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HIGHLIGHTS 

 Sulphate effect on cadmium toxicity in the microalga Chlamydomonas moewusii 

Gerloff. 

 Cadmium increases the sulphur requirements in Chlamydomonas moewusii. 

 Kinetic coefficients for sulphate utilization and cadmium effect on them. 

 Sulphate and cadmium influence on the biosynthesis of low-molecular mass thiols. 

 Cadmium toxicity reduction by sulphate due to higher biosynthesis of thiols. 

ABSTRACT 

Sulphur is an essential macroelement that plays important roles in living 

organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu–Cys, glutathione 

and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. 

Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by 



reduction of inorganic sulphate. The aim of this study was to investigate, using a 

bifactorial experimental design, the effect of different sulphate concentrations in the 

nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas 

moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular 

concentrations of low-molecular mass thiol compounds were determined. A 

mathematical model to describe the growth of this microalga based on the effects of 

sulphate and cadmium was obtained. An ANOVA revealed an interaction between 

them, 16% of the effect sizes was explained by this interaction. A higher amount of 

sulphate in the culture medium allowed a higher cadmium tolerance due to an increase 

in the thiol compound biosynthesis. The amount of low-molecular mass thiol 

compounds, mainly phytochelatins, synthesized by this microalga was significantly 

dependent on the sulphate and cadmium concentrations; the higher phytochelatin 

content was obtained in cultures with 4 mg Cd/L and 1 mM sulphate. The maximum 

EC50 value (based on nominal cadmium concentration) reached for this microalga was 

4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was 

also 1 mM. An increase in the sulphate concentration, in deficient environments, could 

alleviate the toxic effect of this metal; however, a relative excess is also negative. The 

results obtained showed a substrate inhibition for this nutrient. An uncompetitive model 

for sulphate was chosen to establish the mathematical model that links both factors. 
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1. INTRODUCTION 

The use of metals has increased exponentially from the Industrial Revolution. As 

result, metals can reach high concentrations, especially near the discharge site. The 

large increase in the circulation of these elements through the environment and their 

inevitable transfer to the human food chain remains an important environmental issue, 

which entails some unknown health risks for future generations. For a long time, 



cadmium has been classified as one of the most dangerous metals for organisms (Mislin 

and Ravera, 1986). After mercury and lead, it is the next most important metal as 

environmental pollutant. In particular, cadmium is one of the most hazardous metals for 

ecosystems, contributing to their deterioration. This metal represents a serious health 

hazard to man and animals (Järup, 2003 and WHO, 1992). The basis of cadmium 

toxicity lies on the competition with essential metals (Brzóska and Moniuszko-

Jakoniuk, 2001, Noël et al., 2006, Pawlik-Skowrońska, 2001, Prévot and Soyer-

Gobillard, 1986 and Sunda and Huntsman, 1996) and its very strong affinity to 

biological structures containing—SH groups (mainly enzymes) (Jacobson and Turner, 

1980 and Stohs and Bagchi, 1995). This toxicity affects all organisms, but especially 

those in direct contact with the metal, such as microalgae. For this reason, they need to 

develop diverse tolerance mechanisms in order to prevent or neutralize its potential 

toxic effect. 

In microalgae, one of these intracellular mechanisms involves organic 

complexation of trace metals to maintain their concentrations at non-toxic levels. The 

two best-characterized metal-binding ligands in plants, fungi and algae are 

phytochelatins (PCs) and metallothioneins (MTs) (Cobbett and Goldsbrough, 2002). 

MTs are cysteine-rich polypeptides encoded by genes; however, PCs are enzymatically 

synthesized cysteine-rich peptides of low molecular weight (Rauser, 1990). The most 

common structure of PCs is formed by only three amino acids: glutamic acid (Glu), 

cysteine (Cys) and glycine (Gly), with the Glu and Cys residues linked through a γ-

carboxylamide bond. PCs form a family of compounds with increasing repetitions of the 

γ-Glu–Cys dipeptide followed by a terminal Gly, resulting a structure: (γ-Glu–Cys)n–

Gly, where n is generally in the range of 2–11, depending on the organism ( Steffens, 

1990, Torres et al., 1997 and Zenk, 1996). Different isoforms are currently known 

(Bräutigam et al., 2011). PCs are structurally related to the tripeptide glutathione (GSH; 

γ-Glu–Cys–Gly) which is the substrate for the biosynthesis of these peptides (Cobbett 

and Goldsbrough, 2002). This biosynthesis is catalyzed by the enzyme phytochelatin 

synthase (PCS), which is a γ-glutamylcysteine dipeptidyl transpeptidase (E.C.2.3.2.15) 

(Vatamaniuk et al., 2004). This enzyme is activated by certain metal ions, Cd
2+

, Ag
+
, 

Cu
2+

, Au
+
, Zn

2+
, Fe

2+
, Hg

2+
 and Pb

2+
 (Chen et al., 1997). However, Cd

2+
 is the most 

potent activator (Grill et al., 1987). The role of PCs in the metal tolerance is known 

since long ago. The main property of these peptides is their metal-binding capacity 



through the thiol group of the cysteine residues (Mason and Jenkins, 1995). These thiol 

groups allow PCs to bind with high affinity to metal ions and thereby to form a strong 

PC–metal complex. This property of forming strong metal complexes, for example with 

cadmium ions, is also due to the ability to incorporate high levels of inorganic sulphide 

(Mehra et al., 1994). This incorporation into PC–Cd complex results in S2Cd crystal 

formation, which can store cadmium more effectively, the thiol peptides acting as a 

coating of these crystals (Dameron and Winge, 1990). Finally, the PC-metal complex 

could end up in the cell vacuolar system ( Heuillet et al., 1986 and Ortiz et al., 1995). 

