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Abstract 

The cardiac ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) has been extensively 

characterized with regard to its proposed functions as a cardio-enriched transcriptional co-factor and stress-

inducible myofibrillar protein. The present results show the occurrence of alternative splicing by intron 

retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is expressed as four alternatively 

spliced transcripts, three of which have non-excised introns: ankrd1-contained introns 6, 7 and 8 (i.e., ankrd1-

i6,7,8), ankrd1-contained introns 7 and 8 (i.e., ankrd1-i7,8), and ankrd1 retained only intron 8 (i.e., ankrd1-

i8). In the human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-i8 and 

ankrd1-i7,8) are detected. We demonstrate that these newly-identified intron-retaining ankrd1 transcripts are 

functionally intact, efficiently translated into protein in vitro and exported to the cytoplasm in cardiomyocytes 

in vivo. In the piglet heart, both the intronless and intron-retaining ankrd1 mRNAs are co-expressed in a 

chamber-dependent manner being more abundant in the left as compared to the right myocardium. Our data 

further indicate co-upregulation of the ankrd1 spliced variants in myocardium in the porcine model of 

diastolic heart failure. Most significantly, we demonstrate that in vivo forced expression of recombinant 

intronless ankrd1 markedly increases the levels of intron-retaining ankrd1 variants (but not of the endogenous 

main transcript) in piglet myocardium, suggesting that ANKRD1 may positively regulate the expression of its 

own intron-containing RNAs in response to cardiac stress. Overall, our findings demonstrate that in 

cardiomyocytes ANKRD1 can exist in multiple isoforms which may contribute to the functional diversity of 

this factor in heart development and disease. 
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1. Introduction 

The ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) is a member of a small 

protein family of muscle ankyrin repeat proteins (MARPs) that consist of ANKRD1, a proline-rich 

ankyrin repeat protein (ANKRD2/ARPP), and diabetes related ankyrin repeat polypeptide 

(ANKRD23/DARP). All members are characterized by the presence of four ankyrin repeats in 

their C-termini, the capacity to interact with the elastic filamentous protein titin and similar 

intracellular distribution in both cardiac and skeletal muscle fibers. Among the MARP family, 

cardiac-enriched ANKRD1 has been the one most extensively characterized with regard to its 

proposed functions as a transcriptional co-factor and stress-inducible myofibrillar protein, 

reviewed in Granzier and Labeit (2004), Miller et al. (2004), and Mikhailov and Torrado (2008). 

 

Initially, ANKRD1 was identified as a regulatory factor named as C-193 (Chu et al., 1995) 

involved in the cytokine-induced activation of microvascular endothelial cells. Further 

independent studies led to the discovery of an identical factor as a cardiac (Zou et al., 1997) and 

muscle (Baumeister et al., 1997) ankyrin repeat protein (named, respectively, as CARP and 

MARP) or as a cardiac andriamycin-response protein named as CARP (Jeyaseelan et al., 1997) or 

CRAP (Hiroi et al., 2001). This has led to the confusing gene nomenclature, with several different 

or duplicated names having been given to the same gene/protein. Recently, the unique gene 

symbol, ankrd1, has been approved by the HUGO Gene Nomenclature Committee. 

 

The ankrd1 gene is highly conserved among the mammals studied up to date and is structured 

in 9 exons and the respective 8 introns. The primary transcript is processed to encode a protein 

product with an apparent molecular size of 39–40 kDa (Zou et al., 1997; Torrado et al., 2004, 

2006). The degradation motif in the 3′ untranslated region of the ankrd1 mRNA, as well as the 

potential PEST-like degradation sequence and putative phosphorylation and glycosylation sites 

suggest that the endogenous expression of ankrd1 can be regulated at both post-transcriptional and 

post-translational levels (Samaras et al., 2007; Witt et al., 2008). Only one ankrd1 transcript was 

reported in mammals studied up to date. The ankrd1 gene is located on chromosome 10 in 

humans, 14 in pigs (Dong et al., 2007) and 19 in mice. 

 

The ankrd1 gene, a downstream target of Nkx2.5, Gata-4, SRF and Sp3 transcription factors, is 

constitutively expressed in fetal, neonatal and adult myocardium. Distinct 5′ cis regulatory 

elements of the ankrd1 gene can direct chamber-dependent gene expression, such as atrial versus 

ventricular and left versus right (Kuo et al., 1999). In this regard, left-right asymmetric patterns of 

ankrd1 cardiac expression are most obvious in newborn and early-postnatal pigs (Torrado et al., 

2004, 2006). 

 

ANKRD1 was thought to be involved in the regulation of cardiac gene expression during fetal 

heart development via its interaction with transcription factor YB-1 (Zou et al., 1997). Later, 

ankrd1 has been characterized as an inducible gene that is over-expressed in fetal, early-postnatal 

and adult heart in response to multiple forms of cardiovascular stress, including pressure overload, 

chronic ischemia, infarction-reperfusion injury and at heart failure (HF) (Mikhailov and Torrado, 

2008). 

 

Although the functions of ankrd1 in the myocardium are still poorly delineated, several recent 

reports emphasize the role of ankrd1 in the protection of cardiac (Han et al., 2005) and 

microvascular endothelial (Samaras et al., 2007) cells against apoptosis and this gene's 

involvement in the adaptive response of ventricular myocardium to pressure overload (Mikhailov 

and Torrado, 2008). In addition, ankrd1 has also been identified as a candidate gene that can play 

an important role in congenital cardiac (Cinquetti et al., 2008) and skeletal muscle (Bakay et al., 

2002; Nakada et al., 2003) disease, as well as in angiogenesis (Boengler et al., 2003), 

neovascularization (Shi et al., 2005; Samaras et al., 2007) and neurite outgrowth (Stam et al., 

2007). In in vivo experimental settings, ANKRD1 is used as a surrogate biomarker of cardiac 

hypertrophy (Aihara et al., 2000), cardio-toxic damage (Torrado et al., 2004) or skeletal myopathy 

(Casey et al., 2008). 
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The robust increase in ankrd1 expression after various physiological stimuli or pathological 

insults suggests the gene appears to be involved in responding to muscle-specific stresses, such as 

biomechanical stretch, hypertrophic remodeling and sarcomeric dysfunction (Miller et al., 2003; 

Blais et al., 2005). Although a high stress-induced level of the ankrd1 mRNA results from a rapid 

burst of gene transcription (Kanai et al., 2001), it is increasingly more recognized that post-

transcriptional regulation can also be an important mechanism in terms of controlling ankrd1 

transcript and protein abundance (Zolk et al., 2003; Samaras et al., 2007; Witt et al., 2008). 

