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Abstract

In this paper, we analyze the social planner solution of an endogenous growth model with physical
capital, human capital and R&D. The model incorporates three sources of inefficiency: monopolis-
tic competition in the intermediate-goods sector, duplication externalities and spillovers in R&D.
A complete stability analysis for the optimal growth problem of this model is provided. We char-
acterize the optimal policy that can decentralize the optimal solution and find that the path of the
optimal R&D subsidy can be non-monotonic.
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1. Introduction

There is a broad consensus that physical capital accumulation, knowledge formation, and R&D-
based technological progress are the three main engines of growth. For the most part, they have
been considered as alternative rather than complementary explanations in the theoretical literature.
As a notable exception, Arnold (2000a) and Funke and Strulik (2000) (AFS henceforth) proposed
an integrated endogenous growth model with physical capital, human capital and R&D, in which
the economy passes through different stages of development. In the fully-industrialized phase
three sectors are acting: the competitive final goods sector, the schooling sector where knowledge
(human capital) is accumulated, and the intermediate-goods monopolistic sector which produces
an increasing variety of goods due to R&D.

However, monopoly power is not the only plausible source of inefficiency in R&D-based growth
models (see, e.g., the comprehensive review by Jones, 2005). Thus, empirical evidence reported,
e.g., by Griliches (1992), Jones (1995), Engelbrecht (1997), del Barrio-Castro et al. (2002), Pessoa
(2005) and Porter and Stern (2000) also supports the existence of R&D spillovers in innovation
—a “standing on shoulders” or a “fishing-out” effect. Several authors have also pointed out that
the R&D activity may be subject to an external effect associated to the duplication and overlap of
research effort —a “stepping on toes” effect (e.g., Jones, 1995; Stokey, 1995; Pessoa, 2005; Porter
and Stern, 2000). Intuitively, the larger the number of people searching for ideas is, the more
likely it is that duplication of research would occur. Evidence of duplicative research has also been
found, e.g., by Kortum (1993) and Lambson and Phillips (2007). Both external effects —spillovers
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in R&D and duplication externalities— are neglected in the AFS model, which assumes that in-
novation depends exclusively and linearly on human capital devoted to R&D. Additionally, Gómez
(2011b) has recently examined the ability of the simplest AFS model to describe the development
process and concluded that it can hardly be reconciled with data. First, Gómez (2011b) notes that
previously reported simulations with the AFS model made by Funke and Strulik (2000), Gómez
(2005) and Iacopetta (2010) feature three main problems, namely, instability of the steady state,
too fast convergence, and unrealistic highly oscillatory dynamics which are at odds with data.
Thereafter, Gómez (2011b) performs a detailed sensitivity analysis of the (two) stable roots of the
fully industrialized economy which shows that numerical simulations with the AFS model could
hardly yield realistic transition paths for plausible parameter values.

According with the empirical evidence, Sequeira (2011), Gómez (2011a,b) and Iacopetta (2011)
have incorporated R&D spillovers and duplication externalities into the AFS model. This modifi-
cation largely complicates the dynamics of the economy, which passes from being described by a
third- to a fifth-order dynamical system. However, as Gómez (2011a,b) shows, this add-on to the
basic AFS setup also increases significantly its ability to fit the observed data. While the previ-
ously cited works focused on analyzing the transition dynamics of the market economy and its fit
to data, the incorporation of R&D spillovers and duplication externalities to the model raises the
question of whether an adequate government intervention can provide the required incentives to
correct these inefficiencies, so as to make the decentralized economy replicate the first-best solution
attainable by a social planner. None of these previous contributions has analyzed this issue in this
framework, so this paper seeks to fill this gap.

This paper characterizes a dynamically optimal fiscal policy capable of making the decentral-
ized economy achieve the first-best optimum in an extended version of the AFS endogenous growth
model with physical capital, human capital and R&D. The model incorporates three sources of in-
efficiency: monopolistic competition in the intermediate-goods sector, duplication externalities and
spillovers in R&D. We first study the decentralized economy with government. Next, we character-
ize the social planner solution, and derive an optimal R&D subsidy policy that can decentralize the
Pareto-efficient solution. The optimal growth path can be decentralized by means of a subsidy to
production of intermediate goods at a constant rate combined with a time-varying subsidy (or tax)
to R&D. We also perform a detailed (local) stability analysis of the first-best solution, and find
that the time path of the optimal R&D subsidy can be non-monotonic. With the notable excep-
tions of Arnold (2000b) and Eicher and Turnovsky (1999) — in quite different setups from the one
presented here— the stability analysis issue has been ignored in most of the related literature (e.g.,
Jones and Williams, 2000; Steger, 2005; Jones, 2005; Grossmann et al., 2010), probably because of
its complexity and also because of the emphasis put on the quantitative assessment of distortions
on the steady state —disregarding the transitional phase. However, the analysis of long-run effects
may be misleading if the steady state is unstable because in this case the economy would not con-
verge to it (unless, of course, it already starts on it). One then may wonder whether this is a real
possibility or not. So, we show in the Appendix that if we had assumed (more unrealistically) that
there are no duplication externalities, the steady state of the socially planned economy would be
instable. Thus, stability cannot be simply taken for granted.