Knowing and understanding these tolerance mechanisms may not be sufficient in 

an environmental framework. Thus, the knowledge of the environmental factors that can 

influence them may be important from an environmental point of view for improving a 

polluted environment and contribute to its bioremediation. Sulphur is an essential 

macroelement that plays an important role in the physiological processes of living 

organisms. It is found in many molecules, from amino acids to vitamins. Plants, algae, 

yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of 

inorganic sulphate, which is then incorporated into organic compounds in its reduced 

form. This sulphate assimilation pathway involves the final biosynthesis of cysteine and 

methionine (Hell et al., 2008 and Wirtz and Droux, 2005). Cysteine is of particular 

interest in relation to metals because, as mentioned, this sulphur-containing amino acid 

is required for the GSH and PC biosynthesis, thus being an important pathway in the 

cadmium tolerance. Because of this, it would be interesting to study what would be the 

effect of a different bioavailability of sulphur in the environment on the tolerance to 

cadmium. In fact, in plants, a higher sulphur availability in soil allowed the GSH 

content to increase and this helped in reducing cadmium toxicity (Anjum et al., 2008). 

In aquatic environments the sulphate content is variable, it is usually found in low 

(about 0.01–0.5 mM) concentrations in most freshwater systems, which is much lower 

than in seawater, 28 mM (Holmer and Storkholm, 2001). Given this reasoning, high 

sulphate levels could lead to a higher cadmium tolerance due to an increase in the 

biosynthesis of low-molecular mass thiols. This palliative effect on cadmium toxicity 

has not been studied intensively in aquatic environments with microalgal cells and 

could have interest in bioremediation and implementation of clean-up technologies for 

cadmium polluted environments. 



The aim of the present study was to investigate, using a bifactorial experimental 

design, the effect of different sulphate concentrations in the culture medium on 

cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. This 

experiment was conducted in order to identify possible interactive effects between 

cadmium and sulphate on cell growth and the biosynthesis of low-molecular mass thiol 

compounds in this microalga. The kinetic parameters for sulphate utilization as nutrient 

under cadmium toxicity and the effects of this metal on them were also obtained. 

 

2. MATERIAL AND METHODS 

2.1. Microorganism and culture conditions 

The microalgal species chosen for this study was Chlamydomonas 

moewusii Gerloff (strain CCAP 11/5B). This strain was obtained from the Culture 

Collection of Algae and Protozoa, Freshwater Ecology Institute (Cumbria, UK). Cells 

of this freshwater microalga were grown and maintained in modified Bristol medium 

( Brown et al., 1967) sterilized at 121 °C for 20 min. The composition of the culture 

medium is shown in Table 1. Different amounts of Na2SO4 were added depending on 

the experiments. Cultures were maintained at 18 ± 1 °C under a light intensity of 

68 μE/(m
2
 s) using cool fluorescent light with a light/dark cycle of 12:12 h. Natural 

sterile air was constantly bubbled at a flow rate of 10 L/min. 

2.2. Chemicals 

All chemicals used for the culture medium (Table 1) were of the highest purity 

available, cadmium chloride 2½-hydrate (CdCl2·2½ H2O), orthophosphoric acid 

(H3PO4), boric acid (H3BO3), hydrochloric acid (HCl), sodium hydroxide (NaOH), 

monobromobimane (C10H11N2O2Br), sodium borohydride (NaBH4), 

diethylenetriaminetetraacetic acid anhydride (DTPA, C14H19N3O8), Lugol's (I2-KI), 

standards of Cys, γ-Glu–Cys and GSH were purchased from Sigma-Aldrich
®
 (St. Louis, 

MO, USA). Standards of phytochelatins were purchased from AnaSpec, Inc. (Fremont, 

USA). Filters were obtained from Millipore (Millipore Ibérica, Spain). The different 

reagents, buffers and culture media were prepared with Milli-Q
®
 water obtained from a 

Milli Q Plus system (Millipore Ibérica, Spain). 



Table 1. Composition of the culture medium for the experiments. 

Compound (g/L) 

NaNO3 0.250 

KH2PO4 0.175 

K2HPO4 0.075 

Na2SO4 Variable 

MgCl2 0.029 

CaCl2·2H2O 0.029 

NaCl 0.025 

CoCl2·6H2O 4.0 × 10
−3

 

MnCl2·4H2O 1.8 × 10
−3

 

FeCl3·6H2O 5.1 × 10
−4

 

MoO4Na2·2H2O 3.9 × 10
−4

 

H3BO3 2.0 × 10
−4

 

ZnCl2 1.1 × 10
−4

 

CuCl2 4.3 × 10
−5

 

pH = 6.8 

 

2.3. Cadmium and sulphate stock solutions 

A cadmium stock solution was prepared by dilution of cadmium chloride 2½-

hydrate in Milli-Q water to obtain a concentration of 10 g Cd(II)/L. This solution was 

filtered through a 0.22 μm Millipore filter. 

Sulphate stock solutions were prepared by dilution of anhydrous sodium sulphate 

in Milli-Q water to obtain concentrations of 0.05, 0.5, 20 and 250 mM. These solutions 

were filtered through a 0.22 μm Millipore filter and sterilized at 121 °C for 20 min. 

2.4. Monobromobimane stock solution 

A monobromobimane (mBrB) stock solution was prepared by dissolving 25 mg 

mBrB in 1 mL dimethyl sulphoxide to obtain a concentration of 0.1 M. This solution 

was stored at −20 °C. 