 

Intron retention is a potential component of post-transcriptional regulation of gene expression 

in response to various conditions of stress (Nurmi et al., 2005; Bowman et al., 2006; Yoshida et 

al., 2006; Fernandes et al., 2007). It is well-documented that the presence of an intron in a given 

transcript can enhance both gene expression (Korb et al., 1993; Le Hir et al., 2003; Nott et al., 

2003; De Jaco et al., 2005) and mRNA stability (Wang et al., 2007; Zhao and Hamilton, 2007). In 

mammals, however, no study has yet addressed the alternative splicing events in the processing of 

the primary intron-containing ankrd1 transcript and no spliced ankrd1 variants have been reported. 

 

We provide here the results on the identification of previously unrecognized splice ankrd1 

variants, each characterized by the retention of different introns in the final version of the different 

ankrd1 mRNAs expressed in normal neonatal and adult myocardium in pigs and humans. Porcine 

ankrd1 splice variants are stable transcripts which are positively co-regulated (with the main 

transcript) in the left versus right ventricular (LV versus RV) myocardium during postnatal 

development and at experimental HF. Together, these data indicate that ankrd1 splice variants are 

associated with both physiological and pathological remodeling of mammalian myocardium. More 

broadly, our findings demonstrate that ANKRD1 can exist in multiple isoforms within 

cardiomyocytes which might contribute to the functional diversity of this factor in heart 

development and disease. 

2. Materials and methods 

2.1. Porcine model of heart failure 

A low-output-type diastolic heart failure (DHF) model was established in 6-day-old neonatal 

piglets by i.v. injection of cardio-toxic agent, Doxorubicin (Dox) as described (Torrado et al., 

2006). Briefly, piglets (n = 12) exposed to Dox (Sigma) at a dose of 1.5 mg/kg developed a severe 

diastolic dysfunction with pulmonary congestion, leading to DHF with low premature mortality 

before the planned end of the study. Animals (n = 12) injected with normal isotonic saline (PBS) 

were used as controls. On day 24 after injection, cardiac output and extravascular lung water were 

monitored in close-chest piglets by PiCCO device (Pulsion AG, Germany) in accordance with the 

manufacturer's recommendations. The measurements of ventricular end-systolic (ESP) and end-

diastolic pressure (EDP) were performed in open-chest piglets using a Dräger UM3.1 pressure 

transducer and a recording device (Drägerwerk AG, Germany) as described in Torrado et al. 

(2006). Then piglets were euthanized to harvest cardiac tissues for RNA and protein isolation. 

Myocardial samples were also isolated from newborn piglets. Piglets were used in accordance with 

protocols approved by the Institutional Animal Care and Use Ethical Committee. 

2.2. Targeted myocardial gene delivery in vivo 

The expression plasmid, encoding a FLAG-tagged intronless coding sequence of the porcine 

ankrd1 (GenBank accession number: NM_213922), in p3XFLAG-CMV-14 vector (Sigma) driven 

by a human cytomegalovirus (CMV) promoter/enhancer was used. The ankrd1 constructs were 

verified by sequencing. Plasmids grown in XL1-Blue Supercompetent E. coli cells (Stratagene) 

were purified by using a PureLink HiPure plasmid filter purification kit (Invitrogen) according to 

the manufacturer's protocol. Plasmids were formulated at a final DNA concentration of 1 mg/ml in 

sterile isotonic saline (PBS). Neonatal 6-day-old piglets were randomized in three groups and 

assigned to receive intramyocardial injections of: (1) ankrd1 plasmid DNA (n = 8), (2) vector 

alone plasmid (n = 4), and (3) PBS (n = 4). While under anesthesia and mechanical ventilatory 

support, a fiber-optic catheter (Cardio-Optics Inc.) and endoscopic tubular (3 mm) cannula were 
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introduced into left chest cavity as described (Torrado et al., 2008). Then, the endoscopic needle 

was introduced into the cannula, and intramyocardial injections were performed in the ventro-

lateral area of the LVFW under direct visualization. On the 2nd day after gene transfer, the 

measurements of VESP and VEDP were performed in open-chest piglets as described just above. 

Then animals were euthanized and the hearts were rapidly excised, weighed, and photographed. 

The ventral LVFW of each heart was sectioned into 9 regions (∼ 1 × 1 cm each; see Fig. 6) which 

were then assayed individually for RNA and protein isolation, and tissue fixation (Torrado et al., 

2008). 

2.3. Human myocardial samples 

Samples (100–300 mg) encompassing the full thickness of the free wall of the left and right 

ventricles, were obtained from five adult donor hearts (20–56 years old) not transplanted for 

technical reasons, according to the University Hospital Center (La Coruña, Spain) guidelines for 

confidentiality and privacy. Cardiac specimens were also collected postoperatively from two infant 

patients (8-week- and 12-month-old) with septal defects who died during general anesthesia 

procedure. Samples were collected into RNAlatter solution (Ambion) and stored at − 80 °C until 

being analyzed. Informed consent was obtained from patient relatives, and the protocol was 

approved by the respective Institutional Ethics Committee. The investigation adheres to the 

principles outlined in the Declaration of Helsinki. 

2.4. RNA isolation 

For total RNA isolation, deep-frozen cardiac-tissue samples were directly disrupted in RLT 

buffer (Qiagen) using a high-speed rotor-stator homogenizer (Ultra-Turrax T8, Germany), digested 

with Proteinase K (Oiagen), loaded into an RNeasy Midi column (Qiagen), subjected to two 

rounds of on-column digestion of DNA with RNase-free DNase (Qiagen), and processed in 

accordance with the manufacturer's recommendations. For cytoplasmic RNA isolation, LV tissue 

dissociation was performed by serial digestion with collagenase (Sigma) and trypsin (Sigma), as 

described for neonatal hearts (Osinska and Lemanski, 1993). Resulting cardiomyocyte suspension 

was sedimented (200 g for 3 min at RT), and cytoplasmic RNA was purified with a commercially 

available RNA isolation kit (RNeasy Mini Kit; Qiagen) using a protocol designed for isolation of 

cytoplasmic RNA. Total RNA was also isolated from separate batches of cardiomyocyte 

suspension as described above. Resulting RNA preparations were ethanol-precipitated, resolved in 

RNase-free H2O, and kept at − 80 °C. RNA yield and purity was determined 

spectrophotometrically at 260–280 nm and RNA integrity was verified by running samples on 

1.5% agarose gels and staining with ethidium bromide. 

