1≤i≤n

X̃2
i,j

n
= o(1) a.s.

and so,

max
i,j

X̃2
i,j

n
= o(1) a.s.

which implies that

max
i
|X̃ i|2 = max

i

p∑
j=1

X̃2
i,j ≤ max

i
max
j

X̃2
i,jp = o(n)p a.s. = o(n) a.s.

and �nally,
max
k
|X̃k|2 = o(n) a.s. (5.39)

(5.38) and (5.39) imply that

max
k
|X̃

T

k (β − β̂b)| = oP (1) (5.40)

In addition, applying Lemma 21 in Appendix A and taking into account
(5.30), one has:

max
k
|

n∑
j=1

wb(χj,χk)εj| = O(F (b)−1n−1/2+1/r log n) a.s. (5.41)

(5.40), (5.41) and (5.33) allow to conclude that

Db = oP (1) (5.42)

and as a consequence,

ε̂k,b = εk + oP (1) uniformly in k. (5.43)

Then, when studying the following term:

ES(|ε∗k|r) = n−1
n∑
i=1

|ε̂i,b − ε̂b|r ≤

cn−1
n∑
i=1

(
|ε̂i,b|r + |ε̂b|r

)
= cn−1

n∑
i=1

|ε̂i,b|r + c|ε̂b|r (5.44)
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if one applies in (5.44) that ε̂k,b = εk + oP (1), as

n−1
n∑
i=1

εi
p−→ 0 and n−1

n∑
i=1

|εi|r
p−→ E(|εi|r) (5.45)

by the Weak Law of Large numbers, one obtains

ES(|ε∗k|r) = OP (1).

So, remark 22 can be applied directly to (5.28).

In this way, one obtains:

max
i

(
n∑
k=1

wb(χk,χi)ε
∗
k

)
= OPS

(
F (b)−1n−1/2+1/r log n

)
. (5.46)

Now, let's study the �rst term S∗n1 in (5.25). The decomposition:

X̃i,j = g̃j,b(χi) + ηi,j −
n∑
l=1

wb(χi,χl)ηl,j (5.47)

will be used along the proof, which allows to write the j-component of S∗n1,
S∗n1,j as:

S∗n1,j =
n∑
i=1

g̃j,b(χi)
˜̂mb(χi) +

n∑
i=1

ηi,j ˜̂mb(χi)−
n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j)
˜̂mb(χi)

= S∗n1,j1 + S∗n1,j2 − S∗n1,j3 (5.48)

and to study each component separately.

It starts with S∗n1,j1:

S∗n1,j1 =
n∑
i=1

g̃j,b(χi)
˜̂mb(χi) ≤ nmax

i
|g̃j,b(χi)|max

i
| ˜̂mb(χi)| = (5.49)

n(O(bα + F (b)−1n−1/2+1/r log n))2 = O(nb2α + F (b)−2n2/r log2 n) a.s.

About S∗n1,j2, if one applies lemma 21 in Appendix A taking aik = ˜̂mb(χi)

(max |aik| = max | ˜̂mb(χi| = O
(
bα + F (b)−1n−1/2+1/r log n

)
= O(an) a.s.)

and Vk = ηi,j, 0.5 < γ < 1− 9/(4a), one has that

S∗n1,j2 = O(bαn1/2+1/r log n+ F (b)−1n2/n log2 n) a.s. (5.50)
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It remains to study the third term S∗n1,j3, where

S∗n1,j3 =
n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j)
˜̂mb(χi) ≤ nmax

i
|

n∑
l=1

wb(χi,χl)ηl,j|max
i
| ˜̂mb(χi)|.

Lemma 21 can be applied again, with ail = wb(χi,χl) (max |wb(χi,χl)| =
O(1/nF (b))), Vl = ηl,j and 0.5 < γ < 1− 9/(4a), which gives that

max |
n∑
l=1

wb(χi,χl)ηl,j| = O(F (b)−1n−1/2+1/r log n) a.s.

This result, together with (5.34), implies:

S∗n1,j3 = O(F (b)−1n1/2+1/r log nbα + F (b)−2n2/r log2 n) a.s. (5.51)

Considering (5.49), (5.50) and (5.51) together with assumptions (5.14),
one obtains:

S∗n1 = o(n1/2) a.s. (5.52)

Now, the j-component of S∗n2, S
∗
n2,j, will be studied. Using again the

decomposition (5.47), one develops the following expression:

S∗n2,j =
n∑
i=1

g̃j,b(χi)
n∑
k=1

wb(χi,χk)ε
∗
k +

n∑
i=1

ηi,j

n∑
k=1

wb(χi,χk)ε
∗
k

−
n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j)
n∑
k=1

wb(χi,χk)ε
∗
k = S∗n2,j1 + S∗n2,j2 − S∗n2,j3

First, S∗n2,j1 is analysed:

S∗n2,j1 =
n∑
i=1

g̃j,b(χi)
n∑
k=1

wb(χi,χk)ε
∗
k ≤

nmax
i
|g̃j,b(χi)|max

i
|

n∑
k=1

wb(χi,χk)ε
∗
k| =

nOa.s.

(
bα + F (b)−1n−1/2+1/r log n

)
OPS

(
F (b)−1n−1/2+1/r log n

)
=

OPS
(
bαF (b)−1n1/2+1/r log n+ F (b)−2n2/r log2 n

)
(5.53)

where it has been used (35) in Aneiros and Vieu (2008) and (5.46) above.
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Applying Remark 22 on S∗n2,j2, with ai,k =
∑n

k=1wb(χi,χk)ε
∗
k and Vk =

ηi,j, one gets:

S∗n2,j2 =
n∑
i=1

ηi,j

n∑
k=1

wb(χi,χk)ε
∗
k =

OPS (F (b)−1n−1/2+1/r log nn1/2+1/r log n) =

OPS (F (b)−1n2/r log2 n). (5.54)

For the last term of S∗n2,j one has:

S∗n2,j3 =
n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j)
n∑
k=1

wb(χi,χk)ε
∗
k ≤

nmax
i
|

n∑
l=1

wb(χi,χl)ηl,j|max
i
|

n∑
k=1

wb(χi,χk)ε
∗
k| =

nOa.s.(F (b)−1n−1/2+1/r log n)OPS
(
F (b)−1n−1/2+1/r log n

)
=

OPS (F (b)−2n2/r log2 n) (5.55)

Finally, considering together the boundaries for the three elements of S∗n2,
(5.53), (5.54) and (5.55), one obtains:

S∗n2 = oPS (n1/2). (5.56)

In a similar way, one can study the j-th component of the third term S∗n3,
S∗n3,j, applying the decomposition (5.47):

S∗n3,j =
n∑
i=1

g̃j,b(χi)ε
∗
i +

n∑
i=1

ηi,jε
∗
i −

n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j

)
ε∗i =

S∗n3,j1 + S∗n3,j2 − S∗n3,j3 (5.57)

Remark 22 is applied to

S∗n3,j1 =
n∑
i=1

g̃j,b(χi)ε
∗
i ,

taking Vi = ε∗i and aj,i = g̃j,b(χi), as

max
i
|g̃j,b(χi)| = O

(
bα + F (b)−1n−1/2+1/r log n

)
a.s.
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Then:

S∗n3,j1 = OPS (bαn1/2+1/r log n+ F (b)−1n2/r log2 n). (5.58)

In the same way, considering again Vi = ε∗i but aj,i =
∑n

l=1wb(χi,χl)ηl,j
(remember that max |

∑n
l=1wb(χi,χl)ηl,j| = O(F (b)−1n−1/2+1/r log n) a.s. was

studied in (5.51)) one obtains that:

S∗n3,j3 =
n∑
i=1

(
n∑
l=1

wb(χi,χl)ηl,j

)
ε∗i = OPS (F (b)−1n2/r log2 n). (5.59)

Finally, from (5.57), (5.58) and (5.59) one obtains:

S∗n3 =
n∑
i=1

ηiε
∗
i + oPS (n1/2). (5.60)

Now, from (5.52), (5.56) and (5.60) one has that (5.26) holds.

Finally, one must prove (5.27), where C = σ2
εE(η1η

T
1 ) = σ2

εB (see as-
sumption (5.12)).

Three steps will be used to prove (5.27): �rst, seeing that its expectation,
conditionally on the sample S, is zero. Second, showing that the variance,
also conditionally on the sample S, converges to C. Finally, showing that
the expression given in (5.27) has, asymptotically, normal distribution.

On the one hand, as the bootstrapped errors in the naïve bootstrap pro-
cedure are the centred residuals, one has that

ES(n−1/2
n∑
i=1

ηiε
∗
i ) = n−1/2

n∑
i=1

ηiES(ε∗i ) = n−1/2
n∑
i=1

ηin
−1

n∑
j=1

(ε̂j,b − ε̂b) = 0.

On the other hand:

V arS(n−1/2
n∑
i=1

ηiε
∗
i ) = n−1

n∑
i=1

ηiV ar
S(ε∗i )η

T
i = σ̂2

εn
−1

n∑
i=1

ηiη
T
i →P C,

where the convergence is obtained using that

σ̂2
ε = V arS(ε∗) = n−1

n∑
j=1

(ε̂j,b − ε̂b)2 →P σ
2
ε
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(see (5.43)) and, for the Strong Law of Large Numbers,

n−1
n∑
i=1

ηiη
T
i → E(η1η

T
1 ) = B a.s.

Finally, one needs to prove the asymptotic normality of n−1/2
∑n

i=1 ηiε
∗
i

(conditionally on the sample S). Following the proof of Theorem 4 in Chapter
4, as in the expression (4.31), it will be enough to check Liapunov's condition;
that is, we need to prove the following:

n−3/2
n∑
i=1

ES(|aTηiε∗i |3)→P 0.

Taking into account that

n−3/2
n∑
i=1

ES(|aTηiε∗i |3) = n−3/2
n∑
i=1

|aTηi|3ES(|ε∗i |3) =

n−3/2
n∑
i=1

|aTηi|3n−1
n∑
k=1

|ε̂k,b − ε̂|3 (5.61)

the convergence to zero is achieved taking into account that

n−1
n∑
i=1

|aTηi|3 → E(|aTη|3) a.s.

and

n−1
n∑
k=1

|ε̂k,b − ε̂|3 = OP (1)

(see (5.43) and (5.45).

So, one has asymptotic normality of n−1/2
∑n

i=1 ηiε
∗
i in probability, con-

ditionally on the sample S, for the naïve bootstrap.

This concludes the proof of the theorem. �

Proof Theorem 11

Firsts steps of the proof of Theorem 10 can be followed in this case, obtaining
the same decomposition in T1(y) and T2(y) (5.18). As in Theorem 10 for the
naïve bootstrap, now with wild bootstrap it is needed to prove that

T1(y) −→P 0 for any �xed value of y (5.62)



5.3. Asymptotic theory 167

and

T2(y) −→ 0 for any �xed value of y. (5.63)

Note that T2(y) does not depend on the bootstrap procedure. So, from
the study given in the proof of Theorem 10 one has that (5.63) is already
veri�ed. Then, it is only needed to prove (5.62) and this will be done by the
same technique as (5.24). Thus, one needs to prove the following convergence:

√
n(β̂

∗
b − β̂b)

d−→ N(0,A), in probability conditionally on S. (5.64)

One can apply in (5.64) the same decomposition used in Theorem 10 to
obtain (5.26), and thus, proving that:

S∗n1 − S∗n2 + S∗n3 =
n∑
i=1

ηiε
∗
i + oPS (n1/2) (5.65)

and

n−1/2
n∑
i=1

ηiε
∗
i

d−→ N(0,C), in probability conditionally on S, (5.66)

where C = σ2
εE(η1η

T
1 ) = σ2

εB (see Assumption (5.12)), one obtains, together
with Lemma 24 in Appendix A, the asymptotic normality of (5.64).

In order to study (5.65), the order in probability, conditionally on the
sample S, of

max
i

(
n∑
k=1

wb(χk,χi)ε
∗
k

)

plays, again, a main role. So, �rst one needs to prove that:

max
i

(
n∑
k=1

wb(χk,χi)ε
∗
k

)
= O

(
F (b)−1n−1/2+1/r log n

√
log log n

)
a.s.,(5.67)

conditionally on the sample S.
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Decomposition given in (5.36) can be included into the expression of
(5.67), resulting:

max
i

(
|

n∑
k=1

wb(χk,χi)ε
∗
k|

)
= max

i

(
|

n∑
k=1

wb(χk,χi)Vkε̂k,b|

)

≤ max
i
|

n∑
k=1

wb(χk,χi)Vkεk|+ max
i
|

n∑
k=1

wb(χk,χi)Vk| ×

×

(
max
k
|X̃

T

k (β − β̂b)|+ max
k
|m̃b(χk)|+ max

k
|

n∑
j=1

wb(χj,χk)εj|

)

= max
i
|

n∑
k=1

wb(χk,χi)Vkεk|+ max
i
|

n∑
k=1

wb(χk,χi)Vk| ×Db (5.68)

where Db has been de�ned in (5.37).

When dealing with Db in Theorem 10, the result (A.1) in Theorem 25
in Appendix A will be used in order to obtain that Db = oP (1) and so,
ε̂k,b = εk+oP (1) uniformly in k. Meanwhile, in this case, we can apply result
(A.2) in the same Theorem 25 in Appendix A giving

|β − β̂b| = O(n−1/2
√

log log n) a.s.

This result, together with the same study of the other terms in (5.37), allows
to bound Db but using almost sure convergence instead of convergence in
probability:

Db = o(
√

log log n) a.s. (5.69)

In addition, one has that:

max
k

ES(|Vk|r) = max
k

E(|Vk|r) < C <∞,

(see assumptions on Vk), which, together with the fact that the errors εk are
bounded, gives

max
k

ES(|Vkεk|r) = max
k

E(|Vk|r)|εk|r < C <∞

Thus, from Lemma 21 in Appendix A one obtains that

max
i
|

n∑
k=1

wb(χk,χi)Vk| = O
(
F (b)−1n−1/2+1/r log n

)
a.s.,

conditionally on the sample S. (5.70)
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and

max
i
|

n∑
k=1

wb(χk,χi)Vkεk| = O
(
F (b)−1n−1/2+1/r log n

)
a.s.,

conditionally on the sample S. (5.71)

Now, from (5.68)-(5.71), one obtains (5.67).

Focus now on (5.65). As S∗n1 is not a�ected by the bootstrap procedure,
one obtains directly from (5.52):

S∗n1 = o(n1/2) a.s. (5.72)

Now, considering (5.67) and using similar techniques as those for Sn2 in
Theorem 10, it holds that

S∗n2 = oPS (n1/2) (5.73)

Note that for the case of the wild bootstrap, in order to obtain (5.73), some
slight modi�cation in the assumptions on (n, b, F (b)) must be done because
the term

√
log log n in (5.67), as it was stated in the enunciate of the Theorem.

In a similar way (and considering, again, some slight modi�cation in the
assumptions on (n, b, F (b))), one obtains that

S∗n3 =
n∑
i=1

ηiε
∗
i + oPS (n1/2) (5.74)

Now, from (5.72), (5.73) and (5.74) one has that (5.65) holds.

Finally, one must prove (5.66).

Here, the same outline that was used in Theorem 10 to prove the nor-
mality of (5.27) can be followed. That is, to prove, for the expression given
in (5.66), that its expectation (conditionally on S) is zero, its variance also
conditionally on S converges in probability to C and that it is asymptotically
normally distributed using Liapunov's condition.