2.5. Experimental design, cadmium and sulphate treatments 

C. moewusii was cultured in sterilized 500 mL Pyrex glass bottles for 4 days with 

the conditions listed above. In order to study the sulphate effect on cadmium tolerance 



in this microalga, a bifactorial experiment was used. The experimental design (cadmium 

levelvs. sulphate concentration) consisted of a specific cadmium concentration treated 

with various sulphate concentrations (one in each experiment). Thus, an appropriated 

volume of sodium sulphate stock solution was added to the culture medium to obtain 

the nominal SO4
2−

 concentrations of 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 

0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 3 and 5 mM. An appropriate volume of cadmium 

stock solution was added to these cultures to obtain a nominal cadmium concentration 

of 1, 2, 4, 6 or 8 mg/L. Finally, the inoculum, taken from a culture that was in a 

sulphate-free culture medium for 21 days to decrease the cellular pool of organic 

sulphur, was added. Initial cell density in the assays was 40 × 10
4
 cells/mL. Control 

cultures without cadmium and sulphate were also included. There were 102 treatments, 

each treatment was carried out in triplicate (306 treatments in total). 

2.6. Growth measurement and kinetic studies 

Growth of the microalgal cultures was measured daily by counting aliquots in an 

improved Neubauer haemocytometer chamber (Marienfeld-Superior, Germany) after 

fixation with Lugol's solution and using a phase-contrast light microscope, Nikon 

Labophot (Nikon, Japan). This growth was expressed as cell density 

(×10
4
cells/mL) ± standard error for all replicates of each treatment. The specific growth 

rate (μ) during the time of culture, expressed as 1/d, was also calculated from the 

following equation: 

                   (1) 

where N0 and Nt are the number of cells/mL at initial and final time of the 

exponential growth period, and t0 and t are the corresponding times (days). 

Three mathematical models (substrate inhibition models) for the C. 

moewusii growth with respect to sulphate (adapted from enzyme kinetics), competitive, 

uncompetitive and non-competitive (Eqs. (2), (3) and (4)), were tested to better predict 

the experimental data: 

                  (2) 



                       (3) 

               (4) 

where μ is the specific growth rate, μm is the specific growth constant (1/d), S is 

the sulphate concentration (mM), Ks is the affinity constant or substrate saturation 

constant (mM) and KI is the inhibition constant, which numerically equals the highest 

substrate concentration (mM) at which the specific growth rate is equal to one half the 

maximum specific growth. The equations were fitted to the obtained growth data by 

means of a nonlinear regression. The parameters μm, Ks and KI were estimated from 

this regression. 

Finally, the cadmium concentration corresponding to the median effective 

concentration (EC50, metal concentration that reduces the population growth to 50% of 

the control) for this microalga was calculated using a log concentration-response curve 

for each sulphate treatment. The log [Cd] vs. the difference between the final cell 

densities (4 days of culture) obtained for each cadmium concentration and the control 

without cadmium were plotted and a nonlinear regression was performed. The 

EC50/4d was calculated from the regression equation obtained. 

Curve fitting and analyses were performed using SigmaPlot 12.5 (Systat Software 

Inc., Chicago). 

2.7. Extraction and derivatization of biological samples for low-molecular 

mass thiol compound determination 

C. moewusii cells were harvested by centrifugation (4000 × g, 10 min) after 4 

days of growth and stored at −80 °C until the analysis. Low-molecular mass thiol 

compounds were extracted from the frozen samples and derivatized with 

monobromobimane (mBrB) that specifically labels sulfhydryl-containing compounds. 

The procedure was adapted from Pérez-Rama et al. (2005). Frozen samples were 

resuspended in an appropriated volume of 0.1 M HCl. The cells were broken and 

homogenized with an ultrasonic cell disrupter in ice bath at 4 °C for 8 min (steps of 

2 min) and at 126 μm, using a Labsonic
®
 P ultrasonic homogenizer (Sartorius AG, 

Germany). Cell debris was removed by centrifugation (13,000 × g, 10 min, 4 °C). 



500 μL of this extract were added to 500 μL of freshly prepared derivatization buffer. 

This buffer was made up of 1 M sodium borate (pH = 9), 1 mM DTPA and 5 mg/mL 

NaBH4 as reducing agent. Once the solutions were mixed, the mixture was incubated at 

4 °C in ice bath for 20 min. 8 μL of 0.1 M mBrB were added to the mixture and 

incubated at room temperature for 1 h in darkness. Afterwards, the mixture was 

centrifuged (13,000 × g, 10 min, 4 °C). Finally, a supernatant volume of 500 μL was 

transferred to a new vial and stored at −80 °C until the injection into the electrophoretic 

system. Standards of cysteine, γ-Glu–Cys, GSH and phytochelatins were derivatized in 

the same way as the biological samples in order to identify and quantify the different 

peaks. 

2.8. Characterization and quantification of the low-molecular mass thiol 

compounds derivatized with mBrB 

A capillary zone electrophoresis technique was used to separate, identify and 

quantify the diverse low-molecular mass thiol compounds (cysteine, GSH, γ-Glu-Cys 

and phytochelatins) in the derivatized biological samples. The equipment used was a 

HP
3D

CE (Capillary Electrophoresis System; Agilent Technologies, Waldbronn, 

Germany) equipped with a photodiode array detector. 

The capillary electrophoresis conditions were adapted from Pérez-Rama et al. 