2.5. Reverse transcription-PCR differential display (RT-PCR-DD) 

The RT-PCR-DD assay was performed as described (Kokame et al., 1998) with minor 

modifications. To yield starting material for the RT-PCR-DD, total RNA preparations 

independently isolated from LV and RV of three newborn piglets were respectively pooled at 

equal ratios, and 4 μg of RNA was reverse transcribed using the SuperScript III (Invitrogen) and 

T7-oligo-dT primer. Pooled first-strand cDNAs were amplified side-by-side by PCR using 200 

different primer combinations (10 two-base-anchored oligo-dT and 20 arbitrary primers purified 

by HPLC) (Supplementary table 1). PCR products were subject to fractionation on 8% 

polyacrylamide gels (PAAG) (Mini-Protean-III, Bio-Rad) and fluorescently stained by SYBR 

Green I (Sigma). Bands with a differential expression between LV and RV were cut out, 

electroeluted (D-tube Electroelution Kit, Novagen), re-amplified, cloned into pCRII-TOPO vector 

(Invitrogen) and sequenced as a service by “Secugen” (Madrid, Spain). For validation of 

differential expression, real-time quantitative PCR was used (Rajeevan et al., 2001). 
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2.6. Rapid amplification of cDNA ends (RACE) 

Rapid amplification of cDNA ends (RACE) methods were used to characterize the 5′and 3-

ends of the alternatively spliced pig ankrd1 mRNAs using SMART RACE cDNA amplification kit 

(Clontech) according to the manufacturer's protocol. Briefly, 5′- and 3′-RACE-ready cDNAs were 

generated as separate cDNA samples using 1 μg of a total RNA isolated from the LV of newborn 

piglets, PowerScript reverse transcriptase and modified oligonucleotides for incorporation of the 

SMART sequence into both 5′- and 3′-RACE-ready cDNA populations. Dilutions of each 5′- and 

3′-RACE-ready cDNAs were used in PCR amplification reactions with the SMART RACE kit 

universal primer mix A, pig ankrd1 gene-specific primers (see Fig. 1D, forward primers 182, 183 

and reverse primer 181) and Advantage 2 Polymerase (Clontech). Amplification products were run 

on agarose gels, gel-purified, cloned and sequenced. 
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Fig. 1. Identification and characterization of pig ankrd1 splice variants generated by intron retention. (A–C) Representative 
band patterns on RT-PCR-DD analysis showing upregulated PCR fragments in the left (LV) versus right ventricle (RV) of 

newborn piglets (samples were run in duplicate). Non-denaturing 8% polyacrylamide gels post-stained with SYBR Green I. 

Black arrows indicate signals demonstrating LV-predominate expression. (D) Schematic representation of the pig ankrd1 
gene (GeneID: 396959), DD36 and DD159 fragments, their 3′-RACE PCR products (arrowed dotted-lines), and DD155, 

DD160 and DD161 fragments (after alignment of the fragment sequences with that of the pig ankrd1 gene). Exons are 

denoted with numbered black boxes and introns with grey horizontal lines. The approximate location of the primers for 
downstream PCR analysis (E) is shown. Bar—0.2 kb. (E) Expression of three splice ankrd1 variants (a, b, c) as revealed by 

PCR from oligo-dT-primed 1st strand cDNA from piglet LV using the indicated sets of primers. Reactions were run in 

duplicate using 2-fold dilutions of cDNA (RT+). RT−: non-RT control. L—DNA size standards (GeneRuler DNA ladder 
mix; Fermentas). (F) Schematic representation of structural organization of each of the PCR products generated by 

retention of: (a) introns 6, 7 and 8, (b) introns 7 and 8, and (c) intron 8. Exons and introns (i) are shaded black and grey, 
respectively. G—predicted protein structure of normally sized and intron-retaining ankrd1 variants. TC—termination/stop 

codon. 

  



2.7. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) 

2 μg of RNA were reverse transcribed using SuperScript III reverse transcriptase (Invitrogen) 

and oligo-dT primer according to the manufacturer's instructions. Piglet cardiac cDNAs were used 

for PCR reactions in a Biometra II PCR system to detect different RNAs using the primers 

indicated in Supplementary table 1. Semiquantitative RT-PCR was performed as described 

previously (Torrado et al., 2003, 2004). Detection of various ankrd1 variants was performed using 

primers located on exon–exon or exon–intron junctions. The amount of cDNA and the number of 

cycles were varied for each primer pair to ensure amplification within the linear phase. All PCR 

reactions included primers for the candidate (ankrd1) and reference (rpl19 or gapdh) transcripts. A 

discriminating primer set (derived from the FLAG vector sequence) was used for specific 

amplification of in vivo delivered FLAG-tagged ankrd1 (see Supplementary table 1). Reactions, 

including no-RT and no template (NT) controls, were performed at least in triplicate. The PCR 

products were subcloned and sequenced to confirm their identity. PCR products were visualized 

on 2% agarose gels by ethidium bromide staining and band intensity was estimated by 

densitometry (VersaDoc 1000) and Quantity One software (Bio-Rad). 

2.8. Real-time quantitative RT-PCR (qPCR) 

Two-step qPCR was performed on a Bio-Rad IQ5 detection system with SYBR Green mix 

(Torrado et al., 2006). Within each experiment, PCR reactions were done in duplicate. For each 

RNA sample, genomic DNA contamination was determined by PCR on a no-RT control for the 

housekeeping gene rpl19. Cycling parameters used were standard for SYBR Green analysis. 

Results were normalized against rpl19 expression. The efficiency of target and reference 

amplification was tested to be approximately equal. Each primer pair used yielded a single peak of 

dissociation on the melting curve and a single band with the expected size on SYBR Green-stained 

PAAG (see Fig 4G). Repeated qPCR analysis of a given RNA sample, i.e., technical replicates, 

yielded variations of less than 5%. Fold changes were calculated using the CT method. CT values 

for individual ankrd1 variants were compared to CT values for a reference control (rpl19) for all 

cardiac samples. For primer sequences used in qPCR analysis see Supplementary table 1. 

2.9. Gene cloning and cell-free expression in vitro 

Coding sequences of the intronless and intron-retaining variants of pig ankrd1 were amplified 

from piglet LV oligo-dT primed cDNA, cloned into T7 promoter-containing vector 

pcDNA3.1/myc-His B (Invitrogen), verified by sequencing and expressed in vitro using TnT T7 

Quick Coupled in vitro Transcription/Translation (IVTT) System (Promega) in the presence or 

absence of [
35

S]-labeled methionine as described (Torrado et al., 2005). The corresponding protein 

products were purified on Sephadex G-50 columns (Amersham Bioscience) and used in 

downstream SDS-PAGE and Western-blot experiments. 

