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Abstract 

The effect of different aeration rates and CO2 supply regimes on mass cultures of the 

marine microalga Dunaiella tertiolecta was studied. Eight aeration rates in the range 0-

6.51 litres of air min-1 litre of culture-1 were tested. The results were compared to those 

obtained in non-aerated cultures into which pure CO2 was introduced and to cultures 

into which air enriched with CO2 was bubbled. The growth rate and final cellular density 

of D. tertiolecta in a sea-water-based medium increased with the aeration rate in the 

culture vessel. The maximal cellular density was 12.46 x 106 cells ml-1 under an air flow 

rate of 6.51 litres min-1 litre of culture-1, but evaporation and salinity increased sharply 

at this high aeration rate. The final cell density was proportional to the air flow rate and 

CO2 following the range (figures being litres of air min-1 litre of culture -1): 6.51 = 3.72 > 

1.86 > CO2 = (0.93 + CO2) > 0.93 > 0.46 > 0.23 > 0.11 > 0 (Mann-Whitney test p < 

0.05). When D. tertiolecta was grown under a CO2 supply within the optimal pH levels 

but without aeration the cultures reached a cell density of 7 x 106 cells ml-1. D. 

tertiolecta growth rate was inversely proportional to pH, the upper boundary for 

maximal growth rate being pH 9.2. Oxygen in the culture media produced by the 

photosynthetic activity of the microalgae did not inhibit growth. The dissolved CO2 

concentration in seawater was the limiting factor for D. tertiolecta growth. At a pH value 



of 8.3, D. tertiolecta was not able to take up carbon in the form of carbonates dissolved 

in seawater. 

The effect of different aeration rates and CO2 supply regimes on mass cultures of the 

marine microalga Dunaiella tertiolecta was studied. Eight aeration rates in the range 0- 

6·51 litres of air min-1 litre of culture-1 were tested. The results were compared to those 

obtained in non-aerated cultures into which pure CO2 was introduced and to cultures 

into which air enriched with CO2 was bubbled. The growth rate and final cellular density 

of D. tertiolecta in a sea-water-based medium increased with the aeration rate in the 

culture vessel. The maximal cellular density was 12·46×106 cells ml-1 under an air flow 

rate of 6·51 litres min-1 litre of culture-1, but evaporation and salinity increased sharply 

at this high aeration rate. The final cell density was proportional to the air flow rate and 

CO2 following the range (figures being litres of air min-1 litre of culture-1): 6 · 51 = 3 · 72 

> 1 · 86 > CO2 = (0 · 93 + CO2) > 0 · 93 > 0 · 46 > 0 · 23 > 0 · 11 > 0 (Mann-Whitney 

test p < 0 · 05). When D. tertiolecta was grown under a CO2 supply within the optimal 

pH levels but without aeration, the cultures reached a cell density of 7 × 106 cells ml-1. 

D. tertiolecta growth rate was inversely proportional to pH, the upper boundary for 

maximal growth rate being pH 9 · 2. Oxygen in the culture media produced by the 

photosynthetic activity of the microalgae did not inhibit growth. The dissolved CO2 

concentration in seawater was the limiting factor for D. tertiolecta growth. At a pH value 

of 8·3, D. tertiolecta was not able to take up carbon in the form of carbonates dissolved 

in seawater. 
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INTRODUCTION 

Species of the genus Dunaliella are being commercially cultured for various purposes. 

Glycerol, β-carotene and protein-enriched biomass can be produced from the genus 

Dunaliella (Gibbs & Duffus, 1976; BenAmotz & Avron, 1978, 1980; Ben-Amotz et aI., 

1982; Borowitzka, 1991 ). Dunaliella tertiolecta can also be used as a source of SCP 

(Fabregas & Herrero, 1985 ) and as a mineral supplement in fish feed (Fabregas & 

Herrero, 1986). One of the most characteristic features of this species is the lack of a 

rigid cell wall (Oliveira et aI., 1980) which makes its digestion easier. Recently its use 

as a health food and its anti-cancer effect have been studied (Mokady, 1992; Fujii etal., 

1993). 