(2005). An uncoated fused silica capillary (Composite Metal Services Ltd., UK) with an 

internal diameter of 50 μm, 375 μm external diameter, 38 cm total length and 30 cm 

effective length was used. The temperature of the cassette containing the capillary was 

maintained at 25 ± 1 °C with an air coolant control system. Prior to the runs, the 

capillary was rinsed with 1 M NaOH followed by deionized Milli-Q water under a 

50 mbar internal pressure, each for 3 min. Then, the capillary was refilled with an 

electrolytic solution of 100 mM sodium phosphate (pH = 1.86) as running buffer. This 

electrolytic solution was filtered through a 0.22 μm Millipore filter and degassed before 

use. The protocol for each run consisted in a 3 min pre-rinse with the electrolytic 

solution followed by the sample injection. 

The derivatized samples were loaded into the anodic inlet end of the capillary by 

hydrodynamic injection at 50 mbar internal pressure applied for 9 s. A voltage of 

+17 kV was used to perform the separation. Detection was set to a wavelength of 



390 nm. All separations were carried out at least in duplicate. System control, data 

collection, processing and analyses of electropherograms were performed using the 

Agilent ChemStation Software (Agilent Technologies). 

2.9. Statistical analysis 

Data were expressed as means ± standard error. All data were analyzed using the 

statistical program SPSS 21.0 (SPSS Ibérica, Spain). A two-factor analysis of variance 

(ANOVA) was used to detect a possible interaction between cadmium and sulphate. 

Finally, data were compared with the post-hoc Tukey's multiple comparisons test, for a 

significance level of 5% (p < 0.05). 

 

3. RESULTS 

3.1. Effects of cadmium and sulphate on the C. moewusii growth 

These effects were studied during 4 days of culture using a bifactorial design. The 

statistical analysis of the data by ANOVA showed significant differences in the final 

cell density of the cultures for both factors (F = 33, p < 0.05) (Table 2). 

In cultures without cadmium, the sulphate concentrations assayed showed an 

enhanced the C. moewusii growth. This effect was directly proportional to the 

concentration of this macronutrient ( Fig. 1). The highest final cell density was obtained 

when the sulphate concentration initially added to the culture medium was 0.1 mM. 

Therefore, since sulphate is a macronutrient, the optimum concentration obtained in 

these experiments was 0.1 mM for the initial cell density used. However, a decrease in 

the final cell density occurred from this concentration, which was also proportional to 

the sulphate concentration. This result indicated that there was substrate inhibition at 

sulphate concentrations higher than 0.1 mM. The ANOVA test and post-hoc analysis 

(p < 0.05) revealed that these effects were significant and therefore, sulphate exerted a 

beneficial effect on the growth of this microalga. This beneficial effect decreased from 

the concentration of 0.1 mM. 

 



Table 2. Results from ANOVA of the sulphate and cadmium effect on the final cell 

density of Chlamydomonas moewusii after 4 days of culture. 

Factor Root mean 

square 

(RMS) 

Type-III sum 

of squares 

Fvalue pValue Effect size 

(%) 

Between subjects 

Sulphate 1.2E + 13 1.8E + 14 253 0.000 23 

Cadmium 6.1E + 13 3.1E + 14 1308 0.000 38 

Sulphate × ca

dmium 

1.6E + 12 1.3E + 14 33 0.000 16 

Error 4.7E + 10 5.4E + 13     7 

Total   2.2E + 15       

Corrected 

total 
  8.0E + 14       

 

 

Fig. 1. Final cell densities of C. 

moewusii after 4 days of exposure to 

different cadmium and sulphate 

concentrations. Each point 

represents mean ± standard error 

(n = 3). The x-axis is not to scale. 

 

Regarding the cadmium effect, an inhibition on the C. moewusii growth was 

directly proportional to the metal concentration ( Fig. 1). This inhibitory effect increased 

progressively in the cultures treated with 1 to 6 mg Cd/L, presenting a reduction in the 

final cell density. Cultures treated with the highest cadmium concentration (8 mg/L) 

showed a total growth inhibition until the last day of culture. The ANOVA and Tukey's 

test (p < 0.05) revealed a significant cadmium effect on the C. moewusii growth after 4 

days of exposure. 

The ANOVA also revealed a statistically significant interaction between both 

factors, which is an important aspect to take into account in the process of tolerance to 

http://www.sciencedirect.com/science/article/pii/S0166445X14000046#gr1


this metal. A 16% of effect sizes could be explained as effect of the sulphate-cadmium 

interaction (Table 2). Each individual factor had a significant effect on the cell growth 

of this microalga. Cadmium was identified as the most important factor of both, because 

38% of effect sizes were due to this metal, while the sulphate effect was only 23%. That 

is, the toxic effect of had a greater weight than the beneficial effect of sulphate as a 

nutrient on the growth of this microalga. The interaction between both factors can also 

be seen inFig. 1; when the sulphate concentration increased, the toxic effect of cadmium 

was lower. Cultures with low cadmium concentrations hardly grew or did not grow at 

all when the sulphate concentrations were very low. However, these cultures grew in the 

control cultures without cadmium. When the sulphate concentrations increased, the 

cultures with cadmium also increased their growth. In fact, C. moewusii cells treated 

with high sulphate concentrations (0.1–5 mM) had growth, even at the highest cadmium 

concentrations (except 8 mg/L), allowing growth at these concentrations. Therefore, C. 

moewusii required higher sulphate concentrations with the increase of cadmium 

concentration. As cadmium concentration increased, a higher sulphate concentration 

was required to achieve a final cell density close to the final cell density obtained in the 

cultures without cadmium. Thus, Fig. 2 was obtained when the amount of sulphate in 

which the maximum final cell density is reached, within each of the cadmium 

concentration, is plotted against this cadmium concentration. It can be observed from 

this figure that with the increase of cadmium in the culture medium, a higher amount of 

sulphate was required to achieve the corresponding maximum cell density. This 

maximum was reached with a smaller amount of sulphate (0.1 mM) in cultures without 

cadmium. 