2.10. Cell culture, transfection and transient expression assays 

COS-7 cells were cultured in D-MEM (Gibco) supplemented with 10% fetal bovine serum 

(FBS), penicillin-streptomycin-glutamine (Gibco) under standard tissue culture conditions at 

37 °C. Cells were trypsinized at 70–80% confluence, and 140,000 cells were plated in each well of 

12-well plates and allowed to attach overnight. Transfection of each CMV-driven-ankrd1-

expressing plasmid (see Fig 2A) or empty vector was carried out with FuGENE HD transfection 

reagent (Roche) following the manufacturer's instructions. A total of 1.0 μg of each plasmid DNA 

was used to transfect cells cultured in 12-well dishes to 80% confluence. Sterile polystyrene well 

plates were used to form transfection complexes at DNA:transfection reagent ratio 1:3. After 24-

hour incubation, the medium was removed, the cells were scraped into 200 μl 2× Laemmli sample 

buffer (Invitrogen), and cell extracts were collected for Western blot analysis. For each plasmid, at 

least three separate transfection assays were employed, and at each assay, transfections were 

performed in triplicate. 
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Fig. 2. Expression of the intronless and intron-bearing ankrd1 constructs in cell-free (IVTT) and cell-based (COS-7) 

expression assays. (A) Schematic representation of myc-tagged ankrd1 constructs carrying various configurations of introns 
6–8 retention. Exons (E) are denoted with grey boxes and introns (i) with solid black horizontal lines. (B)—Western blot 

(WB) detection of cell-free (IVTT) expressed ankrd1 constructs with anti-myc (left panel) or anti-ANKRD1 (right panel) 

antibodies. Expressed constructs: ankrd1 (lane 1), ankrd1-i8 (lane 2), ankrd1-i7 (lane 3), and ankrd1-i6,7 (lane 4). Lane 
5—IVTT control. MW values are indicated (kDa). (C) Lysates of COS-7 cells transfected with myc-tagged ankrd1 

constructs were electrophoresed and immunoblotted with anti-myc (left panels) or anti-ANKRD1 (right panels) antibodies. 

LV—extract from LV of newborn piglets. The results from duplicate protein loading are presented. VT—vector only 
transfected cells. Both variant-specific (a, b) and alternative (a′, b′) isoforms generated due to splicing-out of the intron 7 or 

introns 6 and 7 from ankrd1-i7 and ankrd1-i6,7, respectively, were detected by anti-ANKRD1 antibodies. (D) Summary of 

ankrd1-i7 and ankrd1-i6,7 expression patterns in transfected COS-7 cells. a, b—translation of intron-bearing ankrd1-i7 and 
ankrd1-i6,7 constructs resulted in correct myc-sequence read-through. a′, b′—the removal of the entire intron 7 from a part 

of ankrd1-i7 or ankrd1-i6,7 (via splicing in COS-7 cells) produced a frame shift (FS) in the open reading frame within the 

5′ region of the exon 8 that resulted in aberrant myc-sequence read-through (white oval). See text for further details. 

2.11. SDS-PAGE and Western blotting 

Tissue/cell samples were homogenized and solubilized in standard 2× Laemmli buffer 

supplemented with complete protease inhibitor cocktail (Roche) as previously described (Torrado 

et al., 2006). Total protein lysates were subjected to SDS-PAGE (Mini-Protean-III, Bio-Rad), 

stained with Coomassie or blotted onto PVDF-membranes (Hybond-P, Amersham Biosciences), 

and probed with rabbit polyclonal antibodies against porcine ANKRD1 (Torrado et al., 2004) or 

mouse monoclonal anti-myc or anti-FLAG antibodies (Sigma). Molecular weight (MW) standards 

(MARK-12 and SeeBlue Plus2 from Invitrogen) were included on each gel. Equivalence of protein 

loading was confirmed by Amido-Black staining of blots before (blot-replicas) and after 

immunodetection. Blocking, washing, incubation with diluted primary and secondary HRP-
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conjugated antibodies (Sigma), and visualization of immunodecorated bands by the Super-Signal 

West Pico chemiluminescent substrate (Pierce Biotechnology) was carried out as described 

(Torrado et al., 2006). Substitution of the primary antibodies with anti-ANKRD1 antibodies 

neutralized by recombinant pig ANKRD1 was included in negative controls. 

2.12. Statistics 

Results are expressed as mean ± SEM. Statistical significance was evaluated by Student's t test. 

Statistical analyses were performed with SPSS 13 software. A value of p ≤ 0.05 was considered 

statistically significant. 

2.13. Accession numbers 

The nucleotide sequence of the pig ankrd1-i8, ankrd1-i7,8 and ankrd1-i6,7,8 mRNA has been 

deposited in GenBank (http://www.ncbi.nlm.nih.gov/Genbank) under the accession numbers 

FJ475066, FJ475067 and FJ475068, respectively. 

3. Results 

3.1. Differential display reveals intron 8-containing ankrd1 transcripts in the piglet heart 

The neonatal pig heart, which is characterized by distinct L-R patterns in ventricle growth and 

hypertrophy, represents a conventional model for the study of L-R molecular specification of 

early-postnatal myocardium in response to physiological pressure/volume overload stress (Torrado 

et al., 2004). 

 

In order to screen for region-predominant mRNAs which are differentially regulated in the LV 

versus RV myocardium of newborn piglets, PCR differential display (RT-PCR-DD) was 

employed. This approach identified the differentially expressed transcripts (bands) whose relative 

levels in the LV are two- to four-fold higher as compared to the RV. 

 

The five bands represented up-regulated genes in the LV (band DD36, DD155, DD159, 

DD160 and DD161; see Fig. 1A–C) were re-amplified, cloned and sequenced. BLAST similarity 

searches revealed a complete sequence homology of the DD155-, DD160- and DD161-band (Fig. 

1B,C) with the exon 8–9 sequence of the pig ankrd1 transcript (Fig. 1D). Size difference 

(≈ 100 bp) between the DD160- and DD161-fragment was observed, although the same primer 

pair was used for the amplification (primers A23-H04; Fig. 1C). The apparent reason for the 

truncation of the DD161 cDNA is a string of As located 100 bp upstream its canonic poly(A) tail 

that led to H04 priming. In general, these results were consistent with LV-predominant distribution 

of the intronless ankrd1 mRNA in ventricular myocardium of newborn piglets (Torrado et al., 

2004). 

 

The other two LV-predominant fragments (i.e., the DD36- and DD159-band; see Fig. 1A, C), 

amplified by different primer sets, did not show BLAST sequence homology to any known full-

sized mRNA in the data base, but was found to be completely identical to the genomic sequence 

localized to the intron 8 of the pig ankrd1 gene (Fig. 1D), as well as, to several pig EST sequences 

(Supplementary fig. 1). In addition, the longer cDNA product, representing the DD159-band, 

contained a short sequence that had a perfect nucleotide match with the 3′-terminal region of exon 

8 of the pig ankrd1 (see Fig. 1D). Although each of these cDNA sequences was similar to the 

intron 8, they were not overlapping. RT-PCR, using a forward primer in the DD159 exon 8/intron 

8 boundary and a reversed primer in the DD36, detected PCR products, each included both DD159 

and DD36 sequences intervened by an additional 160 bp of the ankrd1 intron 8 sequence (data not 

shown). 
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Collectively, the RT-PCR-DD results strongly suggested that both intronless and intron-

retaining ankrd1 mRNAs are co-expressed and co-enriched in the LV myocardium of newborn 

piglets. 

