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Abstract 

Complex systems and networks appear in almost all areas of reality. We find then from proteins residue 

networks to Protein Interaction Networks (PINs). Chemical reactions form Metabolic Reactions Networks 

(MRNs) in living beings or Atmospheric reaction networks in planets and moons. Network of neurons appear 

in the worm C. elegans, in Human brain connectome, or in Artificial Neural Networks (ANNs). Infection 

spreading networks exist for contagious outbreaks networks in humans and in malware epidemiology for 

infection with viral software in internet or wireless networks. Social-legal networks with different rules 

evolved from swarm intelligence, to hunter-gathered societies, or citation networks of U.S. Supreme Court. In 

all these cases, we can see the same question. Can we predict the links based on structural information? We 

propose to solve the problem using Quantitative Structure-Property Relationship (QSPR) techniques 

commonly used in chemo-informatics. In so doing, we need software able to transform all types of 

networks/graphs like drug structure, drug-target interactions, protein structure, protein interactions, metabolic 

reactions, brain connectome, or social networks into numerical parameters. Consequently, we need to process 

in alignment-free mode multitarget, multiscale, and multiplexing, information. Later, we have to seek the 

QSPR model with Machine Learning techniques. MI-NODES is this type of software. Here we review the 

evolution of the software from chemoinformatics to bioinformatics and systems biology. This is an effort to 

develop a universal tool to study structure-property relationships in complex systems. 

Keywords: 
QSPR models in complex networks; Drug-target networks, Metabolic networks, Brain connectome, Social 

networks, World trade, US supreme court citation networks, Spain’s financial law. 
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1. INTRODUCTION  

1.1. Structure-Property Problem in Complex Systems  

 

Complex systems and networks appear in phenomena belonging to almost all areas of reality at 

very different temporal and spatial scales [1]. We find them from bio-molecular structures of 

proteins residue networks [2] to Protein Interaction Networks (PINs) [3]. The coupling of chemical 

reactions lead to the formation of Metabolic Reactions Networks (MRNs) [4, 5] in living beings or 

Atmospheric Reaction Networks (ARNs) in planets and moons like Earth, Mars, Venus, and Titan 

[6]. Complex patterns appear in the network of neurons of the worm C. elegans [7], in Human 

Brain Connectome [8], or in Artificial Neural Networks (ANNs) [9]. Spreading patterns appears 

for contagious outbreaks networks in humans [10] or in malware epidemiology due to infection 

with viral software in internet or Wi-Fi wireless networks [11, 12]. Complex behavior emerge 

from basic rules of Swarm Intelligence (SI) [13], collaboration in hunter-gathered societies [14], or 

in legislation code in the citation network of U.S. Supreme Court (USSC), as well [15]. The most 

basic issues are structural: how does one characterize the connectivity patterns in those networks? 

Are there any unifying features underlying their topology? Different research groups have begun 

to shed light over these unifying aspects of the structure and dynamics of complex networks 

indeed [1, 7, 16-21]. Networks are represented by means of a graph as a way to capture essential 

information. Graphs in turn are sets of items, drawn as dots, or nodes, interconnected by lines or 

arcs, which represents wires, ties, links, edges, bonds, etc. Consequently, the nodes can represent 

atoms, molecules, proteins, nucleic acids, drugs, cells, organisms, parasites, people, words, laws, 

computers or any other part of a real system. Moreover, the links represent relationships between 

the nodes such as chemical bonds, physical interactions, metabolic pathways, pharmacological 

action, law recurrence or social ties [4, 22-30].  

 

Tenazinha and Vinga [31] reviewed frameworks currently available for modeling and 

analyzing integrated biological networks, in particular metabolic, gene regulatory and signaling 

networks. In effect, there are different experimental and/or theoretical methods to assign no de-no 

de links depending on the type of network we want to construct. Unfortunately, many of these 

methods are expensive in terms of time or resources (especially the experimental ones). In 

addition, different methods to link nodes in the same type of network are not very accurate in such 

a way that they do not always coincide. One possible solution to this problem is the use of 

Quantitative Structure-Property (QSPR) models. Traditionally, this methodology has been used in 

chemo-informatics. Most often, QSPR-like models use as input structural parameters derived from 

the graph representation of the network-like system under study [32]. Many authors refer to the 

numerical parameters of a graph as Topological Indices (TIs); mainly in the case of global studies 

(properties of full system). We can use local TIs of a sub-graph or centralities Ct(j) of type t for the 

j
th

 node in the network to study a local property of a given part of the system [33-35]. In Table 1, 

we present the names, symbol, formula, and software used to ca1culate some of these centralities.  

 

In order to develop such computational models we need to use modeling techniques to process 

chemical information from public databases. These databases have accumulated immense datasets 

of experimental results of pharmacological trials for many compounds. For instance, STITCH [36-

38], TTD [39], Super Target [40, 41], or the colossal CHEMBL lists thousands of drugs, targets, 

and drug-target interactions. This huge amount of information offers a fertile field for the 

application of computational techniques [42, 43]. The analysis of all this data is very complex due 

to different features of the chemical and pharmacological information present: (1) multi-scaling, 

(2) multi-targeting, (3) alignment dependent, and/or (4) multi-output or plexing nature. The same 

features appear in biological, technological, social, and other complex networks.  

  



Table 1. MI-NODES vs some classic node centralities 

Name Formula Software Ref. 

    

Degree 𝐶deg (𝑗) = deg(𝑗) CBI [34] 

Eccentricity 𝐶𝑒𝑐𝑐(𝑗) = max⁡{𝑑𝑖𝑠𝑡(𝑖, 𝑗)}−1 CBI  

Closeness 𝐶𝑐𝑙𝑜(𝑗) = (∑𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗𝜖𝑉

)

−1

 CBI  

Radiality 𝐶𝑟𝑎𝑑(𝑗) = ∑(∆𝐺 + 1 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗))

𝑤𝜖𝑉

/(𝑛 − 1) CBI  

Centroid Values 𝐶𝑐𝑒𝑛(𝑗) = min⁡{𝑓(𝑖, 𝑗): 𝑖𝜖𝑉{𝑗}} CBI  

Stress 𝐶𝑠𝑡𝑟(𝑗) = ∑ ∑ 𝜎𝑠𝑡(𝑗)

𝑡∉𝑣𝜖𝑉𝑠∉𝑣𝜖𝑉

 CBI  

Shortest-path Betweenness 𝐶𝑠𝑝𝑏(𝑗) = ∑ ∑ 𝛿𝑠𝑡(𝑗)

𝑡∉𝑣𝜖𝑉𝑠∉𝑣𝜖𝑉

 CBI  

Current-Flow Closeness 𝐶𝑐𝑓𝑐(𝑗) = (𝑛 − 1)/(∑𝑝𝑗𝑖(𝑗) − 𝑝𝑖𝑗(𝑖)

𝑖∉𝑉

) CBI  

Current-Flow Betweenness 𝑐𝑐𝑓𝑏(𝑗) = ∑ 𝜏𝑠𝑡(𝑗)/(𝑛 − 1)(𝑛 − 2)

𝑠,𝑡𝜖𝑉

 CBI  

Katz Status Index 𝐶𝑘𝑎𝑡𝑧 = ∑𝛼𝑘 ·

∞

𝑘=1

(𝐴𝑡)𝑘 · 𝑢 CBI  

Eigenvector 𝐸𝐶(𝑗) = 𝑒1(𝑗) CBI  

Closeness Vitality 𝐶𝑐𝑙𝑣(𝑗) = 𝑊(𝐺) −𝑊(𝐺{𝑗}) CBI  

Markov-Randic ⁡𝑘𝐶𝜒(𝑗) =∑(𝛿𝑖 · 𝛿𝑗)
1/2

· ⁡𝑘𝑝𝑖𝑗

𝛿𝑗

𝑖

 MI [46] 

Markov-Shannon entropy ⁡𝑘𝐶𝜃(𝑗) = −∑( 𝑘𝑝𝑗) · log(⁡
𝑘𝑝𝑗)

𝑛

𝑖

 MI [47] 

Markov Spectral moments ⁡𝑘𝐶𝜋(𝑗) =∑⁡𝑘𝑝𝑖𝑗 = [𝑙(⊓)𝑘]

𝑛

𝑖=𝑗

 MI [48 

Markov-Harary ⁡𝑘𝐶𝐻(𝑗) =
1

2
∑⁡𝑘𝑝𝑖𝑗

−1

𝛿𝑗

𝑖

 MI [49] 

