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Abstract 

Aging and life quality is an important research topic nowadays in areas such as life sciences, chemistry, 

pharmacology, etc. People live longer, and, thus, they want to spend that extra time with a better quality of life. 

At this regard, there exists a tiny subset of molecules in nature, named antioxidant proteins that may influence 

the aging process. However, testing every single protein in order to identify its properties is quite expensive and 

inefficient. For this reason, this work proposes a model, in which the primary structure of the protein is 

represented using complex network graphs that can be used to reduce the number of proteins to be tested for 

antioxidant biological activity. The graph obtained as a representation will help us describe the complex system 

by using topological indices. More specifically, in this work, Randić’s Star Networks have been used as well as 

the associated indices, calculated with the S2SNet tool. In order to simulate the existing proportion of 

antioxidant proteins in nature, a dataset containing 1999 proteins, of which 324 are antioxidant proteins, was 

created. Using this data as input, Star Graph Topological Indices were calculated with the S2SNet tool. These 

indices were then used as input to several classification techniques. Among the techniques utilised, the Random 

Forest has shown the best performance, achieving a score of 94% correctly classified instances. Although the 

target class (antioxidant proteins) represents a tiny subset inside the dataset, the proposed model is able to 

achieve a percentage of 81.8% correctly classified instances for this class, with a precision of 81.3%. 

Highlights 

► This work presents an automatic antioxidant protein detection method. ► The new method uses graphical 

information processing theory which has never previously used in this kind of problem. ► The results can be 

qualified as notable compared with the state of the art. 
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1. Introduction 

Life expectancy is increasing every year, especially in developed societies. Nowadays, in these 

countries, it is not strange to find some people that are near one hundred years, when 20 years ago 

this was quite rare. For example, in Spain, life expectancy at birth has increased from 73 years in 

1975 to more than 81 in 2011 (OECD, 2011). In this context, it is obvious that people may want to 

spend the biggest part of their life in optimum health conditions. In order to achieve this objective, 

finding some mechanism that delays aging (Cevenini et al., 2010; de Magalhães, 2010, 2011, 2012; 

Freitas and de Magalhães, 2012; Harman, 1981; Hayflick, 2000) is necessary. Several important 

works have proposed specific relationships between genes or proteins and aging (Aledo et al., 2011, 

2012; de Magalhães et al., 2009; Freitas et al., 2011; Gomes et al., 2011; Li et al., 2010). 

 

More research focused on antioxidant molecules may be useful for this purpose, since, for 

example, oxidative stress is one of the risk factors of colorectal carcinogenesis. In inflammatory 

reactions the activated leucocytes produce mutagenic and mitogenic free radicals, hereby promoting 

tumour formation. In addition, obesity, hyperlipidemia and hyperinsulinemia increase the energy 

supply of epithelial cells, thus leading to deregulation of the mitochondrial electron transport chain. 

Finally, the latter leads to increased free radical production, causing troubles in cell cycle regulation, 

mutations, and unrestricted proliferation of damaged cells (Regöly-Mérei et al., 2007). 

 

Unfortunately, the number of molecules that have antioxidant properties in nature is quite low. 

Therefore, developing models that help to detect molecules with antioxidant properties would be very 

helpful. On this basis, the main objective of this paper will be to develop models that, on one hand, 

will reduce the number of molecules for tests in different trials and, on the other hand, to increase the 

success rates when molecules are tested looking for these properties. 

 

In order to achieve this, the authors have used Quantitative Structure Activity Relationships 

(QSARs) (Devillers and Balaban, 1999). QSARs are based on Graph Theory, one of the most 

common techniques used in protein analysis. Using this technique, macromolecular descriptors, 

named topological indexes (TIs), are calculated for its later analysis. This branch of mathematical 

chemistry has become an intense area of research, generating new information regarding 

DNA/proteins by representing them as graphs and obtaining the corresponding TIs in order to analyse 

the resulting complex networks (Agüero-Chapin et al., 2006; Bielińska-Wa-z et al., 2007; Munteanu 

et al., 2010; Randić and Balaban, 2003). In order to perform these analyses, the TIs are then 

processed by a classification technique such as Support Vector Machines (SVMs) (Vapnik, 1995), 

Artificial Neural Networks (ANNs) (Rivero et al., 2011), Random Space Classifiers (Skurichina and 