This paper is mostly related to Arnold (2000b) and Grossmann et al. (2010), who also char-
acterize analytically the optimal dynamic fiscal policy in R&D-based endogenous growth models.
However, they do not include human capital as an engine of growth. In particular, Arnold (2000b)
studies the optimal combination of production and R&D subsidies in the Romer (1990) model.
This model has been criticised because of the implied counterfactual scale effects and, further-
more, it does not include duplication externalities. Grossmann et al. (2010) consider instead a
semi-endogenous growth model á la Jones (1995), in which economic growth is driven solely by
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exogenous population growth and, furthermore, they do not study analytically the stability of the
centrally planned economy. The different assumptions lead to significantly different results, espe-
cially regarding the behaviour of the optimal R&D subsidy. In particular, we find that the optimal
R&D subsidy can display a non-monotonic behaviour, which is in sharp contrast with the analyti-
cal results in Arnold (2000b) and the numerical results in Grossmann et al. (2010). Other related
research (e.g., Jones and Williams, 2000; Alvarez-Pelaez and Groth, 2005; Steger, 2005; Strulik,
2007) has focused instead on the quantitative assessment of distortions —mainly on the long-run,
and thus disregarding the transitional phase— by resorting to numerical simulations. Hence, the
optimal fiscal policy is not characterized analytically.

The remaining of this paper is organized as follows. Section 2 describes the market economy.
Section 3 analyzes the centralized economy and devises an optimal policy. Section 4 concludes.

2. The market economy

The economy is inhabited by a constant population, normalized to one, of identical individuals
who derive utility from consumption, C, according to

∫ ∞

0

C1−θ − 1
1 − θ

e−ρtdt, ρ > 0, θ > 0. (1)

The endowment of time is normalized as a constant flow of one unit per period. A fraction uY

of time is devoted to production, a fraction uH to learning, and a fraction un = 1 − uY − uH to
innovation. Human capital, H, is accumulated according to

Ḣ = ξuHH, ξ > 0. (2)

The budget constraint faced by the representative individual is

Ȧ = rA + w(1 − uH)H − C − T, (3)

where r is the return per unit of aggregate wealth A, w is the wage rate per unit of employed human
capital, and T are lump-sum taxes (or transfers) imposed by the government. The individual
maximizes her intertemporal utility (1), subject to the budget constraint (3) and the knowledge
accumulation technology (2). Let gτ denote τ ’s growth rate, gτ = τ̇ /τ . The first-order conditions
for an interior solution yield

gC = (r − ρ)/θ, (4)

r − gw = ξ, (5)

as well as the standard transversality conditions, limt→∞ e−ρtλA = limt→∞ e−ρtμH = 0, where λ
and μ denote the multipliers associated to constraints (3) and (2), respectively.

The market for final goods is perfectly competitive and the price for final goods is normalized
to one. Final output, Y , is produced with a Cobb-Douglas technology

Y = KβDη(uY H)1−β−η, β > 0, η > 0, β + η < 1, (6)
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where K is the stock of physical capital and D is an index of intermediate goods, D =
(∫ n

0 xα
i di
)1/α,

0 < α < 1, where xi is the amount used for each one of the n intermediate goods. Profit maxi-
mization delivers the factor demands

r = βY/K, (7)

w = (1 − β − η)Y/(uY H), (8)

pi = ηY xα−1
i /Dα, (9)

where pi represents the price of intermediate i.
Each firm in the intermediate goods sector owns an infinitely-lived patent for selling its variety

xi, which costs a unit of Y to be produced. The government subsidizes production so that for each
unit sold of the intermediate good producers receive a unit price pi and a subsidy sxpi. Producers
act under monopolistic competition and maximize operating profits, πi = [(1 + sx)pi − 1]xi. Profit
maximization in this sector implies that each firm charges a price of pi = 1/[(1 + sx)α]. Since both
technology and demand are the same for all intermediates, the equilibrium is symmetric: xi = x,
pi = p. Hence, the quantity of intermediates employed is xn = (1 + sx)αηY , firms profits are

π = (1 + sx)(1 − α)ηY/n, (10)

and D = xn1/α = n(1−α)/α(1 + sx)αηY . Substituting this expression into (6) yields

Y 1−η = [(1 + sx)αη]η Kβn(1−α)η/α(uY H)1−β−η. (11)

There is free entry into the R&D sector. Invention of new intermediates is determined according
to

ṅ = δ̄unH = δ(unH)γ−1nφunH, δ > 0, 0 < γ < 1, φ < 1, (12)

where unH represents average human capital devoted to innovation. Here, δ̄ is taken as given
by the representative firm, so that it perceives a constant returns to scale R&D technology. This
specification incorporates a duplication externality of research effort, as well as spillovers in R&D.
Three cases are possible: φ < 0 corresponds to the so-called “fishing-out effect” (Jones, 2005);
φ ∈ (0, 1) formalizes the “standing-on-shoulders effect”, and φ = 0 , instead, represents the situation
in which the arrival rate of new ideas is independent of the available stock of inventions.

The government subsidizes a fraction sR of the costs of R&D so, if υ is the value of an innovation,
free-entry in R&D requires that

(1 − sR)w = δ(unH)γ−1nφυ, (13)

where υ is the value of an innovation.
An innovation is worth the present value of the stream of monopoly profits, υ(t) =∫∞

t e−
∫ τ

t r(s)dsπ(τ)dτ . Differentiating this expression with respect to time yields the no-arbitrage
equation

gυ = r − π/υ, (14)

together with limt→∞ υ(t)e−
∫ t

s r(τ) dτ = 0.
The government may subsidize (or tax) intermediate-goods production and R&D costs, financed

by lump-sum taxation to individuals, so that its budget constraint is

T = sxpnx + sRwunH. (15)
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Henceforth we shall take into account that unH = unH in equilibrium. Physical capital and
claims to innovative firms are the assets in the economy. Aggregate wealth is then A = K + nυ.
Differentiating this expression, and using (3), (7), (8), (10), (13), (14) and (15), together with
xn = (1 + sx)αηY , we can get the economy’s resource constraint

gK = [1 − (1 + sx)αη]Y/K − C/K. (16)

Some equations will be needed for solving the model. Log-differentiating (7), (8), and (11), and
eliminating gY , we get

gr = −
1 − β − η

β
gw +

(1 − α)η
αβ

gn +
η

β

(
ṡx

1 + sx

)