Markov-Galvez ⁡𝑘𝐶𝐺(𝑗) =
1

2
∑|⁡𝑘𝐶𝑇𝑖𝑗| · 𝛿𝑗

𝑛

𝑖,𝑗

 MI [50] 

Markov-Rucker ⁡𝑘𝐶𝑊𝐶(𝑗) =
1

2
∑⁡𝑘𝑝𝑖𝑗

𝛿𝑗

𝑖

 MI [51] 

Markov-BM Autocorrelation ⁡𝑘𝐶𝐵𝑀(𝑗) =
1

2
·∑ ⁡𝑘𝑝𝑖𝑗 · ⁡

𝑘𝑝𝑖𝑗

𝛿𝑗

𝑖

 MI [52] 

Markov-Wiener ⁡𝑘𝐶𝑤(𝑗) =
1

2
·∑⁡𝑘𝑝𝑖𝑗 · 𝑑𝑖𝑗

𝛿𝑗

𝑖→𝑙

 MI [53] 

Markov-Balaban ⁡𝑘𝐶𝐽(𝑗) =
𝑞

𝜇 + 1
·∑(⁡𝑘𝑝𝑖𝑗 · 𝑆𝑖 · 𝑆𝑗)

−1/2

𝛿𝑗

𝑖→𝑙

 MI - 

    

 
a All symbols used m these formulae are very common m networks literature and cannot be explamed m detall here. 

However, G IS an undirected or directed graph with n=|V| vertices; deg(v) denotes the degree of the vertex v in an 
undirected graph; dist(v, w) denotes the length of a shortest path between the vertices v and w; σst denotes the number of 

shortest paths from s to t and σst(v) the number of shortest path from s to t that use the vertex v. O and A are the topological 

distance and the adjacency matrix of the graph G. Please, for more details see the references cited and others.   



1.2. Why Do We Need Multiscale Models?  

One of the more important characteristics enumerated before is the multi-scale nature of many 

important problems. Currently, the use of QSPR-like models in which the inputs are graph 

parameters is not limited to the study of molecules and has been extended to other complex 

systems [44]. As we mentioned in the previous paragraph, in multi-target modeling we need to 

incorporate information about the drug and different molecular targets (proteins, RNA, gene). In 

this case, we can solve the problem using molecular descriptors. However, in the case of not 

molecular complex networks we are out of the chemical scale. We can find complex systems 

formed by networks in many different scales. In general, these scales may be c1assified as time 

and spatial scales. In the case of time scales, we can find different dynamic networks in a same or 

different problem that change the pattern of links in different time scales (seconds, min, hours, 

days, years, or seasons). In this case, we can still circumvent the problem with MA models like 

those of Bob and Jenkins mentioned before [45].  

1.3. Why Do We Need Alignment-Free Models?  

Alignment-based and alignment-free methods are two fundamentally different methods used to 

compare sequences, and genomes by extension [54]. This approach is very useful but only when 

we found a high homology between the query and the template sequences deposited in the data 

base and therefore may fail in case of low homology [55]. The lack of function annotation (defined 

biological function) for the best alignment matches is another cause for alignment pitfalls [56]. 

Yet, functional information - either experimentally validated or computationally inferred by 

similarity - remains completely missing for approximately 30% of human proteins [57]. In 2012, 

Wood el al. [58] analyzed 1,474 prokaryotic genome annotations in GenBank. They identified 

13,602 likely missed genes that are homologues to non- hypothetical proteins. It is very relevant 

that they also identified 11,792 likely missed genes that are homologues only to hypothetical 

proteins, despite evidence of their protein-coding nature. Alignment approaches also views 

proteins and nuc1eic acids as linear sequences of discrete units similar to linguistic representations 

ignoring 3D structure and overlooks well-documented long-range interactions [59]. On the other 

hand, alignment-free methods have emerged as a solution to these problems. Vinga and Almeida 

[60] reviewed two of the more important types of alignment free methods: (1) methods based on 

word frequency and resolution-free methods. In parallel, Chou [61, 62], Randic [63], González-

Díaz [29, 64-70], and others have introduced alignment-free parameters for the pseudo- folding of 

sequences into geometrically constrained 2D, 3D, or higher dimension spaces using simple 

heuristics. Pseudo- folding parameters or sequence molecular descriptors codify non-linear 

relationships without necessity of determination of real 3D structures (graph representations) and 

are used as inputs of machine learning experiments to seek QSPR models able to predict function 

from sequence without rely upon alignment [35, 66, 71-74].  

1.4. Why Do We Need Multi-Target Models?  

Multi-targeting complication emerges due to the existence of multi-target compounds [75-77], 

which led to the formation of complex networks of drug-target and/or target-target interactions. 

We can represent target interactions as networks of nodes (proteins, gene, RNAs, miRNAs) 

interconnected by a link when there is a target-target interaction between two of them. In addition, 

we can represent drug-target networks as a graph with two type of nodes drugs (di) and targets (tj) 

interconnected by links (Lij). Barabasi el al. [78], constructed a drug-target network based on Food 

and Drug Administration (FDA) drugs and proteins linked by drug-target binary associations. 

Yamanishi el al. [79] also reported a predictive algorithm to construct drug-target networks. 

Csermely el al. [80] have reviewed the state-of-art and trends on the use of networks, inc1uding 

drug-target networks, for drug discovery. In general, many of the c1assic models used in chemo-

informatics are able to predict the biological activity of some types of drugs against only one target 

using molecular descriptors of the drug. An alternative is the development of general multi-target 

models able to predict the interaction (Lij) of large libraries of drugs (di) with a large number of 

targets (multiple-target models). In this case, we can use molecular descriptors of the drug and the 



target. For instance, Viña et al. [29] and Prado- Prado et al. [81, 82] predicted the different drug-

target network using the software MI to ca1culate the structural indices.  

1.5. Why Do We Need Multiplexing Models?  

However, in multi-plexing modeling we need to use additional operators to incorporate non-

structural information. The non-structural information here refers to different assay conditions (c.) 

like time, concentrations, temperature, cellular targets, tissues, organisms, etc. In recent works 

González-Díaz et al., adapted the idea of Moving Average (MA) operators used in time series 

analysis with a similar purpose. MA models become popular after the initial works of Bob and 

Jenkins [45]. In multi-output modeling, we calculate the MA operators as the average of the 

property of the system (molecular descriptors or others) for all drugs or targets with a specific 

response in one assay carry out at under a sub-set of conditions (c.), Consequently, our MA 

operator is not acting over a time domain but over a sub-set of conditions of the pharmacological 

assays. Botella- Rocamora el al. [83], have applied MA of time series theory to the spatial domain, 

making use of a spatial MA to define dependence on the risk of a disease occurring. The main 

objective of our work is assessing links in different complex networks. For it, we use MA of 

properties of nodes of networks (drugs, proteins, reactions, laws, neurons, etc.) that form links (Lij) 

in specific sub-set of conditions (cj).  

2. FROM MARCH-INSIDE TO MI-NODES  

In a effort to solve the previous problem, González-Díaz el al. introduced the software called 

MARCH-INSIDE (Markovian Chemicals In Silico Design), or shortly MI, which has become a 

very useful tool for QSPR studies for drugs, proteins, and complex systems in general [65, 84-97]. 

MI calculates descriptors 
k
Dt(Gm) of type t (entropies, moments, means) and order k for all or 

some nodes (atoms, aminoacids, nucleic bases) using molecular graph Gm of m
th

 molecule. The 

graph G represent the ID (sequence), 2D (secondary), or 3D (spatial) structure of a molecular 

system drug, protein, RNA, artificial polymers, etc. [9, 98]. In Fig. (1), we illustrate the user-

software interface for classic MI (top) or MI-NODES (bottom).  

  



 
 
Fig. (1). MI and Mi-NODES user interfaces 

  



However, MI can perform a limited manage of other complex networks. Recently, we have re-

programmed the MI application creating a new software application able to manage complex 

networks. The new program is called MI-NODES (MARCH-INSIDE for NOde DEScriptors) is 

able to upload files with .mat, .net, and .dat formats and is compatible with other software like 

Pajek [99] or CentiBin [34]. A very interesting feature of MI-NODES is that it can calculate 

general versions of classic molecular TIs for large complex networks using Markov Chains theory. 

In Fig. (2), we show thee general steps used to develop a QSPR model based on the MI algorithm. 

Briefly, the steps of the MI algorithm are the following.  