On the one hand, as ES(ε∗i ) = ES(ε̂i,bVi) = ε̂i,bES(Vi) and ES(Vi) =
E(Vi) = 0, one has that

ES(n−1/2
n∑
i=1

ηiε
∗
i ) = n−1/2

n∑
i=1

ηiES(ε∗i )= 0.
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On the other hand, it is necessary to prove that:

V arS(n−1/2
n∑
i=1

ηiε
∗
i ) = n−1

n∑
i=1

ηiV ar
S(ε∗i )η

T
i = n−1

n∑
i=1

ε̂2i,bηiη
T
i →P C .

(5.75)
Noting that

ε̂i,b = X̃
T

i (β − β̂b) + m̃b(χi)−
n∑
j=1

wb(χj,χi)εj + εi = δi + εi,

where it is denoted δi = X̃
T

i (β− β̂b) + m̃b(χi)−
∑n

j=1wb(χj,χi)εj, one can
write

n−1
n∑
i=1

ε̂2i,bηiη
T
i = n−1

n∑
i=1

(δi + εi)
2ηiη

T
i = n−1

n∑
i=1

(δ2i + 2δiεi + ε2i )ηiη
T
i =

n−1
n∑
i=1

δ2i ηiη
T
i + n−1

n∑
i=1

2δiεiηiη
T
i + n−1

n∑
i=1

ε2iηiη
T
i = ∆1 + ∆2 + ∆3.

Now, taking into account that maxi |δi| ≤ Db = oP (1) (see (5.42)) and
applying the Strong Law of Large Numbers (note that ηi has r > 4 �nite
moments), one obtains

|∆1| ≤ n−1
n∑
i=1

|δi|2|ηiηTi | ≤

max
k
|δk|2n−1

n∑
i=1

|ηiηTi | = oP (1)OP (1) = oP (1).

If, in addition, one uses the fact that |εi| ≤C<∞, then

|∆2| ≤ n−1
n∑
i=1

|2δiεi||ηiηTi | ≤

2 max
k
|δk|Cn−1

n∑
i=1

|ηiηTi | = oP (1)OP (1) = oP (1).

Finally, the Strong Law of Large numbers gives

∆3 = n−1
n∑
i=1

ε2iηiη
T
i −→P E(ε21η1η

T
1 ) =

E(ε21)E(η1η
T
1 ) = σ2

εE(η1η
T
1 ) = C a.s.
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where in the last but one equality, the independence between εi and η i was
used (see assumption (5.8)). So, it has been proved that (5.75) is true.

Finally, one needs to prove that n−1/2
∑n

i=1 ηiε
∗
i is, asymptotically, normal

distributed in probability, conditionally on the sample S. Again, Liapunov's
condition is used. Then, it must be veri�ed that:

n−3/2
n∑
i=1

ES(|aTηiε∗i |3) = n−3/2
n∑
i=1

|aTηi|3ES(|ε∗i |3)→P 0.

Using that maxi |ε̂i,b| = oP (1) (remember that ε̂i,b = δi + εi with |εi| <C
and maxi |δi| = oP (1)), assumptions on Vi and applying Strong Law of Large
Numbers (note that ηi has more than 6 �nite moments), one has that

n−3/2
n∑
i=1

|aTηi|3ES(|ε∗i |3) = E(|V1|3)n−3/2
n∑
i=1

|aTηi|3|ε̂i,b|3

≤ oP (1)E(|V1|3)n−3/2
n∑
i=1

|aTηi|3 = oP (1)E(|V1|3)oP (1)→P 0.(5.76)

So, one obtains the asymptotic normality of n−1/2
∑n

i=1 ηiε
∗
i in probabil-

ity, conditionally on the sample S, for the wild bootstrap and thus, (5.66) is
veri�ed. This concludes the proof of the theorem. �

Proof of Theorem 14

The proof begins with the study of the second term of the expression in The-
orem 14, which is related to the convergence of the estimator m̂ and then, it
follows with the study of the term related to the bootstrap estimator.
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Following decomposition is developed:

(nFχ(h))1/2(m̂h(χ)−m(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(Yi −XT
i β̂h)−m(χ))) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(XT
i β +m(χi) + εi −XT

i β̂h)−m(χ))) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m(χi) + εi)−m(χ))−

−(nFχ(h))1/2
n∑
i=1

wh(χi, χ)XT
i (β̂h − β) =

= S1(χ)− S2(χ) (5.77)

In last expression, S1(χ) includes the nonparametric part of the model,
meanwhile, S2(χ) represents the linear/parametric part. Then, each term
can be studied separately.

In order to manage the term S1(χ), Theorem 28 in the Appendix A will
be applied (remember that the bias term is cancelled by assumption (4.9)
but considering the following �auxiliary nonparametric model�:

Y = m(χ) + ε. (5.78)

(Note that E(ε|χ) = E(ε|X,χ) = 0 and E(ε2|χ) = E(ε2|X,χ)).

Denote

m̂NP
h (χ) =

n∑
i=1

wh(χi, χ)Yi =
n∑
i=1

wh(χi, χ)(m(χi) + εi).

Then, one obtains

S1(χ) = (nFχ(h))1/2(m̂NP
h (χ)−m(χ)). (5.79)

Focus now on the linear part, S2(χ). From Lemma 23 in Appendix A, it
holds:

max |wh(χi, χ)| = O((nF (h))−1) a.s. (5.80)

Taking into account (4.35) together with (5.80), Theorem 25 in Appendix A
and (5.15), one obtains

S2(χ) = O((F (h) log log n)1/2) a.s.
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In addition, from the fact that F (h) log log n→ 0 (see (4.19)) one has that

S2(χ) = o(1) a.s. (5.81)

Finally, (5.77) together with (5.79) and (5.81) gives

(nFχ(h))1/2(m̂h(χ)−m(χ)) = (nFχ(h))1/2(m̂NP
h (χ)−m(χ)) + o(1) a.s.

(5.82)

Next part of the proof will focus on the bootstrap term of the theorem.
Speci�cally, it will �nd the relationship between the bootstrap estimator of
m from the nonparametric model (5.78) and the corresponding bootstrap es-
timator from the SFPL regression model (5.1). One can establish the naïve
bootstrap procedure for the model (5.78) as in Section 4.2:

Step 1: Construct the residuals êi,b = Yi − m̂NP
b (χi), i = 1, . . . , n.

Step 2: Draw e∗i , for i = 1, . . . , n, randomly from the empirical distribu-
tion of (ê1,b − ¯̂eb, . . . , ên,b − ¯̂eb), where

¯̂eb =
1

n

n∑
k=1

êk,b

Step 3: Obtain Y∗i = m̂NP
b (χi) + e∗i , i = 1, . . . , n.

Step 4: De�ne m̂∗NPhb (χ) =
∑n

i=1wh(χi, χ)Y∗i .

Taking into account that

êi,b = Yi − m̂NP
b (χi) = m(χi) + εi − m̂NP

b (χi) =

m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl) (5.83)

and denoting j(i) as a value chosen at random in {1, . . . , n}, one has that

e∗i = êj(i),b −
1

n

n∑
k=1

êk,b =

= m(χj(i)) + εj(i) −
n∑
l=1

wb(χl,χj(i))(m(χl) + εl)−

− 1

n

n∑
k=1

(m(χk) + εk −
n∑
l=1

wb(χl,χk)(m(χl) + εl)). (5.84)
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Then,

Y∗i = m̂NP
b (χi) + e∗i =

=
n∑
l=1

wb(χl,χi)(m(χl) + εl) +m(χj(i)) + εj(i) −

−
n∑
l=1

wb(χl,χj(i))(m(χl) + εl)−

− 1

n

n∑
k=1

(m(χk) + εk −
n∑
l=1

wb(χl,χk)(m(χl) + εl)). (5.85)

Therefore

m̂∗NPhb (χ) =
n∑
i=1

wh(χi, χ)Y∗i =

=
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +m(χj(i)) + εj(i) −

−
n∑
l=1

wb(χl,χj(i))(m(χl) + εl)−

− 1

n

n∑
k=1

(m(χk) + εk −
n∑
l=1

wb(χl,χk)(m(χl) + εl))]. (5.86)

Then, it can be written:

(nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) =

(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +

+m(χj(i)) + εj(i) −
n∑
l=1

wb(χl,χj(i))(m(χl) + εl)−

− 1

n

n∑
k=1

(m(χk) + εk −
n∑
l=1

wb(χl,χk)(m(χl) + εl))]−

n∑
i=1

wb(χi, χ)(m(χi) + εi)) (5.87)
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Focus now on the bootstrap procedure in the SFPL model (5.1). One has
that

(nFχ(h))1/2(m̂∗hb(χ)− m̂b(χ)) =

(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(Y ∗i −XT
i β̂
∗
b)− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(XT
i β̂b + m̂b(χi) + ε∗i −XT

i β̂
∗
b)− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m̂b(χi) + ε∗i )− m̂b(χ))−

−(nFχ(h))1/2
n∑
i=1

wh(χi, χ)XT
i (β̂

∗
b − β̂b) =

= S∗1(χ)− S∗2(χ) (5.88)

Note that the bootstrapped errors, ε∗i , will be drawn from the empirical
distribution function of the following terms:

ε̂j,b − ¯̂ε = Yj −XT
j β̂b − m̂b(χj)−

1

n

n∑
k=1

(Yk −XT
k β̂b − m̂b(χk)) =

= Yj −XT
j β̂b −

n∑
l=1

wb(χl,χj)(Yl −XT
l β̂b)−

− 1

n

n∑
k=1

(Yk −XT
k β̂b −

n∑
l=1

wb(χl,χk)(Yl −XT
l β̂b))
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Then, denoting ε∗i = ε̂j(i),b− ¯̂ε one can develop the term S∗1(χ) as follows:

S∗1(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m̂b(χi) + ε∗i )− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m̂b(χi) + ε̂j − ¯̂ε)− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(Yl −XT
l β̂b) +

+Yj(i) −XT
j(i)β̂b −

n∑
l=1

wb(χl,χj(i))(Yl −XT
l β̂b)−

− 1

n

n∑
k=1

(Yk −XT
k β̂b −

n∑
l=1

wb(χl,χk)(Yl −XT
l β̂b))]−

−
n∑
i=1

wb(χi, χ)(Yi −XT
i β̂b))

Using the de�nition of Yi (5.1) in last expressions it holds:

S∗1(χ) =

(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(X
T
l β +m(χl) + εl −XT

l β̂b) +

+XT
j(i)β +m(χj(i)) + εj(i) −XT

j(i)β̂b −
n∑
l=1

wb(χl,χj(i))(X
T
l β +m(χl) + εl −XT

l β̂b)−

− 1

n

n∑
k=1

(XT
kβ +m(χk) + εk −XT

k β̂b −

n∑
l=1

wb(χl,χk)(X
T
l β +m(χl) + εl −XT

l β̂b))]−

−
n∑
i=1

wb(χi, χ)(XT
i β +m(χi) + εi −XT

i β̂b))

Now, last expressions can be divided into two di�erent parts, grouping
terms related to m(χ) + ε (from the �auxiliary nonparametric model�) and
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the terms related to the linear part of the model (β), resulting:

S∗1(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +

+m(χj(i)) + εj(i) −
n∑
l=1

wb(χl,χj(i))(m(χl) + εl)

− 1

n

n∑
k=1

(m(χk) + εk −
n∑
l=1

wb(χl,χk)(m(χl) + εl))]−

−
n∑
i=1

wb(χi, χ)(m(χi) + εi)) +

+(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)X
T
l (β − β̂b) +

XT
j(i)(β − β̂b)−

n∑
l=1

wb(χl,χj(i))X
T
l (β − β̂b)−

1

n

n∑
k=1

(XT
k (β − β̂b)−

n∑
l=1

wb(χl,χk)X
T
l (β − β̂b))]−

n∑
i=1

wb(χi, χ)XT
i (β − β̂b)) =

S∗1,1(χ) + S∗1,2(χ) (5.89)

where,

S∗1,1(χ) = (nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) (5.90)

and

S∗1,2(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)X
T
l (β − β̂b) +

XT
j(i)(β − β̂b)−

n∑
l=1

wb(χl,χj(i))X
T
l (β − β̂b)−

− 1

n

n∑
k=1

(XT
k (β − β̂b)−

n∑
l=1

wb(χl,χk)X
T
l (β − β̂b))]−

n∑
i=1

wb(χi, χ)XT
i (β − β̂b))
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From (5.80), (4.35), (5.15) and (A.2) in Theorem 25 in the Appendix A,
it is obtained that

S∗1,2(χ) = O((F (h) log log n)1/2) a.s.

Then, taking into account that F (h) log log n→ 0 (see (4.19)) one has that

S∗1,2(χ) = o(1) a.s. (5.91)

Finally, the term S∗2(χ) is studied. From Theorem 10 and Theorem 25
one has

β̂
∗
b − β̂b = OPS (n−1/2).

This fact allows to follow similar reasoning as those used in the study of
S2(χ), giving

S∗2(χ) = oPS (1). (5.92)

From (5.88), (5.89), (5.90), (5.91) and (5.92), one obtains

(nFχ(h))1/2(m̂∗hb(χ)− m̂b(χ)) = (nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) + oPS (1).

(5.93)
Finally, (5.82), (5.93) and Theorem 4 give the result of Theorem 14. �

Proof of Theorem 15

The proof for this Theorem will follow the same outline as in Theorem 14.

First part of the proof for the Theorem 14 can be applied in this case,
since bootstrap methodology does not a�ect the study of the term

(nFχ(h))1/2(m̂h(χ)−m(χ)),

so, one can obtain (5.82) following the same procedure as in Theorem 14.

Again, the �auxiliary nonparametric model� de�ned in (5.78) is used and
the proof will focus on the bootstrap part of the Theorem, analysing the
relationship between the bootstrap estimator of m from the nonparametric
model (5.78) and the corresponding bootstrap estimator from the SFPL re-
gression model (5.1).

Wild bootstrap procedure developed in Section 4.2 can be established for
the model (5.78) , changing only the second step with respect to the naïve
bootstrap procedure:
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Step 1: Construct the residuals êi,b = Yi − m̂NP
b (χi), i = 1, . . . , n.

Step 2: De�ne e∗i = Viêi,b, i = 1, . . . , n, where Vi verify the assumptions
established in Section 4.2.

Step 3: Obtain Y∗i = m̂NP
b (χi) + e∗i , i = 1, . . . , n.

Step 4: De�ne m̂∗NPhb (χ) =
∑n

i=1wh(χi, χ)Y∗i .

Taking into account the development for the term êi,b in (5.83), one has:

e∗i = Viêi,b = Vi(m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl)).

Then,

Y∗i = m̂NP
b (χi) + e∗i =

n∑
l=1

wb(χl,χi)(m(χl) + εl) + Vi(m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl)).

Therefore

m̂∗NPhb (χ) =
n∑
i=1

wh(χi, χ)Y∗i =

=
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +

+Vi(m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl))].

Then, one has the following expression:

(nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +

+Vi(m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl))]−

−
n∑
i=1

wb(χi, χ)(m(χi) + εi))
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Focussing on the bootstrap procedure in the SFPL regression model (5.1),
one has

(nFχ(h))1/2(m̂∗hb(χ)− m̂b(χ)) =

(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(Y ∗i −XT
i β̂
∗
b)− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(XT
i β̂b + m̂b(χi) + ε∗i −XT

i β̂
∗
b)− m̂b(χ)) =

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m̂b(χi) + ε∗i )− m̂b(χ))−

−(nFχ(h))1/2
n∑
i=1

wh(χi, χ)XT
i (β̂

∗
b − β̂b) =

= S∗1(χ)− S∗2(χ), (5.94)

where,

S∗1(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)(m̂b(χi) + ε∗i )− m̂b(χ))

= (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(Yl −XT
l β̂b) +

+Vi(Yi −XT
i β̂b −

n∑
l=1

wb(χl,χi)(Yl −XT
l β̂b)]−

−
n∑
i=1

wb(χi, χ)(Yi −XT
i β̂b)).