One of the factors limiting growth-rate in cultures of D. tertiolecta is pH. When the 

source of nitrogen is NaNO) the pH level in the medium increases as a consequence of 

microalgal metabolic activity. One of the ways of keeping the pH within an optimal 

range for maximal growth rate is the sparging of pure CO2 or CO2 and air (air by itself 

contains 0'03% of CO2) at different rates. The supply of CO2 is one of the main items in 

the calculation of costs in mass cultures of microalgae. In the present work the 

optimization of air flow without any CO2 supplementation was investigated in order to 

achieve maximal growth rate and final cell density. 

 

METHODS 

The marine microalga Dunaliella tertiolecta was grown in sea-water previously filtered 

through fibre glass (GF/ C), autoclaved and enriched with the commercial inorganic 

nutrient Algal-1 (Nutrición Avanzada SA. Avda Cortes 8. Fuentes Nuevas. Ponferrada. 

Leon. Spain) (Herrero et aI., 1991 ) in which the source of nitrogen was 2 mM NaNO3. 

The initial pH of the cultures was 8'1 and the initial salinity was 3'5%. 

The cultures were grown in 6 litre flasks containing 4·3 Iitres of medium at 18°C under 

a light intensity of 81·04 µE m-2 S-1 and a Ijght periodicity of 12:12 h light: darkness. 



The initial inoculum density was 5 x 105 cells ml-1 from an exponentially growing 

culture. 

Seven different flows of air were applied to the cultures: 0·11, 0·23, 0.46, 0·93,1·86, 

3·72, 6·51 litres of air min-1 litre of culture-1. Two controls were set up as follows: one 

without aeration (named as air flow 0) and another with no aeration to which different 

quantities of CO2 were added by sparging twice a day in order to keep the pH in the 

range 7·2-7·9. A third control was aerated at 0·93 litres of air min-I litre of culture-I with 

an intermittent supply of CO2 to keep the pH in this same range. Two replicates were 

set for each condition.  The diameter of the aeration line through which air and CO2 

were bubbled was 6 mm. 

The cell density was determined daily using an improved Neubauer haemacytometer. 

The pH was measured using a portable Radiometer model 80 and an Ingold U455 pH 

electrode. The dissolved oxygen was measured with an Orion oxygen electrode (Model 

97-08) and the total salinity with an Atago S/Mill refractometer. 

Dissolved O2, salinity (%) and pH were measured daily in the cultures. The pH and 

oxygen levels were measured between 1·3 and 2 h from the beginning of the light 

periods. In the cultures under pure CO2 the pH was also measured after 5 -6 h of light 

period and CO2 was added if necessary. The salinity was corrected with distilled water 

when values reached 4·0%. Distilled water was added slowly to avoid the formation 

ofstrong salinity gradients. 

The growth rates were calculated from linear regression analyses of average cell 

density values during the exponential phase using the method proposed by Guillard 

(1973). Final cell densities were compared using the non-parametric statistics (Mann-

Whitney test). 

 

RESULTS 

The salinity in aerated cultures was increased by evaporation during the 12 days of 

culture. Aerations between 0 and 0·23 litre min-1 litre of culture–1 caused a small 

increase in salinity, while aeration rates in the range 0.46-6.51 litre min-1 litre of culture-1  

had higher increases in salinity (Table I ). In the cultures with aeration rates higher than 

0·93 litre min-1 of culture–1, salinity exceeded 4·0% requiring the addition of distilled 

water to avoid the introduction of important variations from the initial conditions of the 



culture and to allow a correct calculation of cell density (Table 1), although at these 

aeration rates the stationary phase was reached before the maximum level of salinity. 

In the present experiments, the highest amount of oxygen that remained dissolved in 

the culture was 14·7 ppm recorded in the culture with only CO2 supplementation (Table 

2), and this was caused by the absence of aeration. Oxygen concentration in the 

aerated cultures ranged between 5 and 9 ppm. Cultures under aeration flows of 0·11-

0·93 litre min-1 litre of culture–1 had higher O2 values than those with aerations in the 

range 1·86-6·51 litres min-1 litre of culture–1. The culture under 6·51 litre min-1 litre of 

culture–1 had, in general, the lowest oxygen values throughout the culture period (Table 

2). In the nonaerated culture the oxygen level decreased due to the absence of 

photosynthetic activity.  