 

Step 1 - MI algorithm reads the input files with structural information of the system; essentially 

nodes, links, and weights;  

 

Step 2 - MI creates a node-node connectivity or adjacency matrix A, if not uploaded in the 

input file. The elements of A are aij = 1 if the node ai is connected to the node aj and aij = 0 

otherwise;  

 

Step 3 - MI transforms A into a weighted matrix W. The elements of W are wij = wj if aij = 1 

and wij = 0 otherwise. For molecules, the weights are the atomic electronegativity (χj), 

polarizability (αj), amino acid propensities (Ωj), etc. We set constant weights wj = 1 (reduction to 

adjacency) or equal to no de degree wj = δj when we do not know the properties of nodes;  

 

Step 4 - MI transforms W into a Markov Matrix 
1
П and obtain the natural powers of this 

matrix 
k
П = (

l
П)

k
 . According to Markov Chains theory, the elements of these matrices 

k
pij are 

probabilities of short/long-range interactions for pairs of nodes place at topological distances dij ≤ 

k; 

 

Step 5 - MI use the values of 
k
П matrices to calculate different molecular descriptors 

k
Dt(Gm) 

for small molecules. The classic MI can be used for small molecules (drugs, metabolites, etc.) or 

biopolymers (proteins, RNAs, DNA). MI-NODES is used to read the files with the structure of 

complex networks.  

  



 
 

 
Fig. (2). QSPR analysis of complex networks 

3. MI PARAMETERS  

3.1. MI Para meter for Drugs  

MI calculate different types of molecular properties 
k
Dt(Gm, wj) [92, 95, 100] based on the 

molecular graph Gm of the m
th

 molecule and weights of nodes (atoms) equal to physicochemical 

atomic properties (wj).  

 

We can omit wj in the notation when we use only one atomic property and declare it a priori, 

e.g. wj = χj the atomic electronegativity. For instance, it is possible to calculate mean atomic 

electronegativities 
k
DχGm), Shannon entropy of electron delocalization 

k
Dθ(Gm), or spectral 

moments 
k
Dπ(Gm) [91,101].  

 

 

⁡𝑘𝐷𝜒(𝐺𝑚) =∑𝑝𝑘(𝐺𝑚) · 𝜒𝑗
𝑗𝜖𝐺

 
(1) 

  

⁡𝑘𝐷𝜃(𝐺𝑚) = −∑⁡𝑘𝑝𝑗(𝐺𝑚) · log[⁡
𝑘𝑝𝑗(𝐺𝑚)⁡]

𝑛

𝑗𝜖𝐺

 
(2) 

  



⁡𝑘𝐷𝜋(𝐺𝑚) = ∑ ⁡𝑘𝑝𝑖𝑗(𝐺𝑚)

𝑛

𝑖=𝑗𝜖𝑅

 
(3) 

 

 

It is possible to consider isolated atoms (k = 0) in a first estimation of the molecular properties 
0
Dχ(Gm), 

0
Dθ(Gm), or 

0
Dπ(Gm). In this case, the probabilities 

0
pij(wj) are determined without 

considering the formation of chemical bonds (additive scheme). It is possible to consider the 

gradual effects of the neighboring atoms placed at distance k using the absolute probabilities pk(wj) 

with which these atoms affect the contribution of the atom j to the molecular property in question.  

3.2. MI Parameters for Protein 3D Structures  

In the MI algorithm, we codify the information about protein structure using a Markov matrix 
1
П that quantify the probabilities of short-term field interactions among amino acids (aa) [9, 72, 

102-104]. The matrix 
1
П is constructed as a squared matrix (n

x
n), where n is the number of amino 

aa in the m
th

 protein with contact map represented by the graph Gm [105-107] In previous works 

we have predicted protein function based on mean values of 3D-Potentials 
k
Dξ(Gm, E), 

k
Dξ(Gm, 

vdW), and 
k
Dξ(Gm, h) for different type of interactions or molecular fields derived from 

1
П. The 

main types of the molecular fields used are: Electrostatic (e), van der Waals (vdw), and HINT (h) 

potentials [106, 108, 109]. The detailed explanation has been published before. In some of these 

works we calculated also entropy 
k
Dξ(Gm, E), 

k
Dξ(Gm, vdW), and 

k
Dξ(Gm, h) and spectral moment 

k
Dθ(Gm, E), 

k
Dθ(Gm, vdW), and 

k
Dθ(Gm, h) values for the same molecular fields. See the formula of 

the 3D mean potential, entropy, and moments for the electrostatic field:  

 

 

⁡𝑘𝐷𝜉(𝐺𝑚) = −∑ ⁡𝑘𝑝𝑗(𝐺𝑚) · 𝜉0(𝑗)

𝑗𝜖𝐺𝑖

 
(4) 

  

⁡𝑘𝐷𝜃(𝐺𝑚) = −∑⁡𝑘𝑝𝑗(𝐺𝑚) · log[⁡
𝑘𝑝𝑗(𝐺𝑚)⁡]

𝑛

𝑗𝜖𝐺

 
(5) 

  

⁡𝑘𝐷𝜋(𝐺𝑚) = ∑ ⁡𝑘𝑝𝑗(𝐺𝑚)

𝑛

𝑖=𝑗𝜖𝐺

 
(6) 

 

 

It is remarkable that the spectral moments depend on the probability 
k
pijG) with which the 

effect of the interaction f propagates from amino acid i
th

 to other neighboring amino acids j
th

 and 

retums to i
th

 after k-steps. On the other hand, both the average electrostatic potential and the 

entropy measures depend on the absolute probabilities 
k
pj(R) with which the amino acid j

th
 has an 

interaction of type f with the rest of aa. The software MI [100] performs all these calculations by 

evaluation of the summation term either for all amino acids or only for some specific groups called 

regions (Rϵ Gm). We defined the regions in geometric terms and called them as core, inner, middle, 

or surface region. Please, see details in the literature [9,72,102-104, 109-113]. 

3.3. MI Parameters for Complex Networks  

In previous works, we have introduced new types of MI descriptors 
k
Dt(Gm) complex networks. 

These values can be calculated as the sum of MI no de centralities 
k
Ct(j) for each j

th
 nodes in the 

network, see Table 1. These descriptors are Markov chain generalizations of classic TIs. Some of 

these are Markov-Shannon Entropies [114], Markov-Randić indices [46], or Markov-Harary 

numbers [115]. We have used Markov- TIs to study several types of complex networks in Biology, 

Linguistics, Technology, Social, and Legal Sciences. In the next section, we describe different 

parameters of MI.   



We implemented the new centralities in the software MI-NODES (MARCH-INSIDE for NOde 

DEScriptors) and used it to calculate the node centralities of the networks studied in this work. 

MI-NODES is a GUI Python/wxPython application developed by our groups. It is an upgrade of 

part of the code of the software MARCH-INSIDE adapted to manage any kind of complex 

networks. The program builds a Markov matrix (
1
П) for each network using as input the matrix of 

connectivity or adjacency of nodes often denoted as A. The elements of this stochastic matrix are 

the node- node transition probabilities (pij) The probability matrix is raised to the power k, 

resulting (
1
П)

k
 The resulting matrices 

k
П, which are the k

th
 natural powers of 

1
П, contain the 

transition probabilities 
k
pij. These are the probabilities to reach the j

th
 node moving from the i

th
 

node throughout a walk of length k for each k. The generalization of the classic TIs and node 

centralities to general MI indices of order k
th

 is straightforward to realize simply by 

substitution/multiplication of some parameters used in classic TIs like topological distances (dij) or 

node degrees (j) by/with Markov matrix parameters like transition probabilities 
k
pij. We can obtain 

different MI generalizations of classic TIs and/or no de centralities. For instance, we can calculate 

k values of the new Markov-Rücker indices WCk(G) for a graph G (or probabilistic walk counts). 

We only have to change dij by 
k
pij. Conversely, we can obtain k values of new Markov-Wiener 

indices Wk(G) for a graph G multiplying dij by 
k
pij. In so doing, it is possible to run the sum over 

all nodes in G to calculate global TIs or only over all the r nodes linked to one specific no de i. The 

number of these nodes linked directly to one specific node is equal to δi (the degree of i) and we 

symbolized here a direct link as j → i. In a very simple example, we can obtain a total of k values 

of new Markov-Rücker or probabilistic walk count centralities WCk(i) for the no de i
th

.  