Replacing the de�nition for Y given by (5.1) into last expression, it is
obtained that:

S∗1(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(X
T
l β +m(χl) +

εl −XT
l β̂b) + Vi(X

T
i β +m(χi) + εi −XT

i β̂b −
n∑
l=1

wb(χl,χi)(X
T
l β +m(χl) + εl −XT

l β̂b)]−

−
n∑
i=1

wb(χi, χ)(XT
i β +m(χi) + εi −XT

i β̂b)).
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Again, one can divide the expression grouping the terms for m(χ) + ε
(from the �auxiliary nonparametric model�) and the terms for the linear part
(β):

S∗1(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)(m(χl) + εl) +

+Vi(m(χi) + εi −
n∑
l=1

wb(χl,χi)(m(χl) + εl)]−

n∑
i=1

wb(χi, χ)(m(χi) + εi)) +

+(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)X
T
l (β − β̂b) +

+Vi(X
T
i (β − β̂b)−

n∑
l=1

wb(χl,χi)X
T
l (β − β̂b))]−

n∑
i=1

wb(χi, χ)XT
i (β − β̂b))

which follows to

S∗1(χ) = (nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) +

+(nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)X
T
l (β − β̂b) +

+Vi(X
T
i (β − β̂b)−

n∑
l=1

wb(χl,χi)X
T
l (β − β̂b))]−

n∑
i=1

wb(χi, χ)XT
i (β − β̂b)) =

= S∗1,1(χ) + S∗1,2(χ), (5.95)

where

S∗1,1(χ) = (nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)). (5.96)
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Considering now the second term in (5.95), which is

S∗1,2(χ) = (nFχ(h))1/2(
n∑
i=1

wh(χi, χ)[
n∑
l=1

wb(χl,χi)X
T
l (β − β̂b) +

+Vi(X
T
i (β − β̂b)−

n∑
l=1

wb(χl,χi)X
T
l (β − β̂b))]−

n∑
i=1

wb(χi, χ)XT
i (β − β̂b)) (5.97)

and taking into account (5.80), (4.35), (5.15) and (A.2) in Theorem 25 in the
Appendix A, one obtains

S∗1,2(χ) = O((F (h) log log n)1/2) a.s.

Then, from the fact that F (h) log log n→ 0 (see (4.19)) it is true that

S∗1,2(χ) = o(1) a.s., (5.98)

which is also equivalent to (5.91) in Theorem 14.

Finally, it remains to study the term S∗2(χ). From Theorem 11 and The-
orem 25 in Appendix A one has

β̂
∗
b − β̂b = OPS (n−1/2).

This fact allows to follow similar reasoning as those used in the study of
S2(χ) (explained in Theorem 14), giving

S∗2(χ) = oPS (1), (5.99)

which is, again, analogous to (5.92) in Theorem 14.

From (5.94), (5.95), (5.96), (5.97) and (5.99), one gets that

(nFχ(h))1/2(m̂∗hb(χ)− m̂b(χ)) = (nFχ(h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) + oPS (1).

(5.100)

Finally, (5.82), (5.100) and Theorem 5 give the result of Theorem 15. �
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5.4 Simulacion study

This section presents a simulation study designed to analyse the behaviour of
the bootstrap procedures applied to the construction of con�dence intervals
for the SFPL model. It contains a description of the procedure developed
to build the con�dence intervals for the SFPL model (5.1) and the results
obtained with the simulated models, following the ones used previously, in
Section 4.4, for the FNP regression model. Again, because of its generality,
the wild bootstrap procedure will de considered.

5.4.1 Building the con�dence intervals

Given {X,χ}, and a model

Yi = XT
i β +m(χi) + εi, i = 1, . . . , n, (5.101)

where the sequence {(X i,χi, Yi)} is α-mixing and identically distributed as
(X,χ, Y ), and {X,χ} are observed from {X,χ}, true and bootstrap (1−α)-
con�dence intervals can be built for each part of the model: linear (β),
nonparametric (m(χ)) and the explanatory part together (XTβ +m(χ)).

1. CI for the linear part, assuming for simplicity that β ∈ R:

• True CI: Iβ,true1−α = (β̂h + qβ,trueα/2 , β̂h + qβ,true1−α/2)

• Bootstrap CI: Iβ,∗1−α = (β̂h + qβ,∗α/2, β̂h + qβ,∗1−α/2)

2. CI for the nonparametric part:

• True CI: Im,trueχ,1−α = (m̂h(χ) + qm,trueα/2 (χ), m̂h(χ) + qm,true1−α/2 (χ))

• Bootstrap CI: Im,∗χ,1−α = (m̂h(χ) + qm,∗α/2(χ), m̂h(χ) + qm,∗1−α/2(χ))

3. CI for the explanatory part:

• True CI: I trueX,χ,1−α =

((XT β̂h + m̂h(χ)) + qtrueα/2 (X,χ), (XT β̂h + m̂h(χ)) + qtrue1−α/2(X,χ))

• Bootstrap CI: I∗X,χ,1−α =

((XT β̂h + m̂h(χ)) + q∗α/2(X,χ), (XT β̂h + m̂h(χ)) + q∗1−α/2(X,χ))

where the quantiles involved in the con�dence intervals were computed in
the following way:
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Theoretical quantiles (qβ,truep , qm,truep (χ), qtruep (X,χ))

1. Generate nMC samples {(Xs
i ,χ

s
i , Y

s
i ), i = 1, . . . , n}nMC

s=1 from
Model (5.101).

2. Carry out nMC estimates
{
β̂sh

}nMC

s=1
and {m̂s

h(χ)}nMC

s=1 , where β̂
s
h is the

estimator of β and m̂s
h(χ) is the functional kernel estimator, derived

from the sth sample {(Xs
i ,χ

s
i , Y

s
i )}ni=1.

3. Compute the approximation errors for each part of the model:

(a) For the linear part

ERROR.MC.βs =
{
β − β̂sh

}nMC

s=1
.

(b) For the nonparametric part
ERROR.MC.ms = {m(χ)− m̂s

h(χ)}nMC

s=1 .

(c) For all the explanatory part

ERROR.MCs =
{
XT (β − β̂sh) + (m(χ)− m̂s

h(χ))
}nMC

s=1
.

4. Compute the theoretical quantiles, which will be used to build the
con�dence intervals for each part:

(a) For the linear part: qβ,truep from the quantile of order p of
ERROR.MC.βs.

(b) For the nonparametric part: qm,truep (χ) from the quantile of order
p of ERROR.MC.ms.

(c) For all the explanatory part: qtruep (X,χ) from the quantile of order
p of ERROR.MCs.

Bootstrap quantiles (qβ,∗p , qm,∗p (χ), q∗p(X,χ))

1. Generate the sample S = {(X1,χ1, Y1), . . . , (Xn,χn, Yn)} from Model
(5.101).

2. Compute β̂b and m̂b(χ) over the dataset S.

3. Repeat B times the bootstrap algorithm over S by using i.i.d. random
variables Vi drawn from the two Dirac distributions

0.1(5 +
√

5)δ(1−
√
5)/2 + 0.1(5−

√
5)δ(1+

√
5)/2,

giving the B bootstrap estimates
{
β̂∗,rb

}B
r=1

and {m̂∗,rhb (χ)}Br=1.
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4. Compute the set of bootstrap errors for each part of the model:

(a) For the linear part

ERROR.BOOT.βr =
{
β̂b − β̂∗,rb

}B
r=1

.

(b) For the nonparametric part

ERROR.BOOT.mr {m̂b(χ)− m̂∗,rhb (χ)}Br=1.

(c) For the explanatory part

ERROR.BOOTr =
{
XT (β̂b − β̂∗,rb ) + (m̂b(χ)− m̂∗,rhb (χ))

}B
r=1

.

5. Compute the bootstrap quantiles for each part of the model, using the
bootstrap errors:

(a) For the linear part: qβ,∗p from the quantile of order p of
ERROR.BOOT.βr.

(b) For the nonparametric part: qm,∗p (χ) from the quantile of order p
of ERROR.BOOT.mr.

(c) For all the explanatory part: q∗p(X,χ) from the quantile of order
p of ERROR.BOOTr.

Finally, the estimates β̂h and m̂h(χ) needed for the intervals were ob-
tained from S.

The quadratic kernel, K(u) = 1.5(1 − u2)1[0,1](u), was considered in the
estimates m̂h and m̂∗hb, while the bandwidth b = bCV was selected by means
of the cross-validation methodology. Then, h = bCV was set.

5.4.2 Model 1: smooth curves

Simulated data will be obtained from Model 1 in Section 4.4, adding a scalar
covariate to deal with the SFPL model. The model is compound by:

χi(tj) = cos(ai + π(2tj − 1)),

where {ai} comes from AR(1) gaussian processes with correlation coe�cient
ρa = 0.7 and variance σ2

a = 0.05, while 0 = t1 < t2 < · · · < t99 < t100 = 1 are
100 equally spaced measurements. The regression operator was

m(χ) =
1

2π

∫ 3/4

1/2

(χ′(t))2dt.
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The scalar explanatory variables for the linear part of the model can be
chosen as {a2i }, if one considers dependent covariates, or an AR(1) gaussian
process independent of {ai} (with correlation coe�cient ρ = 0.8 and variance
σ2 = 0.5), if one considers independent covariates. The unknown parameter
was β = 1.

The errors {εi} were independent centred gaussians of variance equal to
0.1 times the empirical variance of {m(χ1), . . . ,m(χn)}.

True and bootstrap (1 − α)-con�dence intervals for β,m(χ) and XTβ +
m(χ), with (X,χ) ∈ D, were computed and compared. Test-sample D =
{(Xi, χi), i = 1, . . . nD, } is generated following the generation process ex-
plained in Section 4.4 to obtain independent curves (χi), and following the
same procedure to generate the values for the corresponding scalar covariate
(Xi).

Note that, from the procedure explained above, one obtains one (1 −
α)-con�dence interval of each type for β, m(χ) and also for XTβ + m(χ):
true (Iβ,true1−α , Im,trueχ,1−α and I trueX,χ,1−α) and bootstrap (Iβ,∗1−α, I

m,∗
χ,1−α and I∗X,χ,1−α)

con�dence intervals, respectively. To compare the accuracy of each type of
interval, the empirical coverages are obtained by repeating the procedure M
times and computing the proportion of times that each interval contains the
value β, m(χ) and XTβ +m(χ), respectively, that is, to check if:

• Iβ,true1−α and Iβ,∗1−α contains β.

• Im,trueχ,1−α and Im,∗χ,1−α contains m(χ), for each χ in D.

• I trueX,χ,1−α and I∗X,χ,1−α contains Xβ +m(χ), for each (X,χ) in D.

Values nMC = 2000, B = 500, nD = 100, M = 500, 1 − α = 0.95, 0.90
and n = 200, 400 were considered.

Table 5.1 reports the empirical coverage of the con�dence intervals ob-
tained for Model 1 considering independent covariates, meanwhile Table 5.2
reports the analogous case when the dependent covariates is included in the
model. The coverage when dealing with con�dence intervals for m(χ) and
XTβ+m(χ) is the average over D of the empirical coverage of the computed
con�dence intervals.
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Table 5.1: Empirical coverage of the true and bootstrap con�dence intervals
for Model 1 with independent covariates, for each part of the SFPL model.
For m(χ) and XTβ +m(χ), the average over D of the empirical coverages is
shown, with the standard deviation in brackets.

n=200
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.946 0.950 (0.015) 0.951 (0.013)
Coverage (I∗) 0.926 0.907 (0.033) 0.911 (0.032)

1− α 0.90
Coverage (I true) 0.910 0.899 (0.021) 0.900 (0.020)
Coverage (I∗) 0.872 0.856 (0.037) 0.858 (0.035)

n=400
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.952 0.948 (0.011) 0.949 (0.010)
Coverage (I∗) 0.946 0.909 (0.085) 0.910 (0.082)

1− α 0.90
Coverage (I true) 0.902 0.896 (0.016) 0.898 (0.017)
Coverage (I∗) 0.886 0.855 (0.091) 0.858 (0.090)

Tables 5.1 and 5.2 show promising results related to the coverage of the
con�dence intervals. In both cases, looking at the true con�dence intervals,
the coverage is almost the con�dence level, being also very similar for each
part of the model. Regarding the bootstrap con�dence intervals, the cover-
ages are a little lower than the con�dence level when dealing with the linear
part of the model and they are slightly lower in the case of the nonparametric
and all the explanatory part together.

One can see in Figure 5.1 the empirical coverages obtained for the true
and bootstrap con�dence intervals for XTβ+m(χ), considering independent
covariates. One can see how the coverage of the true con�dence intervals is
always around the con�dence level, while the corresponding of the bootstrap
con�dence intervals is lower than the con�dence level in general.
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Table 5.2: Empirical coverage of the true and bootstrap con�dence intervals
for Model 1 with dependent covariates, for each part of the SFPL model.
For m(χ) and XTβ +m(χ), the average over D of the empirical coverages is
shown, with the standard deviation in brackets.

n=200
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.960 0.948 (0.008) 0.945 (0.009)
Coverage (I∗) 0.832 0.833 (0.095) 0.826 (0.108)

1− α 0.90
Coverage (I true) 0.902 0.896 (0.013) 0.891 (0.013)
Coverage (I∗) 0.778 0.769 (0.102) 0.757 (0.122)

n=400
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.956 0.948 (0.008) 0.950 (0.007)
Coverage (I∗) 0.860 0.861 (0.093) 0.841 (0.135)

1− α 0.90
Coverage (I true) 0.922 0.900 (0.009) 0.897 (0.012)
Coverage (I∗) 0.810 0.798 (0.103) 0.774 (0.144)

Figure 5.2 displays the true (points) and bootstrap (lines) con�dence in-
tervals obtained for β, m(χ) and XTβ +m(χ), respectively.

Regarding the di�erences between both kinds of scalar covariate, one can
see that the coverages are better for the case of independent covariates than
for the dependent one. Thus, it seems that the latter case (Table 5.2) is more
di�cult to estimate, but one can see an improvement in the coverages as the
sample size increases.

If one compares the results with the corresponding for the FNP model
(Section 4.4), one can observe a slight decrease in the coverages, probably
due to the higher di�culty on the estimation for the SFPL model. However,
the bootstrap procedure seems to have a nice behaviour within this example.
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Figure 5.1: Empirical coverage for the true and bootstrap con�dence intervals
(for the complete explanatory part XTβ+m(χ)) for Model 1 for each (X,χ)
in D (considering independent covariates, 1− α = 0.95 and n = 400). Solid
line located at a height 1− α.
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Figure 5.2: From left to right: the lines represent the bootstrap con�dence
intervals for β and for each m(χ) and XTβ + m(χ), respectively. The dots
delimit the corresponding true con�dence interval. Model 1 is considered,
with independent covariates, 1− α = 0.95 and n = 400.
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5.4.3 Model 2: rough curves

Simulated data will be obtained based on a modi�ed version of Model 2 in
Section 4.4, adding a scalar covariate to deal with the SFPL model. The
model is compound by:

χi(tj) = b2i cos(b1itj) +

j∑
k=1

Bik/b,

where b = 10, {b1i} and {b2i} come fromMA(1) and AR(1) gaussian processes
with parameters θb1 = −0.5 and ρb2 = 0.9, respectively, and variances σ2

b1
=

0.1 and σ2
b2

= 0.01, Bik are i.i.d. realizations of N(0, σ) with σ = 0.1 and
0 = t1 < t2 < · · · < t99 < t100 = π are 100 equally spaced measurements.
The regression operator was

m(χ) =

∫ π

0

(χ(t))2dt.