 

Fig. 2. Sulphate concentrations in 

the culture medium necessary to 

achieve the maximum final cell 

density obtained for each cadmium 

concentration. 

 

 

http://www.sciencedirect.com/science/article/pii/S0166445X14000046#gr2


The growth rate is another important parameter to use when studying the effect of 

both factors on this microalga. The study of this parameter revealed that the growth rate 

was affected by both factors. The cadmium effect was inversely proportional to its 

concentration (Fig. 3). An increase in the concentration of this metal led to a decrease in 

the growth rate. The highest cadmium concentration (8 mg/L) caused the total inhibition 

of the growth rate. On the contrary, sulphate had a direct effect on this parameter: as the 

sulphate concentration increased also the growth rate increased until reaching a 

maximum value, different for each cadmium concentration. The maximum growth rate 

was obtained in cultures with 0.1 mM sulphate. However, from these maximum values 

a decrease in the growth rate was observed with the increase of sulphate concentration. 

These results clearly show the existence of substrate inhibition. The kinetic parameters 

obtained by fitting to the three growth models studied are summarized in Table 3. It can 

be seen that uncompetitive and non-competitive models were able to predict the 

experimental results fairly well, the competitive model being the one that obtained the 

lowest correlation coefficients. This Table also shows that an increase in the cadmium 

concentration reduced the specific cell growth constant (μm) of this microalga. The 

sulphate saturation constant (Ks) was higher with the increase of cadmium 

concentration. Instead, the inhibition constant (KI) was lower. 

 

Fig. 3.  Growth rates of C. 

moewusii cells after 4 days of exposure to 

different cadmium and sulphate 

concentrations (experimental data and 

model fitting). The upper figure is an 

enlargement of the interval 0–0.1 mM. 

 

http://www.sciencedirect.com/science/article/pii/S0166445X14000046#gr3


Table 3. Kinetic parameters (±SE, standard error) for the sulphate utilization in C. moewusii after 4 days of exposure to different cadmium 

concentrations. 

[Cd] 

(mg/L) 

R2 Competitive model Uncompetitive model Non-competitive model  

μm (1/d) Ks (mM) KI (mM) R2 μm (1/d) Ks (mM) KI (mM) R2 μm (1/d) Ks (mM) KI (mM) 

0 0.900 13.147 ± 1.710E + 07 0.043 ± 5.786E + 04 0.002 ± 0.001 0.916 0.692 ± 0.032 0.003 ± 0.001 25.423 ± 17.356 0.916 0.692 ± 0.032 0.003 ± 0.001 25.401 ± 17.333 

1 0.948 7.135 ± 3.643E + 07 0.093 ± 1.449E + 05 0.008 ± 0.002 0.966 0.628 ± 0.030 0.009 ± 0.002 16.376 ± 7.282 0.966 0.629 ± 0.030 0.009 ± 0.002 16.367 ± 7.284 

2 0.920 5.512 ± 1.552E + 07 0.132 ± 3.73E + 05 0.012 ± 0.004 0.940 0.562 ± 0.041 0.015 ± 0.005 13.933 ± 8.083 0.940 0.562 ± 0.042 0.015 ± 0.005 13.919 ± 8.087 

4 0.936 4.567 ± 1.13E + 07 0.169 ± 4.191E + 05 0.015 ± 0.004 0.965 0.462 ± 0.027 0.020 ± 0.005 10.771 ± 4.098 0.965 0.462 ± 0.027 0.020 ± 0.005 10.750 ± 4.100 

6 0.938 3.083 ± 6.306E + 06 0.253 ± 5.197E + 05 0.016 ± 0.005 0.969 0.226 ± 0.013 0.022 ± 0.005 10.348 ± 3.641 0.969 0.226 ± 0.013 0.022 ± 0.005 11.327 ± 3.677 

8 * * * * * * * * * * * * 

* No significant regression. 



The uncompetitive model was chosen to establish a mathematical model that links 

both factors. In this model, the sulphate concentration that yields the maximum growth 

rate (μmax) is given by the following equation: 

 [SO4
2 −

]=(K sK I)
1 / 2            

 (5) 

Thus, Table 4 shows the sulphate concentration necessary to achieve the 

maximum growth rate (calculated by Eq. (5)) depending on the cadmium concentration. 

It can be observed that with the increase in the metal concentration a higher sulphate 

concentration was required. 

Table 4. Sulphate concentrations necessary to achieve the maximum growth rate in 

relation to the cadmium concentration, obtained by means of equation 5. 

[Cd] (mg/L) [SO4
2−

] (mM) 

0 0.276 

1 0.384 

2 0.457 

 

Fig. 4 shows the relationship of each of the kinetic parameters (obtained with the 

uncompetitive model) vs. the cadmium concentration. Substituting the equations obtained from 

the regression analyses of these data in Eq. (3), a model for the specific growth rate of C. 

moewusii in terms of sulphate and cadmium concentrations was obtained (Eq. (6)). 

 

(6) 

Lines in Fig. 3 were drawn using Eq. (6). It can be seen that the experimental data 

fit well to the growth model derived. The correlation coefficients were higher than 0.97. 

Similarly, an equation for non-competitive model (equation not shown) was obtained, 

but in this case, the correlation coefficients were less than 0.92. For this reason, this 

model was not considered. 

 



 

Fig. 4.  Kinetic parameters 

of the C. moewusii growth 

obtained with the 

uncompetitive 

model vs. cadmium 

concentrations. 