 

 

⁡𝑘𝐷𝑤𝑐(𝐺) =
1

2
·∑∑⁡𝑘𝑝𝑖𝑗

𝐷

𝑗=1

𝐷

𝑖=1

 

 

or (7) 

⁡𝑘𝐷𝑤(𝐺) =
1

2
·∑∑⁡𝑘𝑝𝑖𝑗 · 𝑑𝑖𝑗

𝐷

𝑗=1

𝐷

𝑖=1

 

 

  

⁡𝑘𝐶𝑤𝑐(𝑗) =
1

2
·∑∑⁡𝑘𝑝𝑖𝑗 =

1

2
·∑ ⁡𝑘𝑝𝑖𝑗

𝛿𝑖

𝑗→𝑖

𝛿𝑖

𝑗→𝑖

1

𝑖=1

 

 

or (8) 

⁡𝑘𝐶𝑤(𝑗) =
1

2
·∑∑⁡𝑘𝑝𝑖𝑗 · 𝑑𝑖𝑗 =

1

2
·∑ ⁡𝑘𝑝𝑖𝑗 · 𝑑𝑖𝑗

𝛿𝑖

𝑗→𝑖

𝛿𝑖

𝑗→𝑖

1

𝑖=1

 

 

 

 

In Table 1 we list the names, formula, software used for ca1culation, and references of many 

classic and MI centralities [33, 34, 46, 47, 49-52, 116].  

4. GENERAL MI MODELS  

4.1. Models ofDrug-Target Networks (DT-Nets)  

 

In MI strategy we can use as inputs the parameters of the m
th

 drug molecule or protein ligands 

with molecular graph (Gm = Lr), We use wj = χj by default, omit it in notations, obtaining the 

molecular descriptors 
k
Dχ(Lr), 

k
Dθ(Lr), or 

k
Dπ(Lr); by one hand. In addition, we should use the MI 

parameters of the s
th

 protein sequence or 3D structure to obtain the descriptors 
k
Dχ(Ps), 

k
Dθ(Ps), or 

k
Dπ(Ps), by the other hand. We use the electrostatic field by default and omit it in notations. In the 

next lines, we show the linear MI models for Drug-Protein Interactions (DPIs).  

  



𝑆(𝐷𝑃𝐼𝑟𝑠)𝑝𝑟𝑒𝑑 = ∑𝑎𝑘 · ⁡
𝑘𝐷𝑡(𝐿𝑟)

5

𝑘=0

 

 

 (9) 

+∑𝑏𝑘 · ⁡
𝑘𝐷1(𝑃𝑠)

5

𝑘=0

+ 𝑐0 

 

 

 

The model deals with the ca1culation of score values (S) to predict the propensity of a set of 

compounds, to interact (Lrs = 1) or not (Lrs = 0) with different protein targets. A dummy input 

variable Affinity Class (AC) codify the affinity; AC = 1 for well known DPIs and AC = 0 

otherwise. This variable indicates either high (AC = 1) or low (AC = 0) affinity of the r
th

 drug or 

protein by the s
th

 target protein. The parameter S(DPIrs)pred is the output of the model and a 

continuous and dimensionless score that give higher values for DPIs and lower values for nDPIs. 

In the model, ak, by, ck, and d0 represents the coefficients of the MI function determined using the 

software STATISTICA 6.0 software package [117]. In all these cases, as well as in all the 

following models presented here, we can check the Specificity (Sp), Sensitivity (Sn), total 

Accuracy (Ac), or the Area Under the ROC curve (AUROC) to determine the goodness-of-fit to 

data in training and external validation series.  

4.2. MI models of Complex Networks (Nets)  

We can seek a linear function able to discriminate between two classes of pairs of nodes, 

linked and not linked in a new model network. The data necessary to train the model are obtained 

from the different systems studied. This data includes two types of pairs of nodes (categorical 

dependent variable): linked (Lij = 1) and not linked (Lij = 0). The MI function has the following 

form:  

 

 

𝑆(𝐿𝑖𝑗) = ∑𝑎𝑖𝑘 · ⁡
𝑘𝐶𝑡(𝑖) +∑𝑏𝑗𝑘 · ⁡

𝑘𝐶𝑡(𝑗)

5

𝑘=0

5

𝑘=0

 

 

  

+∑𝑐𝑖𝑗𝑘 · [⁡
𝑘𝐶𝑡(𝑖) − ⁡𝑘𝐶𝑡(𝑗)]

5

𝑘=0

 

(10) 

  

+∑𝑑𝑖𝑗𝑘 · ⁡
𝑘𝐶𝑡(𝑖) · ⁡

𝑘𝐶𝑡(𝑗) + 𝑒0

5

𝑘=0

 

 

 

 

The continuous dependent variables used are: the node centralities of order k and type t for the 

two nodes 
k
Ct(i), 

k
Ct(j) and functions of these node centralities like [

k
Ct(i) - 

k
Ct(j))] and 

k
Ct(i)·

k
Ct(j). Here we use the symbol 

k
Ct instead of Dt (the symbol used in the previous examples). 

This difference indicates that in the previous examples of MI models we talk in general about 

descriptors 
k
Dt (centralities or not) of a molecular graph. However, in this example we are talking 

about node centralities 
k
Ct. Therefore we have Nv = 4·k·t variables that encode information of the 

pair of nodes ij and its neighbors (placed at a topological distance d = k). The parameters a ik, bjk, 

cijk, and dijk are coefficients for variables and a0 the independent term. S(Lij) is the output variable 

(a real number).  

  



4.3. Models with MA Operators  

Let be Sj the output variable of a model used to score the quality of the connectivity pattern Lij 

between the node i
th

 and all the remnant (n -1) nodes in the network. In this sense, Sj is a real 

valued variable that scores the quality of the connectivity pattern or links (all direct and indirect 

connections) established between the node j
th

 and the other nodes. The higher is the value of Sj the 

closer to the correct pattern are the links set for j
th

 in the network as a whole, according to the 

model. On the other hand, Lj is the input dependent variable. Lj = 1 when a node is correctly linked 

to the rest of the nodes in the network and Lj = 0 when a node has a random connectivity model. 

We can use linear algorithm like Linear Discriminant Analysis (LDA) or a Linear Neural Network 

(LNN) to fit the coefficients ak, 
g
bk, and c0. We can use also a non-linear methods, e.g., Artificial 

Neural Networks (ANNs) [118]. The linear equation case is:  

 

 

𝑆𝑗 = ∑𝑎𝑘 · ⁡
𝑘𝐶𝑡(𝑗) + ∑ ∑𝑏𝑔𝑘[⁡

𝑘𝐶𝑡(𝑗) − ⁡𝑘𝐶𝑡(𝑗)𝑔−𝑎𝑣𝑔)]

5

𝑘=0

𝑔=𝑁𝑔

𝑔=0

5

𝑘=0

+ 𝑐0 

 

 (11) 

= ∑𝑎𝑘 · ⁡
𝑘𝐶𝑡(𝑗) + ∑ ∑𝑏𝑔𝑘 · ∆

𝑘𝐶𝑡(𝑗)𝑔 + 𝑐0

5

𝑘=0

𝑔=𝑁𝑔

𝑔=0

5

𝑘=0

 

 

 

 

In this equation we can see the coefficients (ak) of the Wiener-Markov centralities used as input 

Wk(j) and/or the coefficients (
g
bk) of different deviation terms constructed with these variables. 

The deviation terms have the general form ΔWk(j)g = [Wk(j) - Wk(j)g.avg]. Where, Wk(j)g.avg is the 

average value (avg) of Wk(j) for a sub-set or group (g) of nodes of the same graph G (g ϵ G) that 

obey a given condition. This type of deviation terms resembles the moving average terms used in 

time series models like in Box- Jenkins' ARIMA models [45]. However, in the present work g may 

be not only a period or season (laws approved in the same year) but also a biological boundary 

(metabolic reactions in the same organism) or spatial condition (interactions in the same eco-

system); see results section.  

5. EXAMPLES OF MI MODELS  

5.1. Markov-Shannon Entropy Models  

Entropy measures are universal parameters useful to codify biologically relevant information in 

many systems. Kier published probably the first work on the use of Shannon's entropy to ca1culate 

a structural information parameter (called molecular negentropy) and carry out QSPR studies [119, 

120]. Graham et al. [121-126] used entropy measures to study the information properties of 

organic molecules. In any case, Shannon's entropy have been used to describe not only small 

molecules [120, 127-134] but also protein [135, 136] or DNA sequences [137] as well as protein 

interaction networks [138]. Mikoláš et al. [139] reviewed the use of entropy measures in 

functional magnetic resonance (fMRl). The software MI ca1culates values of Markov-Shannon 

entropy for both molecular structures (drugs and target proteins) and nodes centralities in complex 

networks [84, 92]. Last year [47], we published a paper on the QSPR study of complex molecular 

systems and social networks using entropy measures and one alignment-free, multi-target, and 

multi-scale algorithm (see Fig. 1). The procedure is essentially the same than in classic QSPR 

studies with some variations in each problem. In the following sections, we review some of these 

MI models for illustrative purposes. The first model was developed to predict the DT-Net of FDA 

approved drugs. The prediction of DT-Nets is important due to the high cost of the experimental 

[78, 140, 141]. Here, we have developed a model that takes into account the structure of the drug, 

the structure of the target, and the information about the drug/target nodes in the studied network 

(see Fig. 3).  