, (17)

guY
= −

1 − η

β
gw +

(1 − α)η
αβ

gn + gK − gH +
η

β

(
ṡx

1 + sx

)

. (18)

Log-differentiating (13), and substituting gυ from (14), π from (10), w from (8), and υ from
(13), we get

gw = r + (γ − 1)(gun + gH) −
(1 − α)(1 + sx)ηuY

(1 − sR)(1 − β − η)un
gn + φgn +

ṡR

1 − sR
. (19)

The system that drives the dynamics of the economy in terms of K, H, n, C, uY and un can
be then obtained as

gK = K̇/K = [1 − (1 + sx)αη] [(1 + sx)αη]
η

1−η u
1−β−η

1−η

Y

(
H

K

) 1−β−η
1−η

n
(1−α)η
α(1−η) −

C

K
, (20)

gH = Ḣ/H = ξuH = ξ(1 − uY − un), (21)

gn = ṅ/n = δuγ
nHγnφ−1, (22)

gC = Ċ/C =
1
θ
(r − ρ) =

1
θ

[

β[(1 + sx)αη]
η

1−η u
1−β−η

1−η

Y

(
H

K

) 1−β−η
1−η

n
(1−α)η
α(1−η) − ρ

]

, (23)

guY = u̇Y /uY = [1 − (1 + sx)α] η [(1 + sx)αη]
η

1−η u
1−β−η

1−η

Y

(
H

K

) 1−β−η
1−η

n
(1−α)η
α(1−η)

+
(1 − α)η

αβ
δuγ

nHγnφ−1 −
C

K
− ξ (1 − uY − un) +

(1 − η)
β

ξ +
η

β

(
ṡx

1 + sx

)

.

(24)

gun = u̇n/un =
1

1 − γ

{

ξ +

[

φ −
(1 − α)η (1 + sx) uY

(1 − β − η) (1 − sR) un

]

δuγ
nHγnφ−1 +

ṡR

1 − sR

}

− ξ (1 − uY − un) .

(25)

Eqs. (20), (21) and (22) come from (16), (2) and (12), respectively. Eq. (23) can be obtained from
(4). From (18) and (5) we obtain (24), after substituting gK , gH and gn for (20), (21) and (22),
respectively. Eq. (25) is obtained by solving out in (19), using (5) and (22) to substitute for gw

and gn, respectively.
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Equations (20)–(25) plus the transversality conditions and the initial conditions —K(0),
H(0) and n(0)— determine the transitional dynamics, by jointly determining the variables
(K(t), H(t), n(t), C(t), uY (t), un(t)).3

Both policies sx and sR affect the dynamics of the economy in levels and growth rates. For
example, the level of sx would increase the consumption growth rate due to its effect in decreasing
the price of intermediates —used as a factor of production for the consumption final good. Also,
the growth rate of sx is positively related to the growth rate of the allocation of human capital
to the final good production (guY ) which is related to the positive effect this subsidy has on final
good production. The effect of sx on the growth rate of physical capital is non-linear as it tends to
increase production through its effect of intermediate goods but also tends to increase consumption
due to its effect on price. Moreover, it acts to decrease the growth rate of un because it increases the
opportunity cost of investing in R&D. The effect of the R&D subsidy growth rate on the growth
rate of human capital allocated to the innovative sector (gun) is positive, which is explained by
the increasing R&D sector demand for human capital when this subsidy is introduced. There are
additional effects from sx and sR on guY

and gun which sign cannot be analytically analyzed as
there are terms of opposite signs.

3. The socially planned economy

This section analyses the Pareto-efficient solution for this model. The social planner chooses
all quantities directly, taking all the relevant information into account. Since the intermediate-
goods sector is symmetric, the planner will employ the quantity xi = x of each good. Hence, the
production function can be rewritten as Y = Kβnη/αxη(uY H)1−β−η, and the resources constraint
is

K̇ = Y − C −
∫ n

0
xidi = Kβnη/αxη(uY H)1−β−η − C − nx. (26)

3.1. Optimal growth path

The planner seeks to maximize (1) subject to (26), (2) and (12). Let H be the current value
Hamiltonian, and let λ, μ and ϕ be the multipliers for the constraints (26), (2) and (12), respectively:

H =
C1−θ − 1

1 − θ
+ λ(Y − nx − C) + μξ(1 − uY − un)H + ϕδ(unH)γnφ. (27)

Here, the control variables are C, x, uY , uH , and K, H and n are the state variables. The
first-order conditions for an interior solution are

C−θ = λ, (28)

ηY/x = n, (29)

λ(1 − β − η)Y/uY = μξH, (30)

μξH = ϕγngn/un, (31)

λ̇ = (ρ − βY/K)λ, (32)

μ̇ = ρμ − λ(1 − β − η)Y/H − μξ(1 − uY − un) − ϕγngn/H, (33)

3The dynamics of the decentralized economy could be easily expressed in terms of variables that are constant in
the balanced growth path in a similar manner as it will be done in Section 3 (see also Gómez, 2011a). However, this
will not be necessary for our purposes.
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ϕ̇ = ρϕ − λ[ηY/(αn) − x] − ϕφgn, (34)

plus the usual transversality conditions

lim
t→∞

e−ρtλK = lim
t→∞

e−ρtμH = lim
t→∞

e−ρtϕn = 0. (35)

There are two main qualitative differences between the market equilibrium and the first-best
optimum. First, the planner internalizes the inefficiency due to the presence of monopolistic com-
petition in intermediate-goods production. Therefore, he chooses to devote to intermediate-goods
production a fraction of output equal to the elasticity of intermediates in the production of the
final good, xn/Y = η. Second, the planner internalizes the spillovers in R&D and the duplication
externalities. This is taken into account when choosing the optimal fraction of time devoted to
innovation in (31) and the optimal shadow value of an innovation in (34).