The scalar explanatory variables for the linear part of the model can be
chosen as {b2i}, if one considers dependent covariates, or an AR(1) gaussian
process independent of {b2i} (with correlation coe�cient ρ = 0.8 and vari-
ance σ2 = 0.5), if one considers independent covariates.

The errors {εi} were, again, independent centred gaussians of variance
equal to 0.1 times the empirical variance of {m(χ1), . . . ,m(χn)}.

The simulations are carried out following the same procedure as in Model
1, using also a test sample and choosing the same parameters

Following the same procedure and tuning parameters as for Model 1, Ta-
ble 5.3 reports the empirical coverage of the con�dence intervals obtained for
Model 2 considering independent covariates, meanwhile Table 5.4 reports the
analogous case when dependent covariates are included in the model.

Analyzing the results shown in Table 5.3 and 5.4 for the true con�dence
intervals, one can see that the coverage is almost the con�dence level. Re-
garding the bootstrap con�dence intervals, the coverages are now lower than
the con�dence level, this di�erence being more remarkable when dealing with
the nonparametric and all the explanatory part together. It is important to
notice that the coverages improve as the sample size increases in both cases
(with independent and dependent scalar covariate) and that this improve-
ment is more outstanding than in Model 1.
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Table 5.3: Empirical coverage of the true and bootstrap con�dence intervals
for Model 2 with independent covariates, for each part of the SFPL model.
For m(χ) and XTβ +m(χ), the average over D of the empirical coverages is
shown, with the standard deviation in brackets.

n=200
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.952 0.949 (0.010) 0.951 (0.010)
Coverage (I∗) 0.850 0.706 (0.063) 0.719 (0.066)

1− α 0.90
Coverage (I true) 0.902 0.900 (0.012) 0.902 (0.014)
Coverage (I∗) 0.792 0.663 (0.062) 0.671 (0.063)

n=400
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.962 0.952 (0.011) 0.952 (0.011)
Coverage (I∗) 0.884 0.748 (0.062) 0.756 (0.061)

1− α 0.90
Coverage (I true) 0.908 0.902 (0.014) 0.901 (0.015)
Coverage (I∗) 0.784 0.701 (0.060) 0.706 (0.059)

As in Model 1, one can see in Figure 5.3 the empirical coverages obtained
for the true and bootstrap con�dence intervals for XTβ + m(χ), consider-
ing independent covariates. The coverage of the true con�dence intervals is
again around the con�dence level. However, the corresponding of the boot-
strap con�dence intervals is much lower than the con�dence level in general,
according to the numerical results shown in Table 5.3. Figure 5.4 displays the
true (points) and bootstrap (lines) con�dence intervals obtained for β, m(χ)
and XTβ + m(χ), respectively. In this case, there are not many di�erences
between the con�dence intervals obtained for m(χ) and for XTβ + m(χ),
which agrees with the similar empirical coverages obtained in both cases.

If one compares again the results with the corresponding for the FNP
model (Section 4.4), one can observe a higher descent in the coverages. How-
ever, taking into account that Model 2 corresponds to rough curves, the
bootstrap procedure seems to behave properly within this example.
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Figure 5.3: Empirical coverage for the true and bootstrap con�dence intervals
(for the complete explanatory part XTβ+m(χ)) for Model 2 for each (X,χ)
in D (considering independent covariates, 1− α = 0.95 and n = 400). Solid
line located at a height 1− α.
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Figure 5.4: From left to right: the lines represent the bootstrap con�dence
intervals for β and for each m(χ) and XTβ + m(χ), respectively. The dots
delimit the corresponding true con�dence interval. Model 2 is considered,
with independent covariates, 1− α = 0.95 and n = 400.
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Table 5.4: Empirical coverage of the true and bootstrap con�dence intervals
for Model 2 with dependent covariates, for each part of the SFPL model.
For m(χ) and XTβ +m(χ), the average over D of the empirical coverages is
shown, with the standard deviation in brackets.

n=200
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.960 0.951 (0.010) 0.951 (0.011)
Coverage (I∗) 0.816 0.736 (0.058) 0.702 (0.076)

1− α 0.90
Coverage (I true) 0.912 0.900 (0.014) 0.900 (0.014)
Coverage (I∗) 0.742 0.679 (0.056) 0.657 (0.072)

n=400
1− α 0.95

β m(χ) XTβ +m(χ)
Coverage (I true) 0.940 0.945 (0.012) 0.947 (0.011)
Coverage (I∗) 0.864 0.795 (0.055) 0.777 (0.070)

1− α 0.90
Coverage (I true) 0.888 0.895 (0.015) 0.897 (0.015)
Coverage (I∗) 0.802 0.738 (0.058) 0.728 (0.068)

5.5 Application to electricity data

This section applies the methodology proposed in this chapter to the con-
struction of con�dence intervals for the mean hourly electricity demand/price
in Spain given the daily curve of electricity demand/price in the previous day
(as functional covariate) and considering also scalar covariates with linear ef-
fect over the response: temperature (to be applied in the demand case) and
both cumulative demand and mean wind power production (in the case of
the price).

The dataset is restricted in this application to the workdays of the second
quarter of the year 2012, following the same outline as Section 4.5 for the
FNP model. As in the simulation study presented in Section 5.4, the wild
bootstrap procedure will be considered, using 1000 bootstrap replicates.
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5.5.1 Case study: electricity demand

The �rst application within the electricity demand case will consists on pre-
dict the 24 hours for a �xed day, corresponding to the last day in the database
(Friday, June 29, 2012) given the daily curve of electricity demand in the pre-
vious day and also the two temperature derived variables (see Section 1.5.1
for details), which will compound the linear part of the SFPL model.

Speci�cally, the considered SFPL model is:

χi+1(t) = XT
i β

(1) +m
(1)
t (χi) + ε

(1)
i,t (t = 1, . . . , 24, i = 1, . . . , n),

where the temperature covariates are X i = (Xi1, Xi2)
T = (HDDi, CDDi)

T

(for the de�nition of HDD and CDD see (1.12) and (1.13), respectively).

Table 5.5 shows a brief comparison of the con�dence intervals obtained for
the FNP and the SFPL model (in which all the explanatory part of the model
is computed together), through a comparison of the bootstrap con�dence in-
tervals lengths. Results show that the length of the con�dence intervals for
both functional regression models is similar.

Figure 5.5, left panel, shows the bootstrap con�dence intervals obtained
for the demand within this SFPL model.

Table 5.5: Comparison between the Con�dence Interval length in FNP and
SFPL model for electricity demand, predicting June 29, 2012.

Model length: mean (sd)
FNP 1045.92 (353.44)
SFPL 1081.54 (276.23)

A second application is performed, considering the case in which one
predicts a �xed hour, 20:00, for the last 21 days of the dataset. In this case,
the SFPL model is

χi+1,d(20) = XT
i β

(2) +m
(2)
d (χi,d) + ε

(2)
i,d (d = 1, . . . , 21, i = 1, . . . , n),

where the covariates are again X i = (Xi1, Xi2)
T = (HDDi, CDDi)

T
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The comparison between the length of the con�dence intervals, in Table
5.6, shows that the con�dence intervals for the SFPL model are shorter than
the ones for the FNP model. Also, the con�dence intervals are now longer
than in the previous case, when one considers the 24 hours of the same day.

Figure 5.5, right panel, represents the obtained con�dence intervals for
the mean hourly demand in the weekdays in June at the �xed hour 20:00.
One can see how the demand remains stable along the month for the same
hour of the day and also that, as mentioned above, now the intervals are
larger.
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Figure 5.5: Left panel: Bootstrap con�dence intervals computed for the elec-
tricity demand, for the 24 hours of Friday, June 29, 2012. Right panel:
Bootstrap con�dence intervals computed for the electricity demand, for the
workdays in June, 2012 (�xed hour: 20:00).

Table 5.6: Comparison between the Con�dence Interval length in FNP and
SFPL model for electricity demand, predicting a �xed hour, 20:00, along the
weekdays in June, 2012.

Model length: mean (sd)
FNP 2107.47 (813.80)
SFPL 1873.15 (468.12)
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5.5.2 Case study: electricity price

Application for the electricity price will be also divided into two parts. First
one consists in predicting one day (24 hours in June 29, 2012), including the
cumulative daily demand (D) and the daily mean wind power production
(WPP). The considered SFPL model is

χi+1(t) = XT
i β

(1) +m
(1)
t (χi) + ε

(1)
i,t (t = 1, . . . , 24, i = 1, . . . , n),

where the covariates are X i = (Xi1, Xi2)
T = (Di,WPPi)

T

Also, a comparison on the con�dence intervals lengths from the FNP and
the SFPL model is given in Table 5.7. One can see that including only the
demand as scalar covariate in the SFPL model produces similar intervals as
the FNP, while adding also the wind power production reduces the length of
the con�dence intervals. Left panel in Figure 5.6 shows the bootstrap con-
�dence intervals obtained for the mean hourly electricity price within this
SFPL model, for the 24 hours in June 29, 2012.

Table 5.7: Comparison between the Con�dence Interval length in FNP and
SFPL model for electricity price, predicting June 29, 2012.

Model length: mean (sd)
FNP 7.44 (1.63)
SFPL (D) 7.07 (1.56)
SFPL (D+WPP) 5.53 (1.14)

A second application is performed, predicting one �xed hour, 20:00, for
the last 21 days of the dataset, which are the weekdays in June, 2012. In
this case, the SFPL model is

χi+1,d(20) = XT
i β

(2) +m
(2)
d (χi,d) + ε

(2)
i,d (d = 1, . . . , 21, i = 1, . . . , n),

where the covariates are again X i = (Xi1, Xi2)
T = (Di,WPPi)

T

Comparison of lengths in this case (see Table 5.8) shows that SFPL model
produces longer con�dence intervals than the FNP model if one considers only
demand as scalar covariate. However, the length of the con�dence intervals
decreases when both demand and wind power production are included, be-
gin in that case shorter than the ones for the FNP model. In any case, is
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important to include both scalar covariates for the sake of the improvement
obtained in the predictions seen in Chapter 3. Right panel in Figure 5.6
shows again the bootstrap con�dence intervals obtained for the price within
this SFPL model. The con�dence intervals represented in this Figure are
now similar in terms of length.

Table 5.8: Comparison between the Con�dence Interval length in FNP and
SFPL model for electricity price, predicting a �xed hour, 20:00, along the
weekdays in June, 2012.

Model length: mean (sd)
FNP 8.21 (3.15)
SFPL (D) 9.68 (4.14)
SFPL (D+WPP) 6.34 (2.30)
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Figure 5.6: Left panel: Bootstrap con�dence intervals computed for the elec-
tricity price, for the 24 hours of Friday, June 29, 2012. Right panel: Bootstrap
con�dence intervals computed for the electricity price, for the workdays in
June, 2012 (�xed hour: 20:00).
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5.6 Conclusions

This chapter proposes two bootstrap procedures to construct pointwise con-
�dence intervals for the SFPL regression model, considering scalar response
and functional predictor and in which one adds linear e�ect of scalar co-
variates. By means of these two bootstrap procedures one can approximate
the asymptotic distribution of the estimators in both components (linear and
nonparametric) of the regression model. The validity of these two procedures
has been proved theoretically in the setting of dependent data, assuming α�
mixing conditions on the sample, and can be also apply to the setting of
independent data as a particular case.

There is no preceding in the literature about bootstrap procedures in this
kind of SFPL regression models. It is even di�cult to �nd applications of
this kind of bootstrap procedures in scalar partial linear regression. One can
�nd in Liang et al. (2000) and You and Chen (2006) proposals for bootstrap
approximation in partial linear regression but in the case of �xed design,
independent data and regarding the linear component of the model.

A simulation study was carried out to show the performance of the pro-
posed procedures, in addition to an application to a real dataset. Speci�cally,
applications to electrical data from the Spanish Electricity Market illustrate
its usefulness in practice.



Chapter 6

Prediction intervals in functional

regression

6.1 Introduction

Chapters 4 and 5 proposed bootstrap procedures to build con�dence intervals
in the context of functional regression under dependence conditions. Specif-
ically, for the FNP model and the SFPL model. Validity of those bootstrap
procedures has been proved for both functional regression models, allowing
to approximate the true asymptotic distribution of the regression estimator
by its bootstrapped version.

When dealing with forecasting, it is important to consider also prediction
intervals. Since the con�dence intervals are designed to deal with the regres-
sion function (or its unknown components), they cannot be applied to the
response of the model which is of main interest in the predictions. It is then
necessary to include the variability from the error of the model (ε) and not
only the variability of the regression estimator, as it is made in con�dence
intervals.

It is of main importance to distinguish between con�dence intervals and
prediction intervals. Consider, for instance, the FNP model (see 4.2 in Chap-
ter 4):

Y = m(χ) + ε,

where χ is the functional predictor, Y is the scalar response and ε is the
error of the model. m(·) is the regression operator which is, for a �xed χ,
the expectation of the response conditionally on this �xed predictor, that is:

E(Y |χ = χ) = m(χ).

199
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Then, one can obtain a con�dence interval (level 1− α) for this conditional
expectation based on its estimator m̂(χ). This interval will be built as:(

m̂(χ) + qα/2(χ), m̂(χ) + q1−α/2(χ)
)
,

where qα/2(χ) and q1−α/2(χ) are the quantiles from the distribution ofm(χ)−
m̂(χ).

This con�dence interval is devoted to cover the true value of the regression
operator, m(χ), and it deals only with the variability due to its estimation.

The procedure to obtain a prediction interval is similar, but changing its
�philosophy�. Prediction intervals are devoted to cover the response and not
the regression operator and so, they include, not only the variability due to
the estimation, but also the error of the model. That is, instead of working
with the expectation of Y conditionally on χ, one deals with the distribution
of Y conditionally on χ.

The procedure to build a prediction interval follows the same idea as the
con�dence interval, but now this variability due to the error of the model has
to be added. The starting point is that now, one looks for an interval (a, b)
such that

P (Y |χ ∈ (a, b)) = 1− α.

In the theory, assuming ε/χ ∼ N(0, σ2
ε), as Y/χ = m(χ) + ε/χ then

Y/χ ∼ N(m(χ), σ2
ε|χ) and one can obtain the desired interval from this nor-

mal distribution.

In practice, some of the terms involved in the considered distributions
are unknown (for instance m(χ) and σ2

ε|χ), and this is the reason why one
needs to approximate them applying the bootstrap procedures developed in
chapters 4 and 5, together with the �exibility of the bootstrap procedures in
which normality is not assumed.

In the context in which this memory is stated, electricity data, it is also
important to join the point forecasts with prediction intervals, generalizing
the results obtained in this real application. As Weron (2006) pointed out,
there is a big variety of studies devoted to evaluate point forecasts in electric-
ity markets, meanwhile it is di�cult to �nd references dealing with prediction
intervals. Misiorek et al. (2006) were the �rst in consider prediction inter-
vals within this context, applying them to electricity prices using time series
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models.

Construction of prediction intervals allows to connect with Chapter 3 to
complement the pointwise prediction results obtained for the electricity de-
mand and price with those prediction intervals and to extend the applications
in chapters 4 and 5 from con�dence to prediction intervals.

The algorithms developed to build those prediction intervals are adapted
to deal with both homoscedasticity and heteroscedasticity, considering each
one of the functional regression models (FNP and SFPL regression models).