The final cell density was proportional to the airflow rate and CO2 following the range 

(the figures show litres of air min-1 litre of culture–1): 6·51 = 3·72 > 1·86 > CO2  = ( 0·93 

+ CO2 ) > 0·93 > 0·46 > 0·23 > 0·11 > 0 (Mann-Whitney test p< 0·05 ) (Fig. 1). Non-

aerated cultures showed negligible growth. The control culture submitted to CO, 

additions without air (in order to keep the pH between 7·2 and 7·9) reached a final cell 

density of 7 x 106 cells ml-1, higher than those reached in cultures under aeration flows 

of 0- 0·93 litres min-1 litre of culture–1, but lower than in the cultures with aeration flows 

between 1·86 and 6·51. No significant difference (p= 0·82) in stationary-phase cell 

densities was recorded between the cultures under 0·93 litre min-1 litre of culture–1 plus 

CO2 and cultures to which only CO2 was added. Maximal final densities were 11 ·32 x 

106 cells ml-1 and 12,46 x 106 , achieved with  aeration rates of 3·72 and 6'51 litres min-

1 litre of culture–1  respectively (Fig. I ). 

 



An increase in the aeration rate caused a decrease in the pH and a proportional 

increase in the growth rate. The higher the aeration rates applied, the more CO2 would 

be transferred to the culture medium from the air, resulting in a decrease in the pH and 

a subsequent increase in growth rate (Table 3). Increasing cell density produced linear 

increases in pH during exponential growth in the aerated cultures (r2 > 0·9 except for 

the aeration rate 0·93 litre min-1 litre of culture–1 for which r2 = 0'7) (Fig. 2). 

The maximal growth rate increased with aeration flow following a logistic curve, a 

maximum being reached at an aeration rate about 3·7 litres min-1 litre of culture–1 (Fig. 

3). The maximal growth rate of the culture under pure CO, during the logarithmic phase 

was 0·94 day-1, higher than the growth rate of the culture to which a mixture of air and 

CO, was bubbled: 0·82 day1, and similar to the culture with air alone supplied at a rate 

of 0'93 litre min - 1 litre of culture - I. 

 

DISCUSSION 

In cultures with high cell densities the oxygen produced by photosynthetic activity may 

reach concentrations as high as 35 ppm (Richmond, 1983). High concentrations of 

dissolved oxygen could be toxic for the cells thus resulting in a decrease in 

photosynthetic activity. However, the results in the cultures grown under pure CO2 

supply, in which the oxygen concentration was very high (14 ppm) but the final density 

was 7 x 106 cells ml - 1, were similar to those achieved in cultures with aeration rates of 

0,93-1,86 litre min-1 litre of culture–1 (Fig. 1) where the dissolved oxygen was about 7 -8 

ppm. This indicates that oxygen overload in the former cultures was not a limiting 

factor. Moreover, despite the high oxygen levels produced by microalgal growth during 

the first 3 days of the cultures under CO2 supply without air (8'2-14'7 ppm) the cultures 

doubled their cell density every 24 h (growth rate 0·94 days - 1), indicating again that the 

dissolved oxygen in the medium did not act as an important limiting factor for growth. 



 

In microalgal cultures, the pH is one of the main variables to be controlled in order to 

achieve the maximal growth rate. The metabolic activity of microalgae increases the pH 

of the medium when the source of nitrogen is nitrate. On the other hand, in aerated 

cultures, the CO, present at 0'033% in air (Warburg, 1919) tends to decrease the pH 

through the buffer system H2CO3- CO2. An equilibrium between the increase of H 

derived from algal growth and CO, input should be pursued in order to maintain a 

constant pH during culture growth. In another marine microalgal species, Tetraselmis 

suecica, the specific growth rate is increased proportionally with CO2 (Molina et aI., 

1990). D. tertiolecta growth was influenced by CO2 concentration, provided by the 

different aeration rates, in the same way as has been described for the microalga 

Chlorella vulgaris (Markl, 1977). 