 
 

 
Fig.(3). QSPR analysis of grug-target networks 

In this network Lrs = 1 if the r
th

 protein (Pr) is a target of the s
th

 drug or ligand (Ls) in the 

DrugBank database and Lrs = 0 otherwise. The best model found was:  

 

 

𝑆(𝐿𝑟𝑠) = +0.11 · ⁡0𝐷𝜃(𝐿𝑟) − 0.47 · ⁡4𝐷𝜃(⁡
𝑚𝑃𝑠)  

  

−2.19 ·⁡3 𝐶𝜃(𝑗)𝑃 − 1.10 · ⁡5𝐶𝜃(𝑗)𝐿 − 1.43 (12) 

  

𝑛 = 2,234⁡𝜒2 = 2,123⁡𝑝 < 0.001  

 

 

where, 
k
Dθ(Lr) and 

k
Dθ(

m
Ps) are the Markov-Shannon entropy descriptors used to codify the 

information about the structure of the drug and the protein. Specifically the descriptor of the 

protein inc1udes amino acids placed only in the middle region (m) of the target proteins (see 

details about protein descriptors in the previous sections).  

 

In addition, Cθ(j)L and 
k
Cθ(j)P are centralities of the nodes for the drug/ligand and the target in 

the DT-Net. This put in evidence the multiscale nature of the model with descriptors for drugs, 

proteins, and nodes in the DT-Net. The χ
2
 = 2,123 statistics corresponds to a p-level < 0.001, 

which indicates a significant discrimination ratio. The values of Ac, Sn, and Sp were very good for 

validation and training series, see details in the reference [47].  

  



On the other hand, the study of Metabolic Reaction Networks (MR-Nets) is of great interest in 

biology because many applications are directly built on the use of cellular metabolism in 

Biotechnology and Biomedicine [142, 143]. In this sense, computational studies of MR-Nets 

become very useful [144, 145].  

 

In a recent work [47], we developed a model to predict the correct connectivity patterns in 

MRNs using as inputs the Markov-Shannon entropy centralities 
k
Cθ(j) for nodes in already-known 

networks. For this analysis, we have used metabolic networks of four model organisms belonging 

to different domains of the tree of life. These organisms are Escherichia coli (EC), Saccharomyces 

cerevisiae (SC), Caenorhabditis elegans (CE), and Oryza saliva (OS). They cover important 

branches of the tree of live inc1uding a gram-negative bacterium [146-157], a fungus with 

industrial importance [158], free-living nematode that has become a popular model for genetic 

[159-162], and the most widely studied model for cereals [163], respectively. The best MI- 

Entropy model found was:  

 

 

𝑆(𝐿𝑖𝑗) = 159.16 · ⁡3𝐶𝜃(𝑒𝑖) − 120.70 · ⁡1𝐶𝜃(𝑝𝑗)  

  

−95.45 · [⁡5𝐶𝜃(𝑒𝑖) − ⁡5𝐶𝜃(𝑝𝑗)] − 0.26 (13) 

  

𝑛 = 74,999⁡⁡𝜒2 = 26,093⁡⁡𝑝 < 0.001  

 

 

In this equation, S(Lij) is a real-valued output variable that scores the propensity of the i
th

 input 

or educts (ei) (reactant or substrate) to undergo a metabolic transformation into the product (p j), 

The entropy parameters quantify the information related to middle-long range subsequent 

metabolic transformations of all the neighbors of the input- output metabolites (k = 5) in the 

metabolic network. See results in Table 2.  

 

Also, the importance for the human and animal health and therefore for the economy, much 

attention has been focused on complex network analysis of parasite-host interactions [164]. 

However, the high experimental difficulty inherent to the in situ determination these interactions 

make the use a computational model a very interesting option. In this work, we used 
k
Cθ(j)) values 

to seek a QSPR-like model able to predict HP-Nets. The best model found for the HP- Netwas:  

 

 

𝑆(𝐿𝑖𝑗) = −82.62 · [⁡5𝐶𝜃(𝑝𝑖) − ⁡5𝐶𝜃(ℎ𝑗)] − 5.52  

 (14) 

𝑛 = 49,218⁡⁡⁡𝜒
2 = 21,728⁡⁡⁡𝑝 < 0.001  

 

 

In this equation, S(Lij) is a real-valued output variable that scores the propensity of the i
lh

 

parasite specie (pi) to infect a given host specie (hj). See results in Table 2. Connectivity is also the 

key to understanding distributed and cooperative brain functions and can be represented by Brain 

Connectome Networks (BC-Nets) [165].  

 

The eventual impact and success of connectivity databases, however, will require the 

resolution of several methodological problems that currently limit their use. These problems 

comprise four main points: (i) objective representation of coordinate- free, parcellation-based data, 

(ii) assessment of the reliability and precision of individual data, especially in the presence of 

contradictory reports, (iii) data mining and integration of large sets of partially redundant and 

contradictory data, and (iv) automatic and reproducible transformation of data between 

incongruent brain maps [166].  

 

In order to address points (ii) and (iv), we have developed a specific model for the 'collation of 

connectivity data on the macaque brain' (CoCoMac) database (http://www.cocomac.org). The best 

model found for this BC-Netwas:   



𝑆(𝐿𝑖𝑗) = 70.56 · ⁡1𝐶𝜃(𝑎) + 74.51 · ⁡5𝐶𝜃(𝑒) − 1.75  

 (15) 

𝑛 = 39,536⁡⁡⁡𝜒2 = 22,249⁡⁡⁡𝑝 < 0.001  

 

 

In this equation, S(Lij) is a real-valued output variable that scores the propensity of the i
lh

 

cerebral cortex region to undergo co-activation with the j
th

 region in the CoCoMac network. The 

entropy parameters quantify the information related to the position of the afferent/efferent regions 

and their direct neighbors (k = 1) in the network. The model showed very good results (see Table 

2).  

Table 2. MI models of complex networks 

Net Par. kCBM(j) kCθ(j)
k
j 

kCπ(j)
k

j 
kCwc(j) 

kCχ(j) 

   Train    

MR Sp 72.22 99.98 ? 81.32 70.19 

 Sn 71.25 87.24 ? 73.91 70.63 

PH Sp 87.49 95.4 87.49 95.24 90.56 

 Sn 100 72.22 \00 73.27 92.70 

BC Sp 84.14 92.2 98.49 88.40 75.32 

 Sn 72.70 71.2 73.30 74.64 94.69 

FE Sp 87.14 99.2 93.21 71.49 100 

 Sn 72.68 70.4 12.01 71.64 89.70 

   Validation    

MR Sp 72.28 99.96 ? 81.82 71.17 

 Sn 71.24 86.91 ? 73.81 70.89 

PH Sp 87.67 95.5 87.67 95.43 91.00 

 Sn 100 12 100 70.81 92.83 

BC Sp 84.42 92.5 98.41 88.30 75.51 

 Sn 71.88 70.4 71.21 73.27 94.73 

FE Sp 87.34 99.1 93.20 71.55 100 

 Sn 75.78 74.2 73.47 70.54 90.22 

Mod. Ref. [52] [47] [116] [51]  

       

 
Net - Network. 1- Metabolic Reactions Network (MR-Net), 2 - Parasite-Host Net (PH-Net), 3 - Brain Connectome Net 

(BC-Net), 4 - Fasciolosis Epidemiology Net (FE-Net). Par. - Parameter: Sp = Specificity and Sn = Sensitivity. Ref. = 
Reference where the model was published.  

Another important problem to be studied with networks is the spreading of diseases. For 

instance, Fasciolosis is a parasitic infection caused by Fasciola hepatica (liver fluke) that has 

become an important cause of lost productivity in livestock worldwide. It is considered a 

secondary zoonotic disease until the mid-1990s, human fasciolosis is at present emerging or re-

emerging in many countries. In addition, it presents a range of epidemiological characteristics 

related to a wide diversity of environments [167].  