Duin, 2002), Linear Discriminant Analysis (LDA), etc, abstracting general properties for future 

molecules that have not been already tested. Many examples involving QSAR can be found in 

literature (González-Díaz et al., 2006, 2007a, 2010; Prado-Prado et al., 2008; Riera-Fernández et al., 

2012) regarding protein folding kinetics (Chou, 1990), enzyme-catalyzed reactions (Chou, 1989; 

Chou and Forsen, 1980; Chou and Liu, 1981; Kuzmic et al., 1992), inhibition kinetics of processive 

nucleic acid polymerases and nucleases (Althaus et al., 1993a, 1993b, 1994, 1996; Chou et al., 1994), 

DNA sequence analysis (Qi et al., 2007), anti-sense strands base frequencies (Chou et al., 1996), 

analysis of codon usage (Chou and Zhang, 1992; Zhang and Chou, 1994), Cancer prediction (Aguiar-

Pulido et al., 2012), as well as complex network systems investigations (Diao et al., 2007; Gonzalez-

Diaz et al., 2007b, 2008). 

 

In this work, the authors propose the first non-antioxidant/antioxidant protein classification model 

based on embedded/ non-embedded Star Graph TIs including the trace of connectivity matrices, 

Harary number, Wiener index, Gutman index, Schultz index, Moreau-Broto indices, Balaban distance 

connectivity index, Kier–Hall connectivity indices and Randić connectivity index. This information is 

then used as input to several classification techniques, obtaining the best results when the Random 

Forest technique is used. 
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2. Materials and methods 

The description of the methodology followed in this work is presented in Fig. 1. The input data is 

represented by the amino acid sequences (primary structure) antioxidant and non-antioxidant proteins 

in FASTA format. By using the S2SNet tool (Munteanu et al., 2009), the sequences of amino acids 

are transformed into Star Graphs and the corresponding topological indices are calculated. The 

resulting numbers that characterised each graph (that is, a protein graphical representation) are then 

used in Weka (Hall et al., 2009a) to find the best QSAR classification model. The final model is used 

to predict antioxidant activity for new amino acid sequences. 

 
 

 
Fig. 1. Flowchart of building QSAR 
classification models for protein antioxidant 

activity prediction. 

2.1. Protein set 

This work is based on datasets extracted from several protein databases. The sets of protein 

primary sequences are represented by 324 proteins with antioxidant activity and 1675 proteins 

without. The antioxidant protein FASTA sequences (positive group) have been downloaded from the 

Protein Databank (Berman et al., 2000), the “Antioxidant activity” list obtained with the “Molecular 

Function Browser” in the “Advanced Search Interface”. The negative group was constructed using 

the PISCES CulledPDB (Wang and Dunbrack, 2003) list of proteins with identity less than 20%, 

resolution of 1.6 Å and R-factor 0.25 (non-antioxidant proteins included, but any other possible 

biological function). Identity is the degree of correspondence between two sequences and a value of 

25% or higher implies similarity of function. The sequence identities for PDB sequences have been 

determined using Combinatorial Extension (CE) structural alignment (Shindyalov and Bourne, 1998). 

The PIECES server (http://dunbrack.fccc.edu/PISCES.php) used a Z-score of 3.5 as the threshold to 

accept possible evolutionary relationships. PISCES’ alignments are local, so that two proteins that 

share a common domain with sequence identity above the threshold are not both included in the 

output lists. Both lists have not been post-filtered for any source organism.  
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2.2. Star Graph topological indices 

Each protein was transformed into a Star Graph, where the amino acids are the vertices (nodes), 

connected in a specific sequence by the peptide bonds. The Star Graph is a special type of tree with N 

vertices where one has got N-1 degrees of freedom and the remaining N-1 vertices have got one 

single degree of freedom (Harary, 1969). Each of the 20 possible branches (“rays”) of the star 

contains the same amino acid type and the star centre is a non-amino acid vertex. This way, the 

following information of the protein primary structure is encoded into the Star Graph connectivity: 

amino acid type, sequence and frequency. 

 

A protein can be represented by diverse forms of graphs, which can be associated with distinct 

distance matrices. The best method to construct a standard Star Graph is described subsequently: each 

amino acid/vertex holds the position in the original sequence and the branches are labelled by 

alphabetical order of the three-letter amino acid code (Randić et al., 2007). The graph is embedded if 

the initial sequence connectivity in the protein chain is included. Fig. 2 presents the embedded/ non-

embedded Star Graphs of PRPS1 using the alphabetical order of one-letter amino acid code. 