Pointwise forecasts are not always enough when one wants to obtain pre-
dictions for data including disturbances. In that sense, as mentioned above,
prediction intervals are a nice tool to study how the forecasts may �uctu-
ate. However, it could be also very useful to obtain the prediction density,
which helps to understand the behaviour of the forecasts in a deeper way.
Estimation of the prediction density is less common that the estimation of
prediction intervals and it will be considered also along this chapter. Specif-
ically, the bootstrap procedures proposed in this memory allow to estimate
that prediction density for electricity demand and price.

The rest of the chapter is organized as follows: Section 6.2 contains the
procedure developed to build the prediction intervals. Section 6.3 includes
an application to the electricity data, showing the accuracy of the obtained
prediction intervals. Finally, Section 6.4 gives some conclusions to this chap-
ter.

6.2 Building prediction intervals

The procedure to build prediction intervals will take use of the bootstrap
procedures developed in chapters 4 and 5 for the FNP and SFPL model,
respectively.

6.2.1 Prediction intervals for Functional Nonparametric

model

First, the FNP case is addressed. As indicated in the introduction to this
chapter, the prediction intervals focus on the distribution of Y conditionally



202 Chapter 6. Prediction intervals in functional regression

on a �xed χ. Thus, in practice one disposes of a sample S, where

S = {(χ1, Y1), . . . , (χn, Yn)}.

Based on this sample for the FNP model introduced in (4.2), the predictor
for Y/χ is m̂h(χ) (see 4.3 for details about this estimation) and one has the
following decomposition:

Y/χ = m(χ) + ε/χ = m̂h(χ) +m(χ)− m̂h(χ) + ε/χ. (6.1)

Hence, as the true regression function m(χ) is unknown in the practice,
one needs to approximate it using the bootstrap procedures developed in
Section 4.2. This bootstrap procedures together with Theorems 4 and 5 (for
naive and wild bootstrap procedures, respectively) allows to approximate the
quantity

m(χ)− m̂h(χ)

in (6.1) by its bootstrap version

m̂b(χ)− m̂∗hb(χ).

Moreover, as the objective is to build prediction intervals, also the error term
ε/χ has to be considered and it will be approximated from the bootstrap pro-
cedure too.

As the bootstrap procedure can be applied as many times as one desires,
several values for Y/χ can be obtained to build the prediction intervals.

Two situations will be dealt to build prediction intervals: under ho-
moscedasticity, in which the error of the model has constant variance, or
heteroscedasticity, where that variance is variable.

Homoscedasticity

Speci�cally, the procedure to build the prediction intervals for the homoscedas-
tic FNP model is the following:

Given a curve χ, which is a �xed value of the functional predictor, and
a sample S = {(χ1, Y1), . . . , (χn, Yn)}, which is assumed to follow the FNP
model

Yi = m(χi) + εi (i = 1, . . . , n),

where S is α-mixing and identically distributed as (χ, Y ), χ is observed from
χ and εi are iid, E(ε|χ) = 0. As the model is considered to be homoscedastic,
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the error of the model has constant variance (that is, E(ε2|χ) = σ2
ε(χ) =

σ2
ε = ν, where ν denotes the conditional variance). Then, the bootstrap

(1− α)-prediction intervals for Y/χ were constructed as

I∗χ,1−α = (m̂h(χ) + q∗α/2(χ), m̂h(χ) + q∗1−α/2(χ)),

where the bootstrap quantiles q∗p(χ) were computed in the following way:

Step 1. Compute m̂b(χi), i = 1, . . . , n, over the dataset S.

Step 2. Compute the residuals ε̂i,b = Yi − m̂b(χi), i = 1, . . . , n.

Step 3. Apply the naive bootstrap procedure to obtain the bootstrap errors:
Draw n i.i.d random variables ε∗1, . . . , ε

∗
n from the empirical distribution

function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where ε̂b = n−1
∑n

i=1 ε̂i,b.

Step 4. Obtain Y ∗i = m̂b(χi) + ε∗i , i = 1, . . . , n and

m̂∗hb(χ) =

∑n
i=1K(d(χi, χ)/h)Y ∗i∑n
i=1K(d(χi, χ)/h)

.

Step 5. Repeat B times Steps 3�4, giving the B estimates {m̂∗,rhb (χ)}Br=1.

Step 6. Draw B i.i.d random variables ε̃1, . . . , ε̃B from the empirical distribu-
tion function of the centred residuals from Step 2. ε̃ approximate the
error of the model.

Step 7. Compute the set of bootstrap errors:

ERRORS.BOOT = {m̂b(χ)− m̂∗,rhb (χ) + ε̃r}Br=1 .

Step 8. Compute the bootstrap quantile, q∗p(χ), from the quantile of order p of
ERRORS.BOOT .

Finally, the estimate m̂h(χ) in each one of the intervals was obtained
from S. Note that in this situation, the empirical coverage of the prediction
intervals will compute the proportion of times that each interval contains the
value Y (in contradistinction to the con�dence intervals that consider m(χ)).

Note that, in addition, from the algorithm above, one can consider

Y ∗,r|χ = m̂h(χ) + m̂b(χ)− m̂∗,rhb (χ) + ε̃r, r = 1, . . . , B.

Now, using the bootstrap responses {Y ∗,r|χ}Br=1 one can obtain an estimation
for the prediction density of Y |χ applying, for instance, the kernel density
estimator.
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Heteroscedasticity

A second case, when the model is heteroscedastic, is dealt. That is, given
a curve χ, which is a �xed value of the functional predictor, and a sample
S = {(χ1, Y1), . . . , (χn, Yn)}, which is assumed to follow the FNP model

Yi = m(χi) + ηi (i = 1, . . . , n),

where S is α-mixing and identically distributed as (χ, Y ), and χ is ob-
served from χ. Considering that the model has heteroscedatic errors ηi =
σ(χi)εi, i = 1, . . . , n, where εi are iid, E(εi|χi) = 0 and V ar(εi|χi) = 1.
Then, V ar(Y |χ) = V ar(η|χ) = σ2(χ) = ν(χ), where ν(χ) denotes the error
conditional variance.

Under that situation, an algorithm that includes the estimation of the
conditional variance ν(χ) is proposed. This estimation is made following the
ideas in Fan and Yao (1998), but adapted to functional data. In their study,
Fan and Yao developed a residual based estimator for that conditional vari-
ance, which is based on apply a local linear regression model to the squared
residuals, and they proved that the same bandwidth selector used to deal
with the original regression model can be applied to deal with the squared
residuals regression used to estimate the conditional variance. Here, this pro-
cedure will be adapted to functional data using the FNP regression model
over the squared residuals (see Step 3 below).

The bootstrap (1−α)-prediction intervals for Y/χ were constructed again
as

I∗χ,1−α = (m̂h(χ) + q∗α/2(χ), m̂h(χ) + q∗1−α/2(χ)),

where the bootstrap quantiles q∗p(χ) were computed in the following way:

Step 1. Compute m̂b(χi), i = 1, . . . , n, over the dataset S.

Step 2. Compute the residuals η̂i = Yi − m̂b(χi), i = 1, . . . , n.

Step 3. Based on the sample Sη = {(χ1, η̂
2
1), . . . , (χn, η̂

2
n)}, using Nadaraya-

Watson estimator for functional data, the estimator for the error con-
ditional variance ν(χ) = σ2(χ) is obtained as:

ν̂g(χ) =

∑n
i=1K(d(χi, χ)/g)η̂2i∑n
i=1K(d(χi, χ)/g)

,
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where g is the bandwidth. In that way, one obtains the estimators for
ν(χi) = σ2(χi) and ν(χ) = σ2(χ), which are denoted as ν̂i = σ̂2

i =
ν̂g(χi), i = 1, . . . , n and ν̂g(χ) = σ̂2

g(χ), respectively.

One can now obtain

ε̂i =
η̂i
σ̂i
, i = 1, . . . , n,

which are the standardize residuals of the model.

Step 4. Apply the naive bootstrap procedure to obtain the bootstrap errors:
Draw n i.i.d random variables ε∗1, . . . , ε

∗
n from the empirical distribution

function of (ε̂1 − ε̂, . . . , ε̂n − ε̂), where ε̂ = n−1
∑n

i=1 ε̂i.

Step 5. Obtain Y ∗i = m̂b(χi) + σ̂iε
∗
i , i = 1, . . . , n and

m̂∗hb(χ) =

∑n
i=1K(d(χi, χ)/h)Y ∗i∑n
i=1K(d(χi, χ)/h)

.

Step 6. Repeat B times Steps 4-5, giving the B estimates {m̂∗,rhb (χ)}Br=1.

Step 7. Draw B i.i.d random variables ε̃1, . . . , ε̃B from the empirical distri-
bution function of the centred residuals from Step 4, and compute
η̃r = σ̂g(χ)ε̃r, r = 1, . . . , B. η̃ = σ̂g(χ)ε̃ approximate the error of the
model.

Step 8. Compute the set of bootstrap errors:

ERRORS.BOOT = {m̂b(χ)− m̂∗,rhb (χ) + η̃r}Br=1 .

Step 9. Compute the bootstrap quantile, q∗p(χ), from the quantile of order p of
ERRORS.BOOT .

The bootstrap procedures developed in Chapters 4 and 5 for heteroscedas-
tic models are based on the use of wild bootstrap. In the algorithm above,
wild bootstrap can be applied to approximate m(χ)− m̂h(χ) in (6.1) by its
bootstrap version m̂b(χ)− m̂∗,rhb (χ). However, one cannot use wild bootstrap
to resample the error of the model, η̃r, which has to be obtained as indicated
in the step 7 above.

Note that, again, from the algorithm above, one can consider

Y ∗,r|χ = m̂h(χ) + m̂b(χ)− m̂∗,rhb (χ) + η̃r, r = 1, . . . , B

and, using the bootstrap responses {Y ∗,r|χ}Br=1, one can obtain an estimation
for the prediction density of Y |χ applying, for instance, the kernel density
estimator.
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6.2.2 Prediction intervals for Semi-Functional Partial

Linear model

Moving to the SFPL model, the procedure is analogous. In this case, the
sample will be S, where

S = {(X1,χ1, Y1), . . . , (Xn,χn, Yn)}.

Based on this sample for the SFPL model (5.1), the predictor for Y/{X, χ}
is XT β̂h + m̂h(χ) (see Subsection 5.2.1 for details about this estimators),
where m̂h(χ) di�ers from the one used in the FNP model as:

m̂h(χ) =
n∑
i=1

wh(χi, χ)(Yi −XT
i β̂h).

Note that now, the distribution of interest is Y conditionally on both the
scalar-linear covariate X and the functional-nonparametric one χ.

One has the following decomposition:

Y/{X, χ} = XTβ +m(χ) + ε/{X, χ} =

XT β̂h +XT (β − β̂h) + m̂h(χ) +m(χ)− m̂h(χ) + ε/{X, χ}. (6.2)

Hence, as the true values for the regression function m(χ) and the param-
eters vector β are unknown in practice, one needs to approximate it using
the bootstrap procedures developed in Section 5.2.2. This bootstrap pro-
cedures together with Theorems 10�11 for the linear component (for naive
and wild bootstrap procedures, respectively) and Theorems 14�15 for the
nonparametric component (again for naive and wild bootstrap procedures,
respectively) allows to approximate the quantities

β − β̂h and m(χ)− m̂h(χ)

in (6.2) by its bootstrap version

β̂h − β̂
∗
h and m̂b(χ)− m̂∗hb(χ).

Also, as the objective is to build prediction intervals, the error of the model
has to be considered and it will be approximated from the bootstrap proce-
dure too. Again, as the bootstrap procedure can be applied as many times
as one desires, several values for Y/{X, χ} can be obtained to build the pre-
diction intervals.

The algorithms will be developed to deal with both homoscedastic and
heteroscedastic models, following the ideas in Subsection 6.2.1.
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Homoscedasticity

Speci�cally, the procedure to build the prediction intervals for the homoscedas-
tic SFPL model is the following:

Given {X, χ}, which are �xed values of the predictors, and a sample
S ′ = {(X1,χ1, Y1), . . . , (Xn,χn, Yn)}, which is assumed to follow the SFPL
model

Yi = XT
i β +m(χi) + εi, i = 1, . . . , n,

where the process {(X i,χi, Yi)} is α-mixing and identically distributed as
(X,χ, Y ), εi are iid, E(ε|χ) = 0 and, under homoscedasticity, E(ε2|χ) =
σ2
ε(χ) = σ2

ε = ν. Then, the bootstrap (1 − α)-prediction intervals for
Y/{X, χ} were constructed as

I∗X ,χ,1−α = (XT β̂h + m̂h(χ) + q∗α/2(X, χ),XT β̂h + m̂h(χ) + q∗1−α/2(X, χ)),

where the bootstrap quantiles q∗p(X, χ) were computed in the following way:

Step 1. Compute β̂b and m̂b(χi), i = 1, . . . , n, over the dataset S ′.

Step 2. Compute the residuals ε̂i,b = Yi −XT
i β̂b − m̂b(χi), i = 1, . . . , n.

Step 3. Apply the naive bootstrap procedure to obtain the bootstrap errors:
Draw n i.i.d. random variables ε∗1, . . . , ε

∗
n from the empirical distribu-

tion function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where ε̂b = n−1
∑n

i=1 ε̂i,b.

Step 4. Obtain Y ∗i = XT
i β̂b + m̂b(χi) + ε∗i , i = 1, . . . , n and the bootstrap

estimators

β̂
∗
b = (X̃T

b X̃b)
−1X̃T

b Ỹ
∗
b

and

m̂∗hb(χ) =
n∑
i=1

wh(χi, χ)(Y ∗i −XT
i β̂
∗
b),

Step 5. Repeat B times Steps 3�4, giving the B estimates

{β̂
∗,r
b }Br=1 and {m̂

∗,r
hb (χ)}Br=1 .

Step 6. Draw B i.i.d random variables ε̃1, . . . , ε̃B from the empirical distribu-
tion function of the centred residuals from Step 2. ε̃ approximates the
error of the model.
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Step 7. Compute the set of bootstrap errors:

ERRORS.BOOT =
{
XT (β̂b − β̂

∗,r
b ) + (m̂b(χ)− m̂∗,rhb (χ)) + ε̃r

}B
r=1

,

Step 8. Compute the bootstrap quantile, q∗p(X, χ), from the quantile of order
p of ERRORS.BOOT .

Following the same idea as for the FNP model, one can get, from the
algorithm above:

Y ∗,r/{X, χ} = XT β̂h + m̂h(χ) +XT (β̂b − β̂
∗,r
b ) + m̂b(χ)− m̂∗,rhb (χ) + ε̃r,

where r = 1, . . . , B. Now, the prediction density of Y/{X, χ} can be ob-
tained from the set of bootstrap responses {Y ∗,r/{X, χ}}Br=1 using, for ex-
ample, the kernel density estimator.

Heteroscedasticity

Finally, the procedure to build the prediction intervals for the heteroscedastic
SFPL model is the following:

Given {X, χ}, which are �xed values of the predictors, and a sample
S ′ = {(X1,χ1, Y1), . . . , (Xn,χn, Yn)}, which is assumed to follow the SFPL
model

Yi = XT
i β +m(χi) + ηi, i = 1, . . . , n,

where the process {(X i,χi, Yi)} is α-mixing and identically distributed as
(X,χ, Y ). The errors of the model are heteroscedastic, that is, ηi = σ(χi)εi,
i = 1, . . . , n, where εi are iid, E(εi|χi) = 0 and V ar(εi|χi) = 1. Then,
V ar(Y |χ) = V ar(η|χ) = σ2(χ) = ν(χ), where ν(χ) denotes the error con-
ditional variance.

In the last paragraph, one assumes that the conditional variance, ν(χ),
only depends on the functional explanatory variable χ and not on the scalar
one, X (see assumption (5.8) in Chapter 5). Hence, it can be estimated
following a nonparametric estimator similar than in Fan and Yao (1998) but
adapted to functional data, as it was applied in the previous algorithm for
the FNP model.