  



In this sense, the study of geographical spreading of fasciolosis becomes a subject of great 

interest. In fact, in a recent work we have constructed a Fasciolosis Epidemiology network (FE-

Net) to study the landscape spreading of fasciolosis in Galicia (NW Spain) [168]. However, we do 

not have quantitative criteria on the quality of the network connectivity, and re-sampling of all 

data to re-evaluate this connectivity in a field study is a hard and expensive task in terms of time 

and resources.  

 

This situation has prompted us to seek a model in order to assess the quality of the network 

previously assembled. The best QSPR model found and published in our previous work for the 

FE-Net was:  

 

 

𝑆(𝐿𝑖𝑗) = −20.23 · ⁡1𝐶𝜃(𝑓𝑖) + 165.13 · ⁡4𝐶𝜃(𝑓𝑗) − 0.82  

 (16) 

𝑛 = 19,671⁡⁡⁡𝜒2 = 16,058⁡⁡⁡𝑝 < 0.001  

 

 

The entropy used in this equation quantifies information about the connectivity patterns 

between farms in the network C.  

 

As can be seen in the equations described in material s and methods, the connectivity of C 

depends on the spatial coordinates (xi, yi) of the farm (fi), the altitude of the place (hi), and the anti-

parasite drug treatment (Trj) used to prevent Fasciolosis in this farm. Consequently the matrix e 

quantifies the a priori propensity Cij = 1 of this disease to spread between farms immediately after 

treatment depending on geographical conditions.  

 

On the other hand, matrix L includes both criteria: (i) the preexistence of a high propensity for 

disease spreading Cij = 1 and (ii) the experimental confirmation Lij = 1 of a high Risk Ratio (RRij) 

of Prevalence After Treatment (PATj) for this disease in farms. See Fig. (4), published before in 

one of our papers [52], see al so the section about auto-correlation indices. The QSPR equation 

developed here was obtained by studying L and the model presents good values of Sensitivity 

(Sn), and Specificity (Sp), see Table 2.  

 

Another MI-Shannon entropy model published in the previous work is useful to study the SL-

Net for Spain's law system. The use of network analysis methods in social sciences began in 1930 

and today are widely used [169]. However, the application of these methods in legal studies is still 

at the beginning [170-172]. Network tools may illustrate the interrelation between the different law 

types and help to understand law consequences in society and its effectiveness or not. We have 

used the list of the financial laws to construct the network described. The best model found was:  

 

 

𝑆(𝐿𝑖𝑗) = 650.88 · [⁡1𝐶𝜃(⁡
𝑐𝐿𝑡𝑖) − ⁡1𝐶𝜃(⁡

𝑐𝐿𝑡𝑖+1)] + 0.12  

 (17) 

𝑛 = 33,951⁡⁡⁡𝜒2 = 32,942⁡⁡⁡𝑝 < 0.001  

 

 

where the two parameters in the equation are the entropy parameters that quantify information 

about the Legal norms (Laws) of type L introduced in the Spanish legal system at time ti and ti+1 

with respect to the previous or successive k
th

 norms approved. The model behaves like a time 

series embedded within a complex network. This is because it predicts the recurrence of the 

Spanish law system to a financial norm of class c when socio-economical conditions change at 

time ti+1 given that have been used a known class of norm in the past at time ti. The model correctly 

reconstructed the network of the historic record for the Spanish financial system with high Sp and 

Sn (Table 2). In Fig. (5), we illustrate the steps used to develop the MI model of this network; 

which is also a hierarchical time series.  

  



 
 

 
Fig. (4). Top left: Geographical map. of Galicia (NW Spain) showing 

the location of the 275 sampled farms: the status of infection (empty 

circles: F. .hepatica free and filled circles: F. hepatica infected) and 
the treatment administered on each farm are shown (blue: none; red: 

anthelmintic effective against fluke mature stages and green: a 

fasciolicide effective against immature and mature stages). Bottom: 
Fasciolosis landscape-spreading network. The size of each node 

represents its degree.  

The last Ml-Shannon entropy model reported is useful to predict the Network (WT-Net) of 

Smart Package for World's food industry. Traditionally, the basic functions of packaging have 

been. classified into 4 categories: protection, communication, convenience, and containment [173]. 

Smart or Active Packaging is an innovative concept that can be defined as a mode of packaging in 

which the package, the product, and the environment interact to pro long shelf life or enhance 

safety or sensory properties, while maintaining the quality of the product [174]. In addition there is 

a growing concern about foodborne diseases, and many companies are interested in the 

development of biosensors included in the packages in order to detect the presence of pathogens 

[173]. In the previous work we studied a large world-trading network (WT-Net) for the current 

world trade (year 2011) of smart packaging for food industry, interconnecting categories like 

Country (CU), Company (CO), Product (PR), Food Type (FT), and product use or Packaging Type 

(PT), see also datasets section. The best model found was:  

 

 

𝑆(𝐿𝑖𝑗) = −2.00 · ⁡1𝐶𝜃(𝑖) − 142.87 · ⁡1𝐶𝜃(𝑗)  

+116.65 · ⁡5𝐶𝜃(𝑗) + 0.72 (18) 

𝑛 = 31,911⁡⁡⁡𝜒2 = 19,022⁡⁡⁡𝑝 < 0.001  

 

  



 
 

 
Fig. (5). QSPR analysis of one SL-Net.  

The model presents very good values of Sn and Sp (see Table 2). The first parameter quantifies 

the information referred to the trading relationships of the i
lh

 node with its direct neighbors (k = 1) 

in the world trade network. The second parameter quantifies the same information for the j
th

 node 

and its direct neighbors (k = 1). The last parameter quantifies the information referred to middle-

long range trading relationships (k = 5) in the trade network between the j
th

 node and its neighbors 

of any class. In order to use this equation, it is necessary to introduce the values of the centralities 

for the i
lh

 and j
th

 nodes according to the following hierarchical order in i to j direction: Country 

(CU) → Company → (CO) → Product (PR) → Packaging Type (PT) → Food Type (FT) if we 

want to predict the expected success of a given CO to introduce a determined PT in the WT-Net. 

In Fig. (6), we illustrate the network for a better understanding.  

  



 
 

 
Fig. (6). WT -Net of smart packaging for food industry.  

5.2. Rücker-Markov Centralities Models  

Rücker and Rücker [175, 176] published a series of works about the use of Walk Count (WC) 

indices, in this sense. In this previous work, it is demonstrated how the complexity of a 

(molecular) graph can be quantified in terms of the walk counts, extremely easily obtained graph 

invariants that depend on size, branching, cyclicity, and edge and vertex weights (w). Gutman co-

authored another paper with Rücker & Rücker about WCs [177]. They reviewed applications of 

WCs in theoretical chemistry based on the fact that the (i, j)-entry of the k
th

 power of the adjacency 

matrix is equal to the number of walks starting at vertex j, ending at vertex j, and having length k. 

In 2003, the concept was extended by Lukovits and Trinajstié [178] to zero and negative orders. 

More recently, Bonchev has applied WCs and other TIs to the complexity analysis of yeast 

proteome network [3]. In a recent work, we introduced the new Rücker-Markov indices 
k
Cwc(j) 

[179] and use them to seek QSPR models able to predict of the connectivity of new complex 

networks. For instance, we used 
k
Cwc(j) values to seek a QSPR-like model able to predict PH-Nets, 

the DS-Net of Fasciolosis in Galicia, and the BC-Net reported in CoCoMac experiment. The best 

models found for each one of these datasets were the following, in this order:  

 

 

𝑆(𝐿𝑖𝑗) = −258.93 · [⁡1𝐶𝑤𝑐(𝑝𝑖) − ⁡1𝐶𝑤𝑐(ℎ𝑗)]  

  

+283.69 · [⁡2𝐶𝑤𝑐(𝑝𝑖) −]
2𝐶𝑤𝑐(ℎ𝑗)  

 (19) 

−88.75 · [⁡4𝐶𝑤𝑐(𝑝𝑖) − ⁡4𝐶𝑤𝑐(ℎ𝑗)] + 0.25  

  

𝑛 = 49,218⁡⁡⁡𝜒2 = 22,297⁡⁡⁡𝑝 < 0.001  

 

  



𝑆(𝐿𝑖𝑗) = 8.34 · [⁡1𝐶𝑤𝑐(𝑓𝑖) − ⁡1𝐶𝑤𝑐(𝑓𝑗)]  

  

−2.17 · [⁡5𝐶𝑤𝑐(𝑓𝑖) − ⁡5𝐶𝑤𝑐(𝑓𝑗)] − 0.56) (20) 

  

𝑛 = 23,991⁡⁡⁡𝜒2 = 1,965⁡⁡⁡𝑝 < 0.001  

 

𝑆(𝐿𝑖𝑗) = 1.92 · ⁡1𝐶𝑤𝑐(𝑖) + 2.14 · ⁡2𝐶𝑤𝑐(𝑗) − 1.68  

 (21) 

𝑛 = 39,070⁡⁡⁡𝜒2 = 20,602⁡⁡⁡𝑝 < 0.001  

 

 

In these equations, S(Lij) is a real-valued output variable that scores the propensities with 

which the i
th

 parasite specie (pi) infect host specie (hj) , the disease spreads from the i
th

 farm to the 

j
th

, or the the i
th

 cerebral region to co-activate with the j
th

 region. You can compare the results for 

those and other models in Table 2.  