From (31), (30), (33) and (34) we get

gμ = ρ − ξ, (36)

gϕ = ρ −

[
η(1 − α)γuY

α(1 − β − η)un
+ φ

]

gn. (37)

Substituting x from (29) into the production function, we obtain

Y 1−η = ηηKβn(1−α)η/α(uY H)1−β−η. (38)

From (26) and (29), the resources constraint can be expressed as

gK = (1 − η)Y/K − C/K. (39)

Log-differentiating (28), (31), (30), (38) and (12) we get

gλ = −θgC , (40)

gϕ = gμ − ggn − gn + gun + gH , (41)

gμ = gλ + gY − guY
− gH , (42)

(1 − η)gY = βgK + [(1 − α)η/α]gn + (1 − β − η) (guY
+ gH) , (43)

ggn = γ(gun + gH) − (1 − φ)gn. (44)

The system that drives the dynamics of the economy in terms of K, H, n, C, uY and un can
then be obtained as

gK = K̇/K = (1 − η)
Y

K
−

C

K
= (1 − η)η

η
1−η u

1−β−η
1−η

Y

(
H

K

) 1−β−η
1−η

n
(1−α)η
α(1−η) −

C

K
, (45)

gH = Ḣ/H = ξuH = ξ(1 − uY − un), (46)

gn = ṅ/n = δuγ
nHγnφ−1, (47)

gC = Ċ/C =
1
θ

[

β
Y

K
− ρ

]

=
1
θ

[

βη
η

1−η u
1−β−η

1−η

Y

(
H

K

) 1−β−η
1−η

n
(1−α)η
α(1−η) − ρ

]

, (48)

guY = u̇Y /uY =
(1 − α)η

αβ
δuγ

nHγnφ−1 −
C

K
− ξ(1 − uY − un) +

1 − η

β
ξ, (49)
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gun = u̇n/un = −
(1 − α)ηγδuY Hγnφ−1uγ−1

n

α(1 − β − η)(1 − γ)
− ξ(1 − uY − un) +

ξ

1 − γ
. (50)

Eqs. (45), (46) and (47) come from (39), (2) and (12), respectively. Eq. (48) can be obtained
from (32) and (40). Solving for gY − guY

− gH in (42) and (43), equating the resulting expressions,
and solving out for guY we obtain (49), after eliminating gλ and gμ by means of (32) and (36),
respectively, and substituting gK and gH for (45) and (46). Eq. (50) is obtained by substituting
ggn for (44) in (41), solving out for gun , and using (36), (37), (46) and (47) so substitute for gμ, gϕ,
gH and gn, respectively.

Our next step, as it is usual in the endogenous growth literature, will be to express the dynamics
of the economy in terms of variables that are constant in the balanced growth path (BGP). It is
evident that guY = gun = 0, i.e., that uY and un are constant in the BGP because, otherwise, they
would violate the bound constraints 0 ≤ uY , un ≤ 1. The expression for gn in Eq. (47) entails that
the ‘knowledge-ideas’ ratio ψ ≡ Hγnφ−1 must be constant in the BGP, where ψ is a predetermined

variable because H and n are so. Eq. (48) implies that q = (H/K)
1−β−η

1−η n
(1−α)η
α(1−η) is constant in the

BGP, where the variable q is also predetermined because K, H and n are so. Finally, Eq. (45)
entails that χ = C/K must also be constant in the BGP. Note that if uY and un are constant, Eq.
(46) entails that the growth rate of H is also constant in the BGP.

Hence, the dynamics of the economy can be described in terms of variables that are constant

in the BGP by considering the predetermined variables ψ ≡ Hγnφ−1 and q = (H/K)
1−β−η

1−η n
(1−α)η
α(1−η) ,

and the jump variables χ = C/K, uY and un. Using that

gq =
1 − β − η

1 − η
(gH − gK) +

(1 − α)η
α(1 − η)

gn, (51)

gψ = γgH − (1 − φ)gn, (52)

gχ = gC − gK , (53)

and taking into account (45)–(48), we can eventually get the system4

gq =
1 − β − η

1 − η

[

ξ(1 − uY − un) − (1 − η)η
η

1−η u
1−β−η

1−η

Y q + χ

]

+
(1 − α)η
α(1 − η)

δuγ
nψ, (54)

gψ = γξ(1 − uY − un) − (1 − φ)δuγ
nψ, (55)

gχ =
1
θ

[

βη
η

1−η u
1−β−η

1−η

Y q − ρ

]

− (1 − η)η
η

1−η u
1−β−η

1−η

Y q + χ, (56)

guY =
(1 − α)η

αβ
δuγ

nψ − χ − ξ(1 − uY − un) +
1 − η

β
ξ, (57)

gun = −
(1 − α)ηγδuY ψuγ−1

n

α(1 − β − η)(1 − γ)
− ξ(1 − uY − un) +

ξ

1 − γ
. (58)

4The change of variables made satisfy conditions (7)–(9) in Mart́ınez-Garćıa (2003), —i.e., the new variables explain
their own dynamics, as it happens in system (54)–(58) (or in system (59)–(63)), when this system is evaluated at
the BGP the result is a steady state, and they explain the growth rates of the state and costate variables—, as
well as the conditions in her Lemmas 1 and 2. Hence, analyzing the existence of paths converging to the BGP is
equivalent to studying the stability of the steady state in (54)–(58) (or (59)–(63)). The reduction of dimension is
a standard practice in the endogenous growth literature (e.g., Benhabib and Perli, 1994; Barro and Sala-i-Martin,
1995; Benhabib et al., 2000; Mino, 2001; Arnold, 2006).
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Here, we have used that (38) entails that Y/K = η
η