The bootstrap (1−α)-prediction intervals for Y/{X, χ} were constructed
as
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I∗X ,χ,1−α = (XT β̂h + m̂h(χ) + q∗α/2(X, χ),XT β̂h + m̂h(χ) + q∗1−α/2(X, χ)),

where the bootstrap quantiles q∗p(X, χ) were computed in the following way:

Step 1. Compute β̂b and m̂b(χi), i = 1, . . . , n, over the dataset S ′.

Step 2. Compute the residuals η̂i = Yi −XT
i β̂b − m̂b(χi), i = 1, . . . , n.

Step 3. Based on the sample Sη = {(χ1, η̂
2
1), . . . , (χn, η̂

2
n)}, using Nadaraya-

Watson estimator for functional data, the estimator for the error con-
ditional variance ν(χ) = σ2(χ) = V ar(Y/χ) is obtained as:

ν̂g(χ) =

∑n
i=1K(d(χi, χ)/g)η̂2i∑n
i=1K(d(χi, χ)/g)

,

where g is the bandwidth. In that way, one obtains the estimators for
ν(χi) = σ2(χi) and ν(χ) = σ2(χ), which are denoted as ν̂i = σ̂2

i =
ν̂g(χi), i = 1, . . . , n and ν̂g(χ) = σ̂2

g(χ), respectively.

One can now obtain

ε̂i =
η̂i
σ̂i
, i = 1, . . . , n,

which are the standardize residuals of the model.

Step 4. Apply the naive bootstrap procedure to obtain the bootstrap errors:
Draw n i.i.d. random variables ε∗1, . . . , ε

∗
n from the empirical distribu-

tion function of (ε̂1 − ε̂, . . . , ε̂n − ε̂), where ε̂ = n−1
∑n

i=1 ε̂i.

Step 5. Obtain
Y ∗i = XT

i β̂b + m̂b(χi) + σ̂iε
∗
i , i = 1, . . . , n

and the bootstrap estimators

β̂
∗
b = (X̃T

b X̃b)
−1X̃T

b Ỹ
∗
b

and

m̂∗hb(χ) =
n∑
i=1

wh(χi, χ)(Y ∗i −XT
i β̂
∗
b),

Step 6. Repeat B times Steps 4-5, giving the B estimates

{β̂
∗,r
b }Br=1 and {m̂

∗,r
hb (χ)}Br=1 .
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Step 7. Draw B i.i.d random variables ε̃1, . . . , ε̃B from the empirical distri-
bution function of the centred residuals from Step 4 and compute
η̃r = σ̂g(χ)ε̃r, r = 1, . . . , B. η̃ = σ̂g(χ)ε̃ approximate the error of
the model.

Step 8. Compute the set of bootstrap errors:

ERRORS.BOOT =
{
XT (β̂b − β̂

∗,r
b ) + (m̂b(χ)− m̂∗,rhb (χ)) + η̃r

}B
r=1

,

Step 9. Compute the bootstrap quantile, q∗p(X, χ), from the quantile of order
p of ERRORS.BOOT .

As indicated above, one assumes that the conditional variance, ν(χ),
only depends on the functional explanatory variable χ and not on the scalar
one, X. This allows to estimate it using a nonparametric estimator in
Step 3. However, if one wants to assume that this conditional variance
depends on both covariates, X and χ, one may consider the expression
V ar(Y |(X,χ)) = V ar(η|(X,χ)) = σ2

ε(X,χ) = ν(X,χ). It that general
case, the estimation of ν(X,χ) cannot be done by a nonparametric estima-
tor, and alternatives as partial linear or additive models need to be employed.

Related to the bootstrap methodology, an alternative to this algorithm
could be to apply wild bootstrap procedure to approximate the quantity

β − β̂h and m(χ)− m̂h(χ)

in (6.2) by its bootstrap version

β̂h − β̂
∗
h and m̂b(χ)− m̂∗hb(χ),

as it was done to build the bootstrap con�dence intervals in Chapter 5. How-
ever, the error of the model has to be approximated by η̃r, as it was obtained
in Step 7 above.

Finally, as in the previous algorithms, one can get

Y ∗,r/{X, χ} = XT β̂h + m̂h(χ) +XT (β̂b − β̂
∗,r
b ) + m̂b(χ)− m̂∗,rhb (χ) + η̃r,

where r = 1, . . . , B and thus, the prediction density of Y/{X, χ} can be
obtained from the set of bootstrap responses {Y ∗,r/{X, χ}}Br=1 using, for
example, the kernel density estimator.
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6.3 Application to electricity data

An application to the electrical dataset, separately for the electricity demand
and price, is carried out in this section. Within this application, both FNP
and SFPL regression models are considered to build prediction intervals. As
in the applications reported in Chapters 4 and 5, because of its generality,
heteroscedastic models will be contemplated.

Prediction intervals will be calculated following the applications in Chap-
ters 4 and 5. That is, to consider the weekdays from the second quarter of
the year 2012, obtaining prediction intervals in two situations: predicting the
24 hours of the same day (June 29, 2012) or considering the same �xed hour
along 21 consecutive days. Those prediction intervals will be compared with
the con�dence intervals obtained in the previous Sections 4.5 and 5.5.

The FNP and SFPL regression models used to predict hourly demand
or price are applied in the same way as Sections 4.5 and 5.5, respectively,
using as functional covariate the previous daily curve of electricity demand
or price. Within the SFPL model, the scalar covariates include information
about the temperature through HDD and CDD variables, when dealing with
demand, or daily demand and wind power production, when dealing with
price.

Together with the prediction intervals, also the prediction density will
be computed. In this case, a comparison between some hours in the same
day will be presented, showing the di�erent performance of the electricity
demand and price.

Along the applications, the parameters involved in the bootstrap proce-
dures will be selected following the ideas in Sections 4.5 and 5.5, and thus, the
smoothing parameters b and g are selected using a cross-validation method
and h is chosen equal to b. 1000 bootstrap replicates were drawn, quadratic
kernel was used and the class of projection-based semi-metrics was consid-
ered. The con�dence level is 1− α = 0.95.

6.3.1 Case study: electricity demand

Prediction intervals were computed for the electricity demand, following the
FNP and SFPL regression models. The results are shown separately for each
one of the functional regression models in the following pages.
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FNP model

The application to the electricity demand of the algorithm developed to build
prediction intervals for the FNP regression model under heteroscedasticity is
presented in the next paragraphs.

First, the case in which one predicts the 24 hour of the same day (June
29, 2012) is considered. The prediction intervals, together with the observed
demand are represented in the right panel of Figure 6.1. Left panel in this
Figure shows the con�dence intervals obtained in the previous Subsection
4.5.1 using the same FNP model, in chronological order.

One can distinguish in both graphs the shape of the daily demand curves
and see how it performs along the 24 hours of the day. Comparing the con�-
dence and prediction intervals one can see that, as expected, the prediction
intervals are longer than the con�dence intervals and they cover the observed
demand for each hour of the day. It is worth to point out that con�dence
intervals are not really designed to cover the observed demand, as they deal
with the expectation, and that is the reason why is necessary to extend the
algorithms in Chapter 4.
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Figure 6.1: Bootstrap con�dence intervals (left panel) and prediction in-
tervals (right panel) for the electricity demand using the FNP model and
considering a �xed day (June 29, 2012). The circles are the observed de-
mand.
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Then, the second case in which one predicts the same �xed hour (20:00)
along some consecutive days (weekdays in June, 2012) is dealt. The predic-
tion intervals are plotted in the right panel of Figure 6.2. As in the previous
Figure 6.1, the left panel represents the corresponding con�dence intervals
and observed demand in chronological order.

One can see that demand values remain stable along the days for the same
�xed hour. Comparing with Figure 6.1, there are not big di�erences between
the level of demand at 20:00 hour along some days. This is expectable,
since the demand barely �uctuate along the same group of days during that
period of time (one month). Again, the prediction intervals are longer than
the con�dence intervals.
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Figure 6.2: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity demand using the FNP model and con-
sidering a �xed hour, 20:00, along June, 2012. The circles are the observed
demand.

In addition to the intervals, also the bootstrap prediction density can be
computed. This is done for some �xed hours in the day June 29, 2012, and
is represented in Figure 6.3.

Comparing the prediction densities plotted in Figure 6.3, one can distin-
guish the di�erent behaviour of the demand during the night (hours 1:00 and
5:00) and during the day (hours 10:00, 15:00 and 20:00). In the �rst case,
the demand covers low values, specially at 5:00. For the second case, during
the day, there are not many di�erences between the density curves, as they



214 Chapter 6. Prediction intervals in functional regression

cover more or less the same range of demand. This is coincident with the
descriptive analysis in Section 1.4.1, in which the shape of the daily demand
curves was analysed.
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Figure 6.3: Prediction density for the electricity demand using the FNP
model, along June 29, 2012 and comparing some hours along the day (1:00
in black line, 5:00 in red, 10:00 in green, 15:00 in dark blue and 20:00 in light
blue).

SFPL model

The analysis reported above for the electricity demand using the FNP model
can be replayed now considering the SFPL regression model, in which infor-
mation about temperature is added to the model as scalar covariates (see
Subsection 5.5.1 for details).

Prediction intervals are obtained �rst for the 24 hours of June 29, 2012,
in Figure 6.4 and then for the weekdays in June, setting the hour 20:00, in
Figure 6.5. In both cases they are compared with the corresponding con�-
dence intervals obtained in Section 5.5.1
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Figure 6.4: Bootstrap con�dence intervals (left panel) and prediction in-
tervals (right panel) for the electricity demand using the SFPL model and
considering a �xed day (June 29, 2012). The circles are the observed demand.
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Figure 6.5: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity demand using the SFPL model and con-
sidering a �xed hour, 20:00, along June, 2012. The circles are the observed
demand.
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In the �rst case, looking at Figure 6.4, both con�dence and prediction
intervals are very similar as those obtained for the FNP model in Figure 6.1.
Again, the prediction intervals are larger than the corresponding con�dence
intervals and they already cover the observed demand at each hour of the
day. However, in Figure 6.5 one can see that the prediction intervals are
slightly shorter for the SFPL than the ones for the FNP model in Figure
6.2. In any case, the results are very similar for both functional regression
models, FNP and SFPL.

Finally, the prediction density is analysed. Figure 6.6 represents the pre-
diction density for the day June 29, 2012, comparing some hours in this day.
Similar comments as those made for FNP model, regarding Figure 6.3 can
be used here, as there are not many changes in the graphs comparing both
functional regression models. Again, the prediction density di�ers from the
night (1:00 and 5:00) and during the day (10:00, 15:00 and 20:00).
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Figure 6.6: Prediction density for the electricity demand using the SFPL
model, along June 29, 2012 and comparing some hours along the day (1:00
in black line, 5:00 in red, 10:00 in green, 15:00 in dark blue and 20:00 in light
blue).
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6.3.2 Case study: electricity price

In this subsection, the prediction intervals were computed for the electricity
price, following the FNP and SFPL regression models. The results are also
shown separately for each one of the regression models in the following pages,
proceeding with the same outline used previously for electricity demand.

FNP model

FNP regression model is applied to build the prediction intervals for elec-
tricity price, which are compared with the con�dence intervals obtained pre-
viously in Section 4.5.2. First, the prediction intervals are represented in
Figure 6.7 for the 24 hours of the day June 29, 2012. The �uctuations along
the 24 hours of the day are now smooth, as price remains more stable than
the electricity demand.
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Figure 6.7: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity price using the FNP model and consid-
ering a �xed day (June 29, 2012). The circles are the observed price.

Comparing the prediction intervals in this �gure with those obtained in
the demand case, in Figure 6.1, one can observe higher variability in the in-
tervals amplitude. Since the prediction intervals for electricity demand were
stable in terms of length, now for the price there are more variations along
the hours of the day. For instance, during the �rst hours of the day, the
prediction intervals are smaller than during the rest of the day.
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Figure 6.8: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity price using the FNP model and consid-
ering a �xed hour, 20:00, along June, 2012. The circles are the observed
price.

Figure 6.8 represents the con�dence and prediction intervals, considering
in this case the hour 20:00 along the weekdays of June, 2012. There are
not many di�erences in the price levels between the days. One can see that
the prediction intervals are quite stable and they are larger than the cor-
responding con�dence intervals. As expected, the prediction intervals cover
the observed hourly price.

Finally, also the prediction density was obtained for the electricity price
using the FNP model. Figure 6.9 represents the density obtained for June
29, 2012, comparing some hours of the day. One can see that the curves are
closer than in the demand. However, the performance of the price during
the night is still di�erent, specially at 5:00, as it reaches lower values than
during the day.
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Figure 6.9: Prediction density for the electricity price using the FNP model,
along June 29, 2012 and comparing some hours along the day (1:00 in black
line, 5:00 in red, 10:00 in green, 15:00 in dark blue and 20:00 in light blue).

SFPL model

Prediction intervals were computed also for the electricity price, following
the SFPL regression model. This application is analogous to the previous
case, in which the FNP model was used, but adding as scalar covariates the
demand and wind power production (see Section 5.5.2 for details).

Analogous results as in the previous sections are shown here. First, con-
sidering the 24 hours of June 29, 2012, in Figure 6.10, and then for the hour
20:00 along the weekdays in June, in Figure 6.11.

The di�erence between the prediction intervals for the two functional
regression models is now more remarkable than in the case of the demand.
Comparing Figures 6.10 and 6.11 for the SFPL model with Figures 6.7 and
6.8 for the FNP model, respectively, one can see that the intervals for the
SFPL model are smaller than the ones for the FNP model. In any case, the
prediction intervals are longer than the corresponding con�dence intervals
and they cover the observed hourly price almost always.
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Figure 6.10: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity price using the SFPL model and consid-
ering a �xed day (June 29, 2012). The circles are the observed price.

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

t

0

20

40

60

80

100

5 10 15 20

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

t

0

20

40

60

80

100

5 10 15 20

Figure 6.11: Bootstrap con�dence intervals (left panel) and prediction inter-
vals (right panel) for the electricity price using the SFPL model and con-
sidering a �xed hour, 20:00, along June, 2012. The circles are the observed
price.
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Following the same outline as in the previous cases, also the prediction
densities were computed for the electricity price with SFPL model. In Figure
6.12 one can see the prediction density estimated for June 29, 2012 compar-
ing some hours of the day. Again, one can distinguish the di�erent behaviour
between the hour 5:00 and the rest of the day. In this case, the prediction
densities during the other considered hours are almost overlapped and this
may indicate that the performance of the predictions for those hours is sim-
ilar for the electricity price using SFPL model.
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Figure 6.12: Prediction density for the electricity price using the SFPL model,
along June 29, 2012 and comparing some hours along the day (1:00 in black
line, 5:00 in red, 10:00 in green, 15:00 in dark blue and 20:00 in light blue).
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6.4 Conclusions

This chapter has extended the bootstrap procedures developed in chapters 4
and 5, originally applied to construct con�dence intervals, to build prediction
intervals. This last chapter in the memory also complements the predictions
developed in Chapter 3, following the recommendation in Weron (2006) to
give a step forward in the problem of prediction in electricity markets giving,
not only pointwise predictions, but also prediction intervals and computing
prediction density.

The algorithms developed in this chapter are designed to deal with ho-
moscedastic and heteroscedastic models. For the latter case, it is not enough
to apply wild bootstrap procedures as for the con�dence intervals, because
this wild bootstrap can be only applied to approximate the error of the re-
gression estimator, but not the error of the model. Thus, the algorithms
developed to use with heteroscedastic models follow the ideas in Fan and
Yao (1998) in order to estimate the conditional variance.