 
 

 
Fig. 2. The non-embedded (A) and embedded (B) Star Graphs for 1BZ4, chain A. 

Graphs are compared using the corresponding connectivity matrix, distance matrix and degree 

matrix. In the case of the embedded graph, the connectivity matrices in the sequence and in the Star 

Graph are combined. These matrices and the normalized ones are the basis of the TIs calculation. 

 

The conversion of the amino acid sequences into Star Graph TIs was performed by using the 

Sequence to the Star Networks (S2SNet) application, developed by our group. S2SNet is based on 

wxPython (Rappin and Dunn, 2006) for the GUI application and has Graphviz (Koutsofios and 

North, 1993) as a graphics back-end. The present calculations are characterized by embedded and 

non-embedded TIs, no weights, Markov normalization and power of matrices/indices (n) up to 5. The 

results file contains the following TIs (Todeschini and Consonni, 2002): 

 

Trace of the n connectivity matrices (Trn): 

 

𝑇𝑟𝑛 = ∑  
𝑖

(𝑀𝑛)𝑖𝑖, (1) 

 

where n=0 – power limit, M=graph connectivity matrix (i
⁎

i dimension); ii=ith diagonal element; 
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Harary number (H): 

 

𝐻 = ∑  
𝑖<𝑗

𝑚𝑖𝑗/𝑑𝑖𝑗 , (2) 

 

where dij are the elements of the distance matrix and mij are the elements of the M connectivity 

matrix; 

 

Wiener index (W): 

 

𝑊 = ∑  
𝑖<𝑗

𝑑𝑖𝑗 , (3) 

 

Gutman topological index (S6): 

 

𝑆6 = ∑  
𝑖𝑗

deg𝑖 × deg𝑗/𝑑𝑖𝑗 , (4) 

 

where degi are the elements of the degree matrix; 

 

Schultz topological index (non-trivial part) (S): 

 

𝑆 = ∑  
𝑖<𝑗

(deg𝑖 + deg𝑗) × 𝑑𝑖𝑗 , (5) 

 

Balaban distance connectivity index (J): 

 

𝐽 = (𝑒𝑑𝑔𝑒𝑠– 𝑛𝑜𝑑𝑒𝑠 + 2) × ∑  
𝑖<𝑗

𝑚𝑖𝑗 × sqrt(∑  
𝑘

𝑑𝑖𝑘 × ∑  
𝑘

𝑑𝑘𝑗), (6) 

 

where nodes+1=AA numbers/node number in the Star Graph+origin, Σkdik is the node distance 

degree; 

 

Kier–Hall connectivity indices (
n
X): 

 

𝑋0
 = ∑  

𝑖
1/sqrt(deg 𝑖), (7) 

  

𝑋2
 = ∑  

𝑖<𝑗<𝑘
𝑚𝑖𝑗 × 𝑚𝑗𝑘/sqrt(deg𝑖 × deg𝑗 × deg𝑘), (8) 

  

𝑋3
 = ∑  

𝑖<𝑗<𝑘<𝑚
𝑚𝑖𝑗 × 𝑚𝑗𝑘 × 𝑚𝑘𝑚/sqrt(deg𝑖 × deg𝑗 × deg𝑘 × deg𝑚), (9) 

  

𝑋4
 = ∑  

𝑖<𝑗<𝑘<𝑚<𝑜
𝑚𝑖𝑗 × 𝑚𝑗𝑘 × 𝑚𝑘𝑚 × 𝑚𝑚𝑜/sqrt(deg𝑖 × deg𝑗 × deg𝑘 × deg𝑚 × deg𝑜), (10) 

  

𝑋5
  = ∑  

𝑖<𝑗<𝑘<𝑚<𝑜<𝑞
𝑚𝑖𝑗 × 𝑚𝑗𝑘 × 𝑚𝑘𝑚 × 𝑚𝑚𝑜 × 𝑚𝑜𝑞/sqrt(deg𝑖 × deg𝑗 × deg𝑘 × deg𝑚

× deg𝑜 × deg𝑞), 
(11) 

 

Randic connectivity index (
1
X): 

 

𝑋1
 = ∑  

𝑖𝑗
𝑚𝑖𝑗/sqrt(deg𝑖 × deg𝑗), (12) 

 

  



These TIs and other derivate ones will be used in the next step to construct an antioxidant/ non-

antioxidant classification model using machine learning methods. 