1−η u
1−β−η

1−η

Y (H/K)
1−β−η

1−η n
(1−α)η
α(1−η) = η

η
1−η u

1−β−η
1−η

Y q.
However, the complexity of system (54)–(58), and of its jacobian matrix, would make difficult (if

possible) to obtain analytical results on the (local) stability. Hence, we shall make use of a dynamic

system in terms of the variables r = βY/K = βη
η

1−η u
1−β−η

1−η

Y q, χ = C/K, gn = δuγ
nHγnφ−1 = δuγ

nψ,
z = δ1/γψ1/γuY , and uY . So, using (54)–(58), we eventually find that the dynamics of the economy
is driven by the system

gr =
1 − β − η

1 − η
guY

+ gq =
1 − β − η

β
(ξ − r) +

(1 − α)η
αβ

gn, (59)

gχ =

(
1
θ
−

1 − η

β

)

r + χ −
ρ

θ
, (60)

ggn = γgn + gψ = −
(1 − α)ηγ2g

1−1/γ
n z

α(1 − β − η)(1 − γ)
− (1 − φ)gn +

γξ

1 − γ
, (61)

gz = (1/γ)gψ + guY
=

[
(1 − α)η

αβ
−

1 − φ

γ

]

gn − χ +
1 − η

β
ξ, (62)

guY
=

(1 − α)η
αβ

gn − χ − ξ

(

1 − uY −
uY g

1/γ
n

z

)

+
1 − η

β
ξ. (63)

3.2. Steady state

Now, we focus on a balanced growth path (or steady state) in which all variables grow at
constant rates, and the shares of labor in its different uses are constant.

Proposition 1. Let ξ > ρ. The centralized economy has a unique positive steady state with positive
long-run growth,

r̄ =
(1 + M)θξ − ρ

(1 + M)θ − 1
, (64)

χ̄ =

(
1 − η

β
−

1
θ

)

r̄ +
ρ

θ
, (65)

ḡn =
γM(ξ − ρ)

(1 − φ)[(1 + M)θ − 1]
, (66)

ḡH = (1 − φ)ḡn/γ, (67)

ūn =
(1 − α)ηγḡn(1 − ḡH/ξ)

α(1 − β − η)[ξ − ḡH + (1 − φ)ḡn] + (1 − α)ηγḡn
, (68)

ūY = 1 − ūn − ḡH/ξ, (69)

ψ̄ = ḡn/ (δūγ
n) , (70)

z̄ = δ1/γψ̄1/γ ūY , (71)

q̄ = η
− η

1−η ū
− 1−β−η

1−η

Y r̄/β, (72)

ḡY = ḡC = ḡK = (1 + 1/M)ḡH , (73)

where M = α(1 − β − η)(1 − φ)/ [(1 − α)ηγ], if and only if

θ > θmin =
1 + M (1 − ρ/ξ)

1 + M
. (74)
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Proof. Evaluating (2), (60) and (44) at the steady state we obtain (69), (65) and (67), respectively.
From (43), using (67), we get (73). From (28 and (32) we get ḡC = (r̄ − ρ)/θ. Now using (67) and
(73) to express ḡC as a function of ḡn and solving the resulting equation and (59) for r̄ and ḡn,
yields (64) and (66). Eq. (68) results from equating (37) and (41) and solving out for un, using
(36) and (69), and (70) is obtained from (12). Finally, (71) and (72) results from their definitions.

For the interior steady state to be feasible, we must have 0 < ūY , 0 < ūn, ūY + ūn < 1, r̄ > 0,
χ̄ > 0 and ψ̄ > 0. Eqs. (67) and (66) entail that condition 0 < ūY + ūn = (ξ − ḡH)/ξ < 1 is
satisfied if and only if (74) holds. Since (74) entails that θ > 1/(1 + M), Eqs. (64) and (66) entail
that r̄ > 0 and ḡn > 0 if ξ > ρ. Furthermore, ūY and ūn are positive because ξ − ḡH > 0. Hence,
Eq. (70) entails that ψ̄ > 0. Finally, the ratio of consumption to capital can be expressed as

χ̄ =
(1 − η)[(1 + M)θξ − ρ] − β(1 + M)(ξ − ρ)

β [(1 + M)θ − 1]
.

The denominator is positive and, as condition (74) can be equivalently rewritten as (1 + M)θξ >
ξ +M(ξ−ρ), the numerator is also positive because it is greater than (1−β−η)(1+M)(ξ−ρ) > 0,
and so χ̄ > 0. Hence, the steady state is feasible.

The transversality condition associated to K is equivalent to −ρ + ḡλ + ḡK = −ξ + ḡH < 0,
using (42) and (36), and taking into account that ḡK = ḡY . Using (36), the transversality condition
associated to H is equivalent to −ρ+ḡμ+ḡH = −ξ+ḡH < 0. Using (41), the transversality condition
associated to n is equivalent to −ρ + gϕ + gn = −ξ + ḡH < 0. This completes the proof.

It should be noted that the condition φ < 1 is required for an interior BGP with positive long-
run growth to exist, as it results clear from (67). Furthermore, this is also the usual condition in
the class of models in the line of Jones (1995) and Arnold (1998).