3.2. Distinct intron 8-bearing ankrd1 transcripts are detected in piglet heart 

As our RT-PCR-DD screen identified only partial DD36 and DD159 sequences localized to 

intron 8 of pig ankrd1, we set out to determine the nature of the intron 8-contained ankrd1 

transcripts. An overall 3′-RACE analysis of the DD36 (forward primer 182) and DD159 (forward 

primer 183) revealed the presence of intron 8 and exon 9 complete sequences, indicating that these 

RT-PCR-DD products belong to the ankrd1 transcript(s), retaining the intron 8 (see Fig. 1D). 

However, no 5′-RACE PCR products were obtained using a reverse primer complementary to the 

forward primer 182. 

 

To overcome this problem, we used RT-PCR examination assays with primers designed to 

amplify between exon 1, 3 or 5 and intron 8 of the porcine ankrd1 gene. Each primer pair gave rise 

to three differently sized PCR products with piglet LV cDNA (Fig. 1E). At least 6 plasmid clones 

were sequenced from each PCR product generated by each primer set. Sequence analysis of the 

cloned PCR products revealed that each primer set did generate identical overlapping (exons), but 

divergent in the 3′ direction (intron-retained) sequences (Fig. 1F). Overall, RT-PCR analysis with 

the primer sets mapping across different exons and intron 8 revealed the presence of three ankrd1 

splice variants generated due to retention of: (1) intron 8 (i.e., ankrd1-i8), (2) introns 7 and 8 (i.e., 

ankrd1-i7,8), and (3) introns 6, 7 and 8 (i.e., ankrd1-i6,7,8). The ratio of RT-PCR products (see 

Fig. 1E) suggested a relatively lower expression of ankrd1-i6,7,8 as compared to ankrd1-i7,8 and 

ankrd1-i8 transcripts. These results document the natural occurrence of polyadenylated intron-

retaining ankrd1 transcripts by RT-PCR, primed with oligo(dT), of total RNA from the LV 

myocardium of newborn piglets. 

 

Fig. 1G shows schematic diagrams of the intronless ankrd1 and its alternatively spliced 

variants. The ankrd1-i8 variant has a termination codon (TC) within the retained intron 8 sequence 

at position 81. This splice variant would be expected to produce a protein truncated shortly after 

exon 8 with 26 additional amino acid residues from the 5′ region of intron-8. In the ankrd1-i7,8 

variant, the retention of intron 7 produces a frame shift in the open reading frame which creates a 

downstream TC within the exon 8 sequence. The predicted protein product would have an intron 7 

string but would lack a part of exon 8, as well as, intron 8 and exon 9 sequences. The same feature 

seems to be probable for the ankrd1-i6,7,8 isoform which, in spite of intron 6 retention, would 

have a TC in exon 8 due to the retention of intron 7. Of note, the retention of intron 6 itself would 

not result in either frame shift or premature TC (PTC) in this variant. The ankrd1-i8, ankrd1-i7,8 

and ankrd1-i6,7,8 putatively code for a 309, 305 and 339 amino acid protein with the deduced 

apparent MW value of 35.1, 34.2 and 37.7 kDa, respectively. These deduced values are 

comparable to that of pig intronless ANKRD1 (36.1 kDa). (see Supplementary fig. 2). 

 

Thus, the results of structure analysis of three spliced variants of ankrd1 identified in the LV 

myocardium of newborn piglets led us to predict that these transcripts, if effectively translated, 

would produce proteins with modified C-terminal segments. 

3.3. Intron-retaining ankrd1 transcripts effectively translated into proteins in both cell-free and 

cell-based expression assays 

To probe whether the intron-retaining ankrd1 transcripts are functionally intact and can be 

translated into protein, four myc-tagged constructions, each included the predicted coding 

sequence (Fig. 2A), were designed, in vitro translated and analyzed by SDS-PAGE followed by 

Western blot. For Western blot detection, a commercial mouse monoclonal anti-myc antibody and 

our lab-derived polyclonal antibodies generated in rabbits against N-terminal segment of porcine 

ANKRD1 (Torrado et al., 2004) were used. Four distinct bands of the expected size for intronless 

ankrd1 (44 kDa), ankrd1-i8 (44 kDa), ankrd1-i7,8 (43 kDa) and ankrd1-i6,7,8 (44 kDa) were 

observed on the blots developed by both antibodies used (Fig. 2B). The similar size of the putative 
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proteins would probably make them undistinguishable from each other, as well as, from normally 

sized ANKRD1 protein in the heart tissue. 

 

To assay the ability of the cDNA constructs to drive protein expression in mammalian cells, we 

transiently transfected COS-7 cells with the same myc-tagged versions of porcine ankrd1 

constructs (see Fig. 2A) and probed cell lysates by Western blotting with anti-myc and anti-

ANKRD1 antibodies (Fig. 2C). Anti-myc detection revealed the expression of all ankrd1 variant-

specific products, each migrating in SDS-PAGE as one band of apparent molecular weight (MW) 

of 44 kDa (Fig. 2C, left panel). The same protein products were also detected by anti-ANKRD1 

antibodies. Moreover, the use of anti-ANKRD1 antibodies allowed the detection of alternative 

protein isoforms generated due to splicing-out of intron 7 or introns 6 and 7 from a part of ankrd1-

i7 and ankrd1-i6,7 transcripts, respectively (Fig. 2C, right panel, lanes 8–11, arrows). Anti-myc 

detection did not reveal the expression of these alternative protein products because the removal of 

the entire intron 7 from both ankrd1-i7 and ankrd1-i6,7 (via splicing in COS-7 cells) produced, as 

predicted, a frame shift in the open reading frame within the 5′ region of exon 8 which, in turn, 

resulted in aberrant myc-sequence read-through. 

 

Overall, the data could be interpreted as evidence that alternative splicing of the ankrd1 gene 

might result in expression of novel protein variants in the heart. However, intron-containing 

transcripts are frequently retained in the nucleus and targeted for degradation, preventing protein 

expression. 

 

To test whether the ankrd1 intron-containing transcripts are exported to the cytoplasm, we 

analyzed their expression in the RNA cytoplasmic fraction as compared with that in total LV-RNA 

from 6-day-old piglets. Each RT-PCR experiment was performed twice from separate cytoplasmic 

and total RNA isolations. As shown in Fig. 3, RT-PCR analysis revealed the presence of intron-

containing ankrd1 transcripts in both cytoplasmic and total RNA pools of LV-cardiomyocytes. 