2.3. Random Forest 

Random Forest was first proposed by Breiman, (2001). This technique combines many decision 

trees to make a prediction, giving as output the class that is the mode of the classes output by 

individual trees. Thus, this technique can be considered an “ensemble learning” technique, since it 

uses multiple models to obtain better predictive performance. These decision trees are constructed by 

means of bagging classification trees (Breiman, 1996), where each tree is constructed independently 

based on a random sample and a majority vote of the trees is taken as prediction. Random Forest adds 

an extra random layer to bagging. Normally, decision trees are built from a random sample and nodes 

are split by the best among a subset of predictors randomly chosen at that node. 

 

The main advantage of Random Forest over other techniques such as Artificial Neural Networks, 

Support Vector Machines, Linear Discriminant Analysis, etc. is the robustness of this technique 

regarding solution overfitting, tending to converge always when the number of trees is large. 

 

The typical Random Forest algorithm is composed of three steps: 

 

 Get n random samples from the original dataset to use them as tree seeds. 

 For each seed, grow a non-pruned tree, and for each node, randomly choose m predictors and 

the best split among those. 

 Execute the different prediction trees and select as prediction the most voted one. 

 

It may be highlighted that this technique is quite efficient because, when constructing the trees, 

the pruning phase has been deleted and the search is performed over a small set. This simplification 

can give the idea that a single tree may have better performance, but it was empirically proved that 

Random Forest overcomes the performance of CART single tree predictors (Chipman et al., 1998). 

3. Results 

The dataset used in this paper is composed of 1999 protein sequences, from which 324 have 

proved to have antioxidant activity (positive group). The remaining 1675 proteins (negative group) 

are sequences from the CulledPDB server with identity less than 20%, without antioxidant biological 

activity. These protein sequences have been processed with the S2SNet application (Munteanu et al., 

2009) in order to obtain the different topological indexes used in this study. Specifically, from each 

sequence 42 attributes are extracted from the embedded/non-embedded Star Graph. 

 

The series of topological indices for each protein have been used to find the best antioxidant 

classification model with Machine Learning methods included in Weka (Hall et al., 2009b). In order 

to extract more general conclusions from this study, the authors have tested the different 

classification techniques using 10-fold cross-validation (McLachlan et al., 2004). 10-fold cross-

validation is the most common among the k-fold cross-validation family and its objective is to 

minimize the influence of the randomness in creating the training and test sets for a specific 

classification technique. 

 

The objective of this work is to select the technique with the highest classification score, having a 

good precision value, due to the nature of the problem. The first approach considered was to use 

linear regression, but the results showed that it was impossible to achieve good classification scores 

with this technique. 
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Table 1 shows the results of the different classification models tested, those that obtained the best 

scores, considering all the attributes extracted from the Star Graph, that is, 42 attributes. The 

algorithms used in the tests are those implemented in the Weka Machine Learning framework. This 

table shows, for each model, the classification scores obtained for the different classes, as well as the 

global classification percentages, the precision values for the target class (antioxidant proteins), the 

ROC values and the number of attributes that were considered. 

Table 1. Performance of the classification methods considering all the attributes. 

Technique % Antiox % Non antiox % Global Precision antiox (%) Global precision (%) ROC 

       

Naive bayes 97.5 49.1 57.0 27.1 87.4 0.78 

MLP 22.8 97.5 85.4 63.8 83.0 0,874 

K-star 86.7 94.3 93.1 74.7 93.7 0,971 

JRip 64.8 96.1 91.0 76.1 90.6 0.814 

Random tree 81.8 95.0 92.8 75.9 93.1 0.884 

Random Forest 84 96.7 94.6 82.9 94.6 0.954 

       

 

The Random Forest technique seems to be the best option because it achieves a percentage of 

94.6% correctly classified instances. In addition, it is interesting to note that, for the antioxidant class, 

it achieves a percentage of 84% correctly classified instances. This model achieves a precision of 

82.9%, which is the highest among the tested machine learning methods. 

 

In order to reduce the noise and to improve the classification scores, the data used as input has 

been divided into three subsets depending on the nature of the attributes: 

 

 A subset named Sh, which includes the attributes related with the entropy of the embedded 

and non-embedded Graph. 

 A subset named Tr, which includes the attributes related with the traces of the embedded and 

non-embedded Graph. 