 

 

The EC50/4d values for cadmium estimated from concentration-response curves 

and depending on the different sulphate concentrations are shown in Fig. 5. From this 

figure it can be seen that with the increase of sulphate concentration also the cadmium 

tolerance of this microalga increased. Thus, considering the values obtained for 

EC50 (based on nominal cadmium concentration), the cadmium tolerance was 

proportional to the sulphate concentration up to a maximum threshold. The 

EC50 estimated for low sulphate concentration was only 0.5 mg Cd/L; however, the 

maximum value reached was 4.46 ± 0.42 mg Cd/L with 1 mM sulphate in the culture 

medium. A higher sulphate concentration than 1 mM did not produce a significant 

increase in the tolerance, even a decrease in this ability was observed. 

 

Fig. 5.  Cadmium EC50/4d values 

estimated for C. moewusii at the 

different sulphate concentrations 

assayed. Lowercase letters denote 

differences among treatments 

(p < 0.05). 
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3.2. Effects of sulphate and cadmium on the low-molecular mass thiol 

compounds 

The synthesis of low-molecular mass thiol compounds in C. moewusii exposed to 

different cadmium and sulphate concentrations are shown in Fig. 6 and Fig. 7. The 

detected levels of the amino acid cysteine were significantly higher than those of other 

thiol compounds (GSH and γ-Glu–Cys) (Fig. 6). The cysteine concentration increased 

with the cadmium concentration. The maximum values were obtained in the 

concentration of 6 mg/L, decreasing in the following cadmium concentration. In 

addition, this amino acid had a progressive increase with the increase of sulphate 

concentration, reaching maximum values in medium–high concentrations of this 

nutrient (≥0.01 mM) (Fig. 6a). The levels of γ-Glu–Cys were always lower than those of 

the rest of thiols and did not vary significantly in relation to cadmium but varied with 

the sulphate concentrations. This thiol had a significant increase with the increase of the 

sulphate concentrations. In cadmium-free cultures, this compound reached a maximum 

level when the sulphate concentration added to the culture medium was 0.1 mM. The 

amount of γ-Glu–Cys remained constant from this concentration. Nevertheless, GSH 

synthesis was influenced by the action of both factors. The GSH levels decreased 

slightly with the increase of cadmium concentration for a given amount of sulphate. By 

contrast, the amount of GSH had a significant increase with the increase of the sulphate 

concentrations. In cadmium-free cultures, this compound reached a maximum level 

when the sulphate concentration in the culture medium was 0.1 mM. The amount of 

GSH remained constant from this concentration. 

PCs were the most abundant thiols in the cultures with cadmium. PCs of two 

(PC2), three (PC3), four (PC4) and five (PC5) subunits, and their respective desglycine 

phytochelatins (dPCs) were identified in cultures of this microalga treated with this 

metal (Fig. 7). PCs were not detected in control cultures without metal. C. 

moewusii cultures treated with cadmium showed an increase in the PC levels due to the 

increase in the metal concentration, except in the highest concentration (8 mg/L). 

Furthermore, there was a significant increase in PCs of medium chain, the content in 

PC3 and PC4 was significantly predominant with respect to other PC chains. PC5 was 

only detected from cultures treated with 2 mg Cd/L and it was the longest chain 

detected. Although cadmium clearly induced the PC synthesis, the amount synthesized 

was significantly dependent on the sulphate concentration. With the increase in the 



concentration of this compound, the amount of PCs was higher for a same concentration 

of metal (Fig. 7). The highest PC content was in the combination of 4 mg Cd/L and 

1 mM sulphate, which also corresponded with the highest EC50 value (Fig. 5). 

In addition, Fig. 6 and Fig. 7 show that the total thiol content increased with the 

increase of cadmium and sulphate concentration. However, when the metal 

concentration was very high, this tendency was reversed, reducing the total content of 

thiols synthesized by the microalga. The highest content occurred in cultures exposed to 

4 and 6 mg Cd/L and containing the highest sulphate concentrations tested. 

 

 

Fig. 6. Production of cysteine, γ-Glu–Cys and GSH in C. moewusii cells in response to 

different cadmium concentrations with different sulphate concentrations after 4 days of 

exposure. 

http://www.sciencedirect.com/science/article/pii/S0166445X14000046#gr6


 

Fig. 7.  Production of PCs in C. moewusii cells in response to different cadmium 

concentrations with different sulphate concentrations after 4 days of exposure. 

 

4. DISCUSSION 

Sulphur is an essential macroelement that plays a major role in processes of 

growth and development of living organisms. In the case of autotrophic organisms, 

sulphur is incorporated mainly from sulphate and therefore this compound is an 

important nutrient. However, when cadmium is present in the environment, sulphate is 

much more than a simple nutrient, playing an indirect protective function against this 

toxic element. In fact, environmental conditions are believed to be important for 

http://www.sciencedirect.com/science/article/pii/S0166445X14000046#gr7


tolerance to metals. Although there are many described environmental factors 

influencing the toxicity of metals, perhaps sulphate should have more attention. In the 

present work, the protective effect of sulphate was studied by exposing the freshwater 

microalga C. moewusii to different cadmium concentrations in the presence of different 

sulphate concentrations in the nutrient solution. This bifactorial design allowed 

highlighting the interaction between these two factors. C. moewusii is a good model for 

these studies because it has been commonly used as test microorganism in various 

genetical ( Lee et al., 1991), physiological (Bernstein, 1966) and toxicological bioassays 

(studies with herbicides) (Prado et al., 2011); but there are few data available regarding 

to metals (Suárez et al., 2010) in this species. With the experimental design used in the 

present work, it was also possible to study the kinetic parameters for sulphate utilization 

by this microalga and the effect of cadmium on them. There are several studies in roots 

of higher plants ( Alves de Oliveira et al., 2009, Mendoza-Cózatl et al., 2005 and Nocito 

et al., 2006) and in Euglena gracilis ( García-García et al., 2012) on the sulphate uptake 

and the effect of cadmium on this process, but there is little information about its 

behaviour as nutrient in microalgal cells and the effect of cadmium on this behaviour. 