The level of intron-containing transcripts in the RNA cytoplasmic fraction was 2–3-fold lower 

than that in the total RNA pool. Of note, the intronless ankrd1 mRNA displayed a nearly identical 

relative proportion. The possibility of nuclear contamination of the cytoplasmic RNA preparation 

was excluded by testing for U6 small nuclear RNA (Mansilla et al., 2005). Although these results 

suggested that each ankrd1 intron-retaining transcript may be translated into predicted protein, we 

could not detect discrete intron-retaining ankrd1 isoforms, excepting a normally sized ANKRD1, 

on the LV-derived Western blots developed by our anti-ANKRD1 antibodies (data not shown). 

This could be explained by the low abundance of ankrd1 intron-retaining variants, their rapid 

turnover in cardiac tissues or their MW size similarity to mature ANKRD1. 
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Fig. 3. Intron-containing ankrd1 mRNAs are present in the cytoplasm of piglet cardiomyocytes. (A) Schematic 

representation of the pig intronless and intron-retaining ankrd1 sequences used for primer design. Exons and introns are 

denoted with grey and white boxes, respectively. The approximate location of the primers for downstream RT-PCR 
analysis is shown (for primer sequences see Supplementary table 1). The expected size of the corresponding RCR products 

is shown in black lines. (B) Expression of intronless and intron-retaining ankrd1 variants as revealed by RT-PCR of total 

and cytoplasmic RNA from piglet LV-derived cardiomyocytes, using the indicated set of primers. Gapdh amplification was 
carried out as an input RNA control for the RT-PCR. U6 small nuclear RNA amplification was carried out as a nuclear 

contamination control. Reactions were run in duplicate. PCR products were subcloned and sequenced to confirm that they 

corresponded to intron-retained ankrd1 transcripts. 
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3.4. Intron-retaining ankrd1 transcripts display left versus right expression patterns in piglet heart 

In neonatal piglets, cardiac expression of normally sized ankrd1 mRNA and protein is 

characterized by a shrinking asymmetric L-R distribution in both atrial and ventricular 

myocardium (Torrado et al., 2004, 2006). This led us to test whether expression of intron-retaining 

ankrd1 variants are similarly regulated across cardiac chambers in newborn piglets. The analysis 

was performed by qPCR using the indicated set of forward-reverse primer pairs, each specific for 

selective amplification of pig ankrd1 transcripts retaining intron 8, 7 or 6 (Fig. 4A). As expected, 

expression of the mature ankrd1 mRNA was enhanced 10 fold in the LV versus RV being also 1.6 

fold higher in the left atrium (LA) as compared to the right atrium (RA). The intron-retaining 

ankrd1 variants showed very similar patterns of expression in newborn pig heart. Only in the case 

of ankrd1-i8, the L-R expression differences, especially between LV and RV, were less prominent 

(Fig. 4B–F). 
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Fig. 4. Left-predominant expression of intron-retaining ankrd1 transcripts in newborn piglet heart. (A) Schematic 
representation of the pig intronless and intron-retaining ankrd1 sequences used for primer design. Exons and introns are 

denoted with grey and white boxes, respectively. The approximate location of the primers for downstream qPCR analysis is 

shown (for primer sequences see Supplementary table 1). (B–E) Representative qPCR amplification plots of intronless and 
intron-retaining ankrd1 mRNA levels in LV (green), RV (blue), LA (black), and RA (red). (F) internal rpl19 standard 

levels. Arrows—threshold cycle (CT). FT—fluorescent threshold. RFU—relative fluorescent units. (G) Each primer pair 

yielded a single band with the expected size on 8% PAAG post-stained with SYBR Green I. On the left, DNA size 
standards (GeneRuler DNA ladder mix; Fermentas) are shown. 

The data suggest that there could be a chamber-dependent co-regulation (a positive regulation) 

of expression of intronless and intron-retaining ankrd1 transcripts in neonatal pig heart. 

3.5. Intron-retaining ankrd1 transcripts are markedly up-regulated in porcine model of heart 

failure 

Ankrd1 has been identified as a gene that is upregulated in ventricular myocardium in both 

animal models and patients at HF secondary to various cardiac stresses (Mikhailov and Torrado, 

2008). Utilizing our model of DHF-like syndrome in neonatal piglets (Torrado et al., 2006), we 

have carried out accurate quantification of the relative amounts of each ankrd1 splice form in LV 

myocardium of control (i.e., PBS-injected) and experimental (i.e., Dox-injected) piglets (Fig. 5). 

Expression of intronless ankrd1 transcript was coincidently enhanced 1.8-fold in the control versus 

failing myocardium. Similarly, the ankrd1 intron-retaining transcripts were up-regulated in 

diseased myocardium, but each to a greater extent than that of the intronless ankrd1 mRNA. 

 
 

 
Fig. 5. Intron-retaining ankrd1 variants are co-upregulated with the main transcript in failing piglet myocardium. qPCR 

analysis of intronless and intron-retaining ankrd1 mRNA levels in the LV myocardium of Dox- versus PBS-injected 

piglets, using a primer set as indicated in Fig. 4. ⁎p ≤ 0.05, for each transcript, Dox versus PBS. 

The data provide evidence that experimental HF results in markedly enhanced expression of 

not only the intronless (Torrado et al., 2004, 2006), but also the intron-retained ankrd1 mRNA 

species in failing myocardium, suggesting that ANKRD1 may positively regulate expression of its 

own intron-containing RNAs in response to cardiac stress. 
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3.6. In vivo forced expression of intronless ankrd1 leads to up-regulation of intron-retaining 

ankrd1 transcripts in piglet myocardium 

Given a positive co-expression pattern of the ankrd1 mRNAs in normal and diseased piglet 

heart, we examined whether a forced expression of recombinant intronless ankrd1 in LV 

myocardium could have an influence on the expression of endogenous intron-retaining ankrd1 

variants. 

 

Using the delivery protocol developed by this team (Torrado et al., 2008), naked plasmids 

encoding porcine intronless ankrd1 construction (8 animals) or empty vector (4 animals) were 

injected into target sites of the LV free wall (FW) of 6-day-old neonatal piglets (Fig. 6A). All 

ankrd1-transfected LVFWs harvested on day 2 post-delivery demonstrated transgene expression 

detectable by RT-PCR (Fig. 6B) and Western blot (Fig. 6D). In transfected LVFWs (region 2 and 

6 from 8 ankrd1-transfected piglets), the amount of the endogenous intronless ankrd1 mRNA, 

measured by qPCR assay, did not change significantly, whereas the expression of ankrd1-retaining 

variants was markedly up-regulated (Fig. 6C). It is important to note that a histological 

examination did not reveal inflammation in the LVFW target regions from ankrd1-delivered 

piglets. In all ankrd1-transfected animals, ventricular systolic and diastolic pressure values were 

not altered as compared to those in piglets intramyocardially injected with empty vector. At 

macroscopic examination, transfected animals had apparently normal heart morphology 2 and 