 And a subset named X, which includes the attributes related with the polygon indexes to 

represent the subspaces in the graph. 

 

Table 2 shows the result of this division. It should be highlighted that not all of the original 

attributes have been included in one of these three subsets; more specifically, some attributes 

regarding the general shape of the graphs were not included in any of these subsets. 

Table 2. Attributes subsets for the tests. 

Subset Name 

Attributes 

Non-embedded graph Embedded graph 

   

Sh Sh0,Sh1, Sh2, Sh3, Sh4, Sh5 eSh0,eSh1, eSh2, eSh3, eSh4, eSh5 

Tr Tr0, Tr2, Tr4 eTr0, eTr2, eTr3,eTr4,eTr5 

X X0, X1R, X2, X3, X4, X5 eX0, eX1R, eX2, eX3, eX4, eX5 

Remaining H, W, S6, S, J eH, eW, eS6, eS, eJ 
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The different methods were then tested using each of these subsets as well as their combination, 

in order to find the best possible one. Results of these tests are shown in Tables 3 and 4. These results 

show that Random Forest can still be considered adequate to solve the problem proposed in this work 

and that there is nearly no difference between using the X subset as input and all of the attributes. 

Regarding classification scores, this technique achieves 82.1% of correctly classified instances for the 

target class (that is, the antioxidant class) with a precision of 80.4% considering the 12 attributes part 

of the X subset, compared to 84% of correctly classified instances with a precision of 82.9% when all 

the attributes were considered (that is, 42 attributes). Therefore, it is very likely that some of these 

attributes may give little extra information. Reducing the number of attributes considered as input 

may be interesting, improving even the performance or precision of the model. 

Table 3. Results obtained using the different subsets as input, considering 12 attributes. 

Technique % antiox % non antiox % global Precision antiOx (%) Global precision (%) ROC 

       

Naive bayes 95.7 56.3 62.7 29.8 87.4 0.79 

MLP 38.6 95.5 86.2 62.2 84.6 0.851 

K-star 51.5 95.2 88.1 67.3 87.2 0.926 

JRip 47.2 98.6 90.0 86.4 89.9 0.726 

Random tree 80.9 94.2 92.0 73.0 92.5 0.875 

Random Forest 79.3 94.4 91.9 73.2 92.3 0.913 

Naive bayes 74.0 57.3 60.1 74.7 60.1 0.797 

MLP 0 100 83.8 0 83.8 0.644 

K-star 82.1 94.0 92.0 72.5 92.6 0.961 

JRip 63.9 97.0 91.6 80.2 91.2 0.815 

Random tree 79.0 94.3 91.8 72.9 92.2 0.867 

Random Forest 79.9 96.1 93.5 79.9 93.5 0.95 

Naive bayes 77.5 55.8 59.3 25.3 81.8 0.772 

MLP 0 100 83.8 0 83.8 0.644 

K-star 77.2 94.2 90.6 70.7 90.7 0.946 

JRip 67.0 96.7 91.9 79.8 91.5 0.840 

Random tree 82.1 94.9 92.8 75.6 93.1 0.885 

Random Forest 82.1 96.1 93.8 80.4 93.9 0.948 
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Table 4. Results obtained using combinations of the different subsets as input, considering 20 attributes. 

Technique % antiox % non antiox % global Precision antiox (%) Global precision (%) ROC 

       

Naive bayes 96.0 57.0 63.3 30.1 87.5 0.807 

MLP 16.4 98.2 84.9 63.9 82.3 0.867 

K-star 84.3 93.9 92.3 72.8 93.0 0.967 

JRip 65.7 97.0 91.9 81.0 91.6 0.843 

Random tree 82.4 94.9 92.8 75.6 93.1 0.886 

Random Forest 81.8 96.5 94.1 81.8 94.1 0.947 

Naive bayes 80.6 55.5 59.5 25.9 82.7 0.783 

MLP 38.9 95.2 86.1 61.2 84.5 0.877 

K-star 78.4 94.4 91.8 73.2 92.1 0.957 

JRip 65.1 96.8 91.7 79.9 91.3 0.836 

Random tree 81.8 95.3 93.1 77.3 93.3 0.886 

Random forest 81.2 95.7 93.3 78.5 93.4 0.952 

Naive bayes 78.4 54.2 58.1 24.9 81.8 0.792 

MLP 0 100 83.8 0 83.8 0.644 

K-star 86.4 93.7 92.5 72.5 93.3 0.97 

JRip 68.2 96.5 91.9 78.9 91.6 0.846 

Random tree 81.8 94.7 92.6 74.9 92.6 0.882 

Random forest 83.6 96.9 94.7 83.9 94.7 0.951 

       