The following proposition analyzes the (local) stability of the steady state. Although the stabil-
ity analysis has been mostly neglected in the related literature, this analysis is important because,
in absence of stability, convergence to the first-best solution cannot be guaranteed which would
make this outcome meaningless. However, stability cannot be taken for granted in this model and,
actually, the first-best stationary solution is unstable in the model with no duplication externali-
ties.5

Proposition 2. In the conditions of Proposition 1, a) the steady state of the centralized economy is
either saddle-path stable or unstable, and b) a sufficient condition to rule out the instability outcome
is

αβ(1 − φ) ≥ (1 − α)ηγ. (75)

Proof. The stocks of physical and human capital, and the number of intermediates move slug-
gishly, so that K(0), H(0) and n(0) are given by their historical values. Therefore, q and ψ are
predetermined variables. with q(0) = (H(0)/K(0))(1−β−η)/(1−η) n(0)[(1−α)η]/[α(1−η)] and ψ(0) =
H(0)γn(0)φ−1. So, the dynamic system (54)–(58) in the variables ψ, q, χ, uY and un features two
predetermined variables (q and ψ) and three jump variables (χ, uY and un), so saddle-path stability
would require two stable roots.

5The proof for this specific case is in Appendix A.
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When we consider the dynamic system (59)–(63), it could seem that the variables r, χ, gn, z
and uY are all jumpable. However, they cannot really jump independently and freely because they
must satisfy the following two conditions

r(0) = βη
η

1−η uY (0)
1−β−η

1−η q(0), (76)

z(0) = δ1/γψ(0)1/γuY (0), (77)

Hence, there are only three degrees of freedom: we can think as if only three variables can jump
freely —say χ, gn and uY —, whereas the other two variables —say r and z—, are then determined
by the former constraints (76) and (77). So, saddle-path stability (local determinacy) requires two
stable roots as it happened with system (54)–(58)

Linearization of (59)–(63) around the steady state yields









ṙ
χ̇
ġn

ż
u̇Y









=









J11 0 J13 0 0
J21 J22 0 0 0
0 0 J33 J34 0
0 J42 J43 0 0
• • • • J55

















r − r̄
χ − χ̄

gn − ḡn

z − z̄
uY − ūY









= J ∙









r − r̄
χ − χ̄

gn − ḡn

z − z̄
uY − ūY









, (78)

where dots replace those elements that are irrelevant for the analysis, and

J11 = −
1 − β − η

β
r̄ < 0, J13 =

(1 − α)η
αβ

r̄ > 0,

J21 =

(
1
θ
−

1 − η

β

)

χ̄, J22 = χ̄ > 0,

J33 = ξ − (1 − φ)ḡn/γ, J34 = −
(1 − α)ηγ2

(1 − γ)α(1 − β − η)
ḡ2−1/γ
n < 0,

J42 = −z̄ < 0, J43 =

[
(1 − α)η

αβ
−

1 − φ

γ

]

z̄,

J55 = ξ
(
1 + ḡ1/γ

n /z̄
)

ūY > 0.

The eigenvalues of J are the four eigenvalues of its upper left 4 × 4 submatrix (say, J̄) and
its last diagonal element, J55 > 0. Therefore, the number of stable roots of J is equal to that
of J̄ . Using the Routh-Hurwitz theorem, the number of roots of the characteristic equation of J̄ ,
p(x) = x4 − Δ3x

3 + Δ2x
2 − Δ1x + Δ0 = 0, with negative real parts is equal to the number of

variations of sign in the scheme:

1 Δ3 Ψ Π Δ0 (79)

where

Δ0 = det(J̄) =
(1 − α)ηγ2(ξ − ρ)

αβθ(1 − γ)
z̄r̄χ̄ḡ1−1/γ

n > 0,

Δ1 = J11J22J33 − (J11 + J22)J34J43,

Δ2 = (J11 + J22)J33 + J11J22 − J34J43,

Δ3 = tr(J̄) = J11 + J22 + J33,

Ψ = Δ2 − Δ1/tr(J̄),

11



Π = Δ1 − [Δ3 det(J̄)/Ψ],

It is easy to see that ξ − ḡH > 0 if condition (74) holds, so that

J11 + J22 = r̄ − ḡK = ξ − ḡH > 0,

J33 = ξ − (1 − φ)ḡn/γ = ξ − ḡH > 0,

and, therefore, Δ3 = tr(J̄) > 0. Given the positivity of the determinant and the trace, there can
be at most two variations of sign in the scheme (79). Hence, the matrix J̄ may have 0 or 2 roots
with negative real parts. This proves part a).

To prove part b), we first show that a sufficient condition to rule out the case of none stable
roots is that Δ1 < 0. If Ψ < 0, there are two variations in sign in (79) —irrespective of the sign
of Π. If Ψ > 0 then Π < 0 and, therefore, there are two variations in sign in (79). If Ψ = 0, we
substitute it by Ψ = ι > 0, and so, Π = Δ1 − tr(J̄) det(J̄)/ι. Taking the limit as ι → 0, we have
that Π → −∞ and, therefore, there are two variations in sign in (79). Given that J11 + J22 > 0
and J33 > 0, the expression for Δ1 indicates that a sufficient condition for Δ1 < 0 is that J43 ≤ 0;
i.e., that condition (75) holds.

As in the case of the market economy (see Gómez, 2011a), instability cannot be ruled out in the
socially planned economy. For example, the parameterization β = 0.2, η = 0.6, α = 0.4, ξ = 0.05,
ρ = 0.02, θ = 1.1, δ = 0.1, φ = 0.8, γ = 0.95 yields a feasible steady state. The eigenvalues of the
linearized system are 0.0204 ± 0.2895i, 0.0204 ± 0.1464i, and 0.0407, and so, the optimal steady
state is instable.

3.3. Optimal policy

This section devises a fiscal policy capable of making the market equilibrium described by (20)–
(25) to replicate the first-best optimum described by (45)–(50). The following proposition states
an optimal policy for this economy.

Proposition 3. In the conditions of Proposition 2, the first-best solution can be decentralized by
means of a subsidy to intermediate-goods production at a constant rate sx = (1 − α)/α, combined
with a time-varying subsidy (or tax) to R&D that evolves according to

ṡR =

[
(1 − α)η

α(1 − β − η)
[1 − γ(1 − sR)]

uY

un
− (1 − sR)φ

]

gn,

and converges in the long-run to

s̄R = 1 −
(1 − α)ηūY /ūn

α(1 − β − η)φ + γ(1 − α)ηūY /ūn
,

which are financed by means of lump-sum taxation.