7 days post-delivery as compared with age-matched controls (data not shown). 
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Fig. 6. In vivo forced expression of recombinant intronless ankrd1 leads to up-regulation of endogenous intron-retaining 

ankrd1 transcripts in transfected piglet myocardium. (A) Schematic representation of ankrd1 transfected LVFW (dark grey, 
injection positions) which was dissected into nine fragments (1–9) 2 days after delivery. (B) Representative 

semiquantitative RT-PCR analysis of FLAG-tagged ankrd1 transcript levels in nine LVFW fragments (after normalization 

of the cDNA templates to rpl19 expression). RT−: non-RT control. On the left—DNA size standards (GeneRuler DNA 
ladder mix; Fermentas). Primers are shown in brackets. A discriminating primer 239 is derived from the FLAG vector 

sequence (see Supplementary table 1). (C) Relative mRNA levels estimated by qPCR for endogenous intronless and intron-

retaining ankrd1 transcripts in LVFW fragments 2 and 6 from ankrd1-transfected (n = 8) versus empty vector-transfected 
(n = 4) piglets. In total, 16 ankrd1- and 8 vector-delivered LVFW segments were processed. A primer set as indicated in 

Fig. 4 was used for amplification of intron-retaining ankrd1 transcripts. The endogenous intronless ankrd1 transcript was 

selectively amplified using a forward 327 primer and reverse primer 326 located in the ankrd1 3′-UTR (see Supplementary 
table 1). ⁎p ≤ 0.05, for each transcript, ankrd1-transfected versus vector transfected. (D) Western blot replicas of total 

protein extracted from zones 4, 5 and 6 of LVFWs injected with empty vector (left half of membranes) or FLAG-tagged 

ankrd1 (right half of membranes) were probed with anti-FLAG and anti-ANKRD1 antibodies or stained with Amido black 

(control of protein loading). (E) Relative levels estimated by Western blot for endogenous ANKRD1 in LVFWs transfected 

with empty vector or FLAG-tagged ankrd1. kDa-Protein MW standards. ⁎p ≤ 0.05, for endogenous ANKRD1 (ankrd1-

transfected versus vector-transfected). 

Having found significant up-regulation of intron-retaining ankrd1 variants after ankrd1-vector 

transfection of LV myocardium, we compared the endogenous ANKRD1 protein level to that 

following vector only delivery. Our Western blot analysis provided evidence that intramyocardial 

delivery of an intronless ankrd1 expression vector resulted in an approximately 2-fold increase of 

endogenous ANKRD1 protein levels in the target regions as compared to those transfected with 

empty vector (Fig. 6E). 
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Overall, these results indicated that forced expression of intronless ankrd1 transcript can result 

in up-regulation of its own intron-containing RNAs which, in turn, is associated with enrichment 

of endogenous protein products in transfected myocardium. 

3.7. Orthologues of porcine intron-retaining ankrd1 variants are detected in human heart 

Because our results in piglet heart suggested that expression of intron-retaining ankrd1 variants 

can be chamber-dependent and positively co-regulated with expression of the normally sized 

transcript (see Fig. 4), we asked whether such gene expression patterns also occurred in human 

postnatal myocardium. To examine this possibility, we first surveyed the presence of orthologues 

of the porcine intron-retaining ankrd1 variants in human myocardium. In fact, orthologues of 

porcine ankrd1-i8 and ankrd1-i7,8 variants were readily detectable by our RT-PCR assay in 

human ventricular myocardium (Fig. 7A, B, D). The attempts, however, failed to demonstrate the 

existence of the ankrd1-i6,7,8 orthologue in human cardiac samples. In infant human heart, the 

intronless ankrd1 transcript was more abundant in the LV as compared to the RV. Overall, this 

expression pattern was comparable to those of ankrd1-i8 and ankrd1-i7,8 mRNAs which showed a 

trend towards a small 1.5-fold enrichment in the LV over the RV (Fig. 7B–D). 
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Fig. 7. Intron-retaining ankrd1 transcripts are detected in infant and adult human heart. (A) Schematic representation of the 

human intronless and intron-retaining ankrd1 sequences used for primer design. Representative (B) and average relative 
(C) mRNA levels estimated by semiquantitative RT-PCR for ankrd1 splice and rpl-19 transcripts in LV/RV samples from 

8-week-old infant. On the left—GeneRuler DNA ladder mix (Fermentas). Representative (D) and average relative (E) 

mRNA levels estimated by semiquantitative RT-PCR for ankrd1 splice and rpl-19 transcripts in LV myocardium from 
infant and adult donors. Lane 1—8-week-old; lane 2—1-year-old; lane 3—42-year-old; lane 4—43-year-old. ⁎p ≤ 0.05. 

We also compared ankrd1 splicing in RNA samples from infant and adult human LV 

myocardium to assess regulation during human postnatal development. Infant cardiac tissues 

express the ankrd1-i8 variant at higher levels in comparison to the adult heart suggesting that its 

expression is down-regulated with aging. The expression levels of the intronless ankrd1 transcript 

were also down-regulated in adult as compared to those in infant LV samples, but the differences 

were not statistically significant. The amount of the ankrd1-i7,8 did not differ appreciably between 

infant and adult human LV samples. 

  



4. Discussion 

To this date, only single normally sized ankrd1 transcript had been reported in mammals, but, 

interestingly, two ankrd1 transcripts had been detected in the chicken muscle tissue by Northern 

blot hybridizations (Yang et al., 2005). The present results show the occurrence of alternative 

splicing by intron retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is 

expressed as four alternatively spliced transcripts, three of which have non-excised introns: 

ankrd1-contained introns 6, 7 and 8, ankrd1-contained introns 7 and 8, and ankrd1 only retained 

intron 8. These new splice ankrd1 variants were unexpectedly identified during our RT-PCR-DD 

analysis of the transcripts differentially expressed in the LV versus RV myocardium of newborn 

piglets. In human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-

i8 and ankrd1-i7,8) are detected. Recently, an as yet un-characterized intron-contained ankrd1 

transcript was found to be expressed and up-regulated in neonatal rat cardiomyocytes in response 

to endothelin stimulation (Cullingford et al., 2008). Our in silico analysis revealed that the 

identified human and pig ankrd1 intron-retaining sequences are conserved in a limited number of 

higher mammals and primates (60–70% of sequence homology), demonstrating insignificant 

(lower mammals) or no homology to other vertebrate counterparts. 