 

After analysing the results shown above, it seems that Random Forest is the best and most robust 

classification model. As it was previously mentioned, the subsets Sh, Tr and X contain the properties 

of the embedded and non-embedded graph. Therefore, in order to try to reduce the number of input 

attributes, the authors have tested the Random Forest in more depth, distinguishing between the 

properties of both types of graph. Results regarding this are shown in Table 5, as well as the number 

of attributes used as input to the method. 
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Table 5. Scores obtained by the Random Forest method for each input dataset tested. 

Subset 
% 

antiox 
% non 
antiox 

% 
global 

Precision antiox 
(%) 

Global precision 
(%) 

ROC Number attributes 

        

Sh 79.3 94.4 91.9 73.2 92.3 0.913 12 

Sh-embedded 79.0 94.1 91.6 72.1 92 0.897 6 

Sh-non-embedded 75.0 94.6 91.4 73.0 91.5 0.906 6 

Tr 79.9 96.1 93.5 79.9 93.5 0.95 8 

Tr-embedded 81.8 96.4 94.0 81.3 94.0 0.954 5 

TR-non-embedded 79.9 94.0 91.7 72.1 92.2 0.903 3 

X 82.1 96.1 93.8 80.4 93.9 0.948 12 

X-embedded 82.4 95.7 92.5 78.8 93.7 0.938 6 

X-non-embedded 79.9 95.2 92.7 76.2 92.9 0.926 6 

Sh and Tr 81.8 96.5 94.1 81.8 94.1 0.947 20 

Sh- and Tr-embedded 81.2 96.0 93.6 79.7 93.6 0.946 11 

Sh- and Tr-non-
embedded 

79.6 95.5 92.9 77.5 93.0 0.927 9 

Sh and X 81.2 95.7 93.3 78.5 93.4 0.952 24 

Sh- and X-embedded 80.2 95.1 92.7 76.0 92.9 0.947 12 

Sh- and X-non-

embedded 
79.6 95.5 92.9 77.5 93.0 0.927 12 

Tr and X 83.6 96.9 94.7 83.9 94.7 0.951 20 

Tr- and X-embedded 83.6 96.8 94.6 83.6 94.7 0.958 11 

Tr- and X-non-

embedded 
80.2 95.5 93.0 77.4 93.1 0.935 9 

All 84 96.7 94.6 82.9 94.6 0.954 42 

All-embedded 82.1 96.8 94.4 83.1 94.4 0.954 22 

All-non-embedded 81.2 95.6 93.2 78.0 93.4 0.934 20 

        

 

Again, results show that Random Forest is able to achieve better classification scores and similar 

precision values considering less attributes as input; in this case, taking only into consideration those 

included in the Tr subset (which contains only the values of the embedded graph). By adding the 

embedded attributes of the X subset, results are somehow better. However, this implies doubling the 

number of attributes used as input to the model. Thus, these results confirm that the rest of the 

attributes seem to add very little information or may even introduce noise inducing worse 

classification scores. If the ROC value is checked, it can be observed that the same ROC values are 

obtained when using the Tr-embedded dataset and the dataset containing all the attributes. The ROC 

curve for the Tr-embedded dataset is shown in Fig. 3.  

http://www.sciencedirect.com/science/article/pii/S0022519312005310#f0015


 
 

 
Fig. 3. ROC curve plot for the best classification method 

and the dataset containing the smallest number of 
attributes. 

4. Discussion 

This study proposes a model designed to identify proteins that have antioxidant activity by using 

Star Graph TIs obtained from protein amino acid sequences. The proposed model, based on only five 

attributes extracted from the embedded graph, shows good predictive capacity, achieving 94% of 

correctly classified instances. It is also important to highlight that, even though the non-antioxidant 

class was not the target class of this study, the model achieves a score of 81.8% correctly classified 

instances with good precision (81.3%). 

 

Antioxidant proteins are very important molecules in pharmacology today. It can be concluded 

from this study that this model may help reducing the number of proteins to be tested in antioxidant 

research, being very probable that the selected proteins have antioxidant properties. 
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