Proof. Note first that the laws of motion of H and n in the market economy coincide with their
counterparts in the socially planned economy. Now, comparing the laws of motion of C in the
market and the socially-planned economies, given by (23) and (48), we get that

sx = (1 − α)/α. (80)

Hence, sx is constant and, therefore, ṡx = 0. Note that introducing a subsidy to production sx

makes the total quantities of intermediates to be nx = (1+ sx)αηY. In order to achieve the optimal
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quantity in (29), the subsidy rate has to be set according to (80). In this way, (20) and (24) also
coincide with (45) and (49). Finally, comparing (25) with (50), and using (80), we get that the
optimal subsidy to R&D must follow the law of motion

ṡR =

[
(1 − α)η

α(1 − β − η)
[1 − γ(1 − sR)]

uY

un
− (1 − sR)φ

]

δuγ
nHγnφ−1. (81)

Using that gn = δuγ
nHγnφ−1, this can be equivalently expressed as the expression for ṡR in the

proposition.
We have already shown that the market economy replicates the first-best optimum. Therefore,

it remains to show that the optimal subsidy to R&D indeed converges to its long-run value s̄R. To
this end, we first rewrite the law of motion of sR as

ṡR =
(1 − α)η

α(1 − β − η)
[1 − γ(1 − sR)]g1−1/γ

n z − (1 − sR)φgn, (82)

using that un = g
1/γ
n uY /z, where the evolution of gn, uY and z is determined by the sys-

tem (59)–(63). Linearizing the system (59)–(63), together with (82), around its steady state
(r̄, χ̄, ḡn, z̄, ūY , s̄R), the jacobian matrix is

J̃ =

(
J 0
JR J66

)

,

where J is defined in (78), JR is a row matrix of order 1 × 5 whose elements are irrelevant for the
analysis, 0 is a column matrix of zeros of order 5 × 1, and

J66 =
∂ṡR

∂sR
=

η(1 − α)ḡnūY /ūn

(1 − s̄R)α(1 − β − η)
> 0.

Therefore, the number of stable roots of the matrix J̃ is equal to that of the matrix J and, since
sR is a jump variable, saddle-path stability is guaranteed if there are two stable roots. Hence, the
results stated in Proposition 2 remain valid.

It is interesting to note that equation for ṡR (81) entails that subsidy to R&D should rise more
the greatest the difference between allocation of human capital to the final good and to the R&D
sector, i.e., the higher the ratio uY /un, the higher ṡR.

In the absence of R&D spillovers, φ = 0, the long-run optimal subsidy rate is s̄R = −(1−γ)/γ <
0, whereas in the absence of duplication externalities, γ = 1, the optimal subsidy/tax becomes
s̄R = α(1 − β − η)φ/[α(1 − β − η)φ + (1 − α)ηūY /ūn], which is positive or negative depending on
whether there are positive or negative R&D spillovers.

The fact that the equilibrium is saddle-point stable and the linearized stable manifold is two-
dimensional has the interesting consequence that the transitional dynamics and, in particular, the
time path of the optimal R&D subsidy can, under certain circumstances, be non-monotonic even
without complex eigenvalues of the linearised system (e.g., Brito and Dixon, 2009). In fact, for
a number of realistic sets of calibrated values, we can observe that the R&D subsidy may evolve
through smooth or damped oscillations. This result is in sharp contrast with the analytical results
in Arnold (2000b) and the numerical results in Grossmann et al. (2010), which find monotonic
paths for the optimal R&D subsidy.

The effect of externalities associated to R&D on the long-run value of the subsidy to R&D is
stated in the following proposition.
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Proposition 4. An increase in R&D spillovers increases the long-run optimal subsidy to R&D,
and an increase in duplication externalities decreases the long-run optimal subsidy.

Proof. Using that ūY = 1 − ūn − ḡH/ξ and (68), and using (67) to express ḡn as a function of ḡH

—which does not depend on γ or φ—, we obtain that

ūY

ūn
=

α(1 − β − η)(1 − φ)(ξ − ḡH + γḡH)
γ2η(1 − α)ḡH

.

Partial derivation of s̄R with respect to φ and γ, holding constant the ratio ūY /ūn, entails that

∂s̄R

∂φ

∣
∣
∣
∣
ūY /ūn=constant

=
α(1 − β − η)ūn

η(1 − α)ūY
(1 − s̄R)2 > 0,

∂s̄R

∂γ

∣
∣
∣
∣
ūY /ūn=constant

= (1 − s̄R)2 > 0,

whereas the derivative of s̄R with respect to ūY /ūn is

∂s̄R

∂(ūY /ūn)
= −

α(1 − β − η)φū2
n

η(1 − α)ū2
Y

(1 − s̄R)2. (83)

Now, the derivatives of ūY /ūn with respect to φ and γ are

∂(ūY /ūn)
∂φ

= −
ūY

(1 − φ)ūn
< 0,

∂(ūY /ūn)
∂γ

= −
[2(ξ − ḡH) + γḡH ]ūY

γ(ξ − ḡH + γḡH)ūn
< 0.

On the effect of spillovers in R&D, after simplification, we have that

∂s̄R

∂φ
=

∂s̄R

∂φ

∣
∣
∣
∣
ūY /ūn=constant

+
∂s̄R

∂(ūY /ūn)
∂(ūY /ūn)

∂φ
=

α(1 − β − η)ūn

η(1 − α)(̄1 − φ)uY

(1 − s̄R)2 > 0.