In the present work, C. moewusii cultures were kept without sulphur in the 

nutrient solution for 21 days prior to experiments to effectively remobilize their S-

reserves and to better observe the effect of sulphate. During this time, these cultures 

remained viable (data not shown). When the results of the present work were analyzed 

in the cadmium-free cultures, it was possible to observe that sulphate is obviously a 

nutrient ( Fig. 1 and Fig. 3) with an optimum concentration of 0.1 mM for the 

experimental conditions used in the present work. However, from this concentration the 

opposite effect was observed, this nutrient would be in excess generating a negative 

effect at higher concentrations. This response was also found with Fontinalis 

antipyretica when it was exposed to high sulphate concentrations (up to 1500 mg/L) 

with the result of significant reductions in several biological parameters (Davies, 2007). 

The negative effects of this compound seem to be due to the creation of an 

unsustainable osmotic imbalance between the aquatic organisms and their surrounding 

environment. In fact, it is known that this effect depends on the water hardness (Elphick 

et al., 2011). C. moewusiiappears to be quite sensitive to these changes because such 

effects were already observed when the sulphate concentration in the medium was 

higher than 0.1 mM (Fig. 1). Although Monod-type models are often incorporated into 



growth simulations where complexity must be kept to a minimum, the data obtained in 

the present work show that kinetics of sulphate utilization as substrate by these 

microalgal cells is governed by an uncompetitive inhibition model ( Fig. 3 and Fig. 4), 

in which the number of active uptake sites limits the maximum uptake rate. The use of 

this type of model allowed greater biological accuracy in the present study. 

When cadmium was added to the culture medium, there was a reduction of the C. 

moewusii growth, both in terms of final cell density and growth rate ( Fig. 1 and Fig. 3). 

However, this effect was smaller than expected as sulphate concentration was increased. 

All cadmium concentrations caused a dramatic growth inhibition of this microalga when 

the sulphate content in the medium was low (Fig. 1). The increase of sulphate allowed 

to alleviate this effect, which can be easily observed when the cadmium EC50 was 

calculated for the different sulphate concentrations (Fig. 5). Thus, when the sulphate 

concentration was the commonly used in the culture media (approx. 0.5 mM), the 

EC50 was 4.26 ± 0.29 mg Cd/L. A similar result was obtained by Suárez et al. 

(2010)using this microalga exposed to the same metal. They obtained a value of 

4.1 ± 0.8 mg Cd/L after 4 days of exposure and using Bristol as culture medium in their 

experimental conditions. This culture medium contains a total sulphate concentration of 

0.5 mM. When the sulphate concentration was raised to 1 mM, the EC50 value increased 

still further, reaching 4.46 ± 0.42 mg Cd/L. Precisely in these concentrations the highest 

content of thiol compounds was also obtained. Cadmium causes alterations in the 

regulation at the enzymatic and genetic level of the cysteine and glutathione 

biosynthesis (Mendoza-Cózatl et al., 2005). In aquatic plant species during cadmium 

stress, the ATP sulfurylase activity increased between 1.5 and 3.5 times (Alves de 

Oliveira et al., 2009); in E. graciliscells exposed to this metal, the activity of the 

sulphate transporters was significantly increased ( García-García et al., 2012). These 

alterations appear to lead to an increase in the biosynthesis of these compounds and 

finally of PCs. PCs have a clear role in cadmium tolerance, supported by a range of 

biochemical and genetic evidences. Over time, several studies have demonstrated that 

cadmium is the strongest inductor of PC biosynthesis in several species (Ahner and 

Morel, 1995). The PC synthesis is a common detoxification response to cadmium in 

microalgal cells (Lavoie et al., 2009). As expected, in the present study, C. 

moewusii showed an increase in the PC levels when the cadmium concentration 

increased ( Fig. 7), the highest amount of PCs being achieved in the cadmium 



concentration of 4 mg/L (around the highest EC50 value). However, the ability to 

synthesize PCs was also strongly affected by the sulphate concentration. The amount of 

PCs increased with the sulphate concentration at the same time that also increased metal 

tolerance. The PC biosynthesis is clearly dependent on sulphur metabolism. Due to this 

relationship, the type and amount of low-molecular mass thiol compounds synthesized 

in response to cadmium also depended on the sulphate concentrations. All soluble thiols 

synthesized by C. moewusii changed with cadmium and sulphate treatments. The 

exposure to cadmium would induce an additional sink of sulphate due to the need to 

synthesize more thiol compounds (driven by the PC biosynthesis). This need can be 

satisfied when the amount of sulphate in the medium is sufficient. Therefore, no step or 

enzyme involved in this biosynthesis appears to be affected by the toxic effect of 

cadmium. In fact, the data obtained in the present work showed that the increase in the 

amount of sulphate in the medium allowed a higher tolerance to this metal since it 

promoted a higher thiol compound biosynthesis. Nocito et al. (2002) also found that the 

rate of sulphate uptake by maize roots grown in the presence of cadmium was twice that 

of the control. Some studies on the addition of sulphur to Cd-treated higher plants, 

as Brassica campestris, have revealed an enhanced capacity for GSH synthesis due to 

S-fertilization. This application of sulphur helped in reducing cadmium toxicity 

( Anjum et al., 2008). This reduction was also observed in the present study with C. 

moewusii, but here the PC content, more than the GSH content, was responsible of this 

tolerance. Thus, in microalgae exposed to cadmium, the increase of sulphate 

concentration allows an increase of PC biosynthesis, increasing the tolerance to higher 

doses of this metal ( Fig. 5 and Fig. 6). 