 

Often, retention of internal introns restricts the export of these mRNAs and makes them the 

targets for degradation by the nonsense-mediated mRNA decay (NMD) pathway, particularly if 

they contain premature TC (Blencowe, 2006; Lareau et al., 2007). We have employed a variety of 

complimentary approaches to demonstrate that the identified intron-retaining ankrd1 transcripts 

are functionally intact and efficiently translated into protein in vitro (see Fig. 2B). Moreover, we 

have provided evidence that the ankrd1 intron-retaining transcripts are exported to the cytoplasm 

in cardiomyocytes in vivo. The equal proportions of intronless and intron-retaining ankrd1 

transcripts between the total and cytoplasmic RNA pool from piglet cardiomyocytes (see Fig. 3) 

suggest that nuclear transcripts are of similar composition to those in the cytoplasm, and therefore 

not necessarily committed to NMD-mediated degradation. Collectively, the results indicate that 

each of the identified ankrd1 intron-retaining transcripts can be translated into protein in cardiac 

tissues. 

 

A major question is the extent to which these alternatively spliced ankrd1 transcripts could be 

functionally significant. Our results address this question using a combination of experimental 

approaches that allowed us to monitor the cardiac levels of these splice variants in different in vivo 

settings. Using the rna22 algorithm (Miranda et al., 2006), we identified putative binding sites for 

several cardiac miRNAs (Thum et al., 2007) in the human ankrd1 intron 8 sequence suggesting 

that the expression of intron-8-retained and intronless ankrd1 transcripts might be differentially 

regulated in the heart. However, in both pig and human neonatal heart the expression of intronless 

and ankrd1-i8 variants was found to be similarly co-regulated in a chamber-dependent manner 

(see Figs. 4 and 7) influenced, at least in part, by different types of biomechanical stress in the left 

as compared to the right myocardium (Torrado et al., 2004). 

 

It is generally recognized that the presence of introns in a primary transcript can promote more 

abundant gene expression (Nott et al., 2003). Intron-retaining ankrd1 transcripts were found to be 

markedly up-regulated, with the main transcript, in ventricular myocardium in porcine model of 

DHF (see Fig. 5). Because protein is produced more rapidly from pre-existing mRNAs than from 

transcription of a gene, it is conceivable that intron-retaining ankrd1 transcripts enable cardiac 

cells to respond quickly to stress by making ANKRD1 immediately available for tissue 

remodeling. The findings, stemming from our gene delivery experiments, are well in line with 

such a view. Forced myocardial expression of recombinant intronless ankrd1 resulted in up-

regulation of endogenous intron-retaining ankrd1 variants (but not of the endogenous main 

transcript), which, in turn, was associated with enrichment of endogenous ANKRD1 protein 

products in transfected piglet myocardium (see Fig. 6D, E). Future studies, beyond the scope of 

the present work, will be needed in order to detail the mechanism and functional significance of 

co-regulated expression of intronless and intron-retaining ankrd1 transcripts in myocardium. 

 

Conflicting hypotheses regarding the role of alternative splicing-NMD coupling in regulation 

of gene expression exist (Lareau et al., 2007). As previously suggested, NMD activated by 

alternative splicing events can represent a mechanism by which expression of a given gene could 

be down-regulated in a tissue-restricted manner (Alonso, 2005). Other observations indicate, 
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however, that the majority of PTC-containing transcripts generated by alternative splicing are 

detected at uniformly low abundance levels across mammalian tissues, independently of the NMD 

action (Pan et al., 2006). Our data contribute, to some extent, to the current knowledge of this 

issue. Both the intronless and intron-retaining ankrd1 transcripts are constitutively co-expressed in 

the neonatal pig heart and similarly up-regulated in porcine failing myocardium, suggesting the 

mRNA population resulting from the ankrd1 gene is not homogeneous in cardiomyocytes, but 

rather is present in a number of transcripts proportionate to its splicing probability. Moreover, in 

all experimental settings analyzed, the higher level of intron-retaining ankrd1 transcripts was 

always associated with a higher ANKRD1 protein content in piglet myocardium. 

 

In mice, a total ankrd1 knockout resulted in a complete lack of phenotype (Barash et al., 2007), 

suggesting that ANKRD1 is not crucial for regulation of cardiac gene expression in vivo, as it has 

been proposed in the past (Zolk et al., 2002, 2003). However, ankrd1 augmented expression can 

represent an adaptive response of the myocardium to stress both during development and various 

heart insults (Mikhailov, Torrado, 2008). Expression of several ankyrin repeat proteins was found 

to be associated with cell survival (Miles et al., 2005). In this regard, forced expression of 

normally sized ankrd1 in rat embryonic cardiomyocytes (Han et al., 2005) and human 

microvascular endothelial cells (Samaras et al., 2007) increases their resistance to Dox-induced 

stress/apoptosis which correlates with a decrease in caspase-3 activity. It is not clear whether 

intron-retaining ankrd1 variants, up-regulated in myocardium of piglets exposed to Dox, have a 

similar functional phenotype. Our preliminary results indicate that forced expression of intronless 

and splice ankrd1 variants in COS-7 cells (see Fig. 2C) results in lower levels of caspase-3 

activation as compared to those of empty vector-transfected cells (data not shown). 

 

As predicted, translation of the characterized intron-retaining ankrd1 transcripts would produce 

proteins with modified C-termini (see Supplementary fig. 2). Studies of ANKRD1 protein 

interactions have focused on the use of the normally sized protein, or on its N- or C-terminal 

domain in isolation (Zou et al., 1997; Torrado et al., 2004, 2005; Witt et al., 2005; Hayashi et al., 

2008). The present work suggests that ANKRD1 isoforms that lack a part of their C-termini can be 

present in cardiomyocytes and will require further detailed analysis. The ANKRD1-i8 isoform 

would retain all conserved ankyrin repeat motifs which were found to be important for interactions 

of ANKRD1 with titin (Miller et al., 2003) and cardiac calsequestrin (Torrado et al., 2005), while 

both ANKRD1-i7,8 and ANKRD1-i6,7,8 would lack the 4th ankyrin repeat (see Supplementary 

fig. 2). 

 

Lastly, it is worth to note that in quantitative RT-PCR analysis the use of the primers annealing 

to the first six exons of the ankrd1 gene would generate a common PCR product amplified from 

both intronless and intron-retaining ankrd1 transcripts. Also, the question of cardiac expression of 

ANKRD1 needs to be addressed because commercial and lab-derived antibodies used, for 

example, in immunohistochemical studies, could not differentiate between the intronless and 

intron-retaining ANKRD1 isoforms. 

 

In sum, the results presented here demonstrate that ANKRD1 can exist in multiple isoforms 

within cardiomyocytes in pigs and humans. Intron-retaining ankrd1 transcripts were found to be 

markedly up-regulated in porcine failing myocardium and, therefore, the relevance of the ankrd1 

gene to the pathogenesis of HF in humans (Mikhailov and Torrado, 2008) would require analysis 

of its splicing pattern in cardiac muscle samples from patients with advanced heart insufficiency. 
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