5.3. Broto-Moreau Stochastic Centralities Models  

In the 1980s, Broto & Moreau applied an autocorrelation function to the molecular graph in 

order to measure the distribution of atomic properties on the molecular topology. This measure 

was called Autocorrelation of Topological Structure (ATS) or Broto-Moreau autocorrelation 

indices (BMis) [180-182]. The idea of ATS has been re-formulated in different ways in order to 

incorporate more information. Moro studied electrostatic potential surface properties [183], 

Caballero and Fernández [184-187] carry out QSPR in proteins. Some ATS models have been 

implemented in web servers such as IUPforest-L [188] and PROFEAT [189]. We implemented 

them in the software S2SNet (Sequence to Star Networks) [190], to calculate ATS indices for mass 

spectra signals of proteins, 1D NMR signals, IR spectra, time series data, texts and any other type 

of string data. In a recent work we studied similar datasets than in the two previous examples but 

using the MI autocorrelation centrality values 
k
CBM(j) [191]. The best model for the MR-Nets of 

the organisms EC, SC, CE, and OS, PH-Nets, BC-Net of macaque visual cortex, and DS-Net for 

Fasciolosis in Galicia are the following, see also Table 2.  

 

 

𝑆(𝐿𝑖𝑗) = −0.73 + 23.44 · ⁡5𝐶𝐵𝑀(𝑒𝑖)  

  

−5.59 · [⁡3𝐶𝐵𝑀(𝑒𝑖) − ⁡3𝐶𝐵𝑀(𝑝𝑗)] (22) 

  

𝑛 = 74,999⁡⁡⁡𝜒2 = 20,143⁡⁡⁡𝑝 < 0.001  

 

𝑆(𝐿𝑖𝑗) = 4.59 · [⁡2𝐶𝐵𝑀(𝑝𝑖) − ⁡2𝐶𝐵𝑀(ℎ𝑗)] + 0.21  

 (23) 

𝑛 = 49,218⁡⁡⁡𝜒2 = 15,801⁡⁡⁡𝑝 < 0.001  

 

𝑆(𝐿𝑖𝑗) = 12.74 · [⁡1𝐶𝐵𝑀(𝑖) − ⁡1𝐶𝐵𝑀(𝑗)] − 0.80  

 (24) 

𝑛 = 24,956⁡⁡⁡𝜒2 = 9,422⁡⁡⁡𝑝 < 0.001  

 

𝑆(𝐿𝑖𝑗) = −0.07 − 11.50 · ⁡3𝐶𝐵𝑀(𝑓𝑖)  

  

−18.26 · [⁡1𝐶𝐵𝑀(𝑓𝑖) − ⁡1𝐶𝐵𝑀(𝑓𝑗)] (25) 

  

𝑛 = 23,377⁡⁡⁡𝜒2 = 3,897⁡⁡⁡𝑝 < 0.001  

 

  



5.4. Wiener-Markov Centralities Models  

In 1947, Wiener published an article entitled Structural determination of paraffin boiling 

points [192]. In this work, it is proposed that organic compounds, as well as all their physical 

properties, depend functionally upon the number, kind, and structural arrangement of the atoms in 

the molecule [193-195]. Hosoya coined one term of Wiener's equation in 1971 as the Z index 

[196-198].  

 

The Wiener index (W) index was independently proposed in 1959 by Harary in the context of 

sociometry, with the name total status of a graph [199] as well as in 1975 by Rouvray and 

Crafford [200]. In any case, W index or path number is calculated as the half sum of all the 

elements dij of the distance matrix (D). More distant atom pairs make larger contribution to W than 

adjacent atom pairs:  

 

 

𝑊 =
1

2
·∑∑𝑑𝑖𝑗

𝐷

𝑗=1

𝐷

𝑖=1

 (26) 

 

 

In a very recent work [53], we used Markov-Wiener centralities 
k
Cw(j) to predict correct 

connectivity patterns of nodes in MR-Nets of 43 organisms using MIANN models (acronym 

formed by MI and ANN)[9]. In Table 3, we depict the classic parameters and the average values of 
k
Cw(j) for the full MR-Nets of many organisms. These average values are the inputs used to 

characterize the organisms with the MI method in the predictive MIANN models. After that, we 

tested different MIANN models using as inputs the values of 
k
Cw(j) and with linear (LNN) and 

non-linear (ANN) topologies in of the ANN.  

 

In Table 4, we can see that the best MIANN model found presents very good values of 

Accuracy, Sensitivity, and Specificity for the recognition of links both in training and external 

validation series. The models were obtained using as input 15 descriptors: 5 Markov- Wiener 

centralities 
k
Cw(j), 5 MA values denoted as 

k
Cw(j)g.avg and 5 deviation terms Δ 

k
Cw(j)g. Multilayer 

Perceptrons (MLP) [201] method fails to generate good prediction models, since it presents values 

of Specificity and Sensitivity close to 50%. On the other hand, the LNN based on 15 descriptors 

(LNN 15:15-1:1) is able to classify correctly a 78.1 % of the cases, with a sensitivity of 77.9% and 

a specificity of 77.6%. The LNN is equivalent to a LDA equation, the simplest type of 

classification model.  

 

We also developed a MIANN-Wiener models of BI-Nets published in IWDB. The results are 

presented in Table 4. We obtained the best classification model for IWDB with the MLP classifier 

based on 13 input descriptors and 13 neurons in the hidden layer (MLP 13:13-13-1:1). This model 

can classify 91.1 % of the nodes with a sensitivity of 90.5% and specificity of 88.8%. Unlike the 

case of the MRNs, the LNN is not able to classify the nodes in the BI-Net with accuracy (<67%). 

Thus, the BI-Nets contain complex information for the classification of the connectivity between 

nodes. The IWDBNs need complex classifiers such as MLPs in comparison with the MR-Nets that 

can be processed by using the simpler LNNs.  

 

The Fig. (7) depicts one illustration of the IWDB. Last, we reported a MIANN-Wiener model 

for SL-Net of Spain's financial law system. These MIANN models behave like time series 

embedded within a complex network. The model predicts the recurrence of the Spanish law 

system to a financial norm of class e when the socio-economical conditions change at time ti+1 

given that have been used a known class of norm in the past at time ti. The best model correctly re-

constructed the network of the historic record for the Spanish financial system with high Sp and Sn 

(see Table 4).  

In this case, there is not a clear difference between the two models studied (LNN and MLP). In 

this situation, we can apply the Occam's razor and choose the LNN model, which is the simplest.  



Table 3. Classic parameters vs Average values kCw(j)org.avg of metabolic networks of different organisms.  

Organism   Classic Parameters ofMRNs    Markov- Wiener Centralities  

SYMBOL N Lin Lout R E gin g.,,, D k=1 k=2 k=3 k=4 k=5 

              