Prediction intervals for both electricity demand and price were obtained
through the two functional regression models: FNP and also SFPL regression
models, and they were also compared with the con�dence intervals from the
previous Sections 4.5 and 5.5. This applications extends and complements
applications in Chapters 4 and 5, in which bootstrap con�dence intervals
were obtained for demand and price, obtaining now the prediction intervals
for the same dataset and also prediction density.



Conclusions

This memory has presented a detailed statistical analysis of electricity de-
mand and price from the Spanish Electricity Market, using functional tech-
niques. This analysis started with an introduction to the electricity market
and a descriptive study of the dataset used later.

As any other statistical study, it begins with a detection of the outliers
in the dataset, which can disturb the techniques applied in it. Since the
study works with functional time series and, up to our knowledge, the avail-
able tools in the literature for functional data are not design to deal with
this kind of structure, up to three di�erent methods speci�cally addressed to
detect functional outliers in functional time series were developed. Derived
from this methodology, which is explained in Chapter 2, two papers were
published. The �rst one, entitled �Detection of outliers in functional time
series� by Raña, P., Aneiros, G. and Vilar, J.M. (2015), can be found in
Environmetrics and it includes the Depth-based trimming method for Func-
tional Time Series described in Section 2.3. The second one, entitled �Using
robust FPCA to identify outliers in functional time series, with applications
to the electricity market� by Vilar, J.M., Raña, P. and Aneiros, G., includ-
ing the Projections-based and Prediction errors-based methods presented in
Section 2.4, will be found in SORT.

A comparative study between di�erent prediction methods in this elec-
trical data �eld was carried out in Chapter 3. This comparison includes
classical tools as the Naïve method or time series analysis through ARIMA
models and also proposals based on robust FPCA. The proposal is to apply
in this �eld functional regression models as the FNP or the SFPL model
with both scalar or functional response and adding external covariates. This
proposal extends Vilar et al. (2012) and has been also included in a paper
entitled �Short-term forecast of daily curves of electricity demand and price�
by Aneiros, G., Vilar, J. and Raña, P. (2016), which is already published in
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International Journal of Electrical Power and Energy Systems.

Bootstrap procedures were established to deal with two functional regres-
sion models, the FNP model in Chapter 4 and the SFPL model in 5. In both
cases the validity of the bootstrap procedures was proved theoretically and
they were applied to build con�dence intervals. This application was also
extended to build prediction intervals in Chapter 6.

Concerning the bootstrap in FNP model, there is a preceding in Ferraty,
F., Van Keilegom, I. and Vieu, P. (2010) in which they proposed and proved
the validity of the bootstrap methods for independent data. Our contribu-
tion in this topic consists in extend this result to work under dependence
conditions on the sample. The paper entitled �Bootstrap con�dence intervals
in FNP regression under dependence� by Raña, P., Aneiros, G., Vilar, J.
and Vieu, P. (2016), which can be found in Electronic Journal of Statistics,
summarizes both the theoretical development and the simulations and appli-
cations presented in Chapter 4.

Nevertheless, when dealing with SFPL model there is no preceding in the
literature, up to our knowledge, which achieves the bootstrap procedures pre-
sented in Chapter 5 for this regression model. Moreover, it is even di�cult to
�nd studies about bootstrap procedures in the classical partial linear regres-
sion models. One can �nd in Liang et al. (2000) and You and Chen (2006)
proposals regarding partial linear regression for �xed design and independent
data. Thus, probably the main contribution of this memory is the proposal
of the bootstrap procedures applied to SFPL model under dependence to-
gether with the theoretical proof of its validity. A paper which summarizes
the contents from this chapter, both theoretical results and applications is
under preparation.

Aforementioned bootstrap procedures were applied �rst to build con�-
dence intervals for the regression estimators, but this has been extended to
build also prediction intervals. When dealing with forecasting, as in Chapter
3 it is important to complement the pointwise predictions with other tools
as the prediction intervals. This has been also pointed out by Weron (2006),
indicating that most of the studies dealing with prediction in electricity mar-
kets are focus on pointwise prediction and that this could not be enough,
encouraging researches to go deeper within this problem. Then, this mem-
ory contributes with the prediction intervals and prediction densities built
for the FNP and SFPL regression models, included in Chapter 6, which con-
clude this study. A paper which summarizes the contents from this chapter,
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both bootstrap algorithms and applications is under preparation.

As in every statistical process, this is not the �nal point for this project.
There are many open problems to be dealt in future researches. Some of
them were already pointed out in the conclusions for each chapter, but the
most remarkable ones are summarized in the following points:

• Outlier detection methods developed in Chapter 2 can be modi�ed, for
instance, to use other new functional depths which improve the results.
The computational models to visualize functional data are evolving and
so, they can also contribute to the problem of outlier detection.

• Related to Chapter 3, it could be interesting to add new models to the
comparison in order to improve the prediction errors. In that sense,
the additive models for FDA could be a nice alternative due to its
�exibility.

• The theory related to the bootstrap procedures developed in Chapters
4 and 5 to build con�dence intervals, which was analysed restricting to
models with scalar response, could be extended to work with functional
response. Even if we are aware that this is a challenging problem
from the theoretical point of view, it could be addressed following the
developments in Ferraty el al. (2012).

• Reaching that question of the bootstrap procedures for regression mod-
els with functional response, they can be applied to both con�dence and
prediction tubes.

• Chapter 6 includes procedures to build prediction intervals for het-
eroscedastic models, by estimating the conditional variance. Other
procedures could be also considered within these procedures to ap-
proximate the error of the regression model.
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Auxiliary results

Lemma 17 (Lemma 1, Ferraty et al., 2007) Under assumptions (4.4), (4.5),
(4.6), (4.9) and (4.10) we have that

E (ĝh(χ))

E
(
f̂h(χ)

) −m(χ) = hϕ′χ(0)Jχ + o(h).

Proof. Because dependence does not in�uence on the expectation of
ĝh(χ) nor f̂h(χ), the proof of this lemma is the same as that obtained for
Lemma 1 in Ferraty et al. (2007) for the independent case. �

Lemma 18 (Lemma 2, Ferraty et al., 2007) Under assumptions (4.6), (4.9)
and (4.10) we have that

Jχ =
K(1)−

∫ 1

0
(sK(s))′τhχ(s)ds

K(1)−
∫ 1

0
K ′(s)τhχ(s)ds

−→ M0χ

M1χ

as n −→∞.

Proof. Because J is not random, the proof of this lemma is the same as
that obtained for Lemma 2 in Ferraty et al. (2007).

Lemma 19 (Lemma 4, Ferraty et al., 2007) Under assumptions of Lemma
17 we have that

E
(
f̂h(χ)

)
−→M1χ and E (ĝh(χ)) −→ m(χ)M1χ as n −→∞.

Remark 20 Actually, lemmas 17 and 19 above were established in Ferraty
et al. (2007) under independence conditions. Noting that dependence does

not in�uence on the expectation of ĝh(χ) nor f̂h(χ), one has that they remain
valid in our setting of dependent samples. Of course, the validity of Lemma
2 in Ferraty et al. (2007) (Lemma 18 above) also remains because Jχ is not
random.
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Proof. Because dependence does not in�uence on the expectation of
ĝh(χ) nor f̂h(χ), the proof of this lemma is the same as that obtained for
Lemma 4 in Ferraty et al. (2007) for the independent case. �

Lemma 21 (Lemma 3, Aneiros and Vieu, 2008) Let Vk be a zero-mean, sta-
tionary, α-mixing and real process, such that for some r > 4,max1≤k≤nE|Vk|r ≤
C < ∞. Assume that ai,k, i, k = 1, . . . , n is a sequence of positive numbers

such that max1≤i,k≤n |ai,k| = O(an). If, in addition,
∑∞

n=1 n
5+4γ
4(1−γ)α(n) <

∞(0.5 < γ < 1), then:

max
1≤i≤n

|
n∑
k=1

ai,kVk| = O(ann
1/2+1/r log n)a.s.

Remark 22 Last lemma remains unchanged when ai,k, i, k = 1, . . . , n veri-

�es the conditions almost sure. If the mixing coe�cients verify n
5+4γ
4(1−γ)α(n)→

0 as n → ∞ instead of
∑∞

n=1 n
5+4γ
4(1−γ)α(n) < ∞(0.5 < γ < 1), we obtain the

same result but with convergence in probability, that is: max1≤i≤n |
∑n

k=1 ai,kVk| =
OP (ann

1/2+1/r log n)

Lemma 23 (Lemma 4, Aneiros and Vieu, 2008) Under assumptions (5.2)-
(5.5) if, in addition, χi are identically distributed and come from some
α−mixing process whose mixing coe�cients α(n) verify α(n) ≤ cn−a

∗
for

some a∗ > 1, and s
a∗+1

2
n,1 = o(nω) for some ω > 2 and

(
n2− 2ω

a∗+1F (h)2
)−1

log n =

O(1), then:

max
i,j
|wb(χi,χj)| = O(

1

nF (b)
)

Lemma 24 (Lemma 5, Aneiros and Vieu, 2008) Under assumptions (5.2)�
(5.6) and (5.11) (m not included in (5.4)), if in addition h→ 0, log n/(nF (h))→
0 and nF (h)

εa(r−2)
r
−1 = O(1) as n → ∞ (where a > 1 and r > 4, and

0 ≤ ε ≤ 1 was de�ned in Assumption (5.6)), and

1. {(X i,χi)}ni=1 come from some stationary α-mixing process whose mix-
ing coe�cients are α(n) ≤ cn−a,

2. max1≤i≤n(E|Xi1|r + . . .+ E|Xip|r) ≤C<∞, and

3. (supt∈C(sn,1(t) + sn,3(t)))
r(a+1)
2(a+r) = o(nθ), for some θ > 2,

then we have that
n−1X̃

T
X̃ → B a.s.
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Theorem 25 (Theorem 1, Aneiros and Vieu, 2008). Under assumptions
(5.2)-(5.14),

√
n(β̂h − β) −→D N(0,A)where A = B−1CB−1. (A.1)

If in addition the sample is strictly stationary, then

lim sup
n→∞

(
n

2 log log n

)1

2 |β̂hj − βj| = (ajj)

1

2 a.s., (A.2)

where ajj = (A)jj

Theorem 26 Polya's theorem (see, e.g., Ser�ing, 1980, p. 18).
If Fn −→ F and F is continuous, then limn←∞ supt |Fn(t)− F (t)| = 0.

Lemma 27 (Lemma 2.5, Delsol, 2009) Under assumptions (4.4), (4.5),
(4.6), (4.7), (4.8), (4.9), (4.10) and (4.12) we have that

V ar
(
f̂h(χ)

)
=

M2χ

nFχ(h)
(1 + o(1)),

V ar (ĝh(χ)) = (σ2
ε +m2(χ))

M2χ

nFχ(h)
(1 + o(1))

and

Cov
(
ĝh(χ), f̂h(χ)

)
= m(χ)

M2χ

nFχ(h)
(1 + o(1)).

Theorem 28 (Theorem 2.7, Delsol, 2009). Under assumptions (4.4)-(4.13),
we have:

M1√
M2σ2

ε

√
nF (h)(m̂h(χ)−m(χ)−Bn)→ N(0, 1)

(Note that m̂h(χ) is de�ned in (4.3).





Appendix B

Resumen en castellano

La memoria de tesis presentada se centra, principalmente, en el estudio de
la predicción de demanda y precio de la electricidad, dentro del Mercado
Eléctrico Español, desde el punto de vista de la estadística. En concreto, se
utilizan técnicas de Análisis de Datos Funcionales para este problema.

La energía es un producto no almacenable, por lo que es de vital impor-
tancia anticipar las decisiones y evitar medidas erróneas de cara a maximizar
los bene�cios y reducir los costes para los agentes involucrados en el mer-
cado. Los datos eléctricos, tanto la demanda como el precio, tienen algunas
peculiaridades que di�cultan su análisis. Se han hecho numerosas propuestas
enfocadas a trabajar con este tipo de datos, muchas de ellas desde el ámbito
de la ingeniería, mientras que en esta memoria se aborda este problema desde
la estadística.

La memoria se organiza como sigue: el primer capítulo introduce el fun-
cionamiento del Mercado Eléctrico Español, del que proceden los datos de
demanda y precio de la electricidad, y los datos funcionales. A continuación
se realiza un análisis descriptivo de la base de datos eléctricos que se usará
a lo largo de toda la memoria. El Capítulo 2 se centra en el problema de
detección de atípicos en series de tiempo funcionales, proponiendo nuevos
procedimientos que se analizan mediante estudios de simulación y aplicación
a los datos eléctricos. El tercer capítulo contiene un estudio comparativo
de métodos de predicción para los datos eléctricos, proponiendo el uso de
modelos de regresión funcional y predicciones combinadas. En los capítulos
4 y 5 se proponen procedimientos bootstrap para el cálculo de intervalos de
predicción en el modelo de regresión funcional no paramétrico (FNP) y en
el modelo semi-funcional parcialmente lineal (SFPL), respectivamente, en el
contexto de datos dependientes. En ambos casos se prueba teóricamente la
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validez de los procedimientos propuestos y se aplican tanto a datos simula-
dos como a los datos de demanda y precio de la electricidad. Finalmente, el
Capítulo 6 extiende los procedimientos bootstrap indicados al cálculo de in-
tervalos de predicción en ambos modelos de regresión funcional, aplicándolos
a los datos eléctricos.

Capítulo 1: Introducción a los datos eléctricos

El primer capítulo de la memoria sirve de introducción al contexto en el
que se desenvuelve la tesis: los datos eléctricos. En primer lugar se explica el
funcionamiento y la composición del Mercado Eléctrico Español, que consta
de dos operadores: el operador del mercado (OMIE: Operador del Mercado
Ibérico de la Electricidad) y el operador del sistema (REE: Red Eléctrica de
España). Los datos de demanda y precio que se utilizan en esta memoria
son datos horarios que proceden del operador del mercado y, dentro de él,
del mercado diario de la electricidad. Una vez introducido el ámbito de apli-
cación de la tesis se introduce brevemente el campo de la estadística en el
que se centra en análisis: los datos funcionales.

Se lleva a cabo un análisis descriptivo de los datos de demanda y precio
de la electricidad a lo largo del año 2012. Sus principales características son
la estacionalidad diaria y semanal, su diferente comportamiento en los �nes
de semana con respecto a los diarios, la presencia de atípicos, la in�uencia
con efecto no lineal de variables meteorológicas y, en el caso particular del
precio, el registro de precio cero en algunos momentos a lo largo del año.

Se analiza, utilizando numerosos grá�cos, el comportamiento de la de-
manda y el precio según el día de la semana, según el mes del año, según el
trimestre, por días festivos, etc. A la vista de este análisis se concluye que,
tanto la demanda como el precio, se comportan de distinta forma en diarios,
sábados y domingos. Esta clasi�cación por tipos de días se tendrá en cuenta
a lo largo de toda la memoria a la hora de aplicar cualquier procedimiento
estadístico sobre estos datos. Se analizan también algunos datos auxiliares
que formarán parte de los métodos de predicción: la temperatura y la pro-
ducción de energía eólica.

Capítulo 2: Detección de atípicos en series de tiempo funcionales

La detección de atípicos es uno de los primeros puntos a tener en cuenta
dentro de cualquier procedimiento estadístico, para evitar que perturben los
análisis que se puedan realizar sobre una base de datos. Dentro del contexto
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de datos funcionales se pueden distinguir dos tipos principales de atípicos:
los atípicos de magnitud y los atípicos de forma. Febrero et al. (2008) fueron
los primeros autores en proponer un procedimiento especí�camente diseñado
para la detección de atípicos funcionales.