However, PCs are not the unique intracellular defence against the cytotoxic action 

of this metal in C. moewusii. Thus, in cultures treated with cadmium was observed an 

increase in the intracellular levels of cysteine. This same fact was also reported 

by Suárez et al. (2010) in this microalga. Cysteine could act as a defence mechanism not 

only for participating in PC biosynthesis but also directly as metal chelator. In fact, the 

cysteine content was higher than that of GSH when cadmium was present in the 

medium. The amount of GSH decreased only slightly with the increase in the PC levels 

(Fig. 6). This would suggest that the intracellular GSH was consumed during the PC 

biosynthesis and replaced quickly by new synthesis from the sulphur of the medium. 



Another important effect of cadmium focuses on the effect that this metal had on 

the kinetics of sulphate utilization. Cadmium caused changes in the kinetics parameters. 

The half-saturation constant (KS) is an index of affinity to this nutrient, this constant 

increased with the cadmium concentration, indicating a higher need of sulphate to 

achieve half of the corresponding maximum growth rate when the cadmium 

concentration increases in the culture medium. Instead, KI decreased, the amount of 

sulphate that reduces the maximum growth rate is lower as cadmium increases, that is, a 

synergistic effect can be observed when the sulphate concentration exceeds the 

optimum. Eq. (6) was built taking into account the effect of these two factors on the 

kinetic parameters and using an uncompetitive inhibition model. In this way, it was 

possible to model the cadmium effect on the growth of this microalga as a function of 

the sulphate concentration in the medium. 

The toxicity of this metal has been verified in many studies involving both 

freshwater and marine microalgae. Although toxicity to cadmium depends on culture 

conditions, some relevant data obtained for other microalgae can serve as reference 

(Table 5). These values seem to suggest that, in general, freshwater microalgae are more 

sensitive to this metal than their homologous marine counterparts. One possible 

explanation, taking into account the results of the present study, is that in marine 

environments there is a higher abundance of sulphate, allowing an increased synthesis 

of PCs and related compounds. For example, the marine microalga Tetraselmis 

suecica exposed to cadmium showed higher values in the amount of thiol compounds 

synthesized ( Pérez-Rama et al., 2006) compared with C. moewusii. 

Finally, the results obtained in this study have an interesting environmental 

impact. Taking into account this protective effect of sulphate on cadmium toxicity, 

those environments in which sulphate availability is low, a higher toxicity of this metal 

on microalgal populations is expected. In contrast, sulphate-rich environments could 

better tolerate its effects. One possible way to act in environments contaminated with 

cadmium would be to increase the bioavailability of sulphate, especially when its 

bioavailability is low. However, it is necessary take into account that high 

concentrations can have the opposite effect (substrate inhibition). In addition, a 

desirable feature that the designated organisms for bioremediation should have is an 

efficient mechanism for metal sequestration or inactivation. Thus, a suitable increase in 



PC biosynthesis would improve the results of cadmium removal. A higher sulphate 

bioavailability could respond to this demand, generating a more successful strategy. 

Table 5. EC50 values for cadmium obtained with different species of freshwater and 

marine microalgae. 

Microalgae species EC50/day (mg Cd/L) Reference 

Freshwater microalgae 

 Pseudokirchneriella subcapitata EC50/4d = 0.009 (Källqvist, 2009) 

 Chlamydomonas sp. EC50/12d = 22.48 (Aguilera and Amils, 2005) 

 Chlorella sp. EC50/7d = 0.34 (Kaplan et al., 1995) 

 Chlorella vulgaris EC50/4d = 0.10 (Rachlin and Grosso, 1993) 

 Desmodesmus subspicatus EC50/3d = 0.30 (Baścik-Remisiewicz et al., 
2011) 

 Selenastrum capricornutum EC50/4d = 0.057 (Turbak et al., 1986) 

 Ankistrodesmus falcatus EC50/4d = 0.29 (Magdaleno et al., 1997) 

 Chlorella pyrenoidosa EC50/4d = 6.69 (Bednarz and Warkowska-
Dratnal, 1985) 

Marine microalgae 

 Isochrysis galbana EC50/5d = 0.74 (Yap et al., 2004) 

 Tetraselmis gracilis EC50/4d = 1.8 (Okamoto et al., 1996) 

 Tetraselmis suecica EC50/6d = 7.9 (Pérez-Rama et al., 2002) 

 Dunaliella salina EC50/4d = 48.9 (Folgar et al., 2009) 

 

5. CONCLUSIONS 

Sulphate is an important nutrient not only for its essentiality but also for its 

indirect protective effect against cadmium toxicity. The results with the microalga C. 

moewusiishowed that the increase of sulphate in the nutrient solution allowed a higher 

tolerance to cadmium. The EC50/4d increased with the increase of sulphate concentration, 

the highest value being 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to 

culture medium was 1 mM. The increase in the amount of sulphate allowed for an 

increase in the biosynthesis of low-molecular mass thiol compounds, such as 

phytochelatins (important compounds for cadmium tolerance). This response is only 

effective if the sulphate concentration is enough to allow for the synthesis of these 

compounds to fulfil the high demand for them generated by the presence of cadmium. 



From an environmental perspective, it seems clear that an increase in the sulphate 

concentration, in deficient environments, could alleviate the toxic effect of this metal; 

however, a relative excess of sulphate is also negative. The results obtained show a 

substrate inhibition for this nutrient. 
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