AA 419 1278 1249 401 285 2.1 2.2 3.3 0.87 1.08 1.26 1.44 1.57 

AB 395 1202 1166 380 271 2.1 2.2 3.2 0.88 1.07 1.24 1.43 1.56 

AG 496 1527 1484 486 299 2.2 2.2 3.5 0.85 1.09 1.29 1.48 1.61 

AP 204 588 575 178 135 2.2 2.2 3.2 0.95 1.11 1.25 1.46 1.6 

AT 302 804 789 250 185 2.1 2.3 3.5 0.89 1.12 1.3 1.48 1.62 

SS 187 442 438 140 106 2.3 2.4 3 0.8 0.99 1.18 1.37 1.49 

SS 785 2794 2741 916 516 2.2 2.1 3.3 0.8 1.09 1.3 1.52 1.65 

CA 494 1624 1578 511 344 2.1 2.2 3.3 0.83 1.08 1.28 1.46 1.59 

CE 462 1446 1418 450 295 2.1 2.2 3.3 0.9 1.12 1.32 1.51 1.65 

Cl 380 1142 1115 359 254 2.1 2.3 3.2 0.88 1.09 1.27 1.45 1.58 

CL 389 1097 1062 333 231 2.1 2.2 3.3 0.88 1.1 1.3 1.51 1.63 

CQ 194 401 391 134 84 2.2 2.3 3.4 0.99 1.14 1.27 1.47 1.62 

CT 215 479 462 158 94 2.2 2.4 3.5 0.9 1.06 1.22 1.38 1.5 

CY 546 1782 1746 570 370 2 2.2 3.3 0.88 1.13 1.33 1.56 1.68 

DR 815 2870 2811 965 557 2.2 2.1 3.3 0.89 1.12 1.31 1.52 1.65 

EC 778 2904 2859 968 570 2.2 2.1 3.2 0.79 1.03 1.24 1.44 1.57 

EF 386 1244 1218 382 281 2.1 2.2 3.1 0.81 1.04 1.24 1.42 1.55 

EN 383 1095 1081 339 254 2.1 2.2 3.3 0.89 1.11 1.31 1.5 1.65 

HI 526 1773 1746 597 361 2.1 2.3 3.2 0.77 1.05 1.26 1.48 1.59 

HP 375 1181 1144 375 246 2 2.3 3.3 0.89 1.11 1.3 1.5 1.62 

MS 429 1247 1221 391 282 2.2 2.2 3.2 0.87 1.09 1.27 1.46 1.6 

MG 209 535 525 196 85 2.4 2.2 3.5 0.96 1.14 1.26 1.38 1.48 

Ml 424 1317 1272 415 264 2.2 2.3 3.5 0.88 1.11 1.29 1.47 1.6 

ML 422 1271 1244 402 282 2.2 2.2 3.2 0.83 1.06 1.25 1.44 1.58 

MP 178 470 466 154 88 2.3 2.2 3.2 0.91 1.11 1.29 1.46 1.59 

MT 587 1862 1823 589 358 2 2.2 3.3 0.88 1.12 1.32 1.55 1.67 

NG 406 1298 1270 413 285 2.1 2.2 3.2 0.85 1.06 1.24 1.42 1.56 

NM 381 1212 1181 380 271 2.2 2.2 3.2 0.86 1.08 1.27 1.45 1.59 

OS 292 763 751 238 178 2.1 2.3 3.5 0.93 1.19 1.39 1.57 1.71 

PA 734 2453 2398 799 490 2.1 2.2 3.3 0.87 1.1 1.29 1.52 1.65 

PF 316 901 867 283 191 2 2.3 3.4 0.93 1.14 1.33 1.5 1.65 

PG 424 1192 1156 374 254 2.2 2.2 3.3 0.85 1.06 1.24 1.41 1.54 

PH 323 914 882 288 196 2 2.2 3.4 0.92 1.12 1.31 1.49 1.63 

SC 561 1934 1889 596 402 2 2.2 3.3 0.88 1.11 1.31 1.54 1.68 

ST 403 1300 1277 404 280 2.1 2.2 3.1 0.89 1.08 1.24 1.44 1.57 

TH 430 1374 1331 428 280 2.2 2.2 3.4 0.89 1.13 1.33 1.52 1.65 

TM 338 1004 976 302 223 2.1 2.2 3.2 0.88 1.09 1.28 1.47 1.6 

              



 
 

 
Fig.(7). IWDB vs BI-Nets 



Table 4. Some QSPR models of MR-Nets, BI-Nets, and SI-Nets 

Dataset and Model 

Used 
ANN Li 

Train 

Pr. 

Validation 

Li=1 Li=0 % % Li=1 Li=0 

          

Markov-Wiener 
models of MR-Nets of 

>40 organisms 

LNN 15:15-1:1 Li=1 7276 1985 78.1 Sn 77.9 21917 6156 

 

Li=0 2044 7066 78.1 Sp 77.6 6227 21329 

MLP 2:2-11-1:1 Li=1 4669 4559 50.1 Sn 49.7 13990 13856 

 

Li=0 4651 4492 49.6 Sp 49.6 14154 13629 

Markov-Wiener 

models of BI-Nets of 

>70 ecosystems 

MLP 13:13-13-1:1 Li=1 4570 547 91.1 Sn 90.5 1363  

 

Li=0 449 4346 88.8 Sp 88.1 143  

LNN 14:14-1:1 Li=1 3326 1710 66.3 Sn 66.1 995 603 

 

Li=0 1693 3183 65.1 Sp 63.0 511 1028 

Markov-Wiener 
models of SL-Net for 

Spain’s Financial Law 

system 

LNN 14:14-1:1 Li=1 125 41 86.2 Sn 87.4 370 156 

 

Li=0 18 298 85.4 Sp 87.9 59 914 

MLP 14:14-14:1 Li=1 119 54 85.3 Sn 83.2 366 129 

 

Li=0 24 285 87.9 Sp 84.1 63 941 

Markov-Balaban 

model for SL-Nets 
dataset of 5KCNs of 

USSC 

MLP 18:18-10-1:1 Li=1 81225 51008 82.49 Sn 82.76 26985 17014 

 

Li=0 16917 243415 82.66 Sp 82.7 5728 81128 

LNN 18:18-1:1 Li=1 77871 60826 79.33 Sn 79.35 25950 20284 

 

Li=0 20271 233597 79.33 Sp 79.3 6763 77858 

          

5.5. Markov-Balaban Index Models  

Prof. Alexandru T Balaban introduced one of the more famous TIs that have been widely-

known as the Balaban's J index [202]. Balabau's J index have been used in many chemo-

informatics to quantify structural information and include parameters like q = number of edges in 

the molecular graph, µ = (q - n + 1) = the cyclomatic number of the molecular graph, n = number 

of atoms in the molecular graph, and Si = distance sums calculated as the sums over the rows or 

columns of the topological distance matrix D of the graph G. The formula ofthis classic TI is:  

 

 

𝐽(𝐺) =
𝑞

𝜇 + 1
· ∑ (𝑆𝑖 · 𝑆𝑗)⁡

−1/2

𝑞

𝑒𝑑𝑔𝑒𝑠

 (27) 

  



Many applications of Balaban's J index deal with drug discovery; in particular the prediction of 

drugs with higher biological activity and/or low toxicity [203-210]. J index is useful as input for 

both linear and non-linear models like ANNs [211, 212]. J index have been used also to compare 

graphs or analyze combinatorial libraries and some authors have reported new generalizations of 

this index to create other TIs (called Balaban type parameters) [213-215].  

 

For instance, Randić and Pompe [216]; reported the variable Balaban J index and the 

"reversed" Balaban index 1/J as well as a novel index 1/JJ derived from J and 1/J. In another very 

recent work [217], we introduced new Balaban type indices called the Markov-Balaban 
k
CJ(j) 

centralities of order k
th

 for the j
th
 node in a complex network (see Table 1). In this previous work, 

we also used multiscale MA operators to calculate deviation terms with the general form Δ 
k
CJ(j)g 

= [
k
CJ(j) - kCJ(j)g.avg]. Where, TIk(j)g.avg is the average value (avg) of TIk(j) for a sub-set or group 

(g) of nodes of the same graph G (g ϵ G) that obey a given condition. We studied some collections 

of complex systems like MR-Nets of >40 organisms, BI-Nets of >70 ecological systems, and the 

SL- Net for all citations to cases of the US Supreme Court (USSC). In this case, g is not only a 

period (laws approved in the same year), a biological boundary (metabolic reactions in the same 

organism), or spatial condition (interactions in the same eco-system), but also cases citing the 

same USSC case. In the last problem we used a SL-Net constructed by Fowler et al. [218] with all 

cases that cite decisions of this court from 1791 to 2005. In the SL-Net of the USSC node 

represented a legal cases interconnected by arcs to express that the case j
th

 cites the i
th

 case before 

it (precedent). We constructed in total 43 sub-networks and calculated their kCJ(j) values and 

developed LNN and ANN models to predict them obtaining good results (see Table 4).  

CONCLUSION  

In this work, we reviewed the recent results published about the development of MI models. 

We noted an evolution of MI from a simple one-target chemo-informatics algorithm for series of 

analogues compounds to models that are more powerful. In this sense, we illustrated the uses of 

the MI algorithm to solve QSPR problems in Drug- Target, Parasite- Host, Disease Spreading, 

Brain connectome, and Social- Legal networks. We also showed the different parameters 

implemented in the MI algorithm to characterize complex networks combining both classic TIs 

and Markov chains theory. We hope that this review may serve as inspiration to those interested 

on flexible, fast, and theoretically simple models for the prediction of structure-property 

relationships in complex systems.  
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