Los atípicos de magnitud, cuando uno trabaja con series de tiempo fun-
cionales, pueden permanecer ocultos por la propia dinámica de la serie de
tiempo. Debido a esto, es necesario tener en cuenta la dependencia de los
datos en este tipo de estructuras, para poder detectar también este tipo de
atípicos �escondidos�.

Se proponen tres procedimientos para detectar atípicos en series de tiempo
funcionales. El primero de ellos se basa en el método presentado por Febrero
et al. (2008) que utiliza procedimientos bootstrap y que trabaja con profun-
didades funcionales. Nuestra propuesta adapta este procedimiento para tra-
bajar con series de tiempo funcionales, entre otras modi�caciones, mediante
el uso del bootstrap para datos dependientes. Esta primera propuesta se
puede encontrar en Raña, Aneiros y Vilar (2015), junto con un estudio de
simulación y aplicación a datos reales.

A continuación se proponen otros dos procedimientos que se basan, en
esta ocasión, en la descomposición en componentes principales funcionales
robusta de Hyndman y Ullah (2007) y que se pueden encontrar en Vilar,
Raña and Aneiros (2016).

Finalmente, se aplican los procedimientos de detección de atípicos a los
datos de demanda y precio de la electricidad, comparando los métodos adap-
tados a series de tiempo funcionales con otros que no tienen en cuenta la
dependencia de los datos.

Capítulo 3: Predicción de demanda y precio de la electricidad

En este capítulo se realiza un estudio comparativo de diferentes métodos
de predicción aplicados a la demanda y precio de la electricidad en España.
En primer lugar se consideran algunos métodos clásicos de predicción en este
ámbito, como el método Naive y el uso de modelos ARIMA para series de
tiempo univariantes y se considera el modelo de predicción de series de tiempo
funcionales basado en componentes principales Hyndman y Ullah (2007). Se
propone el uso de modelos de regresión funcional en este ámbito, extendi-
endo el trabajo desarrollado en Vilar et al. (2012) incorporando modelos con
respuesta funcional, añadiendo covariables externas y obteniendo también
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predicciones combinadas.

En concreto, se trabaja con el modelo de regresión FNP y con el modelo
SFPL. En ambos casos se considera variable respuesta escalar y variable ex-
plicativa funcional no paramétrica, añadiendo en el segundo de los modelos
variables explicativas escalares con efecto lineal sobre la respuesta (informa-
ción de la temperatura para predecir la demanda eléctrica e información de la
propia demanda y de la producción de energía eólica para predecir el precio).

Se proponen �nalmente dos modelos de predicción combinados que se
basan en promedios de los métodos de predicción considerados, lo que per-
mite compensar las predicciones por defecto y por exceso, logrando resul-
tados más ajustados. La primera de las combinaciones propuestas se basa,
simplemente, en el promedio por tipo de día de los métodos con respuesta
funcional considerados en el estudio. La segunda combinación, algo más
so�sticada pero igualmente sencilla, se basa en promediar, dentro de cada
grupo de días, los dos métodos de predicción con respuesta funcional que
obtienen mejores errores de predicción.

Los errores de predicción obtenidos tanto en el caso de la demanda como
del precio de la electricidad indican un buen funcionamiento de los modelos
de regresión funcional, sobre todo en el caso del modelo SFPL que incorpora
información externa. En cualquier caso, los métodos combinados suponen
una mejora con respecto a cualquiera de los otros métodos considerados a
nivel individual. El análisis desarrollado en este capítulo se puede encontrar
en Aneiros, Vilar y Raña (2016).

Capítulo 4: Intervalos de con�anza en el modelo de regresión
funcional no paramétrico

Se proponen procedimientos bootstrap para el cálculo de intervalos de
con�anza en el modelo de regresión FNP, en el que se considera respuesta
escalar y variable explicativa funcional, dentro del contexto de datos de-
pendientes. Este capítulo supone la extensión del trabajo presentado por
Ferraty, Van Keilegom y Vieu (2010), que propone los mismos procedimien-
tos bootstrap en el modelo FNP con datos independientes, al contexto de
datos dependientes.

Los procedimientos propuestos siguen, por lo tanto, las ideas planteadas
en el trabajo de Ferraty, Van Keilegom y Vieu (2010), utilizando los resulta-
dos de Delsol (2009) que proporcionan la distribución asintótica del estimador
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de la regresión para el mismo modelo de regresión FNP considerado y bajo
el mismo escenario de dependencia, trabajando con series de tiempo fun-
cionales.

Se plantean los dos algoritmos bootstrap propuestos, basados en el re-
muestreo de los residuos: naive bootstrap para modelos homocedásticos y
wild bootstrap en el caso de heterocedasticidad. A continuación se prueba
teóricamente la validez de los procedimientos bootstrap planteados. Para
ello se establecen dos teoremas, uno para cada tipo de boostrap, planteando
previamente una serie de hipótesis necesarias. Dichas hipótesis han sido
planteadas previamente en los dos trabajos en los que se basa este capítulo:
Ferraty, Van Keilegom y Vieu (2010) y Delsol (2009). Se desarrollan a con-
tinuación sus demostraciones en detalle.

Se estudia el comportamiento de los procedimientos planteados para el
cálculo de intervalos de con�anza mediante un estudio de simulación y se
aplica al conjunto de datos eléctricos, considerando la demanda y precio de
la electricidad.

En primer lugar, se desarrolla un estudio de simulación en el que se uti-
lizan y comparan dos métodos de simulación de series de tiempo funcionales,
un primer modelo que genera curvas suaves como variable explicativa fun-
cional para el modelo de regresión FNP y un segundo modelo con curvas más
rugosas e irregulares. En ambos casos se construyen intervalos de con�anza
para la media condicionada de tres tipos: teórico, bootstrap y asintótico.

El procedimiento para el cálculo de los intervalos de con�anza teóricos
utiliza réplicas de Monte Carlo, asumiendo que la función de regresión del
modelo considerado es conocida. Los intervalos de con�anza bootstrap se
basan en aproximar la distribución del estimador de la función de regresión
mediante su correspondiente estimador boostrap, utilizando el procedimiento
wild bootstrap desarrollado de forma teórica previamente. Por último, dado
que el estudio de Delsol (2009) proporciona constantes explícitas para la dis-
tribución asintótica del estimador de la regresión, se pueden calcular también
intervalos de con�anza asintóticos.

Se obtienen los tres tipos de intervalos de con�anza, dentro del estudio
de simulación, para una muestra test y se calcula el promedio de las cober-
turas empíricas en cada caso. Los resultados indican, en general, un buen
funcionamiento de los procedimientos. En primer lugar, la cobertura de los
intervalos de con�anza teóricos se aproxima al nivel de con�anza, lo que in-
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dica que el estudio está bien calibrado. En segundo lugar, los intervalos de
con�anza bootstrap se aproximan a su vez a los intervalos teóricos, quedando
siempre por delante de los intervalos de con�anza asintóticos que, aun así,
obtienen resultados muy razonables. En tercer lugar, se observa una mejora
en las coberturas a medida que el tamaño muestral considerado para realizar
las estimaciones del modelo aumenta. Por último, como es de esperar, los
intervalos de con�anza obtenidos funcionan mejor cuando se considera el
modelo que simula curvas suaves, mientras que las coberturas son algo más
bajas cuando se consideran curvas más irregulares. En ambos modelos se ob-
tienen coberturas puntualmente bajas que se corresponden, al analizar esos
casos en detalle, con curvas situadas en los extremos en las que es más difícil
conseguir buenas estimaciones.

Finalmente, el capítulo concluye con el cálculo de intervalos de con�anza
bootstrap para datos reales, considerando la demanda y precio de la electri-
cidad. En ambos casos se muestran resultados para dos opciones: predecir
las 24 horas de un día �jo o bien predecir una misma hora �ja a lo largo de
una serie de días consecutivos. El estudio llevado a cabo en este capítulo,
tanto la parte teórica como el estudio de simulación y las aplicaciones a datos
eléctricos se puede encontrar en Raña, Aneiros, Vilar y Vieu (2016).

Capítulo 5: Intervalos de con�anza en el modelo de regresión
semi-funcional parcialmente lineal

Este capítulo extiende los procedimientos bootstrap planteados en el
Capítulo 4 para el modelo de regresión FNP, al caso del modelo SFPL. La
principal novedad radica en que, para este modelo parcialmente lineal, es
necesario estimar en un primer momento la componente lineal del modelo y,
a continuación, la componente no paramétrica.

A diferencia del modelo FNP, en este caso hasta donde sabemos, no
existe en la literatura estadística ningún estudio que aplique este tipo de
procedimientos bootstrap sobre modelos parcialmente lineales, no solo en el
contexto de datos funcionales y datos dependientes, sino incluso en un con-
texto más general. Los trabajos de Liang et al. (2000) y de You y Chen
(2006) incluyen aproximaciones bootstrap para la componente lineal de un
modelo de regresión parcialmente lineal bajo diseño �jo. Por lo tanto, la
contribución principal de este capítulo se centra en el planteamiento y estu-
dio de procedimientos bootstrap para el modelo SFPL bajo dependencia (y,
como caso particular, para datos independientes) en el que se consideran las
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dos componentes: lineal y no paramétrica.

Siguiendo los algoritmos planteados en el Capítulo 4, se proponen también
para el modelo SFPL dos procedimientos bootstrap basados en el remuestreo
de los residuos: naive y wild bootstrap. En ambos casos, siguiendo el pro-
ceso de estimación del modelo, se construye en primer lugar el estimador
bootstrap de la componente lineal y, a continuación, el de la componente no
paramétrica.

Se realizan los desarrollos teóricos necesarios para probar la validez de
los procedimientos bootstrap planteados. Para ello, se toma como base el
estudio realizado en el Capítulo 4 para el modelo FNP, junto con el trabajo
de Aneiros y Vieu (2008) en el que se estudia la distribución asintótica de
los estimadores de este mismo modelo de regresión considerando el mismo
escenario de datos dependientes en el que se trabaja con series de tiempo
funcionales. En base a las hipótesis planteadas en ambos trabajos, se es-
tablecen los cuatro teoremas que proporcionan de forma teórica la validez de
los procedimientos bootstrap: dos para cada componente del modelo (lineal y
no paramétrica) y dos para cada tipo de bootstrap (naive y wild bootstrap).
Se incluyen las demostraciones de dichos teoremas en detalle.

Se aplican los procedimientos desarrollados para el cálculo de intervalos
de con�anza para este modelo SFPL utilizando tanto datos simulados como
los datos de demanda y precio de la electricidad. En primer lugar se realiza
el estudio de simulación. Los modelos de simulación de datos utilizados en el
Capítulo 4 se usan de nuevo en este estudio, teniendo en cuenta que se añade
la componente lineal del modelo mediante una nueva covariable escalar con
efecto lineal.

Se replican los algoritmos para el cálculo de intervalos de con�anza, te-
niendo en cuenta que en esta ocasión no es posible obtener intervalos de con-
�anza asintóticos ya que la distribución asintótica exacta de los estimadores
no es conocida. Además, por la con�guración del propio modelo SFPL, se
pueden obtener intervalos de con�anza para cada una de las componentes
del modelo por separado (para la componente lineal y no paramétrica) y de
forma conjunta (para toda la función de regresión).

De nuevo, al analizar los resultados obtenidos, se ve que la cobertura de
los intervalos teóricos se aproxima al nivel de con�anza, indicando que el pro-
ceso está bien calibrado. Los intervalos de con�anza bootstrap se aproximan
también a los teóricos. En este caso, las coberturas son más bajas, en general,
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que las obtenidas en el Capítulo 4 para el modelo FNP, debido a la mayor
di�cultad para obtener las estimaciones. Se conserva además la tendencia de
tener coberturas más bajas cuando los datos simulados son más irregulares.

Por último, se obtienen los intervalos de con�anza bootstrap para los
datos de demanda eléctrica (incorporando como covariables escalares infor-
mación de la temperatura) y para el precio (incorporando información de
la propia demanda y de la producción de energía eólica). Se encuentra en
preparación un artículo que contiene el análisis desarrollado en este capítulo,
tanto de la parte teórica como del estudio de simulación y aplicaciones a
datos eléctricos.

Capítulo 6: Intervalos de predicción en regresión funcional

Este último capítulo de la tesis extiende los procedimientos bootstrap
planteados para el cálculo de intervalos de con�anza de los capítulos 4 y 5 al
cálculo de intervalos de predicción.

Los intervalos de predicción complementan a las predicciones puntuales,
como las obtenidas en el Capítulo 3, ya que re�ejan la variabilidad en las
predicciones al considerar tanto el error debido a la estimación de la regre-
sión (considerada en los intervalos de con�anza) y también el error debido
al modelo. Se obtiene también la densidad de predicción en base al mismo
procedimiento utilizado para los intervalos de predicción.

Dentro del estudio de mercados eléctricos, como indica Weron (2006), se
pueden encontrar numerosas referencias sobre predicción puntual de demanda
y precio de la electricidad utilizando un amplio rango de metodologías. Sin
embargo, no es fácil encontrar referencias en las que se calculen intervalos de
predicción y, menos aún, que trabajen con la densidad de predicción. Por
ello, en el este capítulo de va un paso más allá en el estudio de demanda y
precio de la electricidad al proporcionar en conjunto tanto predicciones pun-
tuales como intervalos y densidad de predicción, dentro del contexto de la
regresión funcional.

Se consideran, por lo tanto, procedimientos bootstrap, basados en los
resultados teóricos estudiados previamente, para el cálculo de intervalos de
predicción para los dos modelos de regresión considerados: FNP y SFPL,
tanto bajo homocedasticidad como heterocedasticidad. Para este último caso
es necesario hacer algunas consideraciones adicionales, ya que no se puede
extender de forma directa el wild bootstrap visto en los capítulos anteriores
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(que se aplica para aproximar el error de las estimaciones) para aproximar
el error del modelo. Se incluye, dentro de los algoritmos, la estimación de la
varianza condicional del modelo siguiendo las ideas de Fan y Yao (1998).

Se construyen intervalos de predicción bootstrap, además de la densidad
de predicción, para la demanda y precio de la electricidad, extendiendo las
aplicaciones previas de intervalos de con�anza vistas en los Capítulos 4 y
5. El análisis de densidad de predicción permite distinguir diferencias en el
comportamiento de la demanda y del precio entre las distintas horas del día.
Se encuentra en preparación un artículo que contiene el análisis desarrollado
en este capítulo, tanto los algoritmos bootstrap como las aplicaciones a datos
eléctricos.

Conclusiones

En resumen, a lo largo de esta memoria se aborda el estudio de la demanda
y precio de la electricidad mediante el uso de técnicas de datos funcionales.
En un primer momento se realiza un análisis descriptivo de los datos eléc-
tricos, que componen una serie de tiempo funcional, conociendo en detalle
su funcionamiento. Se proponen métodos de detección de atípicos diseñados
para trabajar con series de tiempo funcionales. Se realiza un estudio com-
parativo de diferentes métodos de predicción aplicados a demanda y precio
de la electricidad, proponiendo el uso de modelos de regresión funcional.

Se proponen procedimientos bootstrap para el cálculo de intervalos de
con�anza para los modelos de regresión FNP y SFPL, considerando respuesta
escalar. En ambos casos se realizan los desarrollos teóricos necesarios para
probar la validez de dichos procedimientos bootstrap, que se aplican en la
práctica mediante un estudio de simulación y también para los datos eléc-
tricos. Por último, se calculan intervalos de predicción, además de densidad
de predicción, para demanda y precio de la electricidad, basándose en los
procedimientos bootstrap estudiados previamente.
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