On the effect of duplication externalities, we have that

∂s̄R

∂γ
=

∂s̄R

∂γ

∣
∣
∣
∣
ūY /ūn=constant

+
∂s̄R

∂(ūY /ūn)
∂(ūY /ūn)

∂γ
.

If 0 ≤ φ < 1, Eq. (83) entails that ∂s̄R/∂(ūY /ūn) ≤ 0 and, therefore, ∂s̄R/∂γ > 0. If φ < 0, after
simplification, we get that

∂s̄R

∂γ
= (1 − φ)

ḡH(ξ − ḡH)γ2 + α(1 − β − η)
[
(ξ − (1 − γ)ḡH)2 − (ξ − ḡH)2isφ

]

αγ2(1 − β − η)[(ξ − ḡH)(1 − φ) + γḡH ]2
> 0,

which completes the proof.

Therefore, according with intuition, an increase in R&D spillovers (an increase of φ) implies an
increase in the long-run subsidy rate to R&D, whereas and increase in duplication externalities (a
decrease of γ) implies a decrease in its long-run rate.
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4. Conclusion

This paper devises a fiscal policy capable of making the decentralized economy to replicate the
first-best optimum in an endogenous growth model with physical capital, human capital and R&D.
There are three sources of inefficiency in the model: monopolistic competition in the intermediate-
goods sector, externalities associated to the duplication of research effort, and spillovers in R&D.
The optimal growth path can be attained as a market equilibrium by instituting a subsidy to
production of intermediate goods at a constant rate, which addresses the inefficiency caused by
the presence of monopolistic competition, combined with a time-varying subsidy (or tax) to R&D,
which addresses the duplication externalities and spillovers in R&D associated to the innovation
process. Unlike much of the related literature, we also analyze the local stability of the efficient
steady state, and a sufficient condition for saddle-path stability is derived. Furthermore, it is shown
that the time path of the R&D subsidy could be non-monotonic.
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Appendix A. The model with no duplication externalities

Up to now we have assumed that γ < 1, when the dynamics of the economy can be described by
the dynamic system (59)–(63). However, in the model without of duplication externalities, γ = 1,
Eq. (61) would not be well-defined, which shows that some differences arise in this case.

Let us now derive the dynamics system that drives the socially planned economy without
duplication externalities, γ = 1. Equating (37) and (41), using (44) to eliminate ggn and (36) to
eliminate gμ, we get that

uY =
α(1 − β − η)ξ
(1 − α)ηδψ

. (A.1)

Therefore, guY = −gψ = (1 − φ)gn − gH , which combined with (63) yields

gn =
α[βχ − (1 − η)ξ]

(1 − α)η − (1 − φ)αβ
. (A.2)

Hence, the optimal growth path is described in terms of the variables r, χ and ψ by the third-order
dynamic system (59), (60) and (55), where uY and gn should be replaced with (A.1) and (A.2),
respectively; i.e.,

gr =
1 − β − η

β
(ξ − r) +

(1 − α)η
β[(1 − α)η − (1 − φ)αβ]

[βχ − (1 − η)ξ], (A.3)

gχ =

(
1
θ
−

1 − η

β

)

r + χ −
ρ

θ
, (A.4)

gψ = ξ

[

1 −
α(1 − β − η)ξ
(1 − α)ηδψ

]

−

[
ξ

δψ
+ 1 − φ

]
α[βχ − (1 − η)ξ]

(1 − α)η − (1 − φ)αβ
. (A.5)
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It can be observed that the proof of Proposition 1 remains valid, so that it also yields the optimal
steady state in the model with no duplication externalities, γ = 1. The following proposition shows
that the steady state is unstable in this case.

Proposition 5. In the absence of duplication externalities, γ = 1, the steady state of the socially
planned economy is unstable.

Proof. Note that in this case the interest rate r, as well as the knowledge-ideas ratio ψ = Hnφ−1,
is a predetermined variable as it can be expressed as

r(0) = βηη/(1−η)n(0)(1−α)η/[α(1−η)][uY (0)H(0)/K(0)](1−β−η)/(1−η),

which, using that uY (0) = α(1 − β − η)ξ/ [(1 − α)ηδψ(0)] from (A.1), is uniquely determined by
the initial values of the state variables K, H and n. Therefore, saddle-path stability requires two
stable roots.

Linearizing (A.3), (A.4) and (A.5) around its steady state yields




ṙ
χ̇

ψ̇



 =




J11 J12 0
J21 J22 0
0 • J33








r − r̄
χ − χ̄
ψ − ψ̄



 = J ∙




r − r̄
χ − χ̄
ψ − ψ̄



 ,

where a dot replaces an element that is irrelevant for the analysis, and

J11 = −
1 − β − η

β
r̄, J12 =

(1 − α)η
η(1 − α) − αβ(1 − φ)

r̄,

J21 =

(
1
θ
−

1 − η

β

)

χ̄, J22 = χ̄,

J33 = ξ − (1 − φ)ḡn = ξ − ḡH > 0.

Let J̄ denote the upper left 2×2 submatrix of J . The structure of J entails that its eigenvalues
are the two eigenvalues of J̄ , and the third eigenvalue is its last diagonal element, which is positive
as ξ − ḡH > 0 if (74) holds. Saddle-point stability can be assured then if the two eigenvalues of J̄
have negative real parts, which holds if and only if the determinant of J̄ is positive and its trace
is negative. The trace of J̄ can be obtained after simplification as tr(J̄) = ξ − ḡH > 0. Hence, the
number of stable roots is less than the number of the predetermined variables and, therefore, it is
not possible to make the system stable for arbitrary initial values of the predetermined variables;
i.e., the steady state of the socially planned economy is instable.
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Gómez, M. A. (2011a). Duplication externalities in an endogenous growth model with physical
capital, human capital, and R&D. Economic Modelling, 28(1-2):181–187.
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