Taking into account the total amount of CO2 contained in the bubbled air, more than 

three times as much CO2 was bubbled into the culture under an air flow of 0·93 litre 

min- I litre of culture- I than into the culture with pure CO2 during the culture period to 

achieve even lower final cell densities in the former (Table 4), which demonstrated that 

the efficiency of CO2 transfer from air was lower than the efficiency of the addition of 

pure CO2. 

All the cultures reached a pH value of 9·2 by the third day of culture, even though the 

growth rates, and therefore the cell densities, during this period were different for each 

culture and proportional to the aeration. During this period maximal growth rate was 

recorded for all cultures, decreasing once a pH value of 9·2 was reached, except for an 

aeration rate of 1·86 for which maximal growth rate was recorded between days o and 



2. A similar high pH boundary of 9·3 was also described by Goldman et al. (1982). The 

growth rate and final cell density of D. teniolecta cultures depended on the pH of the 

culture. There was a linear relation between the pH increase and the increase in 

microalgal growth during the early logarithmic phase of growth (Fig. 2). 

Despite the increase in maximal growth rate being linear up to an air flow of 0·93 litre 

min-1 litre of culture–1  (r2 = 0'99 ), when the final density is considered the linear 

relationship was retained only up to about 0-46 litre min-1 litre of culture–1 (r2 = 0'89) 

(Fig. 3). No statistically significant difference was recorded in the final cell density for 

aeration rates of 3·72 and 6·51 litres min-1 litre of culture–1 (Mann-Whitney test, p= 0'2), 

although the values for the latter aeration rate were slightly higher. A higher standard 

deviation for stationary-phase values of the cultures under the highest air flow may 

indicate a lower capacity of the cells to survive under starvation conditions, probably 

due to the lower content of storage substances. 

 

The final cell density increased up to an aeration rate of 3·72 litres although the culture 

seemed to be CO2 saturated at an aeration rate around 0·93 litre min-1 litre of culture–1, 

as in the culture under pure CO2 the final cell density was between those obtained with 

0·93 and 1·86 litres min-1 litre of culture–1, and there was no significant difference in the 

final cell density between the culture with the CO2 supply withoutair and the one with 

0·93 litre min-1 litre of culture–1 supplemented with CO2 , It is therefore possible  that the 

growth of D. tertiolecta did not depend on pH and CO2 concentration alone. It would be 

logical to suppose that turbulence as a result of air flux, producing different movement 

regimes of the cells within the media under an equal light intensity, could be an 



important factor. The effect of turbulence and the importance of the flashing effect have 

been studied recently (Grobbelaar, 1991). It may be possible that there would be a 

different internal pool of limiting inorganic nutrient for each aeration regime. In this way, 

the higher the aeration the lower the intracellular pool needed for division resulting in a 

higher number of cells and/or a change of the cellular weight or volume. 

 

D. tertiolecta adapts proportionally and readily to changes in the availability of 

dissolved inorganic carbon by the induction of high affinity/high capacity CO2-

concentrating systems (CCMS) (Miyachi el aI., 1985; Aizawa el aI., 1986; Coleman, 

1991). CO2 is converted from HCO3 via carbonic anhydrase (CA) located at the cell 

surface (Aizawa & Miyachi, 1984; Aizawa el al., 1986). Although the ability of Dunaliella 

to take up bicarbonate has been described (Burns & Beardall, 1987), 14C incorporation 

studies have demonstrated that the microalga appeared to utilize free carbon dioxide 

during the mid-exponential phase (Mukerji el aI., 1977). Our results agree with the 

latter, as the non-aerated culture showed no increase in cell density. The level of 

dissolved carbonates in sea-water is high enough to support growth, which indicates 

that limitation is caused by the absence of dissolved CO2 It can be concluded that at a 

pH of 8·3 the microalga cannot utilize carbonates as a source of carbon. It could have 

been possible that the CA activity was inhibited at high pH, thus limiting growth rate. 

The optimal aeration rate would be the one defining the highest growth rate and 

highest final cell density with the lowest air flow and evaporation. No culture fulfilled all 

these conditions, but an equilibrium among these characteristics can be established by 

choosing an aeration rate of 0·93 litre min-1 litre of culture–1 (Table